AU653639B2 - Improved boss for a filament wound pressure vessel - Google Patents

Improved boss for a filament wound pressure vessel Download PDF

Info

Publication number
AU653639B2
AU653639B2 AU26319/92A AU2631992A AU653639B2 AU 653639 B2 AU653639 B2 AU 653639B2 AU 26319/92 A AU26319/92 A AU 26319/92A AU 2631992 A AU2631992 A AU 2631992A AU 653639 B2 AU653639 B2 AU 653639B2
Authority
AU
Australia
Prior art keywords
boss
liner
flange
annular flange
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU26319/92A
Other versions
AU2631992A (en
Inventor
Norman L. Newhouse
Dale B. Tiller
Ronald B. Veys
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Publication of AU2631992A publication Critical patent/AU2631992A/en
Application granted granted Critical
Publication of AU653639B2 publication Critical patent/AU653639B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/044Avoiding pollution or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion

Abstract

A boss (16) is disposed in a polar opening (18) in a pressure vessel (10) which has a filament wound outer shell (12) and a non-metallic internal liner (14). The boss has a tubular neck (24) which projects outwardly from the vessel interior and an annular support flange (28) which extends radially from the internal end of the neck and supports the perimeter of the polar opening. An offset attachment flange (32) extends radially from the support flange and has two axially opposed surfaces (34,36) with locking grooves (40,42)formed therein. Each locking groove has a bottom wall intermediate a pair of mutually skewed sidewalls (50) for maintaining positive engagement with and retention of complementary respective tabs on the liner. In an application where the liner is a blow molded component, an injection molded interface member (82) is attached to the support flange and provides a site at which the liner is welded. <IMAGE>

