AU617179B2 - Enzymatic detergent composition - Google Patents

Enzymatic detergent composition Download PDF

Info

Publication number
AU617179B2
AU617179B2 AU35702/89A AU3570289A AU617179B2 AU 617179 B2 AU617179 B2 AU 617179B2 AU 35702/89 A AU35702/89 A AU 35702/89A AU 3570289 A AU3570289 A AU 3570289A AU 617179 B2 AU617179 B2 AU 617179B2
Authority
AU
Australia
Prior art keywords
lipase
detergent composition
document
composition according
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU35702/89A
Other versions
AU3570289A (en
Inventor
Jan Klugkist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Original Assignee
Unilever PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10636660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU617179(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever PLC filed Critical Unilever PLC
Publication of AU3570289A publication Critical patent/AU3570289A/en
Application granted granted Critical
Publication of AU617179B2 publication Critical patent/AU617179B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

IF -I-~I OPI DATE 29/11/89 AOJP DATE 04/01/90 APPLN. ID 35702 89 PCT NUMBER PCT/GB89/00494
PCI
INTERNATIONAL APPLICATION PUBLISHED UNDER Ti A NTtOPql T TflITY (PCT) (51) International Patent Classification 4 C1ID 3/386 (Il) Internal licatn Num r: O 89/10954 AI (43) International Publication Date: 16 November 1989 (16,11.89) (21) International Application Number: (22) International Filing Date: Priority data: 8811045.7 10 May 1 PCT/GB89/00494 10 May 1989 (10.05.89) 988 (10.05.88) GB (81) Designated States: AU, BR, JP, NO.
Published With international search report.
(71) Applicant (for AU only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4P 4BQ (GB).
(71) Applicant (for BR JP NO only): UNILEVER NV [NL/NL]; Burgemeester 's Jacobplein 1, NL-Rotterdam (NL).
(72)Inventor: KLUGKIST, Jan Staverenhoeve 12, NL-3137 GN Vlaardingen (NL).
(74) Agent: FORD, Michael, Frederick; Mewburn Ellis, 2 Cursitor Street, London EC4A IBQ (GB).
(54)Title: ENZYMATIC DETERGENT COMPOSITION (57) Abstract A detergent composition comprising an anionic surfactant, a nonionic surfactant and a lipase enzyme, characterised in that: the nonionic surfactant of the composition comprises a nonionic surfactant component selected from alkoxylate adducts of fatty alcohols, fatty acids, fatty esters, fatty amides and fatty amines of at least CIO chain length and mean alkylene oxide content of less than 5 alkylene oxide groups per molecule, forming at least 30 by weight of the total nonionic surfactant of the composition; and in that the total amount of the nonionic and anionic surfactant in the composition is in the range 1 to 30 by weight; and the lipase enzyme is present in an amount of about 0.005 to 100 Lu/mg based on the weight of the detergent composition.
16rx. i: i i i -I~I WMO 89/10954 PCT/GB89/00494 1 ENZYMATIC DETERGENT COMPOSITION The present invention relates to an enzymatic detergent composition. More particularly it relates to an enzymatic detergent composition which contains a lipolytic enzyme.
Prior Art Disclosure Statement In the following section, there are discussed not only certain publications published before the priority date claimed for this invention, but also certain matters not so published.
Enzymatic detergent compositions are well known in the art. Enzymes of many types have been proposed for inclusion in detergent compositions, but the main attention has been focussed on proteases and amylases.
Lipases have been mentioned as possible enzymes for detergent compositions. Thus, our British Patent Specification 1 372 034 discloses the use of lipases produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19 154, in detergent compositions for soaking fabrics which contain specific L, 1 \1L- I_ :I i L WO 89/10954 PCT/GB89/00494 2 nonionic detergent actives, mentioning nonylphenols condensed with 5 or 10 moles of ethylene oxide, and secondary alcohols condensed with 3, 7 or 9 moles of ethylene oxide, optionally with a specific anionic detergent active. However, it was made clear that "the mere addition of lipoeytic enzymes to any and all detergent compositions does not produce, (as was shown) a satisfactory and acceptable detergent composition both regarding the enzyme activity and the cleaning efficiency.
Various ingredients of detergent compositions have been found to exert a negative influence on lipolytic enzymes".
USP 3 950 277 (Procter Gamble) also describes fabric-soaking compositions: the described compositions comprise lipase and lipase activators and a number of lipases from microorganism and other sources are mentioned: those particularly mentioned as preferred are Amano CE, Amano M-AP, Takeda 1969-4-9, and Meito lipases, but no indications are given of the form in which the lipase is to be prepared or used.
