JPS59161005A - Circuit element drive device - Google Patents

Circuit element drive device

Info

Publication number
JPS59161005A
JPS59161005A JP58179462A JP17946283A JPS59161005A JP S59161005 A JPS59161005 A JP S59161005A JP 58179462 A JP58179462 A JP 58179462A JP 17946283 A JP17946283 A JP 17946283A JP S59161005 A JPS59161005 A JP S59161005A
Authority
JP
Japan
Prior art keywords
circuit element
transistor
switch
coil
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58179462A
Other languages
Japanese (ja)
Inventor
マチアス・メルベ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS59161005A publication Critical patent/JPS59161005A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/64Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors having inductive loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0251Elements specially adapted for electric control units, e.g. valves for converting electrical signals to fluid signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1877Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings controlling a plurality of loads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/62Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors
    • H03K17/6285Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors with several outputs only combined with selecting means
    • H03K17/6292Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors with several outputs only combined with selecting means using current steering means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Relay Circuits (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ)技術分野 本発明は回路素子駆動装置、更に詳細にはエネルギーを
貯えることができる容量性あるいは誘導性の少なくとも
2つの回路素子を順次駆動させる回路素子駆動装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a circuit element driving apparatus, and more particularly to a circuit element driving apparatus for sequentially driving at least two capacitive or inductive circuit elements capable of storing energy.

r3)従来技術 エネルギーを貯えることができる回路素子、即ち誘導性
あるいは容量性の回路素子をオンオフさせる場合、この
回路素子に貯えるべきあるいは貯えられているエネルギ
ーをとりあえず増大させたシあるいは減少させたりしな
ければならない。このことはこのような回路素子を完全
にオンオフさせるには回路の時定数によって決められる
所定の時間が経過してはじめて可能になることを意味す
る。その場合この回路素子が他の切り換え手段を間接的
に作動させるために用いられている場合には、作動命令
と実際の切り換え時点の間にはプツト時間が発生しこれ
は多くの場合障害となる。例えば自動車の油圧装置に用
いられる電磁弁等がそうである。というのはこのような
電磁弁では捷ず電磁弁の励磁コイルにおける磁場を形成
あるいは取り除かなければならないからである。従って
電磁弁により切り換えられるべき油圧機能は電気的な切
シ換え命令に比較して遅れて行なわれることになる。従
ってこのような装置を自動車に用いた場合油圧的な切り
換え機能が時間的な所定の順序で行なわなければならな
いような場合には問題となる。例えば自動車のアンチス
キッド装置(アンチロック装置)のような場合には圧力
上昇、圧力保持並びに圧力減少の各モードが連続して発
生し、その場合各モードが何回にもわたってしかも時間
的に極めて早く発生するような装置に用いられるような
場合には大きな問題となる。
r3) Prior art When turning on and off a circuit element that can store energy, that is, an inductive or capacitive circuit element, the energy that should be or is stored in this circuit element is temporarily increased or decreased. There must be. This means that such a circuit element can only be turned on and off completely after a predetermined period of time, which is determined by the time constant of the circuit. If this circuit element is then used to indirectly activate other switching means, a put time occurs between the activation command and the actual switching point, which is often a nuisance. . For example, electromagnetic valves used in automobile hydraulic systems are examples. This is because, with such a solenoid valve, the magnetic field in the excitation coil of the solenoid valve must be created or removed without switching. The hydraulic function to be switched by the solenoid valve therefore takes place with a delay compared to the electrical switching command. This poses a problem when such a device is used in a motor vehicle, where hydraulic switching functions have to be carried out in a predetermined chronological order. For example, in the case of an automobile's anti-skid device (anti-lock device), each mode of pressure increase, pressure maintenance, and pressure decrease occurs successively, and in this case, each mode occurs many times and over time. This becomes a big problem when it is used in a device where the problem occurs very quickly.

又自動車の自動変速ギヤに用いたような場合にもこのよ
うな問題が発生する。即ち一方のギヤ比から他方のギヤ
比への切シ換えが同様に電磁弁の切り裸えによって行な
われるからである。
Such problems also occur when used in automatic transmission gears of automobiles. That is, switching from one gear ratio to the other gear ratio is similarly performed by cutting the solenoid valve.