Description

653639
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFCATION S F Ref: 222115 FOR A STANDARD PATENT
ORIGINAL
4 p Ce 9 C.
*c C e Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Brunswick Corporation One Brunswick Plaza Skokie Illinois 60077 UNITED STATES OF AMERICA Norman L. Newhouse, Ronald B. Veys and Dale B. Tiller Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Improved Boss for a Filament Wound Pressure Vessel *r The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845/3 ID-5656A-D-USA -1-
SPECIFICATION
IMPROVED BOSS FOR A FILAMENT WOUND PRESSURE VESSEL This application is a continuation-in-part of U.S.
application Serial No. 818,619, filed January 10, 1992.
BACKGROUND OF THE INVENTION Technical Field The present invention is an improved boss for reinforcing the structural interface between a filament wound outer shell and a non-metallic internal liner in a 10 rounded-high pressure vessel.
Background Art In many circumstances, the qualities of lightweight construction and high resistance to fragmentation and corrosion damage are highly desirable characteristics for a pressure vessel. These design criteria have been met for many years by the development of high pressure composite containers fabricated of laminated layers of wound fiberglass filaments or various types of synthetic filaments which are bonded together by a thermal-setting 20 epoxy resin. An elastomeric or other non-metal resilient liner or bladder is suspended within the filament wound shell to seal the vessel and prevent internal fluids from contacting the composite material.
Filament wound vessels often are cor-structed in a spherical shape or a cylindrical shape with generally spherical ends for use in high pressure applications. A boss is used to reliably join the internal liner with the outer composite shell at pressurization ports in the outer shell such that fluid is prevented from penetrating between the liner and the shell. In many applications, such as in ID-5656A-D-USA -2the aerospace industry, composite pressure vessels are required to contain extremely high pressures, operating at 25,000 p.s.i. with design burst values in the range of 50,000 p.s.i. Consequently, as internal pressure increases, the interface of the boss, the liner and the outer shell is subjected to extreme structural loading.
More particularly, as pressure within the vessel is increased, bearing stress is generated between the boss and the composite shell, resulting in a steep strain gradient 10 through the shell, with the inner strains being much higher than those at the outer surface. Shearing stress develops between' the boss and the internal liner due to relative displacement discontinuities resulting from nonuniform 1 loading during internal pressurization. In addition, radially extending support members on the boss are subjected to unacceptable levels of bending stress which can result in fracture of the boss.
Moreover, it is critical that during the pressurization of the vessel the liner and outer shell remain firmly engaged with the boss, despite the adverse loading to which the liner and shell are subjected. The present invention is directed toward overcoming the above mentioned loading and sealing problems by providing a unique construction in a boss for a filament wound pressure vessel of the character described.
SUMMARY OF THE INVENTION It is an object of the present invention, therefore, to provide a new and improved boss for reinforcing the structural interface between a filament wound reinforcement shell and a non-metallic internal liner in a rounded section of a high pressure vessel.
-3- There is disclosed herein a boss system for a pressure vessel having a filament wound outer shell and a non-metallic internal liner, the system comprising: a boss having a tubular neck projecting outwardly through an opening in the outer shell; an annular flange extending radially from an end of the neck within the vessel, the annular flange having an outer surface for reinforcing the perimeter of the opening in the shell; a first generally dovetail-shaped locking grocve in the outer surface of the annular flange; a second generally dovetail-shaped locking groove in the inner surface of the annular flange; the liner being split at the annular flange with an outside portion outside the flange and an inside portion inside the flange; a first generally dovetail-shaped tab on the outside portion of the liner for S 15 locking in the first locking groove in the outside surface of the annular flange; and a second generally dovetail-shaped tab on the inside portion of the liner for -"locking in the second locking groove in the inside surface of the annular flange.
S Si oie [N:\lbttl00182 9FD -4- BRIEF DESCRIPTION OF THE DRAWINGS The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with its objects and advantages, may be understood from the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures and in which: FIGURE 1 is fragmentary sectional view of the rounded end of an axisymmetric pressure vessel having a e *a *Ge oo [N:\libtt]00182:BFD ID-5656A-D-USA boss which incorporates the features of the present invention; FIGURE 2 is a fragmentary sectional view similar to FIGURE 1 in which the boss is joined to the pressure vessel along only one side thereof, and wherein the internal liner engages only one of the locking grooves in the radial flange; and FIGURE 3 is fragmentary sectional view of the rounded end of an axisymmetric pressure vessel having a further embodiment of a boss construction.
