AU677559B2 - Process for the removal of cationic impurities from a cobaltsulphate solution - Google Patents

Process for the removal of cationic impurities from a cobaltsulphate solution Download PDF

Info

Publication number
AU677559B2
AU677559B2 AU67964/96A AU6796496A AU677559B2 AU 677559 B2 AU677559 B2 AU 677559B2 AU 67964/96 A AU67964/96 A AU 67964/96A AU 6796496 A AU6796496 A AU 6796496A AU 677559 B2 AU677559 B2 AU 677559B2
Authority
AU
Australia
Prior art keywords
cobalt
impurities
solution
iron
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU67964/96A
Other versions
AU6796496A (en
Inventor
Michael Raymond Davis
John Ernest Fittock
Malcolm John Price
John Graham Reid
David Thomas White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Queensland Nickel Pty Ltd
Original Assignee
Queensland Nickel Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Queensland Nickel Pty Ltd filed Critical Queensland Nickel Pty Ltd
Priority to AU67964/96A priority Critical patent/AU677559B2/en
Publication of AU6796496A publication Critical patent/AU6796496A/en
Application granted granted Critical
Publication of AU677559B2 publication Critical patent/AU677559B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

AUSTRALIA
Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Queensland Nickel Pty. Ltd.
Actual Inventor(s): Malcolm John Price SJohn Graham Reid John Ernest Fittock *David Thomas White Michael Raymond Davis SAddress for Service: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: PROCESS FOR THE REMOVAL OF CATIONIC IMPURITIES FROM A COBALT SULPHATE SOLUTION Our Ref 467049 POF Code: 227850/69147 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1- -iA PROCESS FOR THE REMOVAL OF CATIONIC IMPURITIES FROM A COBALT SULPHATE SOLUTION The present application is a divisional application of parent Australian application 77522/94 (670398), the entire disclosure of which is incorporated herein by reference.
The present invention resides in a process for the removal of cationic impurities, in particular ferric iron and zinc impurities from a cobalt sulphate solution. This process of removing these unwanted cationic impurities allows for the preparation of a high purity cobalt intermediate which is the subject of the Australian application 370398.
In prior art processes nickel and cobalt bearing ores and concentrates may, for example be processed by the reduction roast ammonium carbonate oxidative leach 15 route. By this route, impure cobalt sulphide is produced as a by-product, and the isolation and recovery of this by-product is illustrated in Australian Patent 605867.
The recovery of cobalt as a sulphide is achieved by injection of a suitable sulphiding agent, for example, gaseous hydrogen sulphide or ammonium hydrosulphide solution. This procedure however results in the precipitation of sulphides of other elements present such as iron, zinc, copper and nickel as well as the adsorption and or coprecipitation of compounds that normally do not produce insoluble sulphides, such as calcium, magnesium and manganese.
In order to produce pure cobalt metal or a pure cobalt compound for industrial applications it is necessary to first solubilize the impure sulphides and then isolate the 0 cobalt in a suitable form free of unwanted impurities.
A number of processes have been reported describing the isolation of cobalt as a pure product. These procedures usually involve a combination of solubilization, precipitation, solvent extraction and electrowinning operations. One such process, known as the Nippon Mining Corporation process, recovers cobalt in the metallic form by electrowinning from an acidic sulphate solution. Another process, known as the Sumitomo process, also recovers cobalt in metallic form however this is electrowon from a chloride solution. Both of these operations have common features in that the cobalt is present in the cobaltous state at the point of isolation and the product is a massive metal cathode plate.
Another commercial cobalt sulphide refining process is the soluble cobaltic ammine process developed by Sherritt Gordon Mines Ltd. This process involves solubilization, precipitation of hydrated ferric oxide, conversion of the cobaltous sulphate to cobaltic pentammine sulphate, precipitation of nickel ammonium sulphate, reduction of the cobaltic pentammine to cobaltous diammine and, finally, pressure hydrogen reduction to cobalt metal powder.
Cobalt has many applications and not at! of these require cobalt metal. For example, cobalt salts find use in a variety of industries and significant quantities of cobalt oxide is also used industrially. Consequently, a pure cobalt compound able to be converted to salts, oxides and fine metal powder would be a useful industrial io commodity.
The present invention aims to overcome or at least alleviate one or more of the difficulties associated with the prior art.
15 The present invention relates to a suitable method of purifying cobalt by first removing from a cobalt solution unwanted cationic impurities. A pure cobalt product may then be produced by a combination of solubilization, solvent extraction and o8 optionaliv ion exchange operations that allows cobalt to be recovered from a solution in which it is present in the cobaltic state.
