AU7290281A - Pulse width modulated constant current servo driver - Google Patents
Pulse width modulated constant current servo driverInfo
- Publication number
- AU7290281A AU7290281A AU72902/81A AU7290281A AU7290281A AU 7290281 A AU7290281 A AU 7290281A AU 72902/81 A AU72902/81 A AU 72902/81A AU 7290281 A AU7290281 A AU 7290281A AU 7290281 A AU7290281 A AU 7290281A
- Authority
- AU
- Australia
- Prior art keywords
- coil
- control signals
- set forth
- voltage
- current pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
- G05D3/14—Control of position or direction using feedback using an analogue comparing device
- G05D3/18—Control of position or direction using feedback using an analogue comparing device delivering a series of pulses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0675—Electromagnet aspects, e.g. electric supply therefor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Control Of Position Or Direction (AREA)
Description
Description
PULSE WIDTH MODULATED CONSTANT CURRENT SERVO DRIVER
Technical Field
This invention generally relates to servo controlled hydraulic valves of the type operated by an electrically responsive coil, and deals more particularly with a method and apparatus for consistently controlling valve response irrespective of variations in power supply voltage and coil resistance.
Background Art
Control systems often employ servo controlled hydraulic valves to control hydraulic line pressure. For example, one application of a servo controlled hydraulic valve is for controlling differentially driven wheel slip in vehicles. Wheel slip is controlled by selectively activating the vehicle's hydraulically operated brakes in a manner which directs braking power to the slipping wheel or wheels. An electrical control system senses wheel slippage and produces pulse width modulated control signals whose duty factors are proportional to the desired response of a hydraulic proportioning valve. The proportioning valve is in turn connected to a control valve which controls
the pressure of hydraulic fluid applied to the brakes.
Servo controlled valves of the type mentioned above include an electrically responsive coil for controlling an output of the valve. These coils are selectively energized with a suitable voltage source for time periods corresponding to the periods of the control signals. As will be discussed more fully hereinafter, substantial variations in valve response are experienced as a result of changes in both power supply voltage and the resistance of the coil due to temperature variations. In some cases, valve response, which may be measured in terms of the magnitude of hydraulic output pressure from the valve, may vary considerably. This pressure variation significantly reduces the accuracy of a control system employing servo valves and may prevent their use in some applications.
The present invention is directed to overcoming the problems associated with the prior art discussed above and provides a significantly improved pulse width modulated servo driver which affords consistently repeatable valve response.
Disclosure of the Invention According to one aspect of the invention, an improved apparatus for controlling a coil operated hydraulic valve is responsive to pulse width modulated control signals for producing hydraulic output pressures respectively proportionate to the duty factors of the control signals. A constant current source is employed in order to consistently control valve response irrespective of variations
in power supply voltage and coil resistance. A switching circuit controls the delivery of constant current pulses to the coil in accordance with the control signals, and a voltage regulator circuit provides regulated supply voltage to the constant current source. in order to reduce variations in the coil current at small pulse widths.
According to another aspect of the invention, a method is provided for operating a servo controlled hydraulic valve having a coil operated output for producing preselected, hydraulic output pressures, which substantially eliminates variance in the output pressures due to changes in the magnitude of voltage supplied to the coil or changes in the resistance of the coil due to the effects of temperature or the like. The method includes the steps of: producing control signals having duty factors respectively proportionate to the preselected hydraulic pressures; generating a plurality of current pulses of substantially constant magnitude using the control signals; and, delivering the current pulses to the coil. The current pulses are delivered to the coil by: sensing the control signals; operating a switching circuit using sensed control signals; and, controlling the operation of a constant current source using the switching circuit. Additionally, the method may include the steps of: generating a supply of electrical power; regulating the voltage of the power supply; and, delivering the voltage regulated power to the constant current source.
Brief Description of the Drawings
FIGURE 1 is a block diagram of a known system for controlling a hydraulic valve;
FIGURE 2 is a combined schematic and block diagram of the servo driver employed in the system shown in FIGURE 1;
FIGURE 3 is a waveform diagram of the voltage input to the coil of the servo driver shown in FIGURE 2, as well as the pressure output from the valve;
FIGURE 4 is a block diagram of a system for controlling a hydraulic valve including a pulse width modulated constant current, servo driver which forms the preferred embodiment of the present invention;
FIGURE 5 is a combined block and schematic diagram of the servo driver employed in the system shown in FIGURE 4;
FIGURE 6 is a waveform diagram showing the current input and pressure output respectively, of the servo driver and valve shown in FIGURE 5; and, FIGURE 7 is a detailed schematic diagram of the servo driver shown in FIGURE 5.
Best Mode For Carrying Out the Invention
The import of the present invention may best be understood by a thorough understanding of known servo drivers for hydraulic valves, and in this connection reference is made to FIGURES 1-3. A pulse width input 10 typically includes an oscillator (not shown) operating in combination with a duty cycle generator (not shown) which produces a width modulated pulse train at a preselected frequency. This pulse train is selectively delivered by control logic 12, which may comprise a microprocessor based system, to the coil 14 of a servo valve
18. Coil 14, having an inductance of Lc and a resistance of Rc is effectively connected in series with a suitable source of voltage Vs, designated by the numeral 28, as well as the control logic 12, which, for purposes of simplicity, has been indicated as a rotary switch 26 in FIGURE 2.
Switch 26 effectively couples the voltage source 28 with the servo valve 18, thereby applying a voltage Vc across the coil 14. The duration for which the voltage Vc is present across the servo valve 18 corresponds to the width of the pulse produced by switch 26. The voltage Vc applied to the valve 18 by switch 26 causes coil 14 to operate a valve actuator 16 in proportion to the duty factors of the voltage pulses Vc applied to the coil 14.
Valve actuator 16 has an input coupled to a supply of hydraulic pressure Ps designated by the numeral 20 and an output which delivers controlled hydraulic pressure Po to a mechanical positioning element 24. Positioning element 24, in turn, may be employed to operate a proportioning valve (not shown) or the like. Thus, it may be appreciated that the output pressure Po is directly proportional to the width or period of the voltage pulses generated by switch 26.
The relationship between the pulse width modulated signals developed by the arrangements shown in FIGURES 1 and 2 and the output pressure
Po of servo valve 18 can be better understood by reference to FIGURE 3, wherein the duty factor of the pulse width modulated signal, indicated by t1/t2 is less than the period t2 of such signal. When the duty factor t1/t2 of the pulse width modulated signal is shorter in time than the time constant
of the servo valve 18, the output pressure Po is averaged as is apparent from the waveform and is proportional to the average current flow through coil 14, i.e.,
Po = K Ic(avg) (1)
The average current Ic(avg) is a also a function of the duty factor t1/t2, the voltage Vc applied across the coil 14, and the resistance Rc of the coil 14.
Thus, (2)
Where:
Combining equations (1) and (2) yields:
' ( 3)
Clearly then, the magnitude of the output pressure Po is directly dependent upon the magnitude of the voltage Vc as well as the resistance Rc of the coil 14.
Hydraulic servo valves are often employed in applications where supply voltage and ambient temperature may vary widely. Considering the foregoing equations, a substantial change in the magnitude of supply voltage Vs results in a proportionate change in the output pressure Po. Additionally, changes in the ambient temperature produce a direct change in the resistance Rc of the coil 14. Again, variance of the resistance Rc produces a proportional change in the output pressure Po. These changes in
supply voltage Vs and coil resistance Rc can result in a variation of the output pressure Po which is as much as ±50% of the maximum output pressure Po. Referring generally now to FIGURES 4-7, the present invention provides a pulse width modulated, constant current, servo driver which eliminates variations in the output pressure Po due to changes in power supply voltage or temperature, thus assuring a constant proportional relationship between the output pressure Po and the pulse width of the control signal. As seen in FIGURE 4, the servo driver of the present invention is adapted for use with a conventional pulse width input 30 and control logic 32 which are similar in construction to those previously discussed. The width modulated pulse train output from control logic 32 is delivered to the input of a switching circuit 58. The switching circuit 58 provides a means for controlling the output of a constant current source 36 and is operative to deliver constant current pulses, having duty factors respectively corresponding to the signals output by control logic 32, from the current source 36 to the servo coil 40 of a servo valve 48. A voltage regulator 38 provides a constant voltage input to the current source 36. Coil 40 is operative to energize a valve actuator 42, which in turn controls a mechanical positioning element 46.
Turning attention particularly to FIGURES
5 and 6, the servo coil 40 includes an inductance Lc and a resistance Rc connected in series with the constant current source 36 which delivers current Ic through the coil 40. The output of the current source 36 is controlled by the switching circuit 34 which effectively gates the current Ic to produce a
series of constant current pulses having duty factors t1/t2 equivalent to those output by control logic 32.
Energization of the valve actuator 42 during each current pulse is proportional to the duty factor t1/t2 of the current pulse flowing through coil 40, and results in the delivery of hydraulic fluid from a hydraulic pressure supply
44 to the positioning element 46 at a proportionate output pressure Po.
From FIGURE 6, it can be seen that the average current Ic(avg) flowing through coil 40 is given by the formula:
Substituting equation (4) into equation
(1) gives:
Po = K DF Ic
Thus, by applying constant current pulses to the servo valve 48, the output pressure Po becomes independent of variations in the supply voltage or coil resistance Rc.