DESCRIPTION OF THE PREFERRED EMBODIMENT Figure 1 illustrates in fragmented section the rounded, preferably substantially spherical, end of an axisymmetric pressure vessel, generally designated 10. The pressure vessel 10 is comprised of a fiber reinforced outer shell 12 and a non-metallic internal liner 14. A boss 16 according to the present invention extends outwardly through a polar opening 18 formed in the outer shell 12 and defines a pressurization port 20 through which fluid at high pressure may be communicated with the interior of the pressure vessel 10. It is to be noted, however, that the invention may be used in connection with non-polar openings in vessels, as, for example, an opening in a purely spherical vessel. A thin shear accommodating layer 22 is interposed between the outer shell 12, the boss 16 and the liner 14 to prevent damage to the shell or liner during pressurization of the vessel, as will be described hereafter.
The outer shell 12 comprises a generally known composite reinforcement made of fiber reinforcing material in a resin matrix. The fiber may be fiberglass, ARAMID, ID-5656A-D-USA -6carbon, graphite, or any other generally known fibrous reinforcing material. The resin matrix used may be epoxy, polyester, vinylester, thermoplastic or any other suitable resinous material capable of providing the fragmentation resistance required for the particular application in which the vessel is to be used.
The internal liner 14 may be made of plastic or other elastomers and can be manufactured by compression molding, blow molding, injection molding or any other generally known technique. The boss 16 preferably is composed of an alloy of aluminum, steel, nickel, or titanium, although it is understood that other metal and non-metal materials, such as composite materials, are suitable. The thin layer 22 may be made of plastic, or other non-metallic material and may be manufactured by a molding process or, alternatively, cut from sheet stock.
As shown in Figure 1, the subject boss 16 has an outwardly projecting neck 24 with a tapered throat 26 extending through the polar opening 18 in the outer shell 20 12. The throat 26 is tapered so as to form a concave peripheral groove for receipt of the fiber and resin matrix which make up the shell so that the latter captures the *boss 16 to prevent movement of the boss into or out of the vessel Immediately within the pressure vessel 10, an annular support flange 28 radiates from the neck 24 and defines an outer surface 30 of the support flange 28 by which pressurization loads are distributed about the perimeter of the polar opening 18 in the composite shell 12. The support flange 28 has a width W. such that the overall diameter of the support flange 28 is sufficient to prevent damage to the outer shell 12 when the pressure vessel 10 is pressurized.
ID-5656A-D-USA -7- In addition, a portion of the thin layer 22 is interposed between the support flange 28, the liner 14 and the outer shell 12 to further minimize damage as the vessel is pressurized. Specifically, pressurization of the vessel interior results in expansive distortion of the rounded vessel end, such that relative slip between the inner surface of the outer shell 12 and the mating portions of the liner 14 and the support flange 28 may occur. In order to accommodate the relative slip and relieve shear stresses otherwise occurring at this interface, the interposed layer 22 extends across the rounded vessel end a distance substantially equal to the diameter P, ut the circular section of the pressure vessel S 1An annular attachment flange 32 projects radially outward from the support flange 28 a distance W 2 The attachment flange 32 has an outer surface 34 which is inwardly offset from the outer surface 30 of the support flange 28 by a distance T 1 and the attachment 32 has an inner surface 36 which is outwardly offset from an inner 20 surface 38 of the support flange 28 by a distance T 2 Thus, support flange 28 has a thickness T 3 which is sufficient to limit bending stresses in the boss to an acceptable level when the vessel is pressurized.
A pair of annular locking grooves 40 and 42, respectively, are located one in outer surface 34 of the attachment flange 32 and the other in the inner surface 36 of the support flange 38. Each groove receives a complementary tab 44,46, respectively, on the internal liner 12.
The locking groove 40 is an outwardly opening groove having a bottom wall 48 intermediate a pair of mutually skewed sidewalls 50, which is to say the groove is a dove-tailed groove. It is understood that other ID-5656A-D-USA -8undercut features effective to mechanically lock the liner to the boss are contemplated by the present invention.
The locking groove 42 is formed in the inner surface 36 of the attachment flange 32 and has a bottom wall 52 intermediate a pair of mutually skewed sidewalls 54 to again define a dove-tail groove. The complementary geometry of the skewed sidewalls 50 and 54 and respective liner tabs 44 and 46 ensure positive engagement and retention of the internal liner 14 on the boss 16 such that pressurized fluid is prevented from leaking between the liner and the outer shell 12.
The offset characteristic of the attachment flange 32 as defined by the inward offset T, of the outer surface 34 and the outward offset T 2 of the inner surface 36 reduces the risk that the liner 14 will extrude out of engagement with the boss 16 when under pressure by providing a sufficient surface area for the liner to seal with the attachment flange and prevent leakage.
Figure 2 illustrates an alternative embodiment of 20 the invention in which the internal liner 14 only engages the annular locking groove 40 formed in the outer surface 34 of the attachment flange 32. In the embodiment illustrated in Figure 2, the internal liner 14 has only a singular annular tab 44 engaged with the boss 16.
Figure 3 illustrates a further embodiment of a boss 56 used in conjunction with a filament wound pressure vessel, generally designated 58. Pressure vessel 58 has a fiber reinforced outer shell 60 and a non-metallic internal liner 62. In a preferred form, the internal liner is formed of blow molded high density polyethylene (HDPE).
Boss 56 has a tubular neck 64 which extends axially outward through a polar opening 66 formed in the outer shell 60 and defines a stepped pressurization port 68 through which ID-5656A-D-USA -9fluid at high pressure may be communicated with the interior of pressure vessel 58.
An annular support flange 70 radiates outwardly from neck 64 immediately within the pressure vessel and has a sloped outer surface 72 and an oppositely sloped inner surface 74. In other words, surfaces 72 and 74 converge toward the periphery of flange 70. Outer surface 72 distributes pressurization loads about the perimeter of the polar opening 66 in the composite shell 60 to prevent damage to the outer shell when pressure vessel 58 is pressurized. Inner surface 74 has a recessed portinn adjacent pressurization port 68 and an axially inward opening groove 77 for purposes to be described hereafter.
A thin shear accommodating layer 76 is interposed between outer shell 60, boss 56 and internal liner 62 to prevent damage to the shell or liner during pressurization of the vessel. More specifically, shear accommodating layer 76 has a pair of divergent leaves 78 and 80. Leaf 78 is interposed between outer surface 72 of support flange 20 and the inner surface of outer shell 60, and leaf 80 is interposed between inner surface 74 of support flange and the outer side of internal liner 62. S h e a r *accommodating layer 76 preferably is formed of a material **suitable for relieving slip-induced shear stresses otherwise occurring at the interface of support flange internal liner 62, and outer shell 60 when vessel 58 is pressurized. Injection molded thermoplastic elastomers, such as thermoplastic rubber, have been found to provide suitable performance characteristics in a shear accommodating layer.
Internal liner 62 is attached to boss 56 by means of an axisymmetric interface member 82. The interface member preferably is formed of injection molded high ID-5656A-D-USA density polyethylene (HDPE) which, when cooled, shrinks into conformity with boss 56 as shown in Figure 3. More specifically, the HDPE solidifies to form an elongated hub 84 disposed in pressurization port 68 and a radially extending collar 86 seated in the recessed portion 75 of inner surface 74 on support flange 70. The HDPE flows into groove 77 and thereby forms a complementary tab 88 for inter-locking the interface member and polar boss 56. In applications where it is desired to more securely band 0 interface member 82 to the polar boss, an adhesive coating is applied to the boss prior to injection of the HDPE.
Once interface member 82 is firmly secured to boss 56, liner 62 is bonded to the interface member along a common seam 90. Conventional plastic welding techniques, such as hot plate welding, are effective to reliably bond the HDPE liner 62 and interface member 82.
S: Securement of interface member 82 is enhanced by a threaded retainer nut 92 which is advanced through pressurization port 68 in the boss to lock a distal end of elongated hub 84 against the stepped inner side wall 93 of neck 64. An O-ring seal 94 is captured between retainer nut 92 and interface member 82.
The boss construction illustrated in Figure 3 advantageously reduces the risk of leakage from liner 62 by moving the principal leakage path, that is the junction at which the distal end of hub 84 on interface member 82 meets boss 56, into the neck of the pressure vessel and upstream of retainer nut 92. Consequently, the junction is not subjected to the pressure contained within the vessel and the likelihood of leakage thereby is reduced. In addition, the embodiment of Figure 3 isolates boss 56 from fluids contained within vessel 58 and thus prevents 1) ID-5656A-D-USA -11contamination of the fluid contents of the pressure vessel, and 2) corrosion of the boss.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
r

Claims (9)

1. A boss system for a pressure vessel having a filament wound outer shell and a non-metallic internal liner, the system comprising: a boss having a tubular neck projecting outwardly through an opening in the outer shell; an annular flange extending radially from an end of the neck within the vessel, the annular flange having an outer surface for reinforcing the perimeter of the opening in the shell; a first generally dovetail-shaped locking groove in the outer surface of the annular flange; a second generally dovetail-shaped locking groove in the inner surface of the annular flange; the liner being split at the annular flange with an outside portion outside the flange and an inside portion inside the flange; a first generally dovetail-shaped tab on the outside portion of the liner for locking in the first locking groove in the outside surface of the anmular flange; and a second generally dovetail-shapeu tab on the inside portion of the liner for locking in the second locking groove in the inside surface of the annular flange.
2. The boss system of claim 1 in which a shear stress relieving layer separate from the liner is interposed between the outer surface of the annular flange and the inner surface of the outer shell to accommodate relative slip therebetween during pressurization of the vessel.
3. The boss system of claim 1 or claim 2 in which the boss comprises a material selected from the group consisting of alloys of aluminium, steel, nickel, and titanium or of composite materials.
The boss system of claim 1, including a shear stress relieving layer interposed between the outer surface of the annular flange and an inner surface of the outer shell to accommodate relative slip therebetween during pressurization of the vessel.
5. The boss system of claim 4 wherein the shear stress relieving layer is made of a rmosetting elastomer.
6. The boss system of any one of claims 1 to 5, including an attachment flange extending radially from said annular flange and having an outer surface spaced inwardly of the outer shell, said first generally dovetail-shaped locking groove being in the outer surface of the attachment flange.
7. The boss system of claim 6 wherein said attachment flange has an inner surface offset from the inner surface of said annular flange. (N:\llbtt00182:BFD -13-
8. The boss system of claim 7 wherein the outer surface of the attachment flange is offset from the outer surface of said annular flange.
9. A boss system substantially as hereinbefore described with reference to Figs. 1, 2 or 3. DATED this Fifteenth Day of July 1994 Brunswick Corporation Patent Attorneys for the Applicant SPRUSON FERGUSON ee S S o S S *oS lN:\libDtt00182:BFD Improved Boss for a Filament Hound Pressure Vessel Abstract of the Disclosure A boss (16) is disposed in a polar opening (18) in a pressure vessel (10) which has a filament wound outer shell (12) and a non-metallic internal liner The boss (16) has a tubular neck (24) which projects outwardly from the vessel interior and an annular support flange (28) which extends radially from the internal end of the neck and supports the perimeter of the polar opening An offset attachment flange (32) extends radially from the support flange (28) and has two axially opposed surfaces (34, 36) with locking grooves (40, 42) formed therein. Each locking groove (40, 42) has a bottom wall (48, 52) intermediate a pair of mutually skewed sidewalls (50, 54) for maintaining positive engagement with and retention of complementary respective tabs (44, 46) on the liner In an application where the liner (14) is a blow molded component, an injection molded interface member is attached to the support flange and provides a site at which the liner is welded. Figure 9 Figure 1. 7113T/GMM
AU26319/92A 1992-01-10 1992-10-08 Improved boss for a filament wound pressure vessel Expired AU653639B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US81861992A 1992-01-10 1992-01-10
US818619 1992-01-10
US90272592A 1992-06-23 1992-06-23
US902725 1992-06-23

Publications (2)

Publication Number Publication Date
AU2631992A AU2631992A (en) 1993-07-15
AU653639B2 true AU653639B2 (en) 1994-10-06

Family

ID=27124285

Family Applications (1)

Application Number Title Priority Date Filing Date
AU26319/92A Expired AU653639B2 (en) 1992-01-10 1992-10-08 Improved boss for a filament wound pressure vessel

Country Status (14)

Country Link
EP (1) EP0550951B1 (en)
JP (1) JP3517789B2 (en)
CN (1) CN1032273C (en)
AT (1) ATE130421T1 (en)
AU (1) AU653639B2 (en)
BR (1) BR9204294A (en)
CA (1) CA2080856C (en)
DE (1) DE69206114T2 (en)
EG (1) EG20012A (en)
HU (1) HU214759B (en)
MX (1) MX9300077A (en)
MY (1) MY110573A (en)
NZ (1) NZ245515A (en)
RU (1) RU2091648C1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518141A (en) * 1994-01-24 1996-05-21 Newhouse; Norman L. Pressure vessel with system to prevent liner separation
DE19526154C2 (en) * 1995-07-10 1997-04-17 Mannesmann Ag Composite pressure vessel for storing gaseous media under pressure with a plastic liner
WO1997020683A1 (en) * 1995-12-04 1997-06-12 Toray Industries, Inc. Pressure vessel and method of manufacturing same
DE19631546C1 (en) * 1996-07-24 1997-11-13 Mannesmann Ag Composite gas pressure-bottle with plastic liner
US5819978A (en) * 1997-04-24 1998-10-13 Essef Corporation Two piece composite inlet
NO974135A (en) * 1997-09-08 1999-02-08 Ragasco As Pressure vessel for fluids
DE19751411C1 (en) * 1997-11-14 1999-01-14 Mannesmann Ag Composite fibre-reinforced pressurised gas tank including liner with end neck sections
FR2824892B1 (en) * 2001-05-18 2003-08-29 Eads Launch Vehicles METHOD FOR MANUFACTURING A HIGH PRESSURE TANK, ESPECIALLY FOR A SPACE LAUNCHER AND RESERVOIR OBTAINED
DE10360953B4 (en) * 2002-12-27 2011-04-07 Toyoda Gosei Co., Ltd., Nishikasugai-gun pressure vessel
KR100469636B1 (en) * 2004-03-11 2005-02-02 주식회사 케이시알 The high gas-tighten metallic nozzle-boss for the high pressure composite vessel
DE102006004121A1 (en) 2006-01-25 2007-07-26 Hydac Technology Gmbh Pressure tank for holding a liquid/gaseous fluid medium has a second plastic jacket encasing a first plastic jacket both attached to each other in a coaxial structure
DE102006004120A1 (en) 2006-01-25 2007-07-26 Hydac Technology Gmbh Hydraulic accumulator, has coaxially abutting plastics casings, with poppet valve for controlling supply and extraction of medium
DE102006006902B4 (en) * 2006-02-09 2008-02-21 Gräfenthaler Kunststofftechnik GmbH Plastic pressure vessel and process for its manufacture
JP4875915B2 (en) 2006-03-29 2012-02-15 富士重工業株式会社 Pressure vessel
JP4758859B2 (en) * 2006-10-04 2011-08-31 株式会社リョーセンエンジニアズ Cylinder structure and cylinder manufacturing method of high-pressure vessel having cylindrical cylinder
PL206178B1 (en) * 2007-01-25 2010-07-30 Stako Irena Staniuk Jacek Staniuk Marek Staniuk Spółka Jawnastako Irena Staniuk Jacek Staniuk Marek Staniuk Spółka Jawna Composite tank
BRPI1006059B1 (en) * 2009-01-09 2020-06-23 Hexagon Technology As BOSS FOR A PRESSURIZED CONTAINER, PRESSURIZED CONTAINER AND METHOD FOR FORMING A PRESSURIZED CONTAINER
AU2010216064B2 (en) * 2009-02-18 2015-03-05 Hexagon Technology As Pressure vessel shear resistant boss and shell interface element
JP5179458B2 (en) * 2009-11-11 2013-04-10 八千代工業株式会社 Pressure vessel seal structure
EP2539626A4 (en) * 2010-02-26 2015-09-02 Luxfer Canada Ltd Anti-extrusion sealing system for the outlet of a plastic-lined compressed gas cylinder
EP2646736B1 (en) 2010-11-30 2021-06-30 Advanced Lightweight Engineering B.V. Vessel
JP5400125B2 (en) 2011-12-02 2014-01-29 株式会社有沢製作所 Internal pressure vessel
AP2014007753A0 (en) * 2011-12-05 2014-07-31 Blue Wave Co Sa Pressure vessel with composite boss
CN103363289B (en) * 2012-03-27 2015-10-28 北京天海工业有限公司 The front support of Horizontal type vehicle-mounted liquefied natural gas (LNG) tank inner bag
JP2014020440A (en) * 2012-07-17 2014-02-03 Jfe Container Co Ltd Container for storing hydrogen
CN102840440B (en) * 2012-08-31 2014-12-10 杭州余杭獐山钢瓶有限公司 Plastic liner wound cylinder and manufacturing process
TR201302927A2 (en) 2013-03-11 2014-09-22 Tofas Tuerk Otomobil Fabrikasi Anonim Sirketi Boss structure
JP5999039B2 (en) 2013-07-10 2016-09-28 トヨタ自動車株式会社 High-pressure tank and method for manufacturing high-pressure tank
CN103557431B (en) * 2013-11-19 2016-03-30 四川川油天然气科技发展有限公司 Single-cylinder type gas storage well
JP6136888B2 (en) * 2013-11-26 2017-05-31 トヨタ自動車株式会社 High pressure gas tank
JP2015113957A (en) * 2013-12-13 2015-06-22 株式会社Fts Mouthpiece structure of pressure container
JP6153475B2 (en) * 2014-01-10 2017-06-28 株式会社Fts Pressure vessel base structure
PL226196B1 (en) * 2014-01-15 2017-06-30 Techplast Spółka Z Ograniczoną Odpowiedzialnością Composite high-pressure vessel and method for producing the composite high-pressure vessel
JP5985522B2 (en) 2014-01-28 2016-09-06 八千代工業株式会社 Pressure vessel
JP6241361B2 (en) * 2014-04-24 2017-12-06 トヨタ自動車株式会社 Liner, production method thereof, and high-pressure gas tank
WO2016009288A1 (en) * 2014-07-17 2016-01-21 Faber Industrie S.P.A. Pressure vessel
FR3025565B1 (en) * 2014-09-04 2017-03-24 Inergy Automotive Systems Res (Societe Anonyme) MONOBLOC INSERT OVERMOLDED WITH A SEALING SYSTEM
USD746942S1 (en) 2014-10-21 2016-01-05 Advanced Lightweight Engineering B.V. Low weight pressure vessel
CN104295738B (en) * 2014-10-31 2017-04-26 茂名重力石化装备股份公司 Pressure vessel inlet and outlet material opening collection pipe flange and pressure vessel thereof
FR3035173B1 (en) * 2015-04-15 2017-12-15 Commissariat Energie Atomique PROCESS FOR PREPARING THE INTERNAL SHELL OF A TYPE IV COMPOSITE TANK FOR PRESSURIZED FLUID STORAGE
CN105135207B (en) * 2015-07-24 2018-02-02 石家庄安瑞科气体机械有限公司 A kind of composite plastic inner bag in accumulating gas cylinder and preparation method thereof
US10317009B2 (en) * 2015-08-06 2019-06-11 Toyota Jidosha Kabushiki Kaisha High pressure tank, manufacturing method of high pressure tank, and inspection method of sealing characteristic
DE202016100754U1 (en) * 2016-02-12 2016-02-23 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Polkappenverstärkter pressure vessel
CN108700256B (en) * 2016-03-07 2021-05-18 陆型技术公司 Wound end protection component for pressure vessels
WO2017165364A1 (en) * 2016-03-23 2017-09-28 Worthington Industries, Inc. Boss and liner interface for a pressure vessel
US10538029B2 (en) 2016-04-14 2020-01-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing high pressure gas tank
KR101856323B1 (en) 2016-05-18 2018-05-10 현대자동차주식회사 Pressure vessel having degassing structure
CN106870932A (en) * 2017-02-17 2017-06-20 安徽绿动能源有限公司 A kind of metal bottleneck structure and composite cylinder
WO2018212647A1 (en) 2017-05-15 2018-11-22 Advanced Lightweight Engineering B.V. Pressure vessel for the storage of pressurized fluids and vehicle comprising such a pressure vessel
DE102017209378A1 (en) * 2017-06-02 2018-12-06 Audi Ag Robust high-pressure container construction with joining agent
CN107420739A (en) * 2017-07-17 2017-12-01 杭州余杭獐山钢瓶有限公司 A kind of gas cylinder
US10753474B2 (en) * 2017-11-07 2020-08-25 Hexagon Technology As Blind boss fitting with redundant seal
JP7124450B2 (en) * 2018-05-29 2022-08-24 トヨタ自動車株式会社 high pressure gas tank
KR102201792B1 (en) * 2018-11-30 2021-01-12 롯데케미칼 주식회사 Boss for pressure vessel and pressure vessel having the same
CN110220104A (en) * 2019-05-31 2019-09-10 亚普汽车部件股份有限公司 High-pressure composite containers and its manufacturing process
CN110259943B (en) * 2019-07-22 2024-03-29 中材科技(成都)有限公司 Pressure vessel with composite structure
CN111649226A (en) * 2020-06-15 2020-09-11 安徽绿动能源有限公司 Plastic liner fiber fully-wound gas cylinder and manufacturing method thereof
DE102020134624A1 (en) 2020-12-22 2022-06-23 Voith Patent Gmbh Boss for a pressure tank and pressure tank for gas powered vehicle
DE102022211155A1 (en) 2022-10-20 2024-04-25 Mahle International Gmbh Pressure vessel, manufacturing process for a pressure vessel and vehicle component with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319658A (en) * 1963-05-17 1967-05-16 Mercier Olaer Patent Corp Sealing device for pressure vessels
DE2152123A1 (en) * 1971-10-20 1973-05-03 Elek Sche Licht Und Kraftanlag PRESSURE VESSEL
US4360116A (en) * 1980-12-08 1982-11-23 Brunswick Corporation Partially split external barrier for composite structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2193953B1 (en) * 1972-07-27 1975-09-05 Air Liquide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319658A (en) * 1963-05-17 1967-05-16 Mercier Olaer Patent Corp Sealing device for pressure vessels
DE2152123A1 (en) * 1971-10-20 1973-05-03 Elek Sche Licht Und Kraftanlag PRESSURE VESSEL
US4360116A (en) * 1980-12-08 1982-11-23 Brunswick Corporation Partially split external barrier for composite structures