0 The present invention resides in a process for the separation of unwanted ferric iron and zinc impurities from a cobalt sulphate solution containing said impurities, said process including the steps of: reacting the cobalt sulphate solution with an organic reagent specific for the removal of iron and zinc at an initial pH of less than 2.8 to remove the majority of the unwanted ferric iron impurities; and (ii) slowly raising the pH of the solution to about 3.5 in order to remove zinc impurities and any remaining ferric iron impurities.
The process according to Australian application 670398 sequentially treats a cobalt containing solution to remove impurities such as iron, zinc, copper, manganese, nickel, magnesium and calcium and employs an acid/base solvent extraction transfer step to remove anionic impurities such as sulphate, chloride and nitrate. The present application is particularly concerned with the removal of ferric iron and zinc impurities from the cobalt solution.
The process o, the Australian application 670398 is particularly applicable to recovering cobalt from insoluble cobalt sulphide solids. Accordingly, in the process of this invention, impure cobalt containing solids are converted to a soluble form. The methods available to convert insoluble cobalt sulphide solids to soluble cobalt salts are varied and they generally require the injection of air or oxygen at atmospheric or higher pressure, into an aqueous slurry of the solids at elevated temperature. For the purposes of this solubilization step, it is preferred to inject air or oxygen at a temperature range of 60'C to 90°C at atmospheric pressure, the reaction period can be adjusted to achieve the degree of solubilization required. The temperature may be controlled by the circulation of water or steam. The end result is the production of a solution of cobalt sulphate of pH lower than 2.5 with cobalt concentration of 30 to 90 gl- 1 preferably about 50-65 g1 1 During the dissolution of the cobalt sulphide, the impurity elements present also dissolve. This allows the cobalt solution to be subjected to the appropriate purification steps. The Nippon Mining Corporation, Sumitomo and Sherritt Gordon processes each I 15 employ a precipitation step to remove iron as ferric hydroxide from the cobalt sulphate solution. However, when ferric hydroxide precipitates from cobalt-rich aqueous solutions, some cobalt is lost, adsorbed to, or coprecipitated with the ferric hydroxide solids. This represents a cobalt loss that is not easily reversed. Accordingly, the present invention employs an organic reagent or reagents specific for ferric iron and zinc at predetermined pH values to strip any iron and zinc from the solution without any significant loss of cobalt, which avoids the difficulty of the prior art processes.
It is particularly preferred that the organic reagent for the extraction of cationic impurities from the cobalt sulphate solution is specific for the extraction of ferric iron and 25 zinc. It is most desirable that the iron present in the cobalt sulphate solution be ferric (Fe 3 ions, and accordingly the cobalt sulphate solution may be treated with a strong oxidant, for example hydrogen peroxide, to convert any iron present to ferric iron.
It should be appreciated that control of pH during solvent extraction is important if complete and selective separations are to be achieved. For the process of the present invention, it is most desired to maintain the pH value of the solution initially between a pH value of less than 2.8, preferably from about 2.1 to 2.6, which will generally separate about 95% of the ferric iron from the solution, and .wiy raising the pH to about 3.5 specific for zinc separation. The present invention enables ferric iron and zinc to be selectively and effectively removed in sequence from the acidic cobalt sulphate solution.
A suitable organic reagent for this step has been found to be a phosphinic acid derivative dissolved in a kerosene solvent, for example a preferred reagent is 4o bis(2,4,4,trimethylpentyl)phosphinic acid in aliphatic kerosene (Escaid 110). The ratios of these components may be adjusted to yield the required optimum extraction and stripping properties.
The effectiveness of the removal for iron and zinc from aqueous cobalt sulphate s solution utilizing the above procedure is illustrated by the results in Table 1.
TABLE I Co/Fe ratio Co/Zn ratio 1o Cobalt Sulphate feed Liquor 100 Treated Liquor 40,000 150,000 Loaded Strip Liquor 0.0005 0.0001 a 15 The cobalt solution, free of zinc and iron cationic impurities, may then be utilized in a process to produce a high purity cobalt intermediate, in accordance with the process of Australian application 670398. A high purity cobalt intermediate may be produced if t oo both the cationic and anionic impurities are removed. In accordance with the process of the parent application, this may be achieved if the cobalt is transferred from an acidic sulphate medium to a basic ammoniacal ammonium carbonate medium.
'Consideration of the nature of the desired high purity cobalt intermediate requires that not only cationic but also anionic impurities need to be removed. It has been found that this may be achieved if the cobalt is transferred from an acidic sulphate medium to ot i°i S 25 a basic ammoniacal ammonium carbonate medium.
In order to transfer the cobalt from the acidic sulphate solution, the cobalt may be extracted with a suitable organic reagent to create a cobalt loaded organic phase.