USP 4 011 169/NL 74 08763 (Procter Gamble) describes the use of a similar range of enzymes in the preparation of additives for washing agents (detergent compositions).
Examples of known lipase-containing detergent compositions are provided by EP 0 205 208 and 0 206 390 (Unilever), which relate to lipases related to those from Ps. fluorescens, P gladioli and Chromobacter in detergent compositions.
EP 0 214 761 (Novo) and EP 0 258 068 (Novo), each give detailed description of lipases from certain microorganisms, and also give certain uses in detergent additives and detergent compositions for the enzymes WO 89/10954 PCT/GB89/00494 3 described. EP 0 214 761 gives detailed description of lipases derived from organisms of the species Pseudomonas cepacia, and certain uses therefor. EP 0 258 068 gives detailed description of lipases derived from organisms of the genus Thermomyces/Humicola, and certain uses therefor.
Also believed to be in use in certain areas is a lipase-containing granular detergent compositiri containing about 37% detergent actives including nonionic detergent and the remainder substantially anionic detergent, about 16% zeolite, about 60 LU/g lipase, plus protease and other normal detergent additives.
Further examples of known lipase-containing detergent compositions are provided by J)A 63-078000 (1988) (Lion Corp/K Mukoyama et al) which discloses properties and uses of a Pseudomonas lipase, including use in a lipase-containing system based on 10-40 surfactant sodium C14-C18 alpha-olefin sulphonate), as well as other conventional detergent ingredients.
In EP 0 268 456 (Clorox), there is described in connexion with Table 10(b) an experimental washing solution containing lipase and about 1 microgram/ml sodium dodecyl sulphate.
In US Patent Specification 4 707 291 detergent compositions have been described which contain a special class of lipases. These compositions contain a mixture of an anionic and a nonionic detergent as the active detergent system.
Nonionic alkoxylated detergents are of frequent occurrence and use, and sometimes their use has been mentioned in connection with lipase.
WO 89/10954 PCT/GB9/00494 4 Thus, further specifications relevant in this connexion are EP 0258 068 (Novo), EP 0 130 064 (Novo), EP 0 206 390 (Unilever), US 3 676 340 (Berg et al Henkel), US 3 676 338 (Fries et al Henkel), DE 1 942 236 (Henkel), and the following Japan specifications: 63-132998 (Lion), 63-078000 (Lion), and 63-077998 (Hitachi).
The Present Invention We have now discovered that the inclusion of a certain class of nonionic detergents, i.e. alkoxylated nonionics of low alkoxylation degree, as more particularly defined below in certain types of lipase-containing detergent composition according to the above US Patent Specification 4 707 291) can provide an improved overall detergency.
The lipases used in the present invention include for example those lipases which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057, as described in US Patent Specification 4 707 291, hereby incorporated herein by reference.
Examples of suitable lipases for use in this invention are Amano-P lipase, lipase ex Pseudomonas fragi FERM P 1339 (available under the trade name Amano-B), lipase ex Pseudomonas nitroreducens var. lipolyticum FEPM P 1338 (available under the trade name Amano-CES), lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from US Biochemical Corp., U.S.A. and Diosynth Co., the Netherlands, and lipases ex Pseudomonas gladioli.
I ~1 I_ r WO 89/10954 PCT/GB89/00494 5 Preferred lipases are those showing a positive immunological cross-reaction with the antibody of one of the following lipases: lipase ex Chromobacter viscosum var. lipolyticum NRRLB 3673, as sold by Toyo Jozo Co., Tagata, Japan, and lipase ex Pseudomonas gladioli.
Typical examples of such lipases are Amano-P, Amano-B, Amano-CES, lipases ex Chromobacter viscosum, e.g.
Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from US Biochemical Corp., U.S.A. and Diosynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
Other preferred lipases are lipases produced by cloning, by rDNA technologies, the gene encoding for the lipase produced by the fungus Humicola lanuginosa and expressing the gene in Aspergillus oryzae as host. A particularly preferred lipase is manufactured and sold by Novo Industri A/S, Denmark, under the trade name Lipolase (see Biotechnology Newswatch, published 7 March 1988, page 6).
Lipases which are immunologically identical or similar to such lipases may also be used in the present invention.