Also Published As

Publication number Publication date
EP0550951B1 (en) 1995-11-15
DE69206114T2 (en) 1996-04-18
CN1032273C (en) 1996-07-10
BR9204294A (en) 1993-07-13
JP3517789B2 (en) 2004-04-12
HU214759B (en) 1998-05-28
NZ245515A (en) 1994-12-22
HU9300040D0 (en) 1993-04-28
AU2631992A (en) 1993-07-15
MX9300077A (en) 1993-12-01
CN1074281A (en) 1993-07-14
JPH06137433A (en) 1994-05-17
EG20012A (en) 1997-02-27
DE69206114D1 (en) 1995-12-21
MY110573A (en) 1998-08-29
ATE130421T1 (en) 1995-12-15
EP0550951A1 (en) 1993-07-14
CA2080856A1 (en) 1993-07-11
RU2091648C1 (en) 1997-09-27
CA2080856C (en) 2001-01-30
HUT72870A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
AU653639B2 (en) Improved boss for a filament wound pressure vessel
US5429845A (en) Boss for a filament wound pressure vessel
US5287988A (en) Metal-lined pressure vessel
US5518141A (en) Pressure vessel with system to prevent liner separation
US11098801B2 (en) Pole cap with pressure connection element for pressure vessels
US5938209A (en) Seal system for fluid pressure vessels
US5494188A (en) Fluid pressure vessel boss-liner attachment system with liner/exterior mechanism direct coupling
US5758796A (en) Pressure vessel
AU753881B2 (en) Interface system between composite tubing and end fittings
US9423076B2 (en) Pressure vessel
CA2078286A1 (en) Fluid pressure vessel boss-liner attachment system
US4854613A (en) Composite connecting member for hydraulic fluid lines
US10279621B2 (en) Vehicle wheel
US4982870A (en) Composite pressure vessel
US4562934A (en) Glass fiber reinforced resin tank with particular joint structure
US20210341000A1 (en) Hydro-pneumatic pressure vessel and diaphragm assembly method
AU675835B2 (en) Fluid pressure vessel boss-liner attachment system with linen/exterior mechanism direct coupling
US4438866A (en) Prestressed dome closure flange
KR100204179B1 (en) Interance hall of pressure vessel
CN214198140U (en) Valve seat structure of high-pressure hydrogen cylinder
AU2002301129B2 (en) Interface System Between Composite Tubing And End Fittings
US11141930B1 (en) Method and tool for molding a composite pressure vessel liner to a boss
WO1994023241A1 (en) Improved fluid pressure vessel boss-liner attachment system
JPS6364298B2 (en)
CN115930101A (en) High-pressure composite material hydrogen cylinder interface reinforcing seal structure