Those familiar with solvent extraction chemistry will appreciate that only cations will chemically transfer to the organic reagent, while anions will remain with the aqueous phase. Consequently there has been a separation of cobalt from anionic impurities such as sulphate, chloride and nitrate ions.
Most suitably the organic reagent is a phosphoric acid derivative dissolved in kerosene and modified with an aliphatic long chain alcohol. A preferred organic reagent to effect the transfer of cobalt from an acid medium to an ammoniacal ammonium carbonate medium was found to be a mixture of di(2-ethylexyl)phosphoric acid, iso-tridecanol and aliphatic kerosene in suitable proportions to yield optimum extraction and stripping properties.
I
The reaction generally takes place in mixer settler extraction cells. Some cationic impurities may also transfer to the organic phase.
The cobalt loaded organic reagent exiting the extraction cells may also physically remove some aqueous phase containing sulphate and in order to remove this contamination the cobalt loaded organic reagent may be transferred to mixer settler scrub cells. An aqueous scrub liquor which may be either dilute ammonia, dilute ammonium carbonate or deionized water is used to contact the organic phase to remove entrained aqueous sulphate, chloride and nitrate impurities.
The cobalt loaded organic phase exiting the scrub cells is transferred to mixer settler strip cells where the cobalt is stripped from the organic phase by high strength ammoniacal ammonium carbonate solution. A solution of composition 205 to 330g1- 1 ammonium and 160 to 300 gl-1 carbon dioxide, preferably 255 to 300 gl 1 ammonia and 15 200 to 260 gl-1 carbon dioxide, and most preferably 285 gl-1 ammonia and 230 gl- 1 carbon dioxide has been found most effective. It should be understood that by varying the ratio of strip liquor to cobalt loaded organic phase, considerable increases in cobalt e concentration in the aqueous strip phase can be achieved. The nature of the cobalt rich ammoniacal liquor is illustrated by the data in Table 2.
TABLE 2 Co S0 4 2- Cobalt Sulphate Feed 25 Liquor 50 g1-1 100 g-1 Loaded Ammoniacal Liquor 80 gl- 1 5 ppm Nickel may now be removed from the ammoniacal liquor. The separation of nickel from cobalt in ammoniacal carbonate liquors is influenced greatly by two factors:the presence of cobalt (11) ammines, and (ii) the ammonia concentration of the cobalt rich liquor.
In order to effectively remove nickel from the cobalt rich ammoniacal liquor produced by the cationic transfer process outlined above, the labile cobalt II ammines should be converted to stable cobalt III tetrammine. This is generally achieved by sparging the cobalt rich ammoniacal liquor with air or oxygen and hydrogen peroxide in order to oxidise the cobalt II to cobalt III. During this oxidation step, the cobalt II -1 ammine concentration is generally lowered from about 20 gl to about 50 ppm. The cobalt III tetrammine rich ammoniacal liquor may be subjected to controlled distillation to lower the uncomplexed NH 3 concentration to approximately 20-60 gl 1 preferably about 40 gl- without destabilizing the cobalt ammine and causing precipitation of solids in the distillation column. Cooling of this ammoniacal liquor is preferred to control its temperature prior to transfer to a series of solvent extraction cells to effect nickel removal.
In order to effectively lower the nickel concentration of the cobalt tetrammine rich ammoniacal liquor to a suitably low value, it is preferred to use an organic reagent with very low residual nickel loading. This is a natural consequence of the equilibrium relationship between an element in an organic and aqueous phase in contact.
The most preferred organic reagent used in this step is either an oxime reagent, 15 for example, an acetophenoneoxime or salicylaldoxime, or a substituted beta diketone, in kerosene and modified by the addition of a long chain aliphatic alcohol, for example iso-tridecanol, iso-undecanol, iso-dodecanol, and the corresponding linear type. The preferred reagent is a mixture of 2-hydroxy-5-t-nonyl acetophenoneoxime in aliphatic kerosene modified by the addition of iso-tridecanol. This reagent stream may be contacted with high strength ammoniacal ammonium carbonate liquor, with a typical concentration of from 205 to 330gl 1 ammonia, preferably 280 gl 1 and 160 to 300 gl S carbon dioxide preferably 230 gl- 1 to remove nickel from the organic reagent. This reaction generally takes place in a series of mixer settler cells at a strip cell temperature of between 350 to 550C for a period of between 30 seconds and 30 minutes in each cell, preferably 3 minutes.
The nickel free organic reagent may then contact the cobalt III tetrammine rich ammoniacal liquor to remove the nickel impurity from the cobalt liquor.. This reaction may be carried out in mixer settlers and the usual factors of organic to aqueous ratio, temperature, residence time, in the mixer boxes and numbers of strip and extract cells should be optimized. For example, a suitable organic to aqueous ratio may be 0.2:1 to 5:1, preferably 1:1 to 2:1, at a temperature in the extract cells of between 350C and for a period of between 30 seconds and 30 minutes, preferably about 3 minutes.
The effectiveness of this circuit is illustrated by the data presented in Table 3.
I
TABLE 3 Co Ni Amrmoniacal Feed Liquor 60 gl- 1 1.8 gl- 1 Treated Liquor 60 g1-1 1 ppm Copper and manganese which are usually present at levels of up to 20 ppm in the ammoniacal feed liquor are also extracted to residual levels of less than 2 ppm during this extraction.