Referring now to FIGURE 7, the servo driver of the present invention includes a suitable power source such as the battery 50 respectively coupled by lines 60 and 62 to the input of a voltage regulator, generally indicated within the broken line 38, and ground 54. The voltage regulator 38 comprises a diode Dl coupled between line 60 and the collectors of a pair of Darlington connected transistors Q4 and Q5. The base of transistor Q5
is connected to line 60 through resistor R9 and to ground 54 through zener diode Z2 and diode D3. A regulated supply of voltage is output from regulator 38 to the switching circuit 58 via resistor R4 as well as to the constant current source, generally indicated within the broken line 36, via line 66 .
Pulse width modulated control signals derived from control logic 32 (FIGURE 4) are delivered to switching circuit 58 via control input 52. Switching circuit 58 includes an input transistor Q3 and an output transistor Q2. Transistor Q3 has the base thereof coupled through resistor R8 to control input 52 while the collector to emitter path thereof is connected between the output of voltage regulator 38 through resistor R4 and ground 54. The base of transistor Q2 is connected through resistor R3 to the collector of transistor Q3. The collector to emitter path of transistor Q2 is connected between ground 54 through resistor R2 and terminal 68 which forms a switching input to the constant current source 36.
The constant current source 36 includes a transistor Q1 whose base is connected to terminal 68 as well as to the output of the voltage regulator 38 through resistor R7 and zener diode Z1. The emitter of transistor Q1 is connected via resistor R1 to line 66. The collector of transistor Q1 is coupled in series with diode D2 to ground 54. The collector of transistor Q1 also forms the output of current source 36 and is coupled by line 64 to ground 54 through the coil 40.
The switching circuit 58 switches or "gates" the output of current source 36 on line 64
between on and off states in accordance with leading and trailing edges of the pulse width modulated control signals received at control input 52. The leading edge of a pulse received on control input 52 turns on transistor Q3, which in turn renders transistor Q2 conductive. When transistor Q2 is on, transistor Q1 turns on and the voltage developed across zener diode Z1 is equal to the sum of the current Ic flowing through line 64 times the resistance R1 plus the voltage drop between the base and emitter of transistor Q1, i.e.,
Since the voltage developed across zener diode Z1 as well as .the base to emitter voltage of transistor Q1 each remains constant and, further, since the value of resistor R1 does not change, it can be readily appreciated that the currant pulse Ic remains constant in magnitude, irrespective of variations in the resistance of the coil 40, or the voltage of the power supply 50, so long as the voltage of the power supply 50 remains in a range capable of being regulated by voltage regulator 38. At the end of the control pulse, transistors Q2 and Q3 are turned off, which in turn shuts off transistor Q1 to terminate the flow of current Ic.
The voltage regulator 38 is employed in connection with the preferred form of the invention to reduce variation in the current Ic flowing through coil 40 in response to control pulses having
especially short periods, since the inductance of the coil 40 affects the rate that current Ic rises following the leading edge of the control pulse.
From the foregoing, it can be appreciated that the present invention provides a novel method of operating a servo controlled hydraulic valve which substantially eliminates variance in the output pressure of the valve due to changes in the magnitude of voltage supplied to the coil or changes in the resistance of the coil. The method includes the steps of: producing a plurality of control signals which have duty factors respectively proportionate to preselected hydraulic pressures; generating a plurality of current pulses of substantially constant magnitude using the control signals; and, delivering the current pulses to the coil. Current pulses are delivered to the coil by sensing the control signals, operating a switching circuit using the sensed control signals, and then controlling the operation of the constant current source using the switching circuit.
Industrial Applicability
The constant current servo driver of the present invention is well adapted for a number of applications. However, the servo driver of the present invention is particularly well suited for those applications where wide fluctuations in power supply voltage and temperature may be experienced, as in vehicles for example. The present servo driver is compatible with various types of control circuits which produce pulse train signals wherein the duty factors of the signals are proportional to preselected servo responses.
It will be appreciated by those skilled in the art that although a preferred embodiment of the constant current servo driver has been depicted in connection with the foregoing description, other suitable circuits may be successfully employed in practicing the invention. Other aspects, objects and advantages of this invention can be obtained from a study of the drawings, disclosure and the appended claims.
Claims (12)
1. In an apparatus for controlling a hydraulic servo valve (48) having a coil (40) operated output (42) responsive to control signals for producing hydraulic output pressures (Po) respectively proportionate to the duty factors
(t1/t2) of said control signals, and means (30, 32) for producing said control signals, the improvement comprising: means (36) for supplying a plurality of current pulses of substantially constant magnitude to said coil (40) respectively in response to said control signals.
2. An apparatus, as set forth in Claim
1, including means (58) for controlling the operation of said means (36) and supplying a plurality of current pulses in accordance with said control signals.
