AU710614B2 - Frequency sweep circuit - Google Patents

Frequency sweep circuit Download PDF

Info

Publication number
AU710614B2
AU710614B2 AU12476/97A AU1247697A AU710614B2 AU 710614 B2 AU710614 B2 AU 710614B2 AU 12476/97 A AU12476/97 A AU 12476/97A AU 1247697 A AU1247697 A AU 1247697A AU 710614 B2 AU710614 B2 AU 710614B2
Authority
AU
Australia
Prior art keywords
output
pull
verification
adder
wave generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU12476/97A
Other versions
AU1247697A (en
Inventor
Makoto Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of AU1247697A publication Critical patent/AU1247697A/en
Application granted granted Critical
Publication of AU710614B2 publication Critical patent/AU710614B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/12Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a scanning signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • H04L27/2273Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals associated with quadrature demodulation, e.g. Costas loop

Description

1 FREQUENCY SWEEP CIRCUIT BACKGROUND OF THE INVENTION 1. FIELD OF THE INVENTION The present invention relates to a frequency sweep circuit and, more particularly to, a frequency sweep circuit used in a multisymbol modulator/demodulator for transmitting a digital signal.
2. DESCRIPTION OF THE PRIOR ART 1 0 Fig. 1 shows an example of a conventional carrier wave 0000 recovery system used in digital radio transmission.
0000* S•Referring to Fig. 1, a modulated wave input from a signal input terminal IN is multiplied by a multiplier 1 •with a recovered carrier wave output from a voltage-con- 15 trolled oscillator 6. An unnecessary higher harmonic is removed by a low-pass filter 2 from an output signal from the multiplier 1, and the resultant signal serves as a demodulated baseband signal. Upon sampling and quantization, this signal is converted into a digital signal by an analog-to-digital converter 3. From this digital signal, a phase difference detector 4 detects a phase difference between the carrier wave and the recovered carrier wave, and outputs a control signal in accordance with the difference. The control signal is smoothed by a loop filter 5 serving as a low-pass filter and serves as a 2 carrier wave phase control signal for the voltage-controlled oscillator 6. An analog sweep unit 7 connected in an AC manner to the control signal is an analog oscillator using part of a positive feedback loop as an input/output terminal. The analog sweep unit 7 widens the phase locking range by oscillating a sweep signal when phase locking is stepped out on the basis of the state of the control signal, or it stops the oscillation in the phase-locked state.
In the conventional carrier wave recovery circuit described above, however, since the analog oscillator is oooo used in the main part of the frequency sweep circuit, this "circuit is difficult to be mounted in an IC, and the oscillation condition easily changes. Further, the conventional circuit has problems such as the limitation of the 15 oscillation frequency and the amplitude.
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above situation, and has as its object to provide a frequency sweep circuit which can be easily mounted on an IC, has a stable oscillation condition free from any change, and can set the oscillation frequency, the amplitude, and the like with a high degree of freedom by constituting the main part of the frequency sweep circuit with a digital circuit.
To achieve the above object, according to the basic 3 aspect of the present invention, there is provided a frequency sweep circuit used in a multisymbol modulator/demodulator for transmitting a digital signal, comprising a pull-in verification wave generator for generating a verification signal for pull-in verification, a sweep wave generator for generating a frequency sweep signal, a first adder for adding an output from the pull-in verification wave generator and an output from the sweep wave generator, a correlation determining unit for receiving a phase difference signal representing a phase difference between a received carrier wave and a recovered carrier S"wave, and an output from the first adder, determining presence/absence of a correlation between the phase difference signal and the output, and outputting a control signal 15 for controlling the sweep wave generator, a second adder for adding the output from the first adder to the phase difference signal, a digital-to-analog converter for receiving an output from the second adder, a loop filter for receiving an output from the digital-to-analog converter, and a voltage-controlled oscillator for receiving an output from the loop filter and generating the recovered carrier wave.
The correlation determining unit described in the basic aspect is constituted by a correlation detector and a pull-in determining unit, the correlation detector includes a first shift register and a third adder for receiving and 4 smoothing the phase difference signal, a first flip-flop which operates upon reception of an output from the third adder at a N/2-frequency-divided clock input from the pull-in verification wave generator, a second flip-flop for receiving an output from the first flip-flop, a first subtracter for receiving both the output from the first flip-flop and an output from the second flip-flop, a third flip-flop which operates the output from the first adder at the N/2-frequency-divided clock input from the pull-in .0 verification wave generator, a fourth flip-flop for receiv- S. ing an output from the third flip-flop, a second subtracter S"for receiving both the output from the third flip-flop and an output from the fourth flip-flop, an exclusive OR (EX-OR) circuit for receiving both an output from the second :15 subtracter and an output from the first subtracter, and a second shift register and a fourth adder for receiving outputs from the EX-OR circuit, and obtaining a correlation •0 value by averaging output values in a predetermined period, and the pull-in determining unit includes a second subtracter for receiving and comparing the correlation value output from the fourth adder and a predetermined threshold value, wherein, when the correlation value exceeds the threshold value, a carrier wave recovery loop is determined to be in a phase-locked state, and when the correlation value is lower than the threshold value, the carrier wave 5 recovery loop is determined to be in a phase-unlocked state.
