AU766227B2 - Method and apparatus for providing breathing gas to a patient - Google Patents

Method and apparatus for providing breathing gas to a patient Download PDF

Info

Publication number
AU766227B2
AU766227B2 AU67121/01A AU6712101A AU766227B2 AU 766227 B2 AU766227 B2 AU 766227B2 AU 67121/01 A AU67121/01 A AU 67121/01A AU 6712101 A AU6712101 A AU 6712101A AU 766227 B2 AU766227 B2 AU 766227B2
Authority
AU
Australia
Prior art keywords
patient
flow
gas
pressure
breathing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU67121/01A
Other versions
AU6712101A (en
Inventor
Mark H. Sanders
Ronald J. Zdrojkowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Respironics Inc
Original Assignee
Respironics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU97035/98A external-priority patent/AU734319B2/en
Application filed by Respironics Inc filed Critical Respironics Inc
Priority to AU67121/01A priority Critical patent/AU766227B2/en
Publication of AU6712101A publication Critical patent/AU6712101A/en
Application granted granted Critical
Publication of AU766227B2 publication Critical patent/AU766227B2/en
Priority to AU2004203313A priority patent/AU2004203313B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): RESPIRONICS, INC.
Invention Title: METHOD AN'~D APPARATUS FOR PROVIDING BREATHING GAS TO A PATI ENT
OOS*O@
0 0~ 0 0S 0* 0 *00000 0
S
000 S0 0 0 000@ 000000 0500 S 0 00 0 50 0 0 000 0 The following statement is a full description of this invention, including the best method of performing it known to me/us: -2- BACKGROUND OF THE INVENTION sees*: .00 0 0 09 00 0000 so ee.
00 6O 6
S
0@ 55
C
*SSC
0e@C See.
S
*5 The sleep apnea syndrome afflicts an estimated 1% to 3% of the general population and is due to episodic upper airway obstruction during sleep. Those afflicted with sleep apnea experience sleep fragmentation and intermittent, complete or nearly complete cessation of ventilation during sleop with potentially severe degrees of oxyhemoglobin unsaturation. These features may be translated clinically into debilitating daytime sleepiness, cardiac disrhythmias, pulmonary-artery hypertension, congestive heart failure and cognitive disfunction. Other sequelae of sleep apnea include right ventricular dysfunction with cor pulmonale, carbon dioxide retention during wakefulness as well as during sleep, and continuous reduced arterial oxygen tension. Hypersomnolent sleep apnea patients may be at risk for excessive mortality from these factors as well as by an elevated risk for accidents while driving and/or operating potentially dangerous equipment.
Z0 Although details of the pathogenesis of upper airway obstruction in sleep apnna patients have not been fully defined, it is generally accepted that the mechanism includes either anatomic or functional abnormalities of the upper airway which result in increased air flow resistance. Such abnormalities may include narrowing of the upper airway due to suction forces evolved during inspiration, the effect of gravity pulling the tongue back to appose the pharyngeal wall, and/or insufficient muscle tone in the upper airway dilator muscles. It has also been hypothesized that a mechanism responsible for the known association between obesity and sleep apnoa is excessive soft tissue in the anterior and lateral neck which applies sufficient pressure on internal structures to narrow the airway.
Tne treatment of sleep apnea has included such surgical interventions as uvalopalatopharyngoplasty, gastric surgery for obesity, and maxillo-facial reconstruction. Another mode of surgical intervention used in the treatment of sleep apnea is tracheostomy. These treatments constitute major undertakings with considerable risk of post-operative morbidity if not mortality. Pharmacologic therapy has in general been disappointing especially in patients with more than mild sleep apnea. In addition, side effects from the pharmacologic agents 0 0 15 that have been used are frequent. Thus, medical practitioners 00 continue to seek non-intrusive modes of treatment for sleep apnea with high success rates and high patient compliance including, for example in cases relating to obesity, weight loss through a regimen of exercise and regulated diet.
Recent work in the treatment of sleep apnea has included the use of continuous positive airway pressure (CPAP) to maintain the airway of the patient in a continuously open state during sleep. For example, U.S. patent 4,655,213 and Australian 25 patent AU-B-83901/82 both disclose sleep apnea treatments based on continuous positive airway pressure applied within the airway of the patient.
-4- Also of interest is U.S. patent 4,773,411 which discloses a method and apparatus for ventilatory treatment characterized as airway pressure release ventilation and which provides a substantially constant elevated airway pressure with periodic short term reductions of the elevated airway pressure to a pressure magnitude no less than ambient atmospheric pressure.
Publications pertaining to the application of CPAP in treatment of sleep apnea include the following: 1. Lindsay, DA, Issa FG, and Sullivan C.E. "Mechanisms of Sleep Desaturation in Chronic Airflow Limitation Studied with Nasal Continuous Positive Airway Pressure (CPAP), "Am Rev Respir Dis, 1982; 125: p.112.
**o 2. Sanders MH, Moore SE, Eveslage J. "CPAP via nasal mask: A treatment for occlusive sleep apnea," Chest, 1983; 83: pp. 144-145.
20 3. Sullivan CE, Berthon-Jones M, Issa FG. *Remission of severe obesity-hypoventilation syndrome after short-term treatment S* during sleep with continuous positive airway pressure," Am Rev Respir Dis, 1983; 128: pp. 177-181.
4. Sullivan CE, Issa FG, Berthon-Jones M, Eveslage. "Reversal of obstructive sleep apnea by contnuous positive airway pressure applied through the nares," Lancet, 1981; 1: pp. 862-:165.
5 Sullivan CE, Berthon-Jones M. Issa FG.
"Treatment of obstructive apnea with continuous positive airway pressure applied through the nose." Am Rev Respir Dis, 1982; 125; p.107, Annual Meeting Abstracts.
6. Rapoport DM, Sorkin B, Garay SM, Goldring RM.
"Reversal of the 'Pickwickian Syndrome' by longterm use of nocturnal nasal-airway pressure," N Engl J. Med, 1982; 307: pp.931-933.
7. Sanders MH, Holzer BC, Pennock BE. "The effect of nasal CPAP on various sleep apnea patterns," Chest, 1983; 84: p.336. Presented at the Annual Meeting of the American College of Chest Physicians, Chicago IL, October 1983.
Although CPAP has been found to be very effective and well accepted, it suffers from some of the same ••limitations, although to a lesser degree, as do the surgery options; specifically a significant proportion of sleep apnea patients do not tolerate CPAP well. Thus, development of other viable non-invasive therapies has been a continuing objective in the art.
FIELD OF THE INVENTION This invention relates to a method and apparatus for providing breathing gas to a patient.
H:\joIenew\Keep\30678 95 DIV RESPIRONCS-.doc 5/09/01 6 SUMMARY OF THE INVENTION The present invention contemplates a novel and improved method and apparatus for providing breathing gas to a patient.