ハ) 目 的 従って本発明はこのような従来の欠点を除去するもので
、時間的な遅れがなく確実に切シ換え動作を行なうこと
が可能な回路素子駆動装置を提供することを目的とする
C) Purpose Therefore, the present invention aims to eliminate such conventional drawbacks, and provides a circuit element driving device that can reliably perform switching operations without time delay. .

本発明によれば駆動すべき回路素子の作動時間を短縮す
るために遮断されるべき一方の回路素子に貯えられてい
どエネルギーを取り出しそれを他方の回路素子の予備励
磁に用いるような構成を採用した。
According to the present invention, in order to shorten the operating time of the circuit elements to be driven, a configuration is adopted in which energy stored in one circuit element to be cut off is extracted and used for pre-excitation of the other circuit element. did.

二)実施例 以下図面′に示す実施例に従い本発明の詳細な説明する
2) Embodiments The present invention will be described in detail below according to embodiments shown in the drawings.

第1図において符号1で示すものは電子制御装置、例え
ばアンチスキッド装置(アンチロック装置)ABSある
いは、゛自動車の電子ギヤ制御装置あるいは自動変速装
置等である。電源線10とアース線11間にはスイッチ
ングトランジスタ12、第1の電磁弁の励磁コイル13
、第2のスイッチングトランジスタ14の直列回路が接
続されると共に、スイッチングトランジスタ1γ、第2
の電磁弁の励磁コイル18並びにスイッチングトランジ
スタ19がら成る直列回路が接続されている。これらの
電磁弁は自動車の油圧装置、例えばアンチスキッド装置
あるいは自動変速装置に用いられるものである。その場
合スイッチングトランジスター12.14は制御電極1
5.16を、又スイッチングトランジスタ17.19は
制御電極20.21を有する。コイル13の電源線和側
の端部はスイッチングトランジスタ22を介して励磁コ
イル18のアース線11側の端部と接続されており、又
コイル13.18の反対側の端部はそれぞれスイッチン
グトランジスタ24を介して接続されている。これらの
スイッチングトランジスタ22.24は制御電極23.
25を有する。制御電極15.16.20゜21.23
.24はそれぞれ電子制御装置に接続されている。電源
電圧はUBで、又コイル13に流れる電流ばI13で、
又コイル18を流れる電流はL++でそれぞれ図示され
ている。
In FIG. 1, the reference numeral 1 indicates an electronic control device, such as an anti-skid device (anti-lock device) ABS, an electronic gear control device, an automatic transmission device, etc. of an automobile. A switching transistor 12 and an excitation coil 13 of the first solenoid valve are connected between the power supply line 10 and the ground line 11.
, the second switching transistor 14 are connected in series, and the switching transistor 1γ and the second switching transistor 14 are connected in series.
A series circuit consisting of an excitation coil 18 of a solenoid valve and a switching transistor 19 is connected. These solenoid valves are used in automobile hydraulic systems, such as anti-skid systems or automatic transmission systems. In that case, the switching transistor 12.14 is connected to the control electrode 1
5.16 and the switching transistor 17.19 has a control electrode 20.21. The end of the coil 13 on the power wire sum side is connected to the end of the excitation coil 18 on the ground wire 11 side via a switching transistor 22, and the opposite ends of the coils 13 and 18 are connected to a switching transistor 24, respectively. connected via. These switching transistors 22,24 have control electrodes 23.
It has 25. Control electrode 15.16.20°21.23
.. 24 are each connected to an electronic control device. The power supply voltage is UB, and the current flowing through the coil 13 is I13.
Also, the current flowing through the coils 18 is respectively indicated by L++.