The cobalt tetrammine rich ammoniacal liquor essentially free of nickel, iron, zinc, copper, manganese, sulphate and chloride ions may then be subjected to filtration through an activated carbon bed (to scavenge any entrained organic reagent removed from the nickel extraction circuit) before being contacted with a suitably conditioned ion exchange resin in order to remove any residual calcium and magnesium.
A number of ion exchange resins were tested, however given the nature of the Sfeed solution and the duty required from the ion exchange resin the most preferred is a chelating ion exchange resin of the Iminodiacetate type with a high affinity for calcium and magnesium. Given the nature of the feed solution, cobalt tetrammine rich with calcium and magnesium in ammoniacal ammonium carbonate, it is most preferred that the resin be conditioned prior to use to avoid the evolution of gas and disruption of the Sresin bed during operation. It will be appreciated that during ion exchange resin operations, gas evolution may have a detrimental effect on the operating efficiency of an ion exchange system.
For continuous operation three individual ion exchange resin columns are most preferred, two operating in series with the third on standby following regeneration. This enables control of the calcium and magnesium impurities associated with cobalt exiting the ion exchange resin system. The effectiveness of this system is illustrated by the data in Table 4.
TABLE 4 Co Mg Ca Ammoniacal Feed Liquor 60 gl-1 200 ppm 50 ppm Treated Liquor 60 gl-1 1 ppm 1 ppm The cobalt rich ammoniacal liquor exiting the ion exchange resin system contains extremely low levels of both cationic and anionic impurities. The cobalt III tetrammine complex while stable at ambient temperatures is readily destroyed at elevated -L temperatures forming an insoluble cobaltic oxide hydroxide virtually free of any contaminating anions such as sulphate, chloride and nitrate.
In order to recover the cobalt in an intermediate form, in one preferred way, the cobalt tetrammine rich ammoniacal liquor may be delivered continuously under controlled conditions to a multi-tray distillation column heated with steam. The off gases are condensed and recovered while the aqueous slurry is pumped to a thickener to recover the suspended cobaltic oxide hydroxide solids.
These solids because of their composition, particle size and purity are an ideal intermediate from which to prepare a range of cobalt end products.
Typical composition of the cobaltic oxide hydroxide solids produced is given in Table TABLE Typical Value Typical Value Co 64 Mg 0.001 Ni 0.001 Ca 0.001 Fe 0.001 Al 0.001 Cu 0.001 Si 0.001 Zn 0.001 Na 0.001 Mn 0.001 CI <0.001 As an alternative step, the cobalt liquor exiting the ion exchange resin system may also be treated in a reductive step by contacting the liquor with finely divided pure cobalt metal powder to reduce the cobalt Ill tetrammine to labile cobalt II ammine.
This reaction may take place in an inert atmosphere at from 25 0 C to 35 0 C and results in the precipitation of cobalt hydroxy carbonate solids. The solution is distilled to recover ammonia and carbon dioxide while driving the precipitation reaction to completion.
By way of example, figure 1 provides a flow diagram of the process according to Austalian application 670398. The process, up to cell is particularly relevant to the present application. It will be appreciated that this chart is merely illustrative of a preferred embodiment of the invention, and the invention should not be considered limited thereto.
The process flow diagram (Fig 1) for the present invention illustrates the injection of air into four reactor units and and the injection of oxygen into two reactor units and at atmospheric pressure. The reaction temperature can be controlled at the required value, 600 to 900C by the circulation of water or steam through appropriately positioned coiled tube. The reaction period can be adjusted to achieve the degree of solubilization of cobalt sulphide solids to soluble cobalt salts required, the liquor leaving the final reaction unit is a solution of cobalt sulphate of pH less than 2.5 units and cobalt concentration varying from 30 to 90 gl1 and which is passed through a filter to remove any particulate matter.
For the extraction of cationic impurities, iron and zinc, it is most desired that the iron present in stream exiting filter be treated with a strong oxidant, for example hydrogen peroxide stream to ensure only ferric (Fe 3 ions are present prior to entering the first mixer settler extraction cell It is also most desired that the oxidised stream during its progress through the S: mixer settler cells and is maintained at a pH of less than 2.8 units to eliminate the °ee° potential for the precipitation of ferric hydroxide within the solvent extraction circuit. For the extraction of zinc also present in stream to go to completion, a pH of 3.5 units is most desired, and therefore a basic reagent injection system is required to maintain all the extraction cells and at the optimum pH to remove in the first case ferric iron and then to remove zinc. The stream is contacted with an organic reagent specific for the removal of ferric iron and zinc impurities, most preferably a phosphinic acid derivative.
°°°oo The additional mixer settler cells illustrated in Fig. 1 are required to first remove o° any entrained cobalt rich aqueous phase from the iron and zinc loaded organic reagent stream Cells and are used for this purpose, the scrub stream used for this purpose may be water. The cobalt free iron and zinc loaded organic reagent exiting scrub cell is then subjected to stripping with dilute sulphuric acid (11) in mixer settler units and before exiting mixer settler cell as stream (12) stripped organic reagent. This reagent stream again being available to extract iron and zinc on a continuous basis. Stream (13) is a waste stream containing iron and zinc sulphate.
The cobalt sulphate solution stream essentially free of iron and zinc contaminants, is pumped to mixer settler cell where it is contacted with a suitable volume of an organic reagent mixture, for example, a mixture of di(2ethylhexyl)phosphoric acid, iso-tridecanol and aliphatic kerosene, effecting a transfer of cobalt from the aqueous phase to the organic phase.
I Three mixer settler extraction cells and were found adequate to maximise the cobalt extraction and the stream (14) leaving cell is essentially cobalt free. The cobalt loaded organic reagent exiting extraction cell stream (15) may be contaminated with physically associated aqueous liquor containing anionic impurities.
Since the object of the above transfer step is to separate cobalt frorm a nionic impurities, it is most preferred to pump the cobalt loaded organic reagent to mnixer settler scrub cells where the organic phase is contacted with deionized water (16) to remove impurities. Two scrub ce!ls and are used and the scrub stream containing some io cobalt (20) is returned to extraction cell for recovery.
The scrubbed cobalt loaded organic reagent (17) exiting scrub cell enters mixer settler strip cell where it contacts ammoniacal ammonium carbonate strip liquor leaving strip cell This countercurrent progression of organic and aqueous phases continues through the four strip cells and required to recover the cobalt from the organic reagent. The most suitable liquor for the above described cobalt stripping procedure was found to be one containing 285 gl- 1 of ammonia and 230 g1- 1 of carbon dioxide.
to The ammoniacal ammonium carbonate strip liquor stream free of cobalt, enters strip cell and exits strip cell stream (19) containing approximately 80 gl1 cobalt. The cobalt rich liquor stream (19) is pumped to two reactor vessels in series (Al) and (A2) and air and or oxygen (21) injected during vigorous agitation of the liquor to convert cobalt II ammines to cobalt III ammines.
.:iooi The oxidised liquor exiting vessel (A2) is agitated in vessel (A3) during the o injection of hydrogen peroxide (22) to complete the oxidation cycle. The oxidised liquor *bee(23) will have been depleted in ammonia to some extent as the injection of air will remove free ammonia, the extent of removal depending on the reaction time. The oxidised liquor (23) rich in cobalt III ammines may now be subjected to controlled distillation in column (A4) to lower the uncomplexed ammonia concentration to approximately 40 gl 1 without destabilizing the cobalt ammines and causing precipitation in the distillation column. Steam (24) is injected into the column to effect the removal of ammonia. Stream (25) is an off gas stream containing NH 3 CO2 and steam and is condensed for recycling.
In order to effectively lower the nickel concentration of the cobalt tetrammine rich ammoniacal liquor exiting the distillation column, stream to a suitably low value, it is preferred to use an organic reagent with very low residual nickel loading. This is a
L
II natural consequence of the equilibrium relationship between an element in an organic and aqueous phase in contact.
The most preferred organic reagent used in this step is a mixture of nonyl acetophenoneoxime in aliphatic kerosene modified by the addition of isotridecanol. This reagent stream (27) enters mixer settler strip cells (A9) and where it is contacted with high strength ammoniacal ammonium carbonate liquor (28), typical composition 280 gl 1 ammonia and 230 gl1 carbon dioxide, to remove nickel from the organic reagent. The nickel free organic reagent stream (29) now contacts the 0o cobalt tetrammine rich ammoniacal liquor (26) in a series of 3 extract mixer settler units (A6) and (A7) to remove the nickel impurity from the cobalt liquor. A suitable organic to aqueous phase ratio may be 1:1 at an extract cell temperature of between and 60°C and a strip cell temperature of between 350 and 55°C for a period of between 30 seconds and 30 minutes.
The cobalt tetrammine rich ammoniacal liquor (30) is then passed through two ion exchange columns in series (All) and (A12) to lower calcium and magnesium impurities to acceptable levels.
11 In order to recover the cobalt as an intermediate, the cobalt tetrammine rich ammoniacal ammonium carbonate liquor (31) is delivered continuously under controlled conditions to a multi tray distillation column (A13) and heated with steam. The aqueous slurry (32) is pumped to a thickener (A14) to recover the suspended cobaltic oxide hydroxide solids prior to filtration through filter (A15) to produce a moist filter cake.
It will also be appreciated, that various modifications or alterations may be made e. to the invention as outlined above, without departing from the spirit or ambit described therein, and should be considered to form part of the rntion.

Claims (7)

1. A process for the separation of unwanted ferric iron and zinc impurities from a cobalt sulphate solution containing said impurities, said process including the steps of: reacting the cobalt sulphate solution with an organic reagent specific for the removal of iron and zinc at an initial pH of less than 2.8 to remove the majority of the unwanted ferric iron impurities; and (ii) slowly raising the pH of the solution to about 3.5 in order to remove zinc impurities and any remaining ferric iron impurities.
2. A process according to claim 1, wherein the organic reagent is a S 15 phosphinic acid derivative dissolved in kerosene.
3. A process according to claim 1 or 2, wherein the organic reagent is bis(2,4,4-trimethylpentyl)phosphinic acid in aliphatic kerosene.
4. A process according to any one of the preceding claims, wherein impure cobalt containing solids are solubilised prior to step to form the Scobalt sulphate solution.
A process according to any one of the preceding claims, wherein the cobalt sulphate solution has an initial pH of less than 2.5 and a cobalt Sconcentration of from 30 to 90 gl 1
6. A process according to any one of the preceding claims, wherein the cobalt sulphate solution is treated with a strong oxidant to convert any iron impurities to ferric (Fe 3 ions prior to treating the solution with the organic reagent of step
7. A process according to claim 1, substantially as hereinbefore described with reference to the specific examples and figure 1. DATED: 1 October, 1996 PHILLIPS ORMONDE FITZPATRICK Attorneys for: QUEENSLAND NICKEL PTY. LTD. 722 01V775227~k" ABSTRACT A process for the separation of unwanted ferric, iron and zinc impurities from a cobalt sulphate solution containing said impurities, said process including the steps of: reacting the cobalt sulphate solution with an organic reagent specific for the removal of iron and zinc at an initial pH of less 2.8 to remove the majority of the unwanted ferric iron impurities; and (ii) slowly raising the pH of the solution to about 3.5 in order to remove zinc impurities and any remaining ferric iron impurities. *o 4
AU67964/96A 1993-10-29 1996-10-02 Process for the removal of cationic impurities from a cobaltsulphate solution Ceased AU677559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU67964/96A AU677559B2 (en) 1993-10-29 1996-10-02 Process for the removal of cationic impurities from a cobaltsulphate solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPM2092 1993-10-29
AU67964/96A AU677559B2 (en) 1993-10-29 1996-10-02 Process for the removal of cationic impurities from a cobaltsulphate solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU77522/94A Division AU670398B2 (en) 1993-10-29 1994-10-27 Process for the preparation of a high purity cobalt intermediate