According to the present invention there is provided a method of providing breathing gas from a breathing gas source to an airway of a patient who is breathing in repeated breathing cycles, wherein each breathing cycle includes an inspiratory phase and an expiratory phase, comprising: providing a flow of gas from a pressure generator to a patient via a conduit operatively coupled to an outlet of the pressure generator and via a non-invasive interface device coupled to the conduit, wherein the conduit and the interface device define a patient circuit, and wherein the interface device communicates the flow of gas from the 20 conduit to an airway of a patient responsive to the interface device being donned by the patient and the flow of gas being delivered to the patient circuit; continuously exhausting a flow of exhaust gas 25 from the patient circuit; monitoring a characteristic associated with the flow of gas in the patient circuit; 30 determining an instantaneous flow rate of the flow of gas in the patent circuit from the monitored characteristic; determining whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle by comparing the instantaneous flow rate to a reference value; and \\melbtfiles\home\jolene\Kep\3068 95 DIV RESPIRONICS.doc 5/09101 7 controlling the flow of gas from the pressure generator to the patent based on whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle so as to maintain a positive pressure in the patient's airway substantially continuously during a sequence of inspiratory and expiratory phases, where a magnitude of pressure maintained during an expiratory phase is less than a magnitude of pressure maintained during an immediately preceding inspiratory phase.
According to the present invention there is further provided a method a pressure support system comprising: a pressure generating system adapted to generate a flow of gas at variable pressures;
S
a conduit having a first end coupled to an outlet of the pressure generating system and a second end, wherein 20 the conduit carries to the flow of gas to a patient; a non-invasive interface device coupled to the second end of the conduit, wherein the interface device and the conduit define a patient circuit, anwherein the interface device communicates the flow of gas from the conduit to an airway of a patient responsive to the interface device being donned by the patient and the flow of gas being delivered to the patient circuit; 30 an exhaust port defined in the patient circuit and adapted to continuously exhausting a flow of exhaust gas from the patient circuit; a sensor associated with the patient circuit and adapted to monitor a characteristic associated with the flow of gas in the patient circuit; \\relb-f iles\home\jolenew\Keep\30678 95 DIV RESPIRONICS.doc 5/09/01 8 a processing means for determining an instantaneous flow rate of the flow of gas in the patient circuit from an output of the sensor, determining whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle by comparing the instantaneous flow rate to a reference value, and (3) controlling the flow of gas delivered to the patient by the pressure generating system based on whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle so as to maintain a positive pressure in the patient's airway substantially continuously during a sequence of inspiratory and expiratory phases and such that a magnitude of pressure maintained during an expiratory phase is less than a magnitude of pressure maintained 15 during an immediately preceding inspiratory phase.
0
S
*0* 0 \\melbfies\homne$\JOlenew\Keer\3678 95 D)IV RESP'IRONICS.doc 5/09/01 9- THIS PAGE IS INTENTIONALLY BLANK .5 @0 0@
S
*0eSe0 0 0* 0O 5* 0 Oe*e 0 000*00 0 *0*
S
0@06 0000
OS
0* 0 S0 0 SS, S \\meIb-f iI es \home$\jo I enew\Keep\30678 95 DIV RESPI RONTICS.doC 5/09/01 10 THIS PAGE IS INTENTIONALLY BLANK 0 o 0000 .09 000 06 000 0* \\melbfiles\hone,\jolenew\Keep\30678 95 DIV RESPIRONICS.cdoq 5/09/01 11 THIS PAGE IS INTENTIONALLY BLANK v 0 01 0 pe 0 a o* 0 \\melb-file\home$,\jOlenewKeep\J0678 95 DIV RESPIRONICS.rioc 5/09/01 12 THIS PAGE IS INTENTIONALLY BLANK 0
S
OS S
SO
S.
S
S.
S
OSS
SS
S S 0e~e
S
v5e055
S
*SSS
S
.5.5 5O50 5 5S S
S.
Se S
S
\\melIbfilIes\ home$\ jol enew\xKeep\ 30678 95 D TV RRSPI RON ICS.rjoc 5/09/0 1 13 These and other objects and further advantages of the invention will be more readily appreciated upon consideration of the following detailed description and accompanying drawings, in which: Fig. 1 is a functional block diagram of an apparatus according to the instant invention which is operable according to the method of the instant invention; Fig. 2 is a functional block diagram showing an alternative e s* *S ee 0 a o H:\akhoO\Keep\Temp\0i6 7 8 95 DIV RSPIRONICS.doc 10/12/98 14 embodiment of the invention; Fig. 3 is a functional block diagram of the Estimated Leak Computer of Fig. 2; and Fig. 4 is a frontal elevation of a control panel for the apparatus of this invention.
There is generally indicated at 10 in Fig. 1 an apparatus according to one presently preferred embodiment of the instant invention and shown in the form of a functional block diagram.
0000 Apparatus 10 is operable according to a novel process which is another aspect of the instant invention for delivering breathing gas such as air alternately at relatively higher and lower 15 pressures equal to or above ambient atmospheric pressure) to a patient 12 for treatment of the condition known as sleep apnea.
Apparatus 10 comprises a gas flow generator 14 a blower) which receives breathing gas from any suitable source, a S pressurized bottle 16 or the ambient atmosphere, for example.
The gas flow from flow generator 14 is passed via a delivery conduit 20 to a breathing appliance such as a mask 22 of ani suitable known construction which is worn by patient 12. The mask 22 may preferably be a nasal mask or a full face mask 22 as shown. Other breathing appliances which may be used in lieu of a mask include nasal cannulae, an endotracheal tube, or any other suitable appliance for interfacing between a source of 15 breathing gas and a patient.
The mask 22 includes a suitable exhaust port moans, schematically indicated at 24, for exhaust of breathing gases during expiration. Exhaust port 24 preferably is a continuously open port which imposes a suitable flow resistance upon exhaust gas flow to permit a pressure controller 26, located in line with conduit 20 between flow generator 14 and mask 22, to control the pressure of air flow within conduit 20 and thus within the airway of the patient 12. For example, exhaust port 24 may be of sufficient cross-sectional flow area to sustain a continuous exhaust flow of approximately 15 liters per minute.
The flow via exhaust port 24 is one component, and typically the major component of the overall system leakage, which is an important parameter of system operation. In an alternative embodiment to be discussed hereinbelow, it.has been found that a non-rebreathing valve may be substituted for the continuously open port 24.
The pressure controller 26 is operative to control the pressure of breathing gas within the conduit 20 and thus within the airway of the patient. Pressure controller 26 is located preferably, although not necessarily, downstream of flow generator 14 and may take the form of an adjustable valve which provides a flow path which is open to the ambient atmosphere via a restricted opening, the valve being adjustable to maintain a constant pressure drop across the opening for all flow rates and thus a constant pressure within conduit 16 Also interposed in line with conduit 20, preferably downstream of pressure controller 26, is a suitable flow transducer 28 which generates an output signal that is fed as indicated at 29 to a flow signal conditioning circuit 30 for derivation of a signal proportional to the instantaneous flow rate of breathing gas within conduit 20 to the patient.
It will be appreciated that flow generator 14 is not 1U necessarily a positive displacement device. It may be, for o. example, a blower which creates a pressure head within conduit oo 20 and provides air flow only to the extent required to maintain oo5550 that pressure head in the presence of patient breathing cycles, the exhaust opening 24, and action of pressure controller 26 as 0. 15 above described. Accordingly, when the patient is exhaling, peak exhalation flow rates from the lungs may far exceed the flow capacity of exhaust port 24. As a result, exhalation gas backflows within conduit 20 through flow transducer 28 and 5555 toward pressure controller 26, and the instantaneous flow rate S U signal from transducer 28 thus will vary widely within a range from relatively large positive toward the patient) flow to relatively large negative from the patient) flow.