第2図(a)〜(f)にはそれぞれ時間tに関して電圧
U】5・UI6 、 U3O、U2+ + 023 、
 U25が図示されており、その場合サフィックスで示
されている数字の電圧はそれぞれトランジスタ12.1
4.17.1°9,22.24の割筒1図に図示した回
路の動作を第2図に基づいて説明する。
In FIGS. 2(a) to (f), the voltages U]5·UI6, U3O, U2+ + 023,
U25 is shown, in which case the voltages indicated by the suffix are respectively the voltages of the transistors 12.1
4.17.1°9, 22.24 Split Tube The operation of the circuit shown in FIG. 1 will be explained based on FIG. 2.

時点toでは電圧USs、 UI6を介してトランジス
タ12.14が導通するので、コイル13に流れる電流
113は指数関数的に増大する。電流113が所定の値
に達すると時点t1で電圧IJ+eを介しトランジスタ
14が遮断されると同時に電圧U21 、 U25を介
してトランジスタ24.19が作動される。それによっ
て電流I+3はトランジスタ14には流れず、その代り
トランジスタ24、コイル18、トランジスタ19を介
しアースの方向に流れる。その結果コイル13を遮断し
た時、崩壊すべき貯えられているエネルギーはトランジ
スタ24を介して取り出され、次に駆動すべきコイル1
8を予備励磁することになる。この予備励磁状態はへ1
tの間継続し、これは、この状態は時点t2で電圧US
s 、 U25を介してトランジスタ12.14が遮断
され、電圧U20を介してトランジスタ17が導通する
迄継続することになる。この時になるとコイル18はト
ランジスタ1γ、19を介して電圧UBとアース間に接
続され電流Lsは予備励磁が終了した時とっている値か
ら時点t3の時得られる最終値迄上昇する。こんどは上
述した工程が逆の順序で行なわれるので、コイル13は
時間△2tの間励磁され、これ、ζ− は時冊t4迄継続する。同様に時点ts、  t6の間
の切シ換えの間、即ち△3tの間ではコイル18が予備
励磁される。
At time to, the transistor 12.14 conducts via the voltages USs and UI6, so that the current 113 flowing through the coil 13 increases exponentially. When current 113 reaches a predetermined value, at time t1 transistor 14 is switched off via voltage IJ+e and at the same time transistor 24.19 is activated via voltages U21, U25. As a result, current I+3 does not flow through transistor 14, but instead flows through transistor 24, coil 18, and transistor 19 in the direction of ground. As a result, when the coil 13 is cut off, the stored energy to be disintegrated is extracted via the transistor 24 and the coil 13 to be driven next.
8 will be pre-excited. This pre-excitation state is to 1
t, which means that at time t2 the voltage US
s, the transistor 12.14 is cut off via U25 and continues until the transistor 17 becomes conductive via the voltage U20. At this time, the coil 18 is connected via the transistors 1.gamma. and 19 between the voltage UB and the ground, and the current Ls rises from the value it had at the end of the pre-excitation to the final value obtained at the time t3. This time, the above-described steps are performed in reverse order, so that the coil 13 is energized for a time Δ2t, and this, ζ-, continues until time t4. Similarly, the coil 18 is pre-energized during the switching between times ts and t6, ie during Δ3t.

第2図(g)では時間的な関係で必ずしも尺度通りに描
かれていないが、コイル13.18はほぼ交叉するよう
な特性となることがわかる。又予備励磁期間△山△2t
+△3tの間における時定数はコイル13゜18が直接
電源i1o、iiに接続される時定数と異なるものにな
っていることもわかる。
Although the drawings in FIG. 2(g) are not necessarily drawn to scale due to time constraints, it can be seen that the coils 13 and 18 have characteristics that almost cross each other. Also, pre-excitation period △mount △2t
It can also be seen that the time constant between +Δ3t is different from the time constant when the coil 13°18 is directly connected to the power sources i1o and ii.

又第2図(a) 〜(f)に図示された制御信号USs
 T U25朽 はシステムが動作してからは規制的にしかも基本周波数
から位相をずらしたシ、パルスを短縮することにより簡
単に得られるものである。又本発明の実施例として第3
図に図示したように簡単な制御法を利用することも可能
である。
Also, the control signal USs illustrated in FIGS. 2(a) to (f)
Once the system is in operation, the T U25 decay can be easily obtained by shortening the pulse by regulating it and shifting the phase from the fundamental frequency. In addition, as an embodiment of the present invention, the third
It is also possible to use a simple control method as illustrated in the figure.