Publications (2)

Publication Number Publication Date
AU6796496A AU6796496A (en) 1997-01-23
AU677559B2 true AU677559B2 (en) 1997-04-24

Family

ID=3752049

Family Applications (1)

Application Number Title Priority Date Filing Date
AU67964/96A Ceased AU677559B2 (en) 1993-10-29 1996-10-02 Process for the removal of cationic impurities from a cobaltsulphate solution

Country Status (1)

Country Link
AU (1) AU677559B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434141A (en) * 1982-09-24 1984-02-28 Chevron Research Company Recovery of cobalt, molybdenum, nickel and vanadium from an aqueous ammonia and ammonium salt solution by coextracting molybdenum and vanadium and sequential extraction of nickel and cobalt
US4956154A (en) * 1988-03-09 1990-09-11 Unc Reclamation Selective removal of chromium, nickel, cobalt, copper and lead cations from aqueous effluent solutions
WO1993023578A2 (en) * 1992-05-19 1993-11-25 Sherritt Gordon Limited Process for the separation of cobalt from nickel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434141A (en) * 1982-09-24 1984-02-28 Chevron Research Company Recovery of cobalt, molybdenum, nickel and vanadium from an aqueous ammonia and ammonium salt solution by coextracting molybdenum and vanadium and sequential extraction of nickel and cobalt
US4956154A (en) * 1988-03-09 1990-09-11 Unc Reclamation Selective removal of chromium, nickel, cobalt, copper and lead cations from aqueous effluent solutions
WO1993023578A2 (en) * 1992-05-19 1993-11-25 Sherritt Gordon Limited Process for the separation of cobalt from nickel

Also Published As

Publication number Publication date
AU6796496A (en) 1997-01-23

Similar Documents

Publication Publication Date Title
AU757360B2 (en) Recovery of nickel and cobalt from ore
US4097271A (en) Hydrometallurgical process for recovering copper and other metal values from metal sulphides
US4008076A (en) Method for processing manganese nodules and recovering the values contained therein
US4150976A (en) Method for the recovery of metallic copper
EP0364463B1 (en) Separation and recovery of nickel and cobalt in ammoniacal systems
AU725971B2 (en) Method for leaching zinc concentrate in atmospheric conditions
US3458277A (en) Process for the recovery of molybdenum values as high purity ammonium paramolybdate from impure molybdenum-bearing solution,with optional recovery of rhenium values if present
AU2015261571A1 (en) Treatment process for recovery and separation of elements from liquors
WO2014188077A1 (en) Method for recovering metals
JPH06248367A (en) Method for recovering valuable metal from waste catalyst
WO1998014623A1 (en) Hydrometallurgical extraction of copper, zinc and cobalt from ores containing manganese dioxide
WO2008080209A1 (en) Process for recovery of nickel and cobalt from an ion-exchange resin eluate and product
EP0651062B1 (en) Process for the preparation of a high-purity cobalt intermediate
AU672200B2 (en) Process for the separation of cobalt from nickel
US4189461A (en) Metal leaching from concentrates using nitrogen dioxide in acids
Pandey et al. Extraction of nickel and copper from the ammoniacal leach solution of sea nodules by LIX 64N
EP2604712B1 (en) A method for treating liquid effluents and recovering metals
US4036639A (en) Production of copper
AU677559B2 (en) Process for the removal of cationic impurities from a cobaltsulphate solution
AU670398B2 (en) Process for the preparation of a high purity cobalt intermediate
US6048506A (en) Process for the removal of cationic impurities from a cobalt sulphate solution
EP0272060A2 (en) Hydrometallurgical recovery of metals and elemental sulphur from metallic sulphides
US4030917A (en) Hydrometallurgical processing of metal sulfides
Scheiner et al. Extraction and recovery of molybdenum and rhenium from molybdenite concentrates by electrooxidation: process demonstration
US4382082A (en) Recovery of cobalt values by absorption from ammoniacal solution