AU755442C - Reverse circulation drilling system with bit locked underreamer arms - Google Patents
Reverse circulation drilling system with bit locked underreamer armsInfo
- Publication number
- AU755442C AU755442C AU84873/98A AU8487398A AU755442C AU 755442 C AU755442 C AU 755442C AU 84873/98 A AU84873/98 A AU 84873/98A AU 8487398 A AU8487398 A AU 8487398A AU 755442 C AU755442 C AU 755442C
- Authority
- AU
- Australia
- Prior art keywords
- driver
- drill bit
- assembly
- bit
- bit assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000005553 drilling Methods 0.000 title claims description 27
- 238000004891 communication Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims 5
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000009977 dual effect Effects 0.000 description 18
- 239000012634 fragment Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/64—Drill bits characterised by the whole or part thereof being insertable into or removable from the borehole without withdrawing the drilling pipe
- E21B10/66—Drill bits characterised by the whole or part thereof being insertable into or removable from the borehole without withdrawing the drilling pipe the cutting element movable through the drilling pipe and laterally shiftable
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Description
REVERSE CIRCULATION DRILLING SYSTEM WITH BIT LOCKED UNDERREAMER ARMS
BACKGROUND OF THE INVENTION
The present invention is related to earth drilling equipment, and particularly to down hole, pneumatic, percussive hammer drilling systems. As noted in my related co-pending applications, serial no. 08/674,123, filed July 1, 1996, and serial no. 08/790,066, filed August 27, 1997, to which the present application is a continuation-in-part , underreamers are used for the formation of radially enlarged areas extending about a pilot bit for insertion of a casing.
Eccentrically mounted underreamers are known which include an arm which travels in an orbit for underreaming
operation, and which are retractable toward the hole axis
for tool removal purposes. However, eccentrically mounted underreamers can be diverted off-axis if the underreamer encounters rock fragments, buried metal objects, etc. Any
diversion of a large drill bit is unacceptable in most drilling operations, and particularly where a series of
closely spaced holes are being formed. The installation of casing in a drilled ground hole is also greatly hindered by any such diversion.
Other known underreaming equipment utilizes three bit mounted plates which are outwardly displaceable, but which incorporate a total working surface which is substantially less than the perimeter of the bore. Such undersized plates are subject to excessive wear and result in slow drilling operation. Underreaming can also be achieved by use of a crown or
ring bit, but components of those bits must be left in the underreamed area when drilling is complete, which is costly and otherwise unacceptable in some drilling operations . Each of these problems is addressed by my co-pending
U.S. application serial no. 08/674,123, and by the additional related underreamer embodiments disclosed and claimed below.
In addition to the foregoing problems associated with known underreamers, quick and efficient removal of
drilling debris from the hole and drilling bits remains a problem. In my U.S. Patent No. 5,511,628, which is hereby expressly incorporated by reference into this application, I disclosed a pneumatic down-hole drill with a central evacuation outlet. The apparatus of U.S. '628 permits continuous evacuation of large debris fragments through a central axial bore formed in the bit and through a central evacuation tube attached thereto. Compressed air is directed downwardly through peripheral channels, under the drill bit, and into a central evacuation tube. The flow of compressed air through the central evacuation tube provides continuous and efficient removal of earthen fragments from the bore, including rapid removal of fragments which would be too large for removal through peripheral pathways along the casing.
However, a need remains for a reverse circulation pneumatic drill which provides for underreaming of the
bore, continuous evacuation of drilling debris fragments from the drilling face in the bore, and for ready removal
of the drill bit through the casing during or after
completion of the drilling operation.
Summary of the Invention The present invention is embodied in a reverse circulation system which addresses the shortcomings of the prior art .
It is therefore an object of the invention to provide an underreamer which includes a pilot bit on which are mounted underreamer arms which can be extended and retracted by relative rotation between the pilot bit and the underreamer arms . Each underreamer arm includes a strengthening boss . The strengthening boss includes axial bearing surfaces which engage corresponding axial surfaces
of the pilot bit. The bearing surfaces of the arm bosses and the bits include surfaces shaped to extend the arms as
the pilot bit is rotated relative to the pilot bit. Surfaces are also provided for locking the arm in its
extended underreaming position. As the bit is rotated in
the opposite direction, the locking surfaces disengage and the arm can be retracted without vertical movement of the
driver.