第3図に図示した実施例では第1図のスイッチングトラ
ンジスタ12,1γ、22.24がダイオード30゜3
1.32.33によって置き換えられており、他の回路
素子は第1図と同様なものが使われ同じ参照符号が付さ
れている。
In the embodiment shown in FIG. 3, the switching transistors 12, 1γ, 22, 24 of FIG.
1.32.33, and other circuit elements are the same as in FIG. 1 and are given the same reference numerals.

第3図の回路の場合トランジスタ16.21は逆相に駆
動される。即ちトランジスタ14が遮断されると同時に
トランジスタ19が駆動される。このようにしてコイル
13に貯えられているエネルギーは電流となってターイ
オード33、コイル18、トランジスタ19を介しアー
スに流れる。この状態はトランジスタ14のコレクタ電
圧が電源電圧UBから夕゛イオード31の順方向電圧を
引いた値よりも大きくなる迄継続する。この場合ダイオ
ード30〜33は逆方向回復時間が小さいダイオードで
あり、又トランジスタ14.19のコレクタエミッタ飽
和電圧はダイオード32.33の順方向電圧よりも小さ
いものでなければならない。
In the circuit of FIG. 3, transistors 16 and 21 are driven in opposite phase. That is, transistor 19 is activated at the same time as transistor 14 is turned off. The energy thus stored in the coil 13 becomes a current that flows through the third diode 33, the coil 18, and the transistor 19 to the ground. This state continues until the collector voltage of the transistor 14 becomes larger than the value obtained by subtracting the forward voltage of the diode 31 from the power supply voltage UB. In this case, diodes 30-33 are diodes with short reverse recovery times, and the collector-emitter saturation voltage of transistor 14.19 must be smaller than the forward voltage of diode 32.33.

第4図に図示した回路は第1図と第3図に図示した回路
の組み合わせから成っており、コイル13゜18は第3
図に図示したようにダイオード30.31ないしスイッ
チングトランジスタ14.19と直列に接続されている
が、コイル13.18の接続点はダイオードを介して接
続されるのではなく制御端子41゜43をそれぞれ有す
る2つのスイッチングトランジスタ40.42の直列回
路を介して互いに接続されている。その場合スイッチン
グトランジスタ40.42の接続点はダイオード45.
46の接続点に導かれておシ、そのダイオード45.4
6の他方の端子はコイル13.18の逆の端部に接続さ
れている。素子40゜42.45.46の共通の接続点
はコンデンサ44を弁も介してアース線11に接続され
ている。
The circuit shown in FIG. 4 consists of a combination of the circuits shown in FIGS.
As shown in the figure, the diodes 30, 31 and switching transistors 14, 19 are connected in series, but the connection points of the coils 13, 18 are not connected through the diodes, but rather through control terminals 41, 43, respectively. The two switching transistors 40 and 42 are connected to each other via a series circuit. In that case, the connection point of the switching transistors 40.42 is the diode 45.42.
46, the diode 45.4
The other terminal of 6 is connected to the opposite end of coil 13.18. The common connection point of the elements 40, 42, 45, 46 is connected to the ground wire 11 through a capacitor 44 and also via a valve.

第5図(a)、 (b)に図示したようにスイッチング
トランジスタ14.19は逆相に5駆動される。それに
゛対しスイッチングトランジスタ40.42は切り換え
時短時間だけ駆動される。これが第5図(c)、 (d
)に図示されている。それによってコンデンサ44には
第5図(e)に図示したように規則的な電圧が現われる
As shown in FIGS. 5(a) and 5(b), the switching transistors 14 and 19 are driven in opposite phases. On the other hand, the switching transistors 40, 42 are activated only for a short time during switching. This is shown in Figure 5(c), (d
) is illustrated. As a result, a regular voltage appears on the capacitor 44 as shown in FIG. 5(e).

例えばトランジスタ14が遮断されると同時にトランジ
スタ19が導通すると(時点t1参照)トランジスタ4
2は瞬間的に駆動され、コイル13のエネルギーは短時
間コンデンサ劇に貯えられる。それによってコイル13
にはかなり急速な電流減少が生じ、一方コイル18には
急激な電流上昇が発生する(第5図(f)の期間t1〜
t2を参照)。このようにして中間メモリとして機能す
るコンデンサ劇によりエネルギーの受は渡しが改良され
切り換え時間が短縮されるので、コイル13.18は実
質上連続して交互に駆動されることになる。
For example, when transistor 14 is cut off and transistor 19 is turned on at the same time (see time t1), transistor 4
2 is activated momentarily and the energy of the coil 13 is stored in the capacitor for a short time. Thereby the coil 13
A fairly rapid current decrease occurs in the coil 18, while a rapid current increase occurs in the coil 18 (period t1 to t1 in FIG. 5(f)).
(see t2). In this way, the capacitor acting as an intermediate memory improves energy delivery and reduces switching times, so that the coils 13, 18 are driven substantially continuously and alternately.

ホ)効果 このように本発明によれば一方の回路素子を遮断する時
この回路素子に貯えられていたエネルキーを取り出し他
方の回路素子の予備励磁に用いるようにしているので、
エネルギーを貯える性質の回路素子を切り換える場合実
質上切り換えの中断は発生しなくなる。
E) Effect As described above, according to the present invention, when one circuit element is cut off, the energy key stored in this circuit element is taken out and used for preliminary excitation of the other circuit element.
When switching circuit elements that store energy, virtually no switching interruptions occur.

このように本発明の装置は特に自動車のアンチスキッド
装置や自動変速ギヤに用いるのに好ましい。というのは
、本発明装置により正確にしかも早く前後して電磁弁を
切り換えることが可能になるからである。又中間状態が
発生することがないので、本発明は特に高度な安全が要
求される油圧装置に用いるのに適している。
As described above, the device of the present invention is particularly suitable for use in anti-skid devices and automatic transmission gears of automobiles. This is because the device according to the invention makes it possible to switch the solenoid valve back and forth accurately and quickly. Further, since no intermediate state occurs, the present invention is particularly suitable for use in hydraulic systems that require a high degree of safety.

貯えられたエネルギーのオンオフあるいは取り出しにス
イッチングトランジスタを用いる場合には特に正確な切
り換え動作が得られることになる。
Particularly accurate switching operations are obtained when switching transistors are used to turn on/off or extract stored energy.

又トランジスタの代りにダイオードを用いる場合には切
り換え命令を減少させるという効果が得られる。
Also, when a diode is used instead of a transistor, the effect of reducing the number of switching commands can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

各図はいずれも本発明の詳細な説明するもので、第1図
は本発明装置の第1の実施例を示す回路図、第2図(a
)〜(g)は第1図の回路の動作を説明する信号波形図
、第3図、第4図はそれぞれ異なる実施例を示す回路図
、第5図(a)〜(f)は第4図に図示した回路の動作
を説明する信号波形図である。 1・・・電子制御装置、 13.18・・・励磁コイル
、15〜19・・・スイッチングトランジスタ。 図面の浄書(内容に変更なし) pu″(j QJ Q−g メト 〆〉 へ 6−〉 旨 8 & & 目 フフフコフ 手続補正書彷良 昭和59年 4月12日 特許庁長官殿 1、事件の表示 昭和 58 年 特許願 第 179462  号2、
発明の名称 回路素子駆動装置 3、補正をする者 本件との関係   特許出願人 4、代理人     電話 03 (268)2481
 ((”U5、補正命令の日付   昭和59年 3月
27日(発送日)6、補正の対象 図面 7、補正の内容 濃墨を用いて鮮明に描いた図面を提出いたしまt′ただ
し内容に変更なし
Each figure is a detailed explanation of the present invention, and FIG. 1 is a circuit diagram showing the first embodiment of the device of the present invention, and FIG.
) to (g) are signal waveform diagrams explaining the operation of the circuit in FIG. 1, FIGS. 3 and 4 are circuit diagrams showing different embodiments, and FIGS. FIG. 3 is a signal waveform diagram illustrating the operation of the circuit illustrated in the figure. 1... Electronic control device, 13.18... Excitation coil, 15-19... Switching transistor. Engraving of the drawings (no changes to the contents) pu'' (j QJ Q-g Meto 〆〉 to 6-〉 8 && eyes Fufufukov procedural amendment letter, April 12, 1980, Mr. Commissioner of the Japan Patent Office 1, of the case) Display 1982 Patent Application No. 179462 2,
Name of the invention: Circuit element driving device 3. Person making the amendment: Relationship to the present case: Patent applicant: 4. Agent: Telephone: 03 (268) 2481
(("U5, Date of amendment order: March 27, 1980 (shipment date) 6, Drawing subject to amendment 7, Contents of amendment: We have submitted a drawing clearly drawn using dark ink. No change