3. An apparatus, as set forth in Claim
2, wherein said controlling means (58) is coupled between said means (30, 32) for producing said control signals and said means (36) for supplying a plurality of current pulses.
4. An apparatus, as set forth in Claim
3, wherein said controlling means (58) includes an electrical switching circuit (Q2, Q3, R2, R3, R8).
5. An apparatus, as set forth in Claim
4, wherein said switching circuit (Q2, Q3, R2, R3, R8) includes a pair of electrical transistors
(Q2, Q3).
6. An apparatus, as set forth in Claim 2, wherein said means (36) for supplying a plurality of current pulses includes an electrical transistor (Q1).
7. An apparatus, as set forth in Claim
6, wherein a base of said electrical transistor (Q1), which is connected to said controlling means (58) for supplying a plurality of current pulses includes a diode (Z1) and a resistor (R1) respectively connected with the base and an emitter of said transistor (Q1).
8. An apparatus, as set forth in Claim 1, including an electrical voltage source (50) and means (38) for regulating the voltage supplied by said voltage source (50) to said supplying means (36).
9. An apparatus, as set forth in Claim 8, wherein said voltage regulating means (38) includes a pair of interconnected electrical transistors (Q4, Q5).
10. A method of operating a servocontrolled hydraulic valve (48) having a coil (40) operated output for producing preselected hydraulic output pressures (Po), which substantially eliminates variance in said output pressures (Po) due to changes in the magnitude of voltage (Vc) supplied to said coil (40) or changes in the resistance (Rc) of said coil (40), comprising the steps of: producing control signals having duty factors (t1/t2) respectively proportionate to the magnitude of said preselected hydraulic pressures (Po); generating a plurality of current pulses of substantially constant magnitude using said control signals; and, delivering said current pulses to said coil (40).
11. A method as set forth in Claim 10, wherein the step of delivering said current pulses to said coil (40) includes: sensing said control signals; operating a switch (Q2, Q3) in response to the sensed control signals; and, controlling the operation of a constant current source (36) in response to operation of said switch (Q2, Q3).
12. A method as set forth in Claim 10, including the steps of: generating a supply (50) of electrical power; regulating the voltage of said power supply (50); and, delivering said voltage regulated supply of power to said constant current source (36).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU72902/81A AU538755B2 (en) | 1980-12-29 | 1980-12-29 | Pulse width modulated constant current servo driver |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1980/001751 WO1982002236A1 (en) | 1980-12-29 | 1980-12-29 | Pulse width modulated constant current servo driver |
AU72902/81A AU538755B2 (en) | 1980-12-29 | 1980-12-29 | Pulse width modulated constant current servo driver |
Publications (2)
Publication Number | Publication Date |
---|---|
AU7290281A true AU7290281A (en) | 1982-07-20 |
AU538755B2 AU538755B2 (en) | 1984-08-23 |
Family
ID=25637170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU72902/81A Ceased AU538755B2 (en) | 1980-12-29 | 1980-12-29 | Pulse width modulated constant current servo driver |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU538755B2 (en) |
-
1980
- 1980-12-29 AU AU72902/81A patent/AU538755B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU538755B2 (en) | 1984-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4373697A (en) | Pulse width modulated constant current servo driver | |
US4967309A (en) | Dual current sensing driver circuit | |
US4661766A (en) | Dual current sensing driver circuit | |
US4653601A (en) | Electric power steering system for a motor vehicle | |
US4624334A (en) | Electric power assisted steering system | |
US5015937A (en) | Parametric current control for microstepping unipolar motor | |
JPS6318761B2 (en) | ||
US3738609A (en) | Temperature compensated pneumatic control system | |
GB2155266A (en) | Solenoid driver circuit | |
US4574228A (en) | Current controlled motor drive circuit | |
US5541806A (en) | Dual current sensing driver circuit with switching energization andflyback current paths | |
EP0077770B1 (en) | Pulse width modulated constant current servo driver | |
JP3353935B2 (en) | Device for controlling at least one electrical load | |
JPH0379809B2 (en) | ||
AU7290281A (en) | Pulse width modulated constant current servo driver | |
US4408129A (en) | Constant energy drive circuit for electromagnetic print hammers | |
JPS59161005A (en) | Circuit element drive device | |
US3183427A (en) | Field regulator for dynamoelectric machine | |
JPS626658Y2 (en) | ||
JPH0779212B2 (en) | Power amplifier for solenoid proportional control valve | |
JPH0661042A (en) | Driver circuit for inductive load | |
JP2735550B2 (en) | Solenoid valve control device | |
JP3097708B2 (en) | Power steering control device | |
JPH0238808Y2 (en) | ||
JPH0456913B2 (en) |