Further suitable lipases are for example: the lipases described in for example the following patent specifications, EP 0 214 761 (Novo), EP 0 258 068 (Novo) and especially lipases showing immunological cross-reactivity with antisera raised against lipase from Thermomyces lanuginosus ATCC 22070, EP 0 205 208 (Unilever) and EP 0 206 390 (Unilever): and especially lipases showing immunological cross-reactivity with antisera raised against lipase from Alcaligenes PL-679, I I I i I WO 89/10954 PCT/GB89/00494 6 ATCC 31371 and FERM-P 3783, also the lipases described in specifications WO 87/00859 (Gist-Brocades) and EP 0 204 284 (Sapporo Breweries). Suitable in particular are for example the following further commercial lipase preparations: Amano lipases CE, AP, M-AP, AML and Meito lipases MY-30, OF, and PL, also esterase MM, Lipozym, SP225, SP285, Saiken lipase and Enzeco lipase (Trade Marks).
Genetic engineering of the enzymes can be achieved by extraction of an appropriate lipase gene, the gene for lipase from Thermomyces lanuginosus or from a mutant thereof, and introduction and expression of the gene or derivative thereof in a suitable producer organism such as an Aspergillus. The techniques described in WO 88/02775 (Novo), EP 0 238 023 (Novo), EP 0 243 338 (Labofina) and EP 0 268 452 (Genencor) may be applied and adapted. Such enzymes can be referred to as enzymes producible by the respective ancestor organism, even where subsidiary features of the enzyme material, degree of glycosylation, differ as between the product of the ancestor organism and the product of the producer organism. All of the above-cited specifications are hereby incorporated herein by reference.
Particularly suitable lipases are for example those mentioned in EP 0 305 216 (Novo), hereby incorporated herein by reference.
Preferred lipases at the present time are Lipolase (Novo and lipase from Pseudomonas gladioli, or their rDNA-derived equivalents.
The lipases of the present invention are included in the detergent composition in such an amount that the final detergent composition has a lipolytic enzyme activity of WO 89/10954 PCT/GB89/00494 7 from 100 to 0.005 LU/mg, preferably 25 to 0.05 LU/mg of the composition.
In particular cases the added amount of lipolytic enzyme can be chosen within wide limits, for example 50 to 30,000 LU/g of granular detergent composition, often at least 100 LU/g, very usefully at least 500 LU/g, sometimes preferably above 1000, above 2000 LU/g or above 4000 LU/g or more, thus very often within the range 50-4000 LU/g and possibly within the range 200-1000 LU/g.
A Lipase Unit (LU) is that amount of lipase which produced 14mol of titratable fatty acid per minute in a pH stat, under the following conditions: temperature 30°C; pH 9.0; substrate is an emulsion of 3.3wt% of olive oil and 2+ 3.3% gum arabic, in the presence of 13 mmol Ca 2 and mmol NaCl in 5 mmol Tris-buffer.
Naturally, mixtures of the above lipases can be used.
The lipases can be used in their impurified form, or in a purified form, e.g. purified with the aid of well-known adsorption methods, such as a phenylsepharose-packed column technique. The lipases may usefully be added as a granular composition of lipolytic enzyme with carrer material (see EP 0 258 068) or as a slurry.
The detergent composition incorporating the lipases contains as active detergent material a mixture of one or more nonionic synthetic detergent-active materials and one or more anionic synthetic detergent-active materials.
The anionic detergent-active materials are well known in the art, and suitable examples are fully described in Schwartz, Perry and Berch, Surface-Active Agents and Detergents, Vol.I (1949) and Vol.II (1958) and in Schick, Nonionic Surfactants, Vol.1 (1967).
WO 89P10954 /GB89/00494 Wo 89/10954 8 The anionic detergent active materials are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C 8
C
18 alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C 9
C
20 benzene sulphonates, particularly sodium linear secondary alkyl (C 10
C
15 benzene sulphonates; sodium alkvl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C
C
18 fatty alcohol-alkylene oxide, particularly ethylene oxide reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alpha-olefins (C 8
C
20 with sodium bisulphite and those derived from reacting paraffins with SO 2 and Cl and then hydrolysing with a base to produce a sulphonate; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C 10
C
20 alpha-olefins, with SO 3 and then neutralising and hydrolysing the reaction product. The preferred anionic detergent compounds are sodium (C1 -C15) alkyl benzene .sulphonates and sodium (C16 C18) alkyl sulphates.
The nonionic detergent-active material generally consists to the extent of at least 30% by weight of the total nonionic detergent-active material, of a nonionic ii ILlii2:..- ~i i i -L: WO 89/10954 PCT/GB89/00494 9 detergent-active material which is an alkoxylate adduct with a low alkoxylation degree of fatty compounds selected from fatty alcohols, fatty acids, fatty esters, fatty amides and fatty amines. The fatty compound contains at least 10 carbon atoms and the nonionic material contains an average of less than 5 alkylene oxide groups per molecule, for example less than 4 alkylene oxide groups per molecule, e.g. 3.5 and usefully 3 alkylene oxide groups per molecule or less, and usefully also greater than 0.5, or 1, or 2, alkylene oxide groups per molecule.
The alkylene oxide residues may for example be ethylene or propylene oxide residues.
Thus alkylene oxide adducts of fatty alcohols useful in the present invention can usefully be chosen from those of the general formula: R-O-(C H O)y H wherein R is an alkyl or alkenyl group having at least carbon atoms, most preferably from 10 to 22 carbon atoms, y is preferably from about 0.5 to about 3.5 and n is 2 or 3. Preferred and suitable examples of such materials include Synperonic A3 (ex ICI), which is a C13-C15 alcohol with about three ethylene oxide groups per molecule and Empilan KB3 (ex Marchon), which is lauric alcohol 3EO.
Alkylene oxide adducts of fatty acids useful in the present invention preferably have the general formula: R-C-0-(CH 2n) H
O
Im m. :l I i m WO 89/10954 PCT/GB89/00494 10 wherein R, n and y are as given above. Suitable examples include ESONAL 0334 (ex Diamond Shamrock), which is a tallow fatty acid with about 2.4 ethylene oxide groups per molecule.
Alkylene oxide adducts of fatty esters useful in the present invention include adducts of mono-, di- or tri-esters of polyhydric alcohols containing 1 to 4 carbon atoms, such as coconut or tallow oil (triglyceride) 3EO (ex Stearine Dubois).
Alkylene oxide adducts of fatty amides useful in the present invention preferably have the general formula: (C H2nO) H
R-C-N
0 (C H 2 0) H n 2n z wherein R is an alkyl or alkenyl group having at least 10 carbon atoms, most preferably from 10 to 22 carbon atoms, n is 2 or 3 and x and z in total are not more than 4.0, preferably from about 0.5 to about while one of x and z can be zero. Examples of such materials include coconut monoethanolamide and diethanolamide, and the corresponding tallow and soya compounds.
Alkylene oxide adducts of fatty amines useful in the present invention preferably have the general formula: WO 89/10954 PCT/GB89/00494 11
(CH
2 O) H /n n x
R-/
(CnH 2 O) H wherein R and n are as given above, and x and z in total are preferably not more than about 4.0, most preferably from about 0.5 to about 3.5. Examples of such materials include Ethomeen T12 (tallow amine 2EO, available from AKZO), Optameen PC5 (coconut alkylamine and Crodamet (1.02 (oleylamine 2EO, available from Croda Chemicals).
One useful criterion of selection for a nonionic surfactant for use in certain desirable embodiments of the invention is that it gives a cloudy phase (at 1% w/w in distilled water) somewhere in the temperature range of 0 0 -40 0
C.
Preferably the nonionics are chosen that have a HLB value of about 5-10.5, about 7-9.
The weight ratio of the nonionic with the low alkoxylation degree of the anionic detergent is preferably less than 1:1, usually less than 1:2, in the range 1:1 to 1:3, or 1:1 to 1:4, and often ranges from 1:2.4 to 1:3.
The amount of nonionic and anionic detergent-active material together in the detergent compositions can range from 1 to 30%, very often below 25%, usually 2 to 20%, and often 6 to 16% by weight. Several preferred embodiments have total surfactant in the range 10-20% by weight.
range 1% to 30% by weight; and ii .I- WO 89/10954 PCT/GB89/00494 12 Detergent materials of other types, such as soaps, cationics and zwitterionic or amphoteric detergents, e.g.
amine oxides, may also be included.
The detergent composition may furthermore include the usual detergent ingredients in the usual amounts. They may be unbuilt or built, and may be of the zero-P type not containing phosphorus-containing builders).
Thus, the composition may contain from 1-45%, preferably from 5-30% by weight of one or more organic and/or inorganic builders. Typical examples of such builders are the alkali metal ortho-, pyro- and tripolyphosphates, alkali metal carbonates, either alone or in admixture with calcite, alkali metal citrates, alkali metal nitrilotriacetates, carboxymethyloxysuccinates, zeolites, polyacetalcarboxylates and so on. Furthermore, it may contain from 1-35% of a bleaching agent or a bleaching system comprising a bleaching agent and an activator therefore, e.g. sodium perborate plus TAED.
Stronger bleach systems can also be used, e.g. DPDA diperoxy dodecanedioic acid) or sodium perborate with bleach precursors which form peracids faster than with TAED, e.g. as described in EP 0 271 152 (Unilever).
Preferred for many purposes and especially advantageous in terms of detergent performance when lipase is present are compositions non-phosphate builder and substantially free of phosphorus-containing builder, with less than about 1% thereof).
The compositions may furthermore comprise lather boosters, foam depressors, anti-corrosion agents, soilsuspending agents, softening agents, clays, sequestering agents, anti-soil redeposition agents, perfumes including perfumes as disclosed in our European Patent 0003172, dyes, stabilising agents for the enzymes and so on. They WO 89/10954 PCT/GB89/00494 13 may also comprise enzymes other than lipases, such as proteases, amylases, oxidases and cellulases.
Examples of the other ingredients are polymers which may consist of homopolymeric and/or copolymeric carboxylic acid or sulphonate or its sodium or potassium salt, the sodium salts being preferred. Suitable homopolymers are polyacrylic acid, polymethacrylic acid, polymaleic acid, and polystyrene sulphonic acid. Suitable copolymers are those of acrylic acid, methacrylic acid, and maleic acid with vinyl ethers such as vinyl acetate or vinyl propionate, acrylamide, methyacrylamide and ethylene, propylene, or styrene, or styrene sulphonate. In the copolymeric acids in which one of the components does not contain an acid function, the content of this component is not more than 70 mole preferably less than 60% mole, in the interests of sufficient water solubility. Copolymers of acrylic acid with maleic acid, as characterised further, e.g. in EP 25 551-Bl and in Tenside 1979, 16, 82-89, have proved to be particularly suitable. These are copolymers containing 40 to 90 wt of acrylic or methacrylic acid and 60 to 10 wt of maleic acid.
Copolymers of this type containing 45 to 85 wt of maleic acid. Copolymers of this type containing 45 to 85 wt of acrylic acid and 55 to 15 wt of maleic acid are particularly preferred. The molecular weights of the homopolymers and co-polymers are generally 1000 to 150,000, preferably 1500 to 100,000.
Other suitable polymeric materials are cellulose ethers such as carboxy methyl cellulose, methyl cellulose, hydroxy alkyl celluloses, and mixed ethers, such as methyl hydroxy ethyl cellulose, methyl hydroxy propyl cellulose, and methyl carboxy methyl cellulose. Mixtures of different cellulose ethers, particularly mixtures of carboxy methyl cellulose and methyl cellulose, are I- I i I' WO 89/10954 PC/GB89/00494 14 suitable. 'Polyethylene glycol of molecular weight from 400 to 50,000, preferably from 1000 to 10,000 and co-polymers of polyethylene oxide with polypropylene oxide are suitable as also are co-polymers of polyacrylate with polyethylene glycol. Polyvinyl pyrrolidone of molecular weight of 10,000 to 60,000 preferably of 30,000 to 50,000 and co-polymers of poly vinyl pyrrolidone with other poly pyrrolidones are suitable. Polyacrylic phosphonates and related co-polymers of molecular weight 1000 to 100,000, in particular 3000 to 30,000 are also suitable.
The compositions of the present invention can be formulated in any desired form, such as powders, bars, pastes, liquids, etc. Very often the compositions can yield wash solutions with pH about 7-10.5, e.g. about 9-10, for example when dissolved or dispersed in water to yield surfactant concentration of about 0.8 g/l.
For example, a detergent according to the present invention can take the form of a granulate having a bulk dnsity of at least 600 g/l, and sufficiently low or zero neutral inorganic salt sodium sulphate), phosphate or aluminosilicate builder and minors to yield a wash solution with ionic strength of about 0.04 or less, e.g.
about 0.03 or less, e.g. about 0.025 or 0.02 or less when the composition is dispersed in water to yield a washing liquor with about 0.8 g/l surfactant concentration.
Furthermore, detergent liquids according to the present invention can be formulated as substantially nonaqueous liquid detergent compositions comprising a solution (dispersion formulated e.g. as in EP 0 266 199 (incorporated herein by reference).
The invention will now further be illustrated by way of the following examples. The compositions in which the r j i WO 89/10954 PCr/GB89/00494 15 nonionic surfactant is a 7EO material (only) are for illustrative comparison.
Example 1 Washing experiments were carried out with the following formulations: I CI WO 89/10954 PCT/GB89/00494 16 sodium dodecylbenzene sulphonate C13-C15 linear primary alcohol, condensed with 7 moles of ethylene oxide Synperonic A7)
C
13
-C
15 linear primary alcohol, condensed with 3 moles of ethylene oxide Synperonic A3) sodium tripolyphosphate zeolite type 4A copolymer of acrylic acid with maleic anhydride sodium polyacrylate alkaline silicate fluorescer
EDTA
SCMC
salt sodium sulphate sodium carbonate moisture
TAED
sodium perborate monohydrate
(R)
calcium Dequest 2047 foam depressor perfume alkaline protease (Savinase 6T) A B C D 9 9 9 9 1 4 4 1 3 3 24 4 2 2 5 0.25 0.25 0.16 0.15 0.15 0.18 0.5 0.5 0.55 2 2 26.8 26.8 22.31 10.30 10 10 11 3 3 3.3 10 10 8 0.7 0.7 0.3 3 3 2.5 0.2 0.2 0.4 0.4 0.4 0.16 0.18 0.55 22.31 10.30 11 3.3 8 0.3 0.4 L 'I II- i 1 L I A -I
P-
1 1 1* WO 89/10954 PCT/GB89/00494 17 It is seen that the nonionic detergent with alkoxylation degree of 3 forms in Compositions A and D of the total nonionic detergent and 25% of the sum of the anionic detergent and of the nonionic detergent of low alkoxylation degree.
The washing experiments were carried out under the following conditions: water hardness: 27 0
FH
test monitor: prewashed cotton soiled with a mixture of inorganic pigments, protein and groundnut oil washing programme: heating for 5 min. to 30 0 C; washing for 30 min. at 300C with test monitors and clean ballast load (C/L ratio 1:10) and subsequently rinsing three times with tap water dosage of detergent: lipase use: Lipolase ex Novo lipase ex Ps.gladioli lipase MY ex Meito lipase AP-6 ex Amano e: to yield 0.5, 1, 3 or 15 LU/ml wash liquor dosage of lipas After the fourth soil/wash cycle the reflectance of the test cloths and the residual percentage of fatty material on the test cloths were determined. The reflectance was measured in a Reflectometer at 460nm with a UV filter in the light pathway and the fatty matter by extracting the 1
I
i r_ WO 89/10954 PCr/GB89/00494 18 dried test cloths with petroleum ether, distilling off the solvent and weighing the resulting fatty matter.
The following results were obtained: -L-i-LC1 PJi1~T~7j I I I II IlliElip I~
A
WO 89/10954 PCT/GB89/00494 19 f ormulation lipase concentration R 460* fat none Lipolase Ps. gladioli
MY
AP-6 none Lipolase Es. gladioli
MY
AP-6 none Lipolase Ps. gladioli 0.5 1 3 0.5 1 3 15 15 LU/mi LU /ml LU/mi LU/mi LU/mi LU/mi LU/mi LU/mi LU/mi LU/mi 0.5 1 3 0.5 1 3 15 15 LU/mi LU/mi LU /ml LU/mi LU/mi LU/mi LU/mi LU/mi LU/mi LU/mi 61 61.6 60.7 61.7 69.4 60.2 63.2 67.4 71.5 59.7 59.9 54.5 55.3 56.1 56.1 63.4 54.9 55.6 61 69 A.
55.2 59.1 56.2 58.8 58.9 68.6 57.7 61.7 67.6 15.79 14.2 15.36 14.87 9.35 14.75 13.06 10.77 7.94 16.8 15.5 17.93 17.57 17.51 17. 14 12.02 18.24 17.68 14.99 8.8 17.96 16.69 18.53 18.82 16 .23 9.01 16.55 13.34 LU/mi LU/mi LU/mi LU/mi LU/mi ILU /mi U i WO 89/10954 PCT/GB89/00494 20 formulation lipase concentration 460* fat
MY
AP-6 LU/ml LU/ml none Lipolase Ps. gladioli
MY
AP-6 LU/ml LU/ml LU/ml LU/ml LU/ml LU/ml LU/ml LU/ml 55.6 57.2 55.8 58.4 60.9 66.5 63 67.5 68.6 58.2 60.1 18.31 18.46 18.03 16.17 15.3 10.31 12.36 9.57 8.77 15.2 15.65 Example 2 A formulation similar to formulation A, but in which 6% of the anionic, 4% of the nonionic with 7EO and of the nonionic with 3EO are used, containing 1.5% by weight of Lipolase 30T and 8.5% of carbonate/sulphate double salt produces results similar to those with formulation A in Example 1.
It is seen that in the composition of Example 2, the nonionic detergent of low alkoxylation degree forms about 38.5% of the total nonionic component and about 29.4% of the sum of the anionic detergent and the nonionic component of low alkoxylation degree.
Example 3 This example consists of a detergent powder composition similar to Composition D of Example 1 except that the lrirurizrzzr> ii WO 89/10954 PC/GB89/00494 21 proportion of anionic detergent is that of the 7-EO-nonionic is 1% and that of the 3-EO-nonionic is 4%.
0.45% of Savinase 4.0T protease is present. Lipolase 100T is used at a rate of The balance of neutral inorganic salt is adjusted correspondingly.
This example forms a highly preferred embodiment of the invention with superior wash performance to an unexpected degree.
It is seen that in this formulation the 3-EO-nonionic forms 80% of the total nonionic detergent present, and also forms 25% of the sum of the anionic component and the nonionic component of low alkoxylation degree.
The scope of the present disclosure and claims extends to all modifications and variations including combinations and subcombinations of the features set forth herein.
.I *i .if 1 i&
I*
i;, ;:g f. i.

Claims (1)

  1. 22- THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 1. A detergent composition comprising one or more anionic surfactants,.one or more nonionic surfactants and a lipase enzyme, wherein. the nonionic surfactants of the composition comprise a nonionic surfactant component selected from alkoxylate adducts of ratty alcohols, fatty acids, fatty esters, fatty amides and fatty amines of at least C 10 chain length and mean alkylene oxide content of less than 5 alkylene oxide groups per molecule; e said nonionic surfactant component forms at least 30% by weight of the total nonionic surfactants of the composition; said nonionic surfactant component forms less than 50% by weight of the sum of the nonionic surfactant component and the anionic surfactants; the total amount of the nonionic surfactants and anionic surfactants in the composition is in the range 1% to 30% by weight; and the lipase enzyme is present in an amount of about 0.005 to 100 Lu/mg based on the weight of the detergent composition. 2. A deterqent composition according to claim 1, wherein the ratio of nonionic component of low alkoxylation degree to anionic surfactant is in the range of less than 1:1-1:4. LU I IN lop,: 23 3. A detergent composition according to claim 1 or claim 2, wherein the surfactant content is in the range up to 20% by weight. 4. A detergent composition according to any of claims 1 to 3, wherein the lipase is selected from lipases producible by Humicola lanuqinosa, Pseudomonas gladioli, or Chromobacter viscosum var lipolyticum. A detergent composition according to any of claims 1 to 4, wherein the lipase is selected from lipases showing positive immunological cross-reaction with antibody raised against lipase from Chromobacter viscosum var lipolyticum NRRLB 3673, lipases showing positive Simmunological cross-reaction with antibody raised against lipase from Pseudomonas gladioli, and lipases showing positive immunological cross-reaction with antibody raised against lipase from Humicola lanuqinose. 6. A detergent composition according to claim wherein the lipase is Lipolase (TM). 7. A detergent composition according to any of claims 1 to 6, wherein the nonionic surfactant alkoxylate adduct is selected from C10-C22 fatty alkyl, alkenyl, alkanoyl and alkenoyl alkoxylates with mean alkoxylation degree in the range 0.5 to 3.5 ethylene oxide and/or propylene oxide groups per molecule, and C10-C22 fatty alkylamine, alkenylamine, alkanoamide and alkenoamide N-mono-alkoxylates and N,N-dialkoxylates with mean alkoxylation degree in the range 0.5 to 3.5 ethylene oxide and/or propylene oxide .roups per molecule. 8. A detergent composition according to any of claims 1 to 7, comprising 1-45% by weight of a builder selected from zeolites, calcite alkali metal carbonates, citrates, nitrilotriacetates, carboymethylsuccinates, and polyacetalcarboxylates, and substantially free of phosphorus-containing builder compounds. 24 9. claims 1 A detergent composition according to any of to 8, in the form of a powder. A detergent composition according to claim 9, in the form of a granulate having a bulk density of at least 600 g/l, and sufficiently low or zero neutral salt, phosphate or aluminosilicate builder and minors to yield a wash solution with ionic strength of about 0.04 or less, e.g. about 0.03 or less, about 0.025 or less or about 0.02 or less, when the composition is dispersed in water in a quantity to yield a washing liquor with about 0.8 g/l surfactant concentration. 11. A detergent composition according to any of claims 1 to 8, in the form of a liquid. *r *4 4* 4 DATED THIS 9TH DAY OF SEPTEMBER 1991 UNILEVER PLC By Its Patent Attorneys: GRIFFITH HACK CO., Fellows Institute of Patent Attorneys of Australia 'NT O' i i 1 Ll~ii- l--l-l I-i i I) i::i i I iij INTERNATIONAL SEARCH REPORT International Application No P CT/GB 8 9/00 49 4 1. CLASSIFICATION OF SUEJECT MATTER (it several ciessificstion symbols apply, Indicate all) According to International Patent Classification (IPC) or to both National Clasaificatilon and IPC ipc 4 C 11 D 3/386 11. FIELDS SEARCHED Minimum Documentation Searched 7 Classification System IChassification Symbols Documentation Searched other than Minimum Documentation to the Extent that stich Documents are Included In the Fields Searched 0 Ill. DOCUMENTS CONSIDERED TO 59 RELEVANYC_________ Category Citation of Document, It with Indication, where appropriate, of the relevant passages It Relevant to Claim No. 13 X FR, A, 2121170 (UNILEVER) 18 August 1972, 1 see claims 1,5,6; page 8 (cited in the application) A EP, A, 0206390 (UNILEVER) 30 December 1986, 1,5,6 see examples; claims (cited in the application) A FR, A, 2072316 (PROCTER GAM4BLE) 1. 24 September 1971, see claim 1; p~je 4, lines 29-39 A EP, A, 0171006 (HENKEL) 12 February 1986, 1,8 see claims Special categories of cited documents: Is later document published alter the international filing date WA document defining the general state of the art which Is not or priority date and not In conflict with the application but consdere tobe o paticuar elevncecited to understand the Principle or theory underlying the conedere tobe o paticuar elevnceInvention earlier document but published on or after the International "X document of Particular relevance*, the claimed Invention filing date cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(e) or Involve an inventive step whi ch Is cited to establish the publication data of another document of particular relevance;' the claimed Invention citation or other special reason (as specified) cannot be Considered to Involve an Inventive Step whon the document referring to an oral disclosure, use, exhibition or document is combined with one or more other auch docu. other means ments, such combination being obvious to a person skilled document publiahed prior to the international filing date but in the art. later than the priority date claimed "4 document member of the same patent family IV. Date of the Actual Completion of the International Search 2nd August 1989 Irnternational Searching Authority EUROPEN PATENT OFFICE Form PCTIISA1210 (second sheet) (January 191113 IDate of Mailing of this International Search Report j (I ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. GB 8900494 SA 28582 I I This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 23/08/89 The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. Patent document Publication Patent family Publication cited in search report date member(s) date FR-A- 2121170 18-08-72 GB-A- 1372034 30-10-74 DE-A- 2164993 20-07-72 NL-A- 7118089 04-07-72 EP-A- 0206390 30-12-86 AU-B- 575484 28-07-88 AU-A- 5847886 18-12-86 JP-A- 61285295 16-12-86 US-A- 4707291 17-11-87 FR-A- 2072316 24-09-71 AT-B- 317395 26-08-74 BE-A- 759360 24-05-71 CA-A- 941767 12-02-74 CH-A- 548446 30-04-74 DE-A- 2057754 03-06-71 GB-A- 1291163 04-10-72 LU-A- 59883 11-08-71 NL-A- 7017143 27-05-71 SE-A,B,C 370721 US-A- 3676374 11-07-72 EP-A- 0171006 12-02-86 DE-A- 3428848 13-02-86 I-t C For more details about this annex :see Official Journal of the European P'atecnt Office, No. 12/82
AU35702/89A 1988-05-10 1989-05-10 Enzymatic detergent composition Ceased AU617179B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888811045A GB8811045D0 (en) 1988-05-10 1988-05-10 Enzymatic detergent composition
GB8811045 1988-05-10

Publications (2)

Publication Number Publication Date
AU3570289A AU3570289A (en) 1989-11-29
AU617179B2 true AU617179B2 (en) 1991-11-21

Family

ID=10636660

Family Applications (1)

Application Number Title Priority Date Filing Date
AU35702/89A Ceased AU617179B2 (en) 1988-05-10 1989-05-10 Enzymatic detergent composition

Country Status (10)

Country Link
EP (1) EP0341999B1 (en)
JP (1) JP2562065B2 (en)
AU (1) AU617179B2 (en)
BR (1) BR8906958A (en)
CA (1) CA1336173C (en)
DE (1) DE68917777T2 (en)
ES (1) ES2058516T3 (en)
GB (1) GB8811045D0 (en)
WO (1) WO1989010954A1 (en)
ZA (1) ZA893471B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU619941B2 (en) * 1989-01-30 1992-02-06 Unilever Plc Enzymatic liquid detergent composition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950417A (en) * 1989-05-01 1990-08-21 Miles Inc. Detergent formulations containing alkaline lipase derived from Pseudomonas plantarii
DE69033423T2 (en) * 1989-05-15 2000-05-25 Clorox Co Laundry process
JPH07506618A (en) * 1992-05-08 1995-07-20 ザ、プロクター、エンド、ギャンブル、カンパニー Granular detergent composition containing lipase
DE4312010A1 (en) * 1993-04-13 1994-10-20 Henkel Kgaa Enzymatic detergent
DE4313949A1 (en) * 1993-04-28 1994-11-03 Henkel Kgaa Powder detergent with an ecologically harmless builder system, special surfactant combination and lipase
US5536436A (en) * 1994-05-27 1996-07-16 The Procter & Gamble Company Liquid laundry detergent compositions containing lipolytic enzyme and specially selected soaps
JPH08176590A (en) * 1994-12-22 1996-07-09 Kao Corp Powder cleaner composition
BE1009312A3 (en) * 1995-05-05 1997-02-04 Solvay Detergent compositions.
EP0912682A1 (en) * 1996-05-15 1999-05-06 The Procter & Gamble Company Detergent compositions comprising specific lipolytic enzyme and a specific surfactant system
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
US20160130571A1 (en) 2013-06-17 2016-05-12 Danisco Us Inc. Alpha-Amylase from Bacillaceae Family Member
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
WO2015050724A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from a subset of exiguobacterium, and methods of use, thereof
BR112016010551A2 (en) 2013-11-20 2017-12-05 Danisco Us Inc alpha-amylase variants having reduced susceptibility to protease cleavage and methods of use thereof
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759360A (en) * 1969-11-25 1971-05-24 Procter & Gamble Europ
GB1372034A (en) * 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DE2448532A1 (en) * 1973-10-15 1975-04-24 Procter & Gamble OIL REMOVAL COMPOSITIONS
EP0019315B1 (en) * 1979-05-16 1983-05-25 Procter & Gamble European Technical Center Highly concentrated fatty acid containing liquid detergent compositions
DE3428848A1 (en) * 1984-08-04 1986-02-13 Henkel KGaA, 4000 Düsseldorf DISHWASHER
EP0189225A2 (en) * 1985-01-22 1986-07-30 The Procter & Gamble Company Built liquid detergent containing anionic, ethoxylated nonionic and amide surfactants
JPS61272299A (en) * 1985-05-29 1986-12-02 ライオン株式会社 Granular detergent composition
GB8514707D0 (en) * 1985-06-11 1985-07-10 Unilever Plc Enzymatic detergent composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU619941B2 (en) * 1989-01-30 1992-02-06 Unilever Plc Enzymatic liquid detergent composition

Also Published As

Publication number Publication date
GB8811045D0 (en) 1988-06-15
CA1336173C (en) 1995-07-04
JP2562065B2 (en) 1996-12-11
EP0341999B1 (en) 1994-08-31
DE68917777D1 (en) 1994-10-06
WO1989010954A1 (en) 1989-11-16
AU3570289A (en) 1989-11-29
EP0341999A1 (en) 1989-11-15
BR8906958A (en) 1990-12-11
JPH02504165A (en) 1990-11-29
ZA893471B (en) 1991-01-30
DE68917777T2 (en) 1995-01-05
ES2058516T3 (en) 1994-11-01

Similar Documents

Publication Publication Date Title
AU617179B2 (en) Enzymatic detergent composition
US4873016A (en) Enzymatic detergent composition
US5133893A (en) Enzymatic detergent composition
AU606101B2 (en) Enzymatic detergent and bleaching composition
CA1288367C (en) Enzymatic detergent composition
US20090192066A1 (en) Detergent compositions
EP0271155B2 (en) Enzymatic dishwashing and rinsing process
AU616781B2 (en) Enzymatic dishwashing and rinsing composition
US5124066A (en) Storage-stable enzymatic liquid detergent composition
AU616780B2 (en) Enzymatic dishwashing composition
EP0785981B1 (en) Laundry detergent compositions containing lipolytic enzyme and amines
US5292448A (en) Enzymatic detergent composition
CA2248814C (en) An enzymatic detergent composition containing endoglucanase e5 from thermomonospora fusca
US5935271A (en) Laundry detergent compositions containing lipolytic enzyme and amines
CA2005022C (en) Enzyme-containing detergent compositions and their use
EP0876452A1 (en) Laundry detergent compositions containing lipolytic enzyme and selected quaternary ammonium compounds
EP0820502A1 (en) Detergent compositions comprising nonionic polysaccharide ethers and lipase enzymes
US4861509A (en) Enzymatic detergent and bleaching composition
WO1991009102A1 (en) Enzymatic liquid detergent compositions and their use
MXPA98003935A (en) Detergent compositions for laundry containing lipolitic enzyme and quaternary ammonium compounds select