It is also the characteristic aspect of the present invention that the verification wave generator described in the basic aspect generates a triangular wave.
As can be understood from the above aspects, the frequency sweep circuit of the present invention determines whether the loop is in the phase-locked state by detecting the presence of the negative-phase component of a pull-in *verification wave in the phase difference signal by the correlation detector. If the loop is in the phase-unlocked state, the sweep wave generator is controlled to generate a "sweep wave. In the phase-locked state, the current level is held. Only in the phase-unlocked state, the oscillation frequency is swept.
.15 In the frequency sweep circuit of the present inven- *..tion, since the main part of the circuit is constituted by a digital circuit, this circuit can be easily mounted on an IC, the oscillation condition is stabilized, and the degree of freedom for setting increases.
The above and many other advantages, features and additional objects of the present invention will become manifest to those versed in the art upon making reference to the following detailed description and accompanying drawings in which preferred embodiments incorporating the principles of the present invention are shown by way of illustrative 6 example.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the arrangement of a prior art; Fig. 2 is a block diagram showing the arrangement of an embodiment of the present invention; Figs. 3A to 3F are charts showing waveforms at respective points in a circuit shown in Fig. 2; Fig. 4 is a circuit diagram showing a pull-in verification wave generator; and Fig. 5 is a circuit diagram showing a correlation detector and a pull-in determining unit.
DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT
An embodiment of a frequency sweep circuit according to 15 the present invention will be described below with reference to the accompanying drawings.
Fig. 2 is a block diagram showing the arrangement of the embodiment according to the present invention. Reference numerals 1 to 6 in Fig. 2 denote the same constituent elements as those in the prior art. That is, this embodiment comprises a multiplier 1, a low-pass filter 2, an analog-to-digital converter 3, a phase difference detector 4, a loop filter 5, and a voltage-controlled oscillator 6.
In addition to the above constituent elements, this 7 embodiment comprises a pull-in verification wave generator 8, a sweep wave generator 9, a first adder 10, a correlation detector 11 and a pull-in determining unit 12 serving as a correlation determining unit, a second adder 13, and a digital-to-analog converter 14.
After an output from the pull-in verification wave generator 8 is added to an output from the sweep wave generator 9 by the first adder 10, the resultant output is converted into an analog signal by the digital-to-analog :°oooo converter 14. The output from the digital-to-analog converter 14 is changed to a control voltage for the o•.
S"voltage-controlled oscillator 6 via the loop filter An output from the phase difference detector 4 is input to the correlation detector 11. The correlation 15 detector 11 receives the output from the phase difference detector 4 and an output from the first adder and detects a correlation between the two outputs to output a correlation value to the pull-in determining unit 12.
The pull-in determining unit 12 determines whether the carrier wave recovery loop is in the phase-locked or phase-unlocked state on the basis of the output from the correlation detector 11, and outputs a control signal to the sweep wave generator 9 on the basis of this result.
Next, the operation of the frequency sweep circuit shown in Fig. 2 will be explained. First, a digital pull-in 8 15 verification wave signal output from the pull-in verification wave generator 8 is inserted into the phase difference signal as an output from the phase difference detector 4 via the first and second adders 10 and 13. At this time, the frequency of the verification wave signal (b) is lower than the band of the loop filter 5 and sufficiently lower than the sampling rate of the phase difference detector 4. In addition, the amplitude is also sufficiently smaller than the output signal from the phase difference detector 4.
Although the waveform of the verification wave signal under these conditions is arbitrarily set, the verification wave signal is a triangular wave for descriptive convenience. The sweep wave signal at this time has an amplitude sufficiently larger than the output from the phase difference detector 4, and a frequency lower than the pull-in verification wave signal Figs. 3A to 3F show waveforms at respective points.
Fig. 3A shows the output from the sweep wave generator 9, Fig. 3B shows the output from the pull-in verification wave generator 8, Fig. 3C shows the output from the first adder 10, Fig. 3D shows the smoothed output from the phase difference detector 4, Fig. 3E shows the output from the correlation detector 11, and Fig. 3F shows the output from the pull-in determining unit 12.
9 15 If the carrier wave recovery loop is in the phase-locked state, the negative-phase component of the output from the first adder 10 appears in the phase difference signal owing to the negative feedback operation of the phase-locked loop.
To the contrary, if the carrier wave recovery loop is in the phase-unlocked state, the negative feedback operation does not act, and no negative-phase component of the output from the first adder 10 appears in the phase difference signal (see Figs. 3C and 3D).
The correlation detector 11 detects the negative-phase component of the first adder 10 contained in the phase difference signal by detecting a negative correlation between the phase difference signal and the output (c) from the first adder 10 (see Fig. 3C). The pull-in determining unit 12 determines that the carrier wave recovery loop is in the phase-locked state when the correlation value output from the correlation detector 11 exceeds a predetermined value (threshold value; see Fig. 3D).