The instantaneous flow rate signal from flow signal conditioning circuitry 30 is fed as indicated at 32 to a decision module 34, a known comparator circuit for example, and is additionally fed as indicated at 36 to a low pass filter 38.
Low pass filter 38 has a cut-off frequency low enough to remove 17 from the instantaneous flow rate input signal most variations in the signal which are due to normal breathing. Low pass filter 38 also has a long enough time constant to ensure that spurious signals, aberrant flow patterns and peak instantaneous flow rate values will not dramatically affect system average flow. That is, the time constant of low pass filter 38 is selected to be long enough that it responds slowly to the instantaneous flow rate signal input. Accordingly, most instantaneous flow rate input signals which could have a large impact on system average flow in the short term have a much smaller impact over a longer term, largely because such instantaneous flow rate signal components will tend to cancel over the longer term. For 0 example, peak instantaneous flow rate values will tend to be alternating relatively large positive and negative flow values oo j5 corresponding to peak inhalation and exhalation flow achieved by o 0 o the patient during normal spontaneous breathing. The output of low pass filter 38 thus is a signal which is proportional to the average flow in the system, and this is typically a positive oflow which corresponds to average system leakage (including flow :0O from exhaust 24) since, as noted, inhalation and exhalation flow cancel for all practical purposes.
The average flow signal output from the low pass filter 38 6 is fed as indicated at 40 to decision circuitry 34 where the instantaneous flow rate signal is continually compared to the system average flow signal. The output of the decision circuitry 34 is fed as a drive signal indicated at 42 to control the pressure controller 26. The pressure magnitude of breathing 18 gas within conduit 20 thus is coordinated with the spontaneous breathing effort of the patient 12, as follows.
When the patient begins to inhale, the instantaneous flow rate signal goes to a positive value above the positive average flow signal value. Detection of this increase in decision circuitry 34 is sensed as the start of patient inhalation. The output signal from decision circuitry 34 is fed to pressure controller 26 which, in response, provides higher pressure gas flow within conduit 20 and thus higher pressure within the airway of the patient 12. This is the higher magnitude pressure value of our bi-level CPAP system and is referred to hereinbelow as IPAP (inhalation positive airway pressure). During inhalation, the flow rate within conduit 20 will increase to a 15 maximum and then decrease as inhalation comes to an end.
At the start of exhalation, air flow into the patient's oo olungs is nil and as a result the instantaneous flow rate signal will be less than the average flow rate signal which, as noted is a relatively constant positive flow value. The decision *o S* circuitry 34 senses this condition as the start of exhalation and provides a drive signal to pressure controller 26 which, in response, provides gas flow within conduit 20 at a lower pressure which is the lower magnitude pressure value of the bi-level CPAP system, referred to hereinbelow as EPAP (exhalation positive airway pressure). As has been noted hereinabove the range of EPAP pressures may include ambient atmospheric pressure. When the patient again begins spontaneous 19 inhalation, the instantaneous flow rate signal again increases over the average flow rate signal, and the decision circuitry once again feeds a drive signal to pressure controller 26 to reinstitute the IPAP pressure.
System operation as above specified requires at least periodic comparison of the input signals 32 and 40 by decision circuitry 34. Where this or other operations are described heroin as continual, the scope of meaning to be ascribed includes both continuous uninterrupted) or periodic (i.e.
at discrete intervals).
*9 0 As has neon noted, the system 10 has a built-in controlled leakage via exhaust port 24 thus assuring that the average flow 00 15 signal will be at least a small Oositive flow. During inhalation, the flow sensed by the flow transducer will be the sum of exhaust flow via port 24 and all other system leakage downstream of transducer 28, and inhalation flow within the airway of the patient 12. Accordingly, during inhalation the instantaneous flow rate signal as conditioned by conditioning module 30, will reliably and consistently reflect inhalation flow exceeding the average flow rate signal. During exhalation, the flow within conduit 20 reverses as exhalation flow from the lungs of the patient far exceeds the flow capacity of exhaust port 24. Accordingly, exhalation air backflows within conduit past transducer 28 and toward pressure controller 26. Since pressure controller 26 is operable to maintain set pressure, it will act in response to flow coming from both the patient and 20 the flow generator to open an outlet port sufficiently to accommodate the additional flow volume and thereby maintain the specified sot pressure as determined by action of decision circuitry 34.
In both the inhalation and exhalation cycle phases, the pressure of the gas within conduit 20 exerts a pressure within the airway of the patient to maintain an open airway and thereby alleviate airway constriction.
In practice, it may be desirable to provide a slight offset 0*eeS in the switching level within decision circuitry 34 with respect Sto the average flow rate signal, so that the system does not Sprematurely switch from the low pressure exhalation mode to the higher pressure inhalation mode. That is, a switching setpoint @ol0 offset in the positive direction from system average flow may be provided such that the system will not switch to the IPAP mode until the patient actually exerts a significant spontaneous inspiratory effort of a minimum predetermined magnitude. This too* 0 will ensure that the initiation of inhalation is completely spontaneous and not forced by an artificial increase in airway *6 pressure. A similar switching setpoint offset may be provided when in the IPAP mode to ensure the transition to the lower pressure EPAP mode will occur before the flow rate of air into the lungs of the patient reaches zero the switch to EPAP occurs Slightly before the patient ceases inhalation.) This will ensure that the patient will encounter no undue initial resistance to spontaneous exhalation.
21 From the above description, it will be seen that a novel method of treating sleep apnea is proposed according to which the airway pressure of the patient is maintained at a higher positive pressure during inspiration and a relatively lower pressure during expiration, all without interference with the spontaneous breathing of the patient. The described apparatus is operable to provide such treatment for sleep apnea patients by providing a flow of breathing gas to the patient at positive pressure, and varying the pressure of the air flow to provide alternately high and low pressure within the airway of the patient coordinated with the patient's spontaneous inhalation 00 q and exhalation.