In another aspect of the invention, provision is made to continually flush the bit with compressed air which is exhausted from the down hole hammer. The flow of exhaust air is routed through porting in the bit assembly into the central evacuation tube. A second flow of compressed air may also be provided to continually flush the perimeter
region of the bit. In one embodiment, the perimeter flushing air is received from compressed air introduced at the well-head to pressurize the casing.
These and other aspects of the invention will be described in further detail with reference to the drawings .
Brief Description of the Drawings FIG. 1 is a partial cross-sectional view of a drilling assembly according to the present invention.
FIG. 2 is an expanded partial cross-sectional view of the assembly shown in FIG. 1, showing the power head assembly, compressed air inlet collar, and the upper terminus of the dual wall pipe assembly.
FIG. 3 is an expanded cross-sectional view of the assembly shown in FIG. 1, showing the casing driver in
greater detail.
FIG. 4 is an expanded cross-sectional view of assembly shown in FIG. 1, showing the dual wall pipe assembly and the box and back head assembly connecting the lower terminus of the dual wall pipe assembly to the down-hole pneumatic hammer .
FIG. 5 is a cross-sectional view of the down-hole pneumatic hammer assembly, including the bit assembly.
FIG. 5A is a perspective view of an alternative design for the hammer barrel of the down-hole pneumatic hammer assembly.
FIG. 6A is an exploded perspective view of a first embodiment of a bit assembly according to the present invention.
FIG. 7A is a perspective view of the pilot bit on the embodiment of FIG. 6A.
FIG. 7B is a bottom view of the pilot bit shown in FIG. 7A.
FIG. 8 is a perspective view of an underreamer arm used in the embodiment shown in FIG. 6A.
FIG. 9A is an end view of the underreamer arm shown in
FIG. 8. FIG. 9B is an outer side view of the underreamer arm
shown in FIG. 8.
FIG. 10 is a bottom view of the bit driver of the embodiment shown in FIG. 6A, showing the axial surfaces which define the recesses which receive the underreamer arms, and the axial surfaces which bear against the underreamer arms for extension and retraction.
FIG. 11 is a bottom view of the bit driver in a second embodiment of the invention.
FIG. 12 is a bottom view of an underreamer arm of the embodiment referred to in FIG. 11.
FIG. 13 is a bottom view of the arms depicted in FIG. 12 mounted in their retracted position on the bit driver
shown in FIG. 11.
FIG. 14 is a top view of a pilot bit for use with the bit driver and underreamer arms depicted in FIG. 13.
Fig. 15 is a bottom view of the pilot bit depicted in FIG. 14.
FIG. 16 is the bit driver and underreamer arms shown in FIG. 13 with the underreamer arms in their extended positions.
Fig. 17 is an enlarged partial view of the bit driver and underreamer arm shown in FIG. 13.
FIG. 18 is a partial cutaway bottom view of the bit assembly depicted in FIGS. 11-17 showing the compressed air flow path.
Detailed Description Referring now to FIG. 1, a reverse circulation drilling system, shown generally at 10, includes a head assembly 11, a dual wall pipe assembly 12, and a down hole pneumatic hammer 13 within a bore casing 14. Turning to
FIGS. 2 and 3, head assembly 11 includes a casing driver 15 for driving the bore casing 14 downwardly as the bit advances, and a power head assembly 16 of standard design for rotating the bore casing 14 it is driven downwardly.
Casing driver 15 includes an annular hammer 17 which reciprocates vertically as compressed air is alternatively admitted to chambers above and below hammer 17. Hammer 17 impacts on anvil 18, which in turn impacts on casing cap 19. Casing cap 19 is sealed against the inner surface of bore casing 14 to permit pressurization, through port 20, of bore casing 14 between casing cap 19 and down hole hammer assembly 13. Pressurization of the casing provides a downward flow of air between the casing and the down hole hammer, preventing upward migration of debris between the down hole hammer and casing, which can hinder the removal of the hammer. Power head assembly 16 is connected to anvil 18 through linkage assembly 21 to impart rotation to the dual pipe assembly and the down hole hammer. Power head assembly 16 is of a design
generally known in the field, other than it central member 22, which is threaded onto the upper end of dual wall pipe assembly 14, includes a central bore in communication with the dual wall pipe assembly to extend the debris discharge
path through the power head to the elbow 29. The joint of
central member 22 and the dual wall pipe 14 includes a port 23 for admitting air to the annulus 24 between the inner wall 25 and the outer wall 26 of the dual wall pipe assembly. Collar 27 is mounted around the joint, and includes air inlet 28, through which compressed air is admitted into the dual wall pipe assembly for driving the down hole hammer as further described below. An elbow 29 is rotatably mounted and sealed to the upper end of central member 22. Elbow 29, central member 22 and the inner wall 25 of dual wall pipe assembly 14 together form a central drilling debris discharge tube for continuously discharging drilling debris from the down hole hammer as will also be described more fully below.
Turning also to FIG. 4, dual wall pipe assembly 12 is assembled from individual segments, each of which includes
an inner pipe 31 and an outer pipe 33. Each segment includes a threaded male connector 33 and a threaded female connector 35 at opposite ends. Male connector 14 and female connector 15 each includes air ports 36 and 37
respectively which are in communication with outer annulus
24 of dual wall pipe assembly 11. At its upper end, dual wall pipe assembly is threaded in to central member 22 of power head 16. At its lower end, dual wall pipe assembly 11 is connected to the box 38, which in turn is threaded into back head 40 of down-hole hammer 13. Ports 42 an 44 communicate with annulus 24 of the dual wall pipe assembly to route compressed air therefrom into the down hole hammer .
Turning now to FIG. 5, down-hole hammer 13 includes box 38 threaded onto back head 40. A sleeve 41 and a hammer barrel 42 are threaded into back head 40. A centrally located discharge tube 43 is pressed into sleeve 41. A wear sleeve 44 is fitted around hammer barrel 40, and press fitted over ring 45 and onto shoulder 46 of back head 40. Sleeve 41 and barrel 42 define an annular upper
air chamber 48. Central evacuation tube 43 and barrel 42 define an annular lower air chamber 50. The lower end of
barrel 42 abuts bit driver 52, and also includes a perimetrical lip 54 which engages wear sleeve 44 to center barrel 42 in the wear sleeve. Hammer 53 is slidingly
fitted into barrel 42 for reciprocation. Bit driver 52 is
slidably fitted into barrel 42 below hammer 53, and over
the lower end of central evacuation tube 43. Bit driver
52 is retained in barrel 42 by a plurality of keys 56,
each of which is fitted into a keyway 58 and annular
recess 60 of bit driver 52. (See also applicant's U.S.
Patent No. 5,511,628, incorporated by reference above, for detail of an alternate barrel assembly incorporating a
like key and keyway assembly for mounting the bit driver
in the hammer barrel.) The key-keyway assembly permits
the bit assembly to advance ahead of the dual wall pipe
assembly during drilling.
A bit assembly according to the present invention is
shown in FIG. 6. Turning to FIG. 6, a bit assembly
includes bit driver 52, pilot bit 82, and arms 88a-c.
Pilot bit 82 includes an upper shank 83 having a recessed
chamfer 84, camming surfaces 85a and 85b, and a lower
portion 86. Lower portion 86 includes three peripheral
recesses 87a-c. Hardened drilling buttons, preferably
made of a carbide material, are mounted on the peripheral
and bottom surfaces of the pilot bit (FIG. 7) . Arms 88a- c are nested atop pilot bit 82, and slide thereon in an prescribed arcuate path as will be described. Each of the arms includes a raised boss 89 which is received into corresponding recess 90 of bit driver 52 (FIG. 10) .
Raised boss 89 serves several functions. First, impact forces from the hammer are transmitted downwardly to the pilot bit 82 through bit driver 52, boss 89, and arm 88. Second, boss 89 is received and retained in recess 90, where it rotates through a limited arc to extend and retract arm 88. With arm 88 in its retracted position, surface 91 is adjacent camming surface 85a. in this configuration, the overall diameter of the bit assembly is less than the inner diameter of the bore casing,
permitting the bit assembly to be withdrawn from the bore. As arm 88 is rotated clockwise about pilot bit 82 by clockwise rotation of bit driver 52, angled surfaces 85a engage surface 92 and urge arm 88 outwardly. The rotation and extension of arm 88 continues until surface 92a abuts
surface 85b and surface 92b abuts surface 85a, locking arm
88 in its extended position. To unlock and retract arm 88, bit driver 52 is rotated in the opposite direction. In its fully retracted position, the overall diameter of
the underreamer assembly is less than the inside diameter of the casing, permitting withdrawal of the entire underreamer bit assembly through the casing if necessary. This feature represents a significant advance over known underreamers, which cannot be retracted and withdrawn through the casing if necessary. In operation, compressed air is delivered into annular chamber 59 through port 37, radial ports 60, annulus 62 and axial ports 64. In FIG. 5, hammer 53 is shown during its downward stroke. Lip 66 is engaged with lip 68, sealing off chamber 48. Lip 72 is engaged with lip 74, sealing off chamber 50. Port 78 is closed. As piston 53
continues downwardly, port 76 is uncovered, exhausting chamber 48. At about the same time, lip 74 disengages from lip 72, admitting a fresh charge of compressed air into chamber 50 to raise piston 53 to its upper position
after it has struck bit driver 52. As piston 53 rises,
port 78 is uncovered, exhausting chamber 50. Lip 74
engages lip 72, sealing chamber 50. Port 76 is sealed by
piston 53, and lip 66 disengages from lip 68, admitting a
fresh charge of compressed air into chamber 48. The fresh
charge of compressed air in chamber 48 drives piston 53
downwardly to begin another stroke. The compressed air
exhausted into ports 76 and 78 is collected in port 80
(FIG. 5A) , and discharged through the bit assembly into central evacuation tube 43, carrying with it drilling
debris and earthen fragments dislodged by the bit. As an
added precaution against drilling debris becoming lodged
between arms 88a-c and the pilot bit, in the bit assembly
embodiment shown in FIG. 6B, port 91 is provided through
which compressed air can be discharged to clear debris.
The flow of compressed air through the bit assembly is
essentially continuous, and provides a continuous
evacuation of drilling debris from the drilling face of
the bore. Moreover, the essentially constant diameter of
the evacuation tube and inner wall of the dual wall pipe
assembly provides a constant air velocity, which further
aids debris removal. The continuous removal of debris through the central evacuation tube promotes continuous drilling. It is seldom, if ever necessary to stop
drilling and raise the bit to clear debris from the bore. Significant improvements in drilling rates directly result. In addition, since debris is quickly removed as it is dislodged, it is possible to obtain a relatively accurate "core" sample from the bore. This aspect of the invention is useful in both exploratory and environmental applications.
In another aspect of the invention, pilot bit 104 advances into the ground with the underreamer arms locked in a deployed position below and radially beyond the advancing end of the casing at C. Casing movement is facilitated by the relatively large underreamed area, and if required, by the casing driver 15. In one embodiment shown in FIGS. 1 and 3, if the drill bit assembly advances
more than a predetermined distance ahead of the casing, linkage 21 operates a valve to provide compressed air to the pneumatic hammer 17 and associated porting casing
driver 15.
An alternative embodiment of the invention will now be
described with reference to FIGS. 11-19. In this embodiment, the bit assembly also includes a bit driver 100, arms 102 a-c, and pilot bit 104, which are fitted together as described in the previous embodiment shown in FIG 6. In this embodiment, however, compressed exhaust air from port 80 is routed through internal ports in the bit driver, arms and pilot bit. Referring to FIG. 1, hammer exhaust air from port 80 flows into and through bit driver 100 via ports 106 a-c. The hammer exhaust air then flows through ports 108 a-c formed in arms 102 a-c respectively (FIG. 12) . In FIG. 13, the arms are shown mounted on the bit driver in their closed and retracted positions. Exhaust air from ports 108 a-c flows into ports 110 a-c in pilot bit 104 (FIGS. 14, 15), through channels 112 a-c, ports 114 a-c, and into central
evacuation tube 43 (FIG. 5) . Ports 106 a-c, 108 a-c and 110 a-c respectively are located so that they are all
aligned when arms 102 a-c are extended; i.e., holes 106a,
108a and 110a are aligned, holes 106b, 108b and 110b are
aligned, and holes 106c, 108c and 110c are aligned.
Referring to FIGS. 16 and 17, when driver 100 is rotated
relative to pilot bit 104 to position arms 102 a-c in their closed, retracted positions, ports 108a-c (through
arms 102a-c respectively) are partially offset from ports
106 a-c respectively; ports 110 a-c (through the pilot bit) are offset from ports 108 a-c (through the pilot bit)
are entirely offset. To provide for a continuous flow of
air through ports 106 a-c, 108 a-c and 110 a-c when the
arms are retracted, channels 112 a-c are provided in the
underside of arms 102 a-c. Turning again to FIG. 15,
pilot bit 104 also includes axial recesses 114 a-c, and
transverse channels 116 a-c. Recesses 114 a-c and
channels 116 a-c provide a path for the discharge of
compressed air from outside the bore casing to also be
discharged through central evacuation tube 43.
The foregoing description of the invention is intended
to be illustrative rather than exhaustive. Those skilled
in the art will appreciate that numerous changes in detail
are possible without departing from the scope of the following claims.
Claims (12)
1. A drill bit assembly for use with a down hole
pneumatic hammer, comprising:
a driver;
a pilot bit having a shank, a peripheral drilling
surface, a lower surface, and a bore extending from the
lower surface generally upwardly through the shank; coupling means rotatably coupling the driver to the
pilot bit;
underreamer arms rotatably mounted intermediate the
driver and the pilot bit and including underreaming
surfaces positionable outside the pilot bit perimeter; cam surfaces engageable with corresponding surfaces on
the underreamer arms for deployment of the underreaming
arms into an extended position, for locking the
underreaming arms into the extended position, and for
retracting the underreamer arms from the extended position
by rotational movement between said driver and said pilot
bit; and
surfaces defining at least one air passageway between an outer surface of the driver and the bore in the pilot bit.
2. The drill bit assembly of claim 1 wherein the at least one passageway includes a passageway between each said arm and its corresponding cam surfaces.
3. The drill bit assembly of claim 2 wherein the passageway is in communication with a source of compressed fluid.
4. The drill bit assembly of claim 3 wherein the compressed fluid comprises compressed air.
5. The drill bit assembly of claim 4 wherein the
compressed air comprises compressed air exhausted from a first pneumatic hammer operably connected to the drill bit assembly .
6. The drill bit assembly of claim 1 which further
comprises surfaces defining at least one fluid passageway in communication with a source of compressed fluid and at least one said cam surface, the passageway including a valve operable to discharge compressed fluid through said at least one cam surface.
7. The drill bit assembly of claim 1 which further comprises : a well casing in which is disposed the first pneumatic hammer ;
a casing driver operatively connected to the well casing.
8. The drill bit assembly of claim 7 in which the casing driver includes a second pneumatic hammer, a source of compressed air operatively connected to the second pneumatic hammer.
9. The drill bit assembly of claim 8 which further
comprises a valve operatively connected to the second
pneumatic hammer and the source of compressed air.
10. The drill bit assembly of claim 9 wherein the valve admits compressed air to the second pneumatic hammer responsive to a predetermined vertical offset between the bit driver and a lower end of the well casing.
11. The drill bit assembly of claim 1 wherein the surfaces defining at least one air passageway between an outer surface of the driver and the bore in the pilot bit include at least one port through each of the driver, the underreamer arms and the pilot bit.
12. The drill bit assembly of claim 11 wherein the surfaces defining at least one air passageway between an outer surface of the driver and the bore in the pilot bit further include a channel in communication with the at
least one port through each of the underreamer arms and the port through the pilot bit.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89678797A | 1997-07-18 | 1997-07-18 | |
US08/896787 | 1997-07-18 | ||
PCT/US1998/014651 WO1999004130A1 (en) | 1997-07-18 | 1998-07-17 | Reverse circulation drilling system with bit locked underreamer arms |
Publications (3)
Publication Number | Publication Date |
---|---|
AU8487398A AU8487398A (en) | 1999-02-10 |
AU755442B2 AU755442B2 (en) | 2002-12-12 |
AU755442C true AU755442C (en) | 2003-06-12 |
Family
ID=25406839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU84873/98A Ceased AU755442C (en) | 1997-07-18 | 1998-07-17 | Reverse circulation drilling system with bit locked underreamer arms |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0996810A1 (en) |
JP (1) | JP2001510256A (en) |
KR (1) | KR20010021997A (en) |
CN (1) | CN1263937C (en) |
AU (1) | AU755442C (en) |
BR (1) | BR9815553A (en) |
CA (1) | CA2296470A1 (en) |
HK (1) | HK1030253A1 (en) |
WO (1) | WO1999004130A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9328558B2 (en) | 2013-11-13 | 2016-05-03 | Varel International Ind., L.P. | Coating of the piston for a rotating percussion system in downhole drilling |
US9562392B2 (en) | 2013-11-13 | 2017-02-07 | Varel International Ind., L.P. | Field removable choke for mounting in the piston of a rotary percussion tool |
US9415496B2 (en) | 2013-11-13 | 2016-08-16 | Varel International Ind., L.P. | Double wall flow tube for percussion tool |
US9404342B2 (en) | 2013-11-13 | 2016-08-02 | Varel International Ind., L.P. | Top mounted choke for percussion tool |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052503A (en) * | 1989-04-05 | 1991-10-01 | Uniroc Aktiebolag | Eccentric drilling tool |
US5186265A (en) * | 1991-08-22 | 1993-02-16 | Atlantic Richfield Company | Retrievable bit and eccentric reamer assembly |
US5511628A (en) * | 1995-01-20 | 1996-04-30 | Holte; Ardis L. | Pneumatic drill with central evacuation outlet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2382669C1 (en) | 2008-12-29 | 2010-02-27 | ЗАО "Твин Трейдинг Компани" | Method of extracting materials and device to this end |
-
1998
- 1998-07-17 WO PCT/US1998/014651 patent/WO1999004130A1/en not_active Application Discontinuation
- 1998-07-17 CA CA002296470A patent/CA2296470A1/en not_active Abandoned
- 1998-07-17 AU AU84873/98A patent/AU755442C/en not_active Ceased
- 1998-07-17 JP JP2000503316A patent/JP2001510256A/en active Pending
- 1998-07-17 EP EP98935684A patent/EP0996810A1/en not_active Withdrawn
- 1998-07-17 KR KR1020007000564A patent/KR20010021997A/en not_active Application Discontinuation
- 1998-07-17 BR BR9815553-9A patent/BR9815553A/en not_active Application Discontinuation
- 1998-07-17 CN CNB988092085A patent/CN1263937C/en not_active Expired - Fee Related
-
2001
- 2001-02-20 HK HK01101223A patent/HK1030253A1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052503A (en) * | 1989-04-05 | 1991-10-01 | Uniroc Aktiebolag | Eccentric drilling tool |
US5186265A (en) * | 1991-08-22 | 1993-02-16 | Atlantic Richfield Company | Retrievable bit and eccentric reamer assembly |
US5511628A (en) * | 1995-01-20 | 1996-04-30 | Holte; Ardis L. | Pneumatic drill with central evacuation outlet |
Also Published As
Publication number | Publication date |
---|---|
JP2001510256A (en) | 2001-07-31 |
BR9815553A (en) | 2001-12-11 |
CA2296470A1 (en) | 1999-01-28 |
EP0996810A1 (en) | 2000-05-03 |
AU755442B2 (en) | 2002-12-12 |
KR20010021997A (en) | 2001-03-15 |
WO1999004130A1 (en) | 1999-01-28 |
AU8487398A (en) | 1999-02-10 |
CN1270655A (en) | 2000-10-18 |
HK1030253A1 (en) | 2001-04-27 |
CN1263937C (en) | 2006-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6394197B1 (en) | Reverse circulation drilling system with bit locked underreamer arms | |
AU735089B2 (en) | Reverse circulation drilling system with bit locked underreamer arms | |
US5957226A (en) | Reverse circulation drilling system with hexagonal pipe coupling | |
US4819746A (en) | Reverse circulation down-the-hole hammer drill and bit therefor | |
US6182776B1 (en) | Overburden drilling apparatus having a down-the-hole hammer separatable from an outer casing/drill bit unit | |
WO1999028588A1 (en) | Method and apparatus for enhancing production from a wellbore hole | |
CA2510461A1 (en) | Wellbore consolidating tool for rotary drilling applications | |
KR870004199A (en) | Pneumatic impact excavators and devices | |
US5787999A (en) | Drill bit with set of underreamer arms | |
US9605485B1 (en) | Percussion drilling assembly and hammer bit with gage and outer row reinforcement | |
AU755442C (en) | Reverse circulation drilling system with bit locked underreamer arms | |
US5119891A (en) | Adaptor for drilling strings with controllable air passage | |
US20040182607A1 (en) | Method of forming concrete pilings using a reverse circulation drilling system | |
EP0367240B1 (en) | Adaptor for drilling strings with a controllable air passage | |
JP2001173355A (en) | Back-blow device for retracting bit | |
JPH0434231Y2 (en) | ||
JP2003239672A (en) | Cleaning swivel for rotary percussion double-pipe excavator | |
MXPA00000644A (en) | Reverse circulation drilling system with bit locked underreamer arms | |
AU604378B2 (en) | Improvements in drilling equipment | |
JPH09242455A (en) | Excavator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE PROPOSED AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 20021202 |
|
FGA | Letters patent sealed or granted (standard patent) | ||
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS WAS NOTIFIED IN THE OFFICIAL JOURNAL DATED 20030102 |