Next, an operation upon determination will be explained.
When the carrier wave recovery loop is determined to be in the phase-unlocked state, the pull-in determining unit 12 causes the sweep wave generator 9 to generate the sweep wave signal The sweep wave signal is supplied to the 10 a a. 15 voltage-controlled oscillator 6 via the first adder 10, the second adder 13, the digital-to-analog converter 14, and the loop filter 5, thereby widening the pull-in range of the carrier wave recovery loop which sweeps the oscillation frequency of the recovered carrier wave.
On the other hand, when the carrier wave recovery loop is determined to be in the phase-locked state, the pull-in determining unit 12 outputs a sweep stop signal to the sweep wave generator 9. In response to this sweep stop signal, the sweep wave generator 9 stops sweep and fixes the output level.
Fig. 4 shows an example of the pull-in verification generator 8. The pull-in verification wave generator 8 shown in Fig. 4 outputs a triangular wave having a period N times the reference clock output from the phase difference detector 4.
Fig. 5 shows an example of the correlation detector 11 and the pull-in determining unit 12 serving as a correlation determining unit.
Referring to Fig. 5, the phase difference signal (d) input from IN1 is smoothed by a first shift register 18 and a third adder 19. A first flip-flop 20 operates upon reception of an output on the path of the third adder 19 at an N/2-frequency-divided clock input from the pull-in verification wave generator 8. The first flip-flop a.
a
I
11 10 .0* 15 alternately samples the output from the third adder 19 at the peak and valley of the pull-in verification wave An output (hl) from the first flip-flop 20 is input to a first subtracter 22 and a second flip-flop 21. An output (il) from the second flip-flop 21 is output to the first subtracter 22. Since the output (il) from the second flip-flop 21 is delayed by a frequency divided at an N/2 clock with respect to the output from (hl) from the first flip-flop 20, an output (jl) from the first subtracter 22 represents an output difference between signals at the peak and valley of the pull-in verification wave Similarly, the output from the first adder 10 input from IN2 is subtracted by a second subtracter 25 via flip-flops 23 and 24, and an output difference (j2) between signals at the peak and valley of the pull-in verification wave is output from the second subtracter 25. When the phase is locked, and the negative feedback operation acts, outputs from the first and second subtracters 22 and 25 have a negative correlation therebetween. For this reason, the correlation between them can be detected by calculating the exclusive OR (EX-OR) of the positive and negative signals from the two subtracters. More specifically, if the correlation is present, an output from an EX-OR circuit 26 is a positive value at a high probability. To the contrary, if no correlation is present, the output from 12 the EX-OR circuit 26 is positive or negative at an equal probability. Therefore, the correlation value can be obtained by averaging the outputs from the EX-OR circuit 26 in a predetermined period by a second shift register 27 and a fourth adder 28.
A subtracter 29 compares this correlation value (e) with a threshold value set in advance. When the correlation value exceeds the threshold value the carrier wave recovery loop is determined to be in the phase-locked state; and when it is lower than the threshold value it is determined to be in the phase-unlocked state.
*o S 13 The claims defining the invention are as follows: 1. A frequency sweep circuit used in a multisymbol modulator/demodulator for transmitting a digital signal, comprising: a pull-in verification wage generator for generating a verification signal for pull-in verification; a sweep wave generator for generating a frequency sweep signal; a first adder for adding an output from said pull-in verification wave generator and an output from said sweep wave generator; a correlation determining unit for receiving a phase difference signal representing a phase difference between a received carrier wave and a recovered carrier wave, and an output from said first adder, wherein said correlation determining unit comprises correlation detecting means for detecting correlation between said phase difference signal and said output from said first adder and outputting a correlation value and pull-in determining means for receiving said correlation value and determining phase-locked state and outputting a control signal to said sweep wave generator; a second adder for adding the output from said first adder to the phase difference signal; a digital-to-analog converter for receiving an output from said second adder; a loop filter for receiving an output from said digital-to-analog converter; and a voltage-controlled oscillator for receiving an output from said loop filter and generating the recovered carrier wave.
2. A frequency sweep circuit used in a multisymbol modulator/demodulator for transmitting a digital signal, comprising: ~a pull-in verification wage generator for generating a verification signal for S 25 pull-in verification; a sweep wave generator for generating a frequency sweep signal; a first adder for adding an output from said pull-in verification wave generator and an output from said sweep wave generator; a correlation determining unit for receiving a phase difference signal 30 representing a phase difference between a received carrier wave and a recovered carrier wave, and an output from said first adder, determining presence/absence of a correlation between the phase difference signal and the output, and outputting a control signal for controlling said sweep wave generator; a second adder for adding the output from said first adder to the phase 35 difference signal; S" a digital-to-analog converter for receiving an output from said second adder; a loop filter for receiving an output from said digital-to-analog converter; and a voltage-controlled oscillator for receiving an output from said loop filter and generating the recovered carrier wave, n:\libp:00510