5 To provide pressure control, the flow rate of breathing gas *0 coo* to the patient is detected and processed to continually provide a signal which is proportional to the instantaneous breathing gas flow rate in the system. The instantaneous flow rate signal is further processed to eliminate variations attributable to 20 normal patient respiration and other causes thus generating a signal which is proportional to the average or steady state system gas flow. The average flow signal is continually compared with the instantaneous flow signal as a means to detect the state of the patient's spontaneous breathing versus average system flow. When instantaneous flow exceeds the average flow, the patient is inhaling, and in response the pressure of gas flowing to the patient is set at a selected positive pressure, to provide a corresponding positive pressure within the airway 22 of the patient. When comparison of the instantaneous flow rate signal with the average flow signal indicates the patient is exhaling, as for example when the instantaneous flow signal indicates flow equal to or less than the average flow, the pressure of breathing gas to the patient is adjusted to a selected lower pressure to provide a corresponding lower pressure within the airway of the patient.
In an alternative embodiment of the invention as shown in Figs. 2 and 3, the low pass filter 38 is replaced by an oo**o* estimated leak computer which includes a low pass filter as well 0* in Fig 3. The remainder as other functional elements as shown in Fig. 3. The remainder s of the system as shown in Fig. 2 is similar in most respects to the system shown in Fig. 1. Accordingly, like elements are 15 identified by like numbers, and the description heroinabove of Fig. 1 embodiment also applies generally to Fig. 2.
*.54 By using the operative capability of the estimated leak computer 50, as described hereinbelow, it is possible to adjust the reference signal which is fed to decision circuitry 34 on a breath by breath basis rather than merely relying on long term average system flow. To distinguish this new reference signal from average system flow it will be referred to hereinbelow as the estimated leak flow rate signal or just the estimated leak signal.
As was noted hereinabove, the average system flow rate reference signal changes very slowly due to the long time 23 constant of the low pass filter 38. This operative feature was intentionally incorporated to avoid disturbance of the reference signal by aberrant instantaneous flow rate signal inputs such as erratic breathing patterns. While it was possible to minimize the impact of such aberrations on the average flow rate reference signal, the average flow signal did nevertheless change, although by small increments and only very slowly in response to disturbances. Due to the long time constant of the low pass filter, such changes in the reference signal even if transitory could last for a long time.
Additionally, even a small change in the reference signal could produce a very significant effect on system triggering.
For example, since the objective is to trigger the system to the 15 IPAP mode when inhalation flow just begins to go positive, small 00. changes in the reference signal could result in relatively large 00•0 changes in the breathing effort needed to trigger the system to the IPAP mode. In some instances the change in reference signal o, could be so great that with normal breathing effort the patient .000 20 would be unable to trigger the system. For example, if the system were turned on before placement of the mask on the face 3. of the patient, the initial free flow of air from the unattached mask could result in a very large magnitude positive value for initial average system flow. If such value were to exceed the maximum inspiratory flow rate achieved in spontaneous respiration by the patient, the system would never trigger between the IPAP and EPAP modes because the decision circuitry would never see an instantaneous flow rate signal greater than 24 constant of the low pass filter 38. This operative feature was intentionally incorporated to avoid disturbance of the reference signal by aberrant instantaneous flow rate signal inputs such as erratic breathing patterns. While it was possible to minimize the impact of such aberrations on the average flow rate reference signal, the average flow signal did nevertheless change, although by small increments and only very slowly in response to disturbances. Due to the long time constant of the low pass filter, such changes in the reference signal even if transitory could last for a long time.
Additionally, even a small change in the reference signal could produce a very significant effect on system triggering.
For example, since the objective is to trigger the system to the
S
15 IPAP mode when inhalation flow just begins to go positive, small changes in the reference signal could result in relatively large changes in the breathing effort needed to trigger the system to do** the IPAP mode. In some instances the change in reference signal could be so great that with normal breathing effort the patient would be unable to trigger the system. For example, if the system were turned on before placement of the mask on the face of the patient, the initial free flow of air from the unattached Sod emask could result in a very large magnitude positive value for initial average system flow. If such value were to exceed the maximum inspiratory flow rate achieved in spontaneous o* respiration by the patient, the system would never trigger between the IPAP and EPAP modes because the decision circuitry would never see an instantaneous flow rate signal greater than 25 tho average flow rate signal, at least not until a sufficient number of normal breathing cycles after application of the mask to the patient to bring the reference signal down to a value moro closely commensurate with the actual system leak in operation. As has been noted, with the low pass filter this could take a rather long time, during which time the patient would be breathing spontaneously against a uniform positive pressure. This would be tantamount to conventional CPAP and not at all in keeping with the present invention.
In addition to the embodiment based on a reference signal derived from estimated leak flow rate on a breath by breath oo.o: basis which is controlled totally by spontaneous patient breathing, two further modes of operation also are envisioned 1 5 one being spontaneous/timed operation in which the system
S
0* automatically triggers to the IPAP mode for just long enough to o. initiate patient inspiration if the system does not sense inspiratory effort within a selected time after exhalation begins. To accomplish this, a timer is provided which is reset at the beginning of each patient inspiration whether the inspiratory cycle was triggered spontaneously or by the timer
S
itself. Thus, only the start of inspiration is initiated by the so timer. The rest of the operating cycle in this mode is controlled by spontaneous patient breathing and the circuitry of 25 the system to be described.
A further mode of operation is based purely on timed operation of the system rather than on spontaneous patient 26 breathing effort, but with the timed cycles coordinated to spontaneous patient breathing.
Referring to Fig. 3, the estimated leak computer includes the low pass filter 38' as well as other circuits which are operative to make corrections to the estimated leak flow rate signal based on on-going analysis of each patient breath.
A further circuit is provided which is operative to adjust the estimated leak flow rate signal quickly after major changes in system flow such as when the blower has been running prior to the time when the mask is first put on the patient, or after a major leak the system has either started or has been shut off.