Claims (1)

【特許請求の範囲】 1)容量性あるいは誘導性の少なくとも2つの回路素子
を順次駆動させる回路素子駆動装置において、一方の回
路素子を遮断する時、この回路素子に貯わえられていた
エネルギーを取り出し他方の回路素子の予備励磁に用い
るようにしたことを特徴とする回路素子駆動装置。 2)前記回路素子は自動車の油圧装置に用いられる電磁
弁のコイル(13,18)である特許請求の範囲第1項
に記載の回路素子駆動装置−03)前記コイル(13,
18)は第1のスイッチを介して一方の電源線に、又第
2のスイッチを介して他方の電源線に接続されると共に
、コイルの各端子は第3のスイッチを介して十字に互い
に接続される特許請求の範囲第2項に記載の回路素子駆
動装置。 4)前記スイッチはスイッチングトランジスタ(12,
14,”17.19,20,22.24)である特許請
求の範囲第3項に記載の回路素子駆動装置。 5)前記第1あるいは第2のスイッチはトランジスタ(
14,19)であり、又第2あるいは第1のスイッチと
第3のスイッチがダイオード(30,31゜32.33
)から構成される特許請求の範囲第3項に記載の回路素
子駆動装置。 6)前記第1あるいは第2のスイッチはトランジスタ(
14,19)であシ、又第2あるいは第1のスイッチは
ダイオード(30,31)であって、その場合ダイオー
ド(30、31)に対向したコイル(13,18)の端
子はトランジスタ(40,42)を介して共通の切シ換
入点に接続され、この切シ換え点はダイオード(45,
46)を介してコイル(13,18)の他方の端子と接
続されると共にコンデンサ(44)を介して電源線(1
1)に接続される特許請求の範囲第3項に記載の回路素
子駆動装置。
[Claims] 1) In a circuit element driving device that sequentially drives at least two capacitive or inductive circuit elements, when one circuit element is cut off, the energy stored in this circuit element is A circuit element driving device characterized in that the circuit element is used for preliminary excitation of the other circuit element. 2) The circuit element drive device according to claim 1, wherein the circuit element is a coil (13, 18) of a solenoid valve used in a hydraulic system of an automobile.
18) is connected to one power line through the first switch and to the other power line through the second switch, and each terminal of the coil is connected to each other in a cross shape through the third switch. A circuit element driving device according to claim 2. 4) The switch is a switching transistor (12,
14, "17.19, 20, 22.24). 5) The first or second switch is a transistor (
14, 19), and the second or first switch and the third switch are diodes (30, 31° 32.33
) The circuit element driving device according to claim 3, comprising: 6) The first or second switch is a transistor (
14, 19), and the second or first switch is a diode (30, 31), in which case the terminal of the coil (13, 18) facing the diode (30, 31) is connected to the transistor (40). , 42) to a common switching point, which is connected to a common switching point via a diode (45, 42).
46) to the other terminal of the coil (13, 18), and is connected to the power supply line (1) via a capacitor (44).
1) A circuit element driving device according to claim 3, which is connected to.
JP58179462A 1982-10-13 1983-09-29 Circuit element drive device Pending JPS59161005A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE32379420 1982-10-13
DE19823237942 DE3237942A1 (en) 1982-10-13 1982-10-13 Device for sequentially switching-on at least two components which store power

Publications (1)

Publication Number Publication Date
JPS59161005A true JPS59161005A (en) 1984-09-11

Family

ID=6175622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179462A Pending JPS59161005A (en) 1982-10-13 1983-09-29 Circuit element drive device

Country Status (3)

Country Link
JP (1) JPS59161005A (en)
DE (1) DE3237942A1 (en)
FR (1) FR2534736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187303A (en) * 1985-02-15 1986-08-21 Diesel Kiki Co Ltd Solenoid driving circuit
JPS6292415A (en) * 1985-10-18 1987-04-27 Toyo Commun Equip Co Ltd Operation circuit for electromagnetic coil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621404A1 (en) * 1986-06-26 1988-01-14 Bosch Gmbh Robert Electronic switching device for a magnet or the like
DE4012353C2 (en) * 1990-04-18 1994-04-14 Lucas Ind Plc Circuit for operating two solenoid valves
DE4409287C1 (en) * 1994-03-18 1995-10-19 Square D Deutschland Circuit for fail-safe relay control for electronic circuits
EP0847063B1 (en) * 1996-11-29 2002-06-05 Denso Corporation Solenoid valve driving device
DE10323489B4 (en) * 2003-05-23 2011-02-24 Robert Bosch Gmbh Method for controlling actuators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951186A (en) * 1958-05-19 1960-08-30 Ibm Circuit for alternately energizing two electromagnetic devices
US3183412A (en) * 1961-01-25 1965-05-11 Electrologica Nv Switching device for impedances with inductive character
US3809989A (en) * 1971-10-12 1974-05-07 Ncr Co Torsional stepping motor and exciter apparatus therefor
US4316395A (en) * 1978-10-26 1982-02-23 Derek Brown Control apparatus for drive transmissions
DE2851107C2 (en) * 1978-11-25 1990-03-08 Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover Circuit arrangement for improving the driving stability of vehicles equipped with anti-lock braking systems
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187303A (en) * 1985-02-15 1986-08-21 Diesel Kiki Co Ltd Solenoid driving circuit
JPS6292415A (en) * 1985-10-18 1987-04-27 Toyo Commun Equip Co Ltd Operation circuit for electromagnetic coil

Also Published As

Publication number Publication date
DE3237942A1 (en) 1984-04-19
FR2534736A1 (en) 1984-04-20

Similar Documents

Publication Publication Date Title
US4420717A (en) Use of motor winding as integrator to generate sawtooth for switch mode current regulator
US5381297A (en) System and method for operating high speed solenoid actuated devices
US3549955A (en) Drive circuit for minimizing power consumption in inductive load
US3982505A (en) Circuitry for controlling the response time of electromagnetic devices with a solenoid
GB1365397A (en) Driving circuit for energising the coil of a solenoid
JP2002503440A (en) Method and apparatus for reducing overvoltage
JPS59161005A (en) Circuit element drive device
US3188547A (en) Positioning motor control system
JPS60180032A (en) Solenoid drive circuit
KR970706144A (en) Electronic safety apparatus for passengers
JPS6249967B2 (en)
JPS61131614A (en) Fast switchgear for electromagnetic load
US3671826A (en) Stepping motor driver
US3273050A (en) Power switching and regulating circuits
JP3254639B2 (en) Inductive load drive
JPH09238496A (en) L load driving gear
US3699413A (en) Power drive circuit for inductive loads
DE102007025430B3 (en) Arrangement for switching valves in axle modules of a commercial vehicle
US4620260A (en) Circuit for driving solenoid
US6194951B1 (en) Method and device for diving an integrated power output stage
US4021720A (en) Switching device for the control of, and reduction of power losses and radio disturbances associated with circuitry, comprising one or more switching members loaded by an inductance
EP0077770A1 (en) Pulse width modulated constant current servo driver.
CN113179096B (en) Delay circuit, motor device and motor system
JP3559051B2 (en) Relay drive circuit
DE2237870C3 (en) Regulated brushless DC motor