Claims (2)

  1. 6. A frequency sweep circuit according to claim 1, wherein said pull-in wave verification wave generator generates a N/2 frequency divided clock output, said 35 N/2 frequency divided clock output is input to said correlation detecting means.
  2. 7. A frequency sweep circuit according to claim 2, wherein said pull-in wave verification wave generator generates a N/2 frequency divided clock output, said N/2 frequency divided clock output is input to said correlation detector. n:\libp:00510 6 Dated 13 April, 1999 NEC Corporation Patent Attorneys for the Applicant SPRUSON FERGUSON n:\Iibp:005 FREQUENCY SWEEP CIRCUIT ABSTRACT OF THE DISCLOSURE A frequency sweep circuit including: a pull-in verification wave generator (8) for generating a verification signal for pull-in verification; a sweep wave generator (9) for generating a frequency sweep signal; a first adder (10) for adding an output from the pull-in verification wave generator and an output from the pull-in verification wave generator and an output from the sweep wave generator a correlation determining unit (11, 12) for receiving a phase difference signal representing a phase difference between a received carrier wave and a recovered carrier wave, and an output from the first adder determining presence/absence of a correlation between the phase difference signal and the output, and outputting a control signal for controlling the sweep wave generator a second adder (12) for adding the output from the first adder (10) to the phase difference signal; a digital-to-analog converter (14) for receiving an output from the second adder a loop filter for receiving an output from the digital-to-analog converter and a voltage-controlled oscillator for receiving an output from the loop filter and generating the recovered carrier wave. ood C. *0 S o0 igoo ooo• [N:\L!115985:SMY
AU12476/97A 1996-02-06 1997-02-03 Frequency sweep circuit Ceased AU710614B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196 1996-02-06
JP8-20201 1996-02-06

Publications (2)

Publication Number Publication Date
AU1247697A AU1247697A (en) 1997-08-14
AU710614B2 true AU710614B2 (en) 1999-09-23

Family

ID=12020562

Family Applications (1)

Application Number Title Priority Date Filing Date
AU12476/97A Ceased AU710614B2 (en) 1996-02-06 1997-02-03 Frequency sweep circuit

Country Status (4)