0 0 The low pass filter 38' also includes a data storage e 15 capability whose function will be described hereinbelow.
The low pass filter 38' operates substantially as described above with reference to Fig. 1 in that it provides a long term average of system flow which is commensurate with steady state system leakage including the flow capacity of the exhaust port
S
000* 24. This long term average is operative in the Fig. 3 embodiment to adjust the estimated leak flow rate reference signal only when system flow conditions are changing very slowly.
SS
To provide breath by breath analysis and adjustment of the reference signal, a differential amplifier 52 receives the instantaneous flow rate signal as indicated at 54, and the 27 estimated leak signal output from low pass filter 38' as indicated at 56.
The output of differential amplifier 52 is the difference between instantaneous flow rate and estimated leak flow rate, or in other words estimated instantaneous patient flow rate. This will be clear upon considering that instantaneous flow is the sum of patient flow plus actual system leakage. The estimated patient flow signal output from differential amplifier 52 is provided as indicated at 58 to a flow integrator 60 which integrates estimated patient flow breath by breath beginning and ending with the trigger to IPAP. Accordingly, an additional input to the flow integrator 60 is the IPAP/EPAP state signal as indicated at 62. The IPAP/EPAP state signal is the same as the J$ 15 drive signal provided to pressure controller 26; that is, it is a signal indicative of the pressure state, as between IPAP and EPAP, of the system. The state signal thus may be used to mark the beginning and end of each breath for purposes of breath by breath integration by integrator 0 20 If the estimated leak flow rate signal from low pass filter 38' is equal to the true system leak flow rate, and if the patient's inhaled and exhaled volumes are identical for a given breath total positive patient flow equals total negative patient flow for a given breath), then the integral calculated by integrator 60 will be zero and no adjustment of estimated leak flow rate will result. When the integral calculated by integrator 60 is non-zero, the integral value in the form of an 28 output signal from integrator 60 is provided as indicated at 64 to a sample and hold modulo 66. Of course, even with a zero value integral, an output signal may be provided to module 66, but the ultimate result will be no adjustment of the estimated leak flow rate signal.
A non-zero integral value provided to module 66 is further provided to module 38' as indicated at 68 with each patient breath by operative action of the IPAP/EPAP state signal upon module 66 as indicated at 70. The effect of a non-zero integral value provided to module 38' is an adjustment of the estimated leak flow rate signal proportional to the integral value and in the direction which would reduce the integral value towards zero on the next breath if all other conditions remain the same.
.5 With this system, if the patient's not breathing cycle volume is zero, and if the system loak flow rate changes, the integrator circuit will compensate for the change in leak flow rate by incremental adjustments to the estimated leak flow rate within about ten patient breaths.
The integrator circuit 60 also will adjust the estimated leak flow rate signal in response to non-zero net volume in a patient breathing cycle. It is not unusual for a patient's 25 breathing volume to be non-zero. For example, a patient may inhale slightly more on each breath than he exhales over several breathing cycles, and then follow with a deeper or fuller exhalation. In this case, the integrator circuit would adjust 29 the estimated leak flow rate signal as if the actual system leak rate had changed; however, since the reference signal correction is only about one tenth as large as would be required to make the total correction in one breath, the reference signal will not change appreciably over just one or two breaths. Thus, the integrator circuit accommodates both changes in system leakage and normal variations in patient breathing patterns. The integrator circuit normally would be active, for example, during rapid patient breathing.
IU
An end exhalation module 74 is operative to calculate another data component for use in estimating the system leak flow rate as follows. The module 74 monitors the slope of the instantaneous flow rate wave form. When the slope value is near 15 zero during exhalation (as indicated by the state signal input S 76) the indication is that the flow rate is not changing. If the slope of the instantaneous flow rate signal wave form remains small after more than one second into the respiratory phase, the indication i-s that exhalation has ended and that the 20 not flow rate at this point thus is the leak flow rate.
However, if estimated patient flow rate is non-zero at the same time, one component of the instantaneous flow rate signal must be patient flow.
When these conditions are met, the circuit adjusts the estimated leak flow rate slowly in a direction to move estimated patient flow rate toward zero to conform to instantaneous patient flow conditions expected at the end of exhalation. The 30 adjustment to estimated leak flow rate is provided as an output from module 74 to low pass filter 38' as indicated at 80. When this control mnchanism takes effect, it disables the breath by breath volume correction capability of integrator circuit for that breath only.
The output of module 74 is a time constant control signal which is provided to low pass filter 38' to temporarily shorten the time constant thereof for a sufficient period to allow the estimated leak flow rate to approach the instantaneous flow rate signal at that specific instant. It will be noted that shortening the low pass filter time constant increases the 9OOS@ 4 rapidity with which the low pass filter output (a system 0 average) can adjust toward the instantaneous flow rate signal 0. 15 input.
Another component of estimated leak flow rate control is a gross error detector 82 which acts when the estimated patient flow rate, provided thereto as indicated at 84, is away from zero for more than about 5 seconds. Such a condition may normally occur, for example, when the flow generator 14 is running before mask 22 is applied to the patient. This part of the control system is operative to stabilize operation quickly after major changes in the leak rate occur.
In accordance with the above description, it will be seen that low pass filter 38' acts on the instantaneous flow rate signal to provide an output corresponding to average system 31 flow, which is system leakage since patient inspiration and expiration over time constitutes a net positive flow of zero.
With other enhancements, as described, the system average flow can be viewed as an estimate of leakage flow rate.
The differential amplifier 52 processes the instantaneous flow rate signal and the estimated leak flow rate signal to provide an estimated patient flow rate signal which is integrated and non-zero values of the integral are fed back to module 38' to adjust the estimated leak flow rate signal on a breath by breath basis. The integrator 60 is reset by the IPAP/EPAP state signal via connection 62.
6 Two circuits are provided which can override the integrator circuit, including end exhalation detector 74 which provides an output to adjust the time constant of low pass filter 38' and which also is provided as indicated at 86 to reset integrator Gross error detector 82 is also provided to process estimated patient flow rate and to provide an adjustment to 20 estimated leak flow rate under conditions as specified. The output of module 82 also is utilized as an integrator reset signal as indicated at 86. It will be noted that the integrator is reset with each breath of the patient if, during that breath, it is ultimately overridden by module 74 or 82.
Accordingly, the multiple reset capabilities for integrator as described are required.
In operation, the system may be utilized in a spontaneous 32 triggering mode, a spontaneous/timed mode or a purely timed mode of operation. In spontaneous operation, decision circuitry 34 continuously compares the instantaneous flow rate with estimated leak flow rate. If the system is in the EPAP state or mode, it remains there until instantaneous flow rate exceeds estimated leak flow rate by approximately 40 cc per second. When this transition occurs, decision circuitry 34 triggers the system into the IPAP mode for 150 milliseconds. The system will then normally remain in the IPAP mode as the instantaneous flow rate to the patient will continue to increase during inhalation due to spontaneous patient effort and the assistance of the increased IPAP pressure.
After the transition to the IPAP mode in each breath, a i5 temporary offset is added to the estimated leak flow rate S. reference signal. The offset is proportional to the integral of estimated patient flow rate beginning at initiation of the inspiratory breath so that it gradually increases with time during inspiration at a rate proportional to the patient's 20 inspiratory flow rate. Accordingly, the flow rate level above 0 estimated leak flow needed to keep the system in the IPAP mode during inhalation decreases with time from the beginning of inhalation and in proportion to the inspiratory flow rate. With this enhancement,the longer an inhalation cycle continues, the larger is the reference signal below which instantaneous flow would have to decrease in order to trigger the EPAP mode. For example, if a patient inhales at a constant 500 cc per second until near the end of inspiration, a transition to EPAP will 33 occur when his flow rate drops to about 167 cc per second after one second, or 333 cc per second after two seconds, or 500 cc per second after three seconds, and so forth. For a patient inhaling at a constant 250 cc per second, the triggers would occur at 83, 167 and 250 cc per second at one, two and three seconds into IPAP, respectively.
In this way, the EPAP trigger threshold comes up to meet the inspiratory flow rate with the following benefits. First, it becomes easier and easier to end the inspiration cycle with increasing time into the cycle. Second, if a leak develops which causes an increase in instantaneous flow sufficient to trigger the system into the IPAP mode, this system will automatically trigger back to the EPAP mode after about e seconds regardless of patient breathing effort. This would allow the volume-based leak correction circuit integrator 60) to act as it is activated with each transition to the IPAP mode. Thus, if a leak develops suddenly, there will be a tendency toward automatic triggering rather than spontaneous operation for a few breaths, but the circuit will not be locked *i into the IPAP mode.
*055 Upon switching back to the EPAP mode, the trigger threshold will remain above the estimated leak flow rate for approximately 25 500 milliseconds to allow the system to remain stable in the 0 EPAP mode without switching again while the respective flow rates are changing. After 500 milliseconds, the trigger threshold offset is reset to zero to await the next inspiratory 34 offort.
The normal state for the circuit is for it to remain in tho EPAP mode until an inspiratory effort is made by the patient.
The automatic corrections and adjustments to the reference signal are effective to keep the system from locking up in the IPAP mode and to prevent auto-triggering while at the same time providing a high level of sensitivity to inspiratory effort and rapid adjustment for changing leak conditions and breathing patterns.
In the spontaneous/timed mode of operation, the system
S*
performs exactly as above described with reference to spontaneous operation, except that it allows selection of a minimum breathing rate to be superimposed upon the spontaneous operating mode. If the patient does. not make an inspiratory effort within a predetermined time, the system will automatically trigger to the IPAP mode for 200 milliseconds.
The increased airway pressure for this 200 milliseconds will 20 initiate patent inspiration and provide sufficient time that spontaneous patient flow will exceed the reference signal so that the rest of the cycle may continue in the spontaneous mode as above described. The breaths per minute timer is reset by each trigger to IPAP whether the transition was triggered by the patient or by the timer itself.
In the timed operating mode, all triggering between IPAP and EPAP modes is controlled by a timer with a breath per minute 35 control being used to select a desired breathing rate from, for example, 3 to 30 breaths per minute. If feasible, the selected breathing rate is coordinated to the patient's spontaneous brea':hing rate. The percont IPAP control is used to set the fraction of each breathing cycle to be spent in the IPAP mode.
For example, if the breaths per minute control is set to breaths per minute (6 seconds per breath) and the percent IPAP control is set to 33%, then the flow generator will spend, in each breathing cycle, two seconds in IPAP and four seconds in
EPAP.
Fig. 4 illustrates a control panel for controlling the system above described and including a function selector switch 0 which includes function settings for the three operating modes of spontaneous, spontaneous/timed, and timed as above described.
S
The controls for spontaneous mode operation include IPAP and S. EPAP pressure adjustment controls 90 and 92, respectively.
These are used for setting the respective IPAP and EPAP pressure levels. In the spontaneous/timed mode of operation, controls and 92 are utilized as before to set IPAP and EPAP pressure levels, and breaths per minute control 94 additionally is used Sto set the minimum desired breathing rate in breaths per minute.
In the timed mode of operation, controls 90, 92 and 94 are effective, and in addition the per cent IPAP control 96 is used to set the time percentage of each breath to be spent in the 000 IPAP mode.
Lighted indicators such as LED's 96, 98 and 100 are also 36 provided to indicate whether the system is in the IPAP or EPAP state, and to indicate whether in the spontaneous/timed mode of operation the instantaneous state of the system is spontaneous operation or timed operation.
According to the above description there is provided by the instant invention a novel and improved method and apparatus for the treatment of sleep apnea. Of course, we have contemplated various alternative and modified embodiments of the invention of which the above described are exemplary as the presently contemplated best modes for carrying out the invention. Such alternative embodiments would also surely occur to others rised of the invention. For skilled in the art, once apprised f the invention For example, it may be desirable to provide a flow compensation 5 signal to pressure controller 26 as indicaed at 102 in Fig. 2 to compensate for flow resistance inherent in the circuit; a utilized in lieu of exhaust port 24 non-rebreathing valve may be utilized in lieu o exhaust port 24 at mask 22; and the like. Accordingly, it is intended that the invention be construed broadly and limited only by the scope of :*ooo 20 the claims appended hereto.
a O000 o em 00 0 000

Claims (4)

1. A method of providing breathing gas from a breathing gas source to an airway of a patient who is breathing in repeated breathing cycles, wherein each breathing cycle includes an inspiratory phase and an expiratory phase, comprising: providing a flow of gas from a pressure generator to a patient via a conduit operatively coupled to an outlet of the pressure generator and via a non-invasive interface device coupled to the conduit, wherein the conduit and the interface device define a patient circuit, and wherein the interface device communicates the flow of gas from the conduit to an airway of a patient responsive to the interface device being donned by the patient and the flow of gas being delivered to the patient circuit; continuously exhausting a flow of exhaust gas from the patient circuit; monitoring a characteristic associated with the flow of gas in the patient *0 circuit: determining an instantaneous flow rate of the flow of gas in the patient circuit from the monitored characteristic: determining whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle by comparing the instantaneous flow rate to a reference value; and controlling the flow of gas from the pressure generator to the patient based S on whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle so as to maintain a positive pressure in the patient's airway substantially continuously during a sequence of inspiratory and expiratory phases, where a magnitude of pressure maintained during an expiratory phase is less than a magnitude of pressure maintained during an immediately preceding inspiratory phase.
2. The method of claim 1, wherein the reference value is an average flow rate of the flow of gas in the patient circuit determined fromn the monitored characteristic.
38- 3. The method of claim 1, wherein controlling the flow of gas from the pressure generator to the patient includes actuating a pressure control valve associated with the patient circuit. 4. The method of claim 1, further comprising: monitoring whether the patient has entered the inspiratory phase within a first predetermined period of time following an expiratory phase; and automatically delivering the flow of breathing gas at a pressure corresponding to that delivered during an inspiratory phase responsive to the patient failing to enter the inspiratory phase within the first predetermined period of time. The method of claim 4, further comprising: continuing to deliver the flow of breathing gas at a pressure corresponding to that delivered during an inspiratory phase for a second predetermined period of time; and delivering the flow of breathing gas at a pressure corresponding to that delivered during an expiratory phase responsive to elapse of the second predetermined period of time. 6. A pressure support system comprising: a pressure generating system adapted to generate a flow of gas at variable pressures; a conduit having a first end coupled to an outlet of the pressure generating system and a second end, wherein the conduit carries to the flow of gas to a patient; a non-invasive interface device coupled to the second end of the conduit, wherein the interface device and the conduit define a patient circuit, and wherein the it, interface device communicates the flow of gas from the conduit to an airway of a patient responsive to the interface device being donned by the patient and the flow of gas being delivered to the patient circuit; an exhaust port defined in the patient circuit and adapted to continuously exhausting a flow of exhaust gas from the patient circuit;
39- a sensor associated with the patient circuit and adapted to monitor a characteristic associated with the flow of gas in the patient circuit; a processing means for determining an instantaneous flow rate of the flow of gas in the patient circuit from an output of the sensor, determining whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle by comparing the instantaneous flow rate to a reference value, and controlling the flow of gas delivered to the patient by the pressure generating system based on whether the patient is in an inspiratory phase or an expiratory phase of a breathing cycle so as to maintain a positive pressure in the patient's airway substantially continuously during a sequence of inspiratory and expiratory phasesland such that a magnitude of pressure maintained during an expiratory phase/is less than a magnitude of pressure maintained during an immediately preceding inspiratory phase. 7. The apparatus of claim 6, wherein the processing means determines an S average flow rate of the flow of gas in the patient circuit from the monitored characteristic as the reference value. 8. The apparatus of claim 6, wherein the pressure generating system includes a pressure generator and a pressure control valve associated with the pressure generator, and wherein the processing means controls the flow of gas from the pressure generating system by actuating the pressure control valve. 9. The apparatus of claim 6, wherein the processing means monitors whether the patient has entered the inspiratory phase within a first predetermined period of time following an expiratory phase, and causes the pressure generating system to deliver the flow of breathing gas at a pressure corresponding to that delivered during an inspiratory phase responsive to the patient failing to enter the inspiratory phase within the first predetermined period of time. The apparatus of claim 9, wherein the processing means causes the pressure generating system to continue to deliver the flow of breathing gas at a pressure corresponding to that delivered during an inspiratory phase for a second predetermined period of time and to deliver the flow of breathing gas at a pressure corresponding to that delivered during an expiratory phase responsive to elapse of the second predetermined period of time. Dated this 5th day of September 2001 RESPIRONICS, INC. By their Patent Attorneys GRIFFITH HACK Fellows Institute of Patent and Trade Mark Attorneys of Australia S** 0* 0*
AU67121/01A 1989-09-22 2001-09-05 Method and apparatus for providing breathing gas to a patient Expired AU766227B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU67121/01A AU766227B2 (en) 1989-09-22 2001-09-05 Method and apparatus for providing breathing gas to a patient
AU2004203313A AU2004203313B2 (en) 1989-09-22 2004-07-21 Method and apparatus for providing breathing gas to a patient

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US411012 1989-09-22
AU97035/98A AU734319B2 (en) 1989-09-22 1998-12-10 Method and apparatus for providing breathing gas to a patient
AU67121/01A AU766227B2 (en) 1989-09-22 2001-09-05 Method and apparatus for providing breathing gas to a patient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU97035/98A Division AU734319B2 (en) 1989-09-22 1998-12-10 Method and apparatus for providing breathing gas to a patient

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2004203313A Division AU2004203313B2 (en) 1989-09-22 2004-07-21 Method and apparatus for providing breathing gas to a patient

Publications (2)

Publication Number Publication Date
AU6712101A AU6712101A (en) 2001-10-25
AU766227B2 true AU766227B2 (en) 2003-10-09

Family

ID=28795564

Family Applications (1)

Application Number Title Priority Date Filing Date
AU67121/01A Expired AU766227B2 (en) 1989-09-22 2001-09-05 Method and apparatus for providing breathing gas to a patient

Country Status (1)

Country Link
AU (1) AU766227B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550726A (en) * 1982-07-15 1985-11-05 Mcewen James A Method and apparatus for detection of breathing gas interruptions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550726A (en) * 1982-07-15 1985-11-05 Mcewen James A Method and apparatus for detection of breathing gas interruptions

Also Published As

Publication number Publication date
AU6712101A (en) 2001-10-25

Similar Documents

Publication Publication Date Title
EP0425092B1 (en) Apparatus for delivering gas to a patient
EP0610405B1 (en) Sleep apnea treatment apparatus
USRE35295E (en) Sleep apnea treatment apparatus
US6305374B1 (en) Breathing gas delivery method and apparatus
US7770578B2 (en) Sleep apnea treatment apparatus
US6629527B1 (en) Sleep apnea treatment apparatus
AU766227B2 (en) Method and apparatus for providing breathing gas to a patient
AU2004203313B2 (en) Method and apparatus for providing breathing gas to a patient
AU734319B2 (en) Method and apparatus for providing breathing gas to a patient
AU723681B2 (en) Method for treatment of sleep apnea
AU2008200756A1 (en) Method and apparatus for providing breathing gas to a patient
AU733655B2 (en) Breathing gas delivery method
CA2259795C (en) Method of determining leak component of gas flow

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)