Country Link
US (1) US5881111A (en)
AU (1) AU710614B2 (en)
CA (1) CA2196844C (en)
GB (1) GB2310091B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663565B2 (en) * 1997-11-10 2005-06-22 富士通株式会社 Carrier recovery circuit
JP3915854B2 (en) * 1997-11-13 2007-05-16 株式会社ゼネラル リサーチ オブ エレクトロニックス AFC circuit for frequency swept FSK receiver
US6693987B1 (en) 2000-10-05 2004-02-17 Pericom Semiconductor Corp. Digital-to-analog DAC-driven phase-locked loop PLL with slave PLL's driving DAC reference voltages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871973A (en) * 1987-05-19 1989-10-03 Nec Corporation Demodulator including sweep controller for controlling synchronization capture range
US5533059A (en) * 1992-10-13 1996-07-02 Nec Corporation Carrier phase lock detecting apparatus used in PSK-modulated signal receiver for satellite communication system
US5621767A (en) * 1994-09-30 1997-04-15 Hughes Electronics Method and device for locking on a carrier signal by dividing frequency band into segments for segment signal quality determination and selecting better signal quality segment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077016A (en) * 1977-02-22 1978-02-28 Ncr Corporation Apparatus and method for inhibiting false locking of a phase-locked loop
US4092606A (en) * 1977-06-21 1978-05-30 Lovelace Alan M Acting Adminis Quadraphase demodulation
EP0297774B1 (en) * 1987-06-30 1994-06-08 Nec Corporation Phase controlled demodulator for digital communications system
JPH0447838A (en) * 1990-06-15 1992-02-18 Nec Corp Carrier reproducing circuit
JPH06216769A (en) * 1993-01-14 1994-08-05 Toyo Commun Equip Co Ltd Pll circuit and digital demodulation circuit provided with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871973A (en) * 1987-05-19 1989-10-03 Nec Corporation Demodulator including sweep controller for controlling synchronization capture range
US5533059A (en) * 1992-10-13 1996-07-02 Nec Corporation Carrier phase lock detecting apparatus used in PSK-modulated signal receiver for satellite communication system
US5621767A (en) * 1994-09-30 1997-04-15 Hughes Electronics Method and device for locking on a carrier signal by dividing frequency band into segments for segment signal quality determination and selecting better signal quality segment

Also Published As

Publication number Publication date
GB2310091A (en) 1997-08-13
AU1247697A (en) 1997-08-14
CA2196844C (en) 2000-10-10
GB9701925D0 (en) 1997-03-19
CA2196844A1 (en) 1997-08-07
US5881111A (en) 1999-03-09
GB2310091B (en) 2000-06-07

Similar Documents

Publication Publication Date Title
CA2296855C (en) Receiving and demodulating a digital television signal
US5584068A (en) Direct conversion receiver
US4143322A (en) Carrier wave recovery system apparatus using synchronous detection
US5640428A (en) Direct conversion receiver
EP0302100B1 (en) Improved phase lock loop
RU2216113C2 (en) Digital sound broadcasting signal receiver
EP0527034A2 (en) Digital phase-locked loop circuit
CA1076650A (en) Fsk demodulator
US4297650A (en) Phase locked loop carrier recovery circuit with false lock prevention
EP0363226B1 (en) Coherent demodulating arrangement for use in digital radio communications system
AU710614B2 (en) Frequency sweep circuit
US4517531A (en) Carrier wave reproducing circuit in synchronized detection system of medium speed facsimile
US5546138A (en) AGC system with overriding, maximum gain during an initial interval to enhance signal acquisition
US5627604A (en) Stabilizing the lock up of a bi-phase stable FPLL by augmenting a recovered DC pilot
US5621483A (en) Polarity selection circuit for bi-phase stable FPLL
US6008699A (en) Digital receiver locking device
JP3097582B2 (en) Frequency sweep circuit
JP2820143B2 (en) Automatic frequency control method
JPS644386B2 (en)
US5287073A (en) Phase locked loop using pilot signal for lock detection
JP2550701B2 (en) FSK receiver
JP3410841B2 (en) Phase modulated wave carrier regeneration circuit
US5668498A (en) Controlling FPLL polarity using pilot signal and polarity inverter
GB2230670A (en) Extracting carriers
JPH07154432A (en) Fsk modulator

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired