AU605910B2 - Security gate operable with one hand - Google Patents

Security gate operable with one hand Download PDF

Info

Publication number
AU605910B2
AU605910B2 AU22471/88A AU2247188A AU605910B2 AU 605910 B2 AU605910 B2 AU 605910B2 AU 22471/88 A AU22471/88 A AU 22471/88A AU 2247188 A AU2247188 A AU 2247188A AU 605910 B2 AU605910 B2 AU 605910B2
Authority
AU
Australia
Prior art keywords
gate
panel
extension
knob
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU22471/88A
Other versions
AU2247188A (en
Inventor
Carl M. Stern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher Price Inc
Original Assignee
Quaker Oats Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quaker Oats Co filed Critical Quaker Oats Co
Publication of AU2247188A publication Critical patent/AU2247188A/en
Application granted granted Critical
Publication of AU605910B2 publication Critical patent/AU605910B2/en
Assigned to FISHER-PRICE INC reassignment FISHER-PRICE INC Alteration of Name(s) in Register under S187 Assignors: QUAKER OATS COMPANY, THE
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/02Shutters, movable grilles, or other safety closing devices, e.g. against burglary
    • E06B9/04Shutters, movable grilles, or other safety closing devices, e.g. against burglary of wing type, e.g. revolving or sliding
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B2009/002Safety guards or gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Gates (AREA)
  • Sewing Machines And Sewing (AREA)

Description

605 1 ReO72910 FORM COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATION
(ORIGINAL)
FOR OFFICE USE; Class Int Class 4 A' tA.44 1 it
A.
II A I ii I A A A
A
Complete Specification Lodged: Accepted: Published: Priority: Related Art: m*.i.l, I r,*..r.~r~rrrrnrrny
I
L vus sJ= t7rinli ;t: Name and Address of Applicant: Address for Service: The Quaker Oats Company 321 North Clark Street Chicago Illinois 60610 UNITED STATES OF AMERICA Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Complete Specification for the invention entitled; Security Gate Operable With One Hand The following statement is a full description of this invention, including the best method of performing it known to me/us 5845/4 i i r r i i i m i ii ii l!i
I
i
I
.I
II
:j 4" BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a security gate which can be positioned and removed with one hand.
2. Description of Related Art There are numerous security gates on the market and known in the prior art. However, almost all share problems in the general areas of ease of use, human factors, and/or ease of installation and removal.
One of the most difficult aspects of prior art security gates is that more than one hand is usually required to install or remove the gate. Only a few security gates are operable with one hand, however, their mechanisms and structures are very different from the present invention. See, for example, U.S.
Patent 2,581,857. In contrast, according to the gate of the present invention, a handle located at the top of the gate is used both to carry the gate and to operate the release mechanism, thereby allowing true one-handed operation. French Patent No.
992,830 describes a door and window locking mechanism in which a single handle causes a pair of spring-loaded bolt, t o withdraw from or contact the door or window frame. The mechanism otherwise described in French Patent No. 992,S'J appears to be irrelevant in the context of a security gate.
With most prior gates the main adjustment is lost 25 every time the gate is removed. Therefore the gate must be pai'nstakingly readjusted every time it is used, leading to a greater likelihood of improper installation. With some other gates, the adjustment is held when the gate is removed.
However, changing doorways means carefully readjusting the gate for each doorway. In contrast, with the gate of the present invention, the coarse adjustment is made easily and can be remembered, either by mentally noting the indicator position or the user may mark the indicator position with a suitable writing instrument. Once the present invention is adjusted for a given doorway, no further adjustment is needed to repeat installing and removing the gate from the same doorway.
Many security gates make no provision to adequately prevent a child from operating the mechanism which releases the gate. In other cases, the only obstacle to a child's removing the prior art gate is that high force is required to operate the mechanism. However, the high force prior art approach has clear disadvantages to the user, especially when the gate is installed i or removed by an adult with below average strength as may be the Scase with an elderly individual. In contrast, the present invention provides two interlocks which prevent a child from releasing the gate. The two interlocks employed by the prezent invention require two distinct, separate operations that are generally difficult for a child to coordinate.
With regard to many prior art security gates, the S 25 loading of the gate in the doorway, and therefore its security in 2 th4 doorway, is very sensitive to the specific manner in which the gate is adjusted during installation. The installation adjustment is often left to the judgment of the user with very little guidance. Small changes in adjustment to such prior art gates produce large changes in loading. As a consequence, it is quite easy for the user to install a prior art gate either too loose, so that it is not secure, or too tight, which risks damaging either the gate itself or the doorway, wall, or whatever it is installed in. For example, some gates require pushing a lever into a given notch. Missing the correct prior art notch by one notch in one direction makes the gate too tight and missing the prior art notch by one in the other direction leaves the gate too loose. Additionally, it is often difficult to determine the correct notch in the first place with many prior art gates, thereby requiring a fussy trial-and-error procedure. This problem is overcome by the device of the present invention by incorporating a compressed spring which has a relatively low S spring rate. This unique feature permits additional changes in the compression of the spring to require a small relative 29 .rincrease in the total overall force applied to the plungers. The result is that the present invention is much easier to adjust for a given doorway.
,I addition to the prior art described in detail above, the following U.S. patents may also be relevant to the general state of the art; 903,564; 2,559,066; 2,756,469; 2,851,746r C I_ -4- 2,896,277; 2,928,146; 3,00,063; 3,163,205; 3,216,482; 3,885,616; 4,465,262; 4.492,263 and 4,607,455.
SUMMARY OF THE INVENTION It Is the object of the present invention to overcome one or more of the above identified problems and/or disadvantages of the prior rt.
In one broad form the present Invention provides a security gate apparatus for attachment across an opening having at least one vertical portion, said apparatus comprising: a first gate panel; a second gate panel; first control means for connecting said first and second gate panels together and for determining the extension of the gate apparatus; .I retractable engaging means housed within said first panel for engaging said vertical portion; 15 second control means connected to said engaging means for retracting said engaging means; and ;spring means attached to said engaging means for biasing said engaging means against said vertical portion.
In another broad form of the present invention provides a security gate apparatus for attachment across an opening having at least one o, vertical portion, said apparatus comprising: .ooo a first gate panel; a second gate panel; gate extension adjusting means for connecting said first and second gage panel together and for determining the extension of said gate apparatus; ar« a linkage housed within said first panel; :a handle connected to said linkage; at least one resilient pad connected to said linkage for contacting said vertical portion; at least one spring attached to said linkage for biasing said pad against said vertical portion; and releasably handle interlock means for preventing the manipulation of said handle until after said releasably handle interlock mean has been released, said releasable handle interlock means comprising: at least one depressible button; KEH/25841
CO
1 a bar housed within said first panel and movable by depression of at least one depressible button; a centering spring contacting said bar and said first panel for returning said bar to a centered position; wherein said bar In its centered position Interferes with the motion of said handle so as to prevent it from being accidentally released unless said depressible button is depressed.
In another broad form of th2 present invention provides a security gate apparatus for attachment across an opening having at least one vertical portion, said apparatus comprising: a first gate panel; a second gate panel; gate extension adjusting means for connecting said first and second gate panels together and for determining the extension of said gate apparatus; a linkage housed within said first panel; a handle connected to said linkage; at least one resilient pad connected to said linkage for contacting said vertical portion; at least one spring attached to said linkage for biasing said pad-against said vertical portion; and releasable gate extension interlock means for locking said gate extension adjusting means to place until said gate extension interlock means Is released; said gate extension adjusting means comprising: a knob rotatable from an unlocked position to a locked position and back to said unlocked position and mounted on said first gate panel; a cammable ring for contacting said knob band for moving from a first position when said knob is in the unlocked position to a second position when said knob is in the locked position, said cammable ring including teeth thereon; a rack mounted on said second gate panel and also including teeth thereon; wherein the said knob Is in the locked position, said teeth of said cammable ring engage the teeth of said rack and when said knob is In the unlocked position, said teeth of said cammable ring are disengaged from said teeth of said rack.
KEH/25841 p k
L-
5A Preferred forms of the present invention will now be described by way of example with reference to the accompanying drawings, wherein: Fig. 1 is a rear elevational view showing the preferred embodiments of the gate invention in position in a door frame.
Fig. 2A is a front elevational view of the assembled gate.
Fig. 2B is a rear elevational view of the gate illustrated in Fig. 2A.
Fig, 2C is a left side elevational view of the gate illustrated in Fig. 2A.
Fig. 2D is a right side elevational view of the gate illustrated in Fig. 2A.
9 9 99 0 (0909 990 0 9 4e 0 99 9994p o 04 99 1 9044i 4ae 99 9ao tt t .r 'r
A
KEH/25841 Figure 2E is a top view of the gate illustrated in Figure 2A.
Figure 2F is a bottom view of the gate illustrated in Figure 2A.
Figure 3A is a cross-sectional elevational view of the gate as seen from the rear.
Figure 3B is a cross-sectional view of the gate illustrated in Figure 3A as shown in the context of a doorway having an uneven vertical jamb.
Figure 3C is a cross-sectional view of the gate illustrated in Figure 3A with the handle interlock button depressed.
Figure 3D is a c,-ss-sectional view of the gate illustrated in Figure 3C with the handle pulled upward, the handle safety interlock button depressed and the plungers withdrawn inward under the influence of the handle.
Figure 4A is a detailed view of the handle, handle safety interlock mechanism, and the upper plunger prior to manipulation.
Figure 4B is a detailed view of the handle safety interlock of Figure 4A shown in the released position.
Figure 4C illustrates the manipulation of the handle I after the handle safety interlock mechanism has been released as shown in Figure 4B.
Figure 5 is an exploded view of the gate extension knob and' safety interlock mechanism.
Figure 6A is a front detail view of the gate extension knob of Figure 5 shown in the unlocked position.
Figure 6B is a cross-sectional detail view of the gate extension knob illustrated in Figure 6A in the unlocked position.
Figure 6C is a front detail view of the gate extension knob shown in the locked position.
Figure 6D is a cross-sectional detail view of the gate extension interlock knob illustrated in Figure 6C in the locked position.
Figure 6E is another cross-sectional detail view of the i gate extension interlock knob illustrated in Figure 6C showing the manner in which the knob extension is held in place by a boss.
Figure 7A is a top cross-sectionlI view of the gate as seen from the top with the panels in their most collapsed (i.e.
unextended) state.
Figure 7B is a top cross-sectional view of the gate shown in Figure 7A with the gate partially extended.
i Figure 8A is an inside elevational view of the rnar i panel illustrating the molded and raised portions thereof.
SFigure 8B is an inside elevational view of the front panel illustrating the molded and raised portions thereof.
Figures 9A-9F illustrate the steps necessary to install
C-
the'gate in a door frame.
Figure 9G is a perspective view of the gate showing it installed in a door frame in a manner similar to that of Figure 1.
Figures 9H and 91 illustrate the steps necessary to remove the gate from the door frame.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT During the course of this description like numbers will be used to identify like elements according to the diffe: views which illustrate the invention.
i ;The preferred embodiment of the security gate 10 is illustrated in Figure 1. Security gate 10 is illustrated in the context of a doorway 12 having a left door jamb 14 and a right door jamb 16 as seen from the perspective of stairs 18. A child 20 is shown behind gate 10 in the manner in which children often are found at or near the top of stairs 18.
The larger components of gate 10 include a front panel 22 which normally faces a user or child 20 and a rear panel 24.
Most of the components of the invention are carried in and by the rear panel 24. The gate 10 is held in position by resilient plunger assemblies 26 and 28 dnd stationary feet 31. and 33.
Plungers 26 and 28 and feet 31 and 33 are each capped by i resilient pressure pads 30. Plungers 26 and 28 are movable by squeezing upward on handle 36 which is housed within an arched frame 34 molded into panel 24. The central location of handle 36 3 0 at the top of the gate, as illustrated in Figure 1, plays a significant role in the invention. Said location allows handle 36 to be used for carrying and positioning the gate in a doorway as well as to release the plunger mechanism. The handle 36 is located substantially above the center of gravity of the gate when the gate 10 is vertical so that the gate 10 will be balanced when removed and carried by the user. A pair of extension ardjustment knobs 32 are employed to adjust the coarse extension of the gate 10 by controlling the positioned relationship of panel 22 with respect to panel 24. Extension adjustment knob 32 Sincludes a tab or extension 140 for engaging an interlock boss 138 carried by panel 24 in a manner described subsequently with regard to Figure Figures 2A-2F illustrate the gate 10 in the six standard orthogonal views. A pair of handle release interlock buttons 38 are shown in position on either side of handle 36.
The amount of coarse extension adjustment of gate 10 is readable from the position of the upper of the two indicator buttons 44 which travels along the length of upper slot 40 which includes marking or notch indicia 43. For weight and aesthetic reasons, panel 22 includes lattice apertures 46 and panel 24 includes similar lattice apertures 48.
SThe general overall details of the assembled gate are shown in Figure 3A. In Figure 3A the movable plunger assemblies 26 and 28 are not shown engaged with a door jamb, The
-I
movement of plungers 26 and 28 is controlled by a system of links, cranks and springs all connected to pull handle 36.
Handle 36 is connected by an extension 52 to a pin 54 that rides in a slot in upper bell crank 56, Crank 56 pivots around pin 58 molded into panel 24. Crank 56 also garries a pin 60 engagable in slot 64 of upper plunger link 62. Pull rod 76 is bent at 900 at either end, and the upper end of pull rod 76 engages hole 74 molded in upper bell crank 56, and the lower end of pull rod 76 engages hole 90 molded in lower bell crank 88. Upper link 62 is partially carried inside a housing 68 molded into panel 24. A low compression rate pressure spring 66 is also located within housing 68 and normally biases the upper plunger assembly 26 and therefore pressure pad 30 outwardly, Pressure pad 30 is carried by a pad holder 29 which is attached by a conventional rivet to upper link 62. As illustrated in Figure 4A, pressure spring 66 is held in place at one end by pad holder 29 and at the othe:- end by lii Q0ollar 70 which surrounds the upper link 62 and seats against an upper link shoulder 118 which is integral with the upper link 62.
2 1 The structure and operation of the lower plunger assembly 28 is similar to the structure and function of the upper plunger assembly 26, Upward movement imparted to handle 36 is transmitted to extension 52, pin 54, crank 56, and pull rod 76 to the lower bell crank 88. Lower crank 88 rotates around a second pivot pin 92 molded into panel 24. A return spring 94 is conneoted between lower crank 88 and panel 24 and tands to return 3 0 handle 36 to its downward position when the handle is released.
Pin 100 carried by lower crank 88 loosely e: W s slot 98 in the lower plunger link 96. Lower link 96 also fits within a housing 102 molded into the structure of panel 24. Pressure pad 30 is carried by a pad receiver or guide 101 similar to pad holder 29 in the upper link assembly 26 and attached by a conventional rivet to the lower link 96. Another low compression rate spring 104 having a somewhat lighter initial load than the upper spring 66 is also captured within housing 102. One end of low compression rate spring 102 bears against the pad holder 101 and the other end presses against lower link collar 106 which normally abutts lower link shoulder 108. The natural tendency of upper spring 66 and lower spring 104 is to bias plunger assemblies 26 and 28 respectively outward. Also visible in Figure 3A are a plurality of ribs 154 molded into panels 22 and 24 and intended to impart structural rigidity to the overall gate assembly.
As shown in Figure 3B, slots 64 and 98 play a significant role in the invention. Figure 3B illustate 24) situationn which the right hand door jamb 16 has an irrlg r surface. Lower plunger assembly 28 is shown further withdrawn than upper plunger assembly 26. Accordingly, pin 100 of lower crank 88 is further forward in slot 98 with respect to its pressure pad 30 than is pin 60 of upper crank 56 which rides in slot 64 of the upper plunger assembly 26. Slots 64 and 98 permit 11 the handle 36 to withdraw both plunger assembly 26 and 28 the same distance, however when handle 36 is released plungers 26 and 28 will seek their own levels only restricted by the length of slots 64 and 98. This feature is especially useful in older houses where the settling and/or aging of the structure may cause the door jambs 14 and 16 to assume irregular vertical attitudes.
Figures 3C and 3D illustrate in overall detail the manner in which the handle 36 and handle interlock release buttons 38 cooperate with respect to both the upper plunger assembly 26 and the lower plunger assembly 28. The first step in releasing the security gate 10 is for the operator 110 to depress one of the two handle interlock release buttons 38 with the thumb 112 in the direction of arrow 115 as shown in Figures 3C and 3D. Thumb pressure on either release button 38 forces interlock shuttle or bar 80 to move either to the right or the left, horizontally. That action in turn allows the rib 72 carried by the lower handle extension 52 to move upwardly past intotference detent pin 84 carried by the interlock bar 80. The upward movement 114 of handle 36 causes upper crank 56 to rotate about pin 58 thereby drawing upper plunger 26 inwardly in the direction of arrow 116 as shown in Figure 3D. The rotation of crank 56 about pin 58 is also transmitted via pull rod 76 to lower crank 88. Rotation of lower crank 88 about pin 92 causes the lower plunger assembly 28 to withdraw in the direction of arrow 116.
Details of the operation of the handle release interlock system can be further understood by reference to Figures 4A-4C. Figure 4A illustrates the mode in which the interlock prevents the handle 36 from being manipulated thereby preventing the actuation of plunger assembly 26 and 28. If handle 36 were moved upwardly the rib 72 carried by the handle extension 52 would come into contact with interference pin 84 molded into safety interlock bar 80. Interlock bar 80 is normally returned to a centered, interfering position as shown in Figure 4A by interlock spring 82 which is kept in a compressed state and housed within interlock bar 80. Interference pin 84 is surrounded by a pair of identical side passageways 86 which can accommodate the passage of rib 72 if the interlock bar 80 was sufficiently displaced horizontally either right or left, by either release button 38.
4 Figure 4B illustrates the step necessary to release the S* handle interlock system. The user 110 places his or her thumb 112 on either safety release buttons 38 and pushes downwardly thereon in the direction of arrow 115. Each release button 38 2,0 includes a slanted lower surface 39 which normally contacts an edge or corner 41 carried on the movable interlock bar Depression of release button 38 shown on the right in Figure 4B causes the edge 41 of the interlock bar 80 to travel horizontally Sleftward under the camming action of inclined surface 39.
Conversely, if the user 110 places thumb pressure on the other 7 release button 38, shown on the left in Figure 4B, the interlock bar slider 80 will move rightwardly under the camming influence of inclined surface 39 against corner 41. Rightward or leftward horizontal movement of interlock bar 80 will cause the rib 72 to become aligned directly unier either passageway 86 out of the way of interference pin 84.
Continued thumb pressure in the direction of arrow 115 will keep the rib 72 in alignment with one of the two passageways 86. It is then possible for the user 110 to curl his or her fingers around handle 36 and pull upwardly in the direction of arrow 114 as shown in Figure 4C. This causes rib 72 to enter either passageway 86 bypassing interference pin 84. The upward handle motion is imparted to crank 56 which withdraws the plunger assembly 26 in the direction of arrow 116 in the manner previously described. It is necessary to keep either release S button 38 depressed until after rib 76 has passed beyond ij interference pin 84 and into either passageway 86. It is desirable to have a handle interlock safety system which requires continuous initial pressure on release button 38 so as to make it i 20 more difficult for a child to release the mechanism and remove j the security gate.
The nature and structure of upper and lower plunger comrpression springs 66 and 104 is unique and significant to the present invention. Upper spring 66 is installed with a preferred pressure of approximately twenty-five pounds and a
I
ii
'I
r 0 relatively low spring rate of five pands per inch. The spring typically starts at an unloaded length of 9" and is compressed to about 4" at manufacture. While installing the gate, spring 66 is compressed an additional nominal resulting in a nominal loading of about 27.5 Ibs. However, if the security gate is misadjusted, so that the spring is compressed any amount within the total of about 3/4" compression available, the force still varies very little from nominal. For example Additional Spring Nominal Loading Force Compression #1
I
'I
I
1/8" 25.6 lbs.(25 0.12 x 5 lbs./in.) 1/2" 27.5 lbs.(25 0.5 x 5 lbs./in.) 3/4" 28.8 lbs.(25 0.75 x 5 lbs./in.) 15 Therefore, assuming that the user has managed to adjust the security gate so that the plunger assemblies 26 and 28 are contacting the wall, even if not adjusted to the preferred 1/2" displacement, the loading force will vary by less than The spring rate should be relatively low and preferably about 5 lb./in. Small variations would not make much difference.
If, for example, the loading were 6 lb./in., then the change would still vary less than 10%. However, if the spring rate were increased to above 10 lb./in. then the variation would start to increase in the neighborhood of 14%. The preferred spring loading rate is in the range of 3 lbs. to 10 lbs. with a preferred single rate of 5 lbs./in.
00 In general the lower spring 104 is installed to a lighter load, preferably in the neighborhood of 16 Ibs. The maximum loads of the springs 66 and 104 are limited by the strength and reach of the adult 110. In the foregoing example the amount of pressure that must be applied by the hand of the adult 110 is approximately 15 Ibs. arrived at in the following manner.
27.5 Ibs. at top (installed nominal) 18.5 Ibs. at bottom (installpd nrominal) 46.0 Ibs. total force on plungers 46 t 3 (mechanical advantage of cranks) Ibs. at the handle, not including friction.
More spring force is allocated to the top plunger 26 than to the bottom plunger 28 because a child 20 is believed to be more likely to put more pressure against the top than against the bottom of the security gate. This, for example, might be the situation where the child is standing up and accidentally falls or pushes against the top of the gate.
Figures 5, 6A-6E and 7A and 7B illustrate the manner in which the security gate is extended and locked in its extended mode. Fir' re 5 is an exploded view of the extension adjustment knob assembly with its associated safety interlock. Adjustment knob 32 includes a knob extension 140 and is mounted on post 126 molded into panel 24 and is held in position by rivet 120. The interior of knob 32 includes a plurality, preferably four, of inclined ramp sections 123 which are adapted to make sliding camming contact with the four ramp sections 125 carried by r adjustment lock ring .24 which is also mounted on post 126. The other side of adjustment lock ring 124 carries a set of four teeth 134 which can move in and out of apertures 128 in panel 24.
spring 136 normally biases the slanted camming ramp surfaces 125 of adjustable lock ring 124 against the complementary camming ramp surfaces 123 of extension adjustment knob 32. A linear rack 145 including a plurality of teeth 130 is molded into panel 22 and is located on the opposite side of panel 24 from the knob 32 and adjustment lock ring 124. The teeth 130 of the linear rack 145 are located in two rows on opposite sides of upper or lower slot 40. Indicator 44 is located on the opposite side of slot from the two rows of teeth 130 and is also held in place by rivet 120 the opposite end of which engages a washer 122 located at the top of adjustment knob 32. Moverent of one panel 22 relative to the other panel 24 causes the indicator 44 to travel along slot 40 thereby giving a visual indication 43 of the amount of extension of the gate.
Extension adjustment knob 32 is capable of 90 degrees Sof rotation from the 3 o'clock position to the 6 o'clock position and vice versa. Figures 6A and 6B illustrate the knob 32 in its unlocked position with the handle extension 140 located at the 3 o'clock position. In the unlocked position the teeth 134 are disengaged from the two rows of teeth 130 on the rack molded into panel 22. Accordingly, panels 22 and 24 are free to move horizontally with respect to each other.
D D Once the user 110 has set the coarse adjustment, he or she will rotate the knob 32 clockwise 90 degrees in direction of arrow 117 to the 6 o'clock position so that the handle extension 140 passes beyond interlock boss 138. This causes the handle extension 140 to be trapped behind the resilient boss 138 as shown in Figures 6C and 6E. The only way that the security gate can be unlocked is to depress resilient interlock boss 138 with a finger and then rotate the knob extension 140 counterclockwise to return it to its original 3 o'clock position. Rotation of knob 32 in clockwise direction 117 also causes the internal camming ramp surfaces 123 to move against the opposing camming ramp surfaces 125 of the locking ring 1,24. This motion causes the ring 124 to move downwardly thereby forcing teeth 134 deeper into apertures 128 and into engagement with the two rows of teeth 130 on the rack 145 carried by panel 22. Figure 6D illustrates the situation in which the handle extension 140 has been rotated fully clockize in the direction of arrow 117 to the 6 o'clock position and where the teeth 134 of the locking ring 124 are in full locking engagement with the two rows of teeth 130 on the rack 145 carried by panel 22. Indicator 44 shows at which notch or mark 43 position the panels 22 and 24 are immobilized with respect to slot 40. In the locked position as shown in Figure 6C, 6D and 6E, it takes two distinctly different types of action to release the coarse adjustment knob 32. First a downward l.,near pressure has to be applied to resilient boss 138 _C1 1 to permit handle extension 140 to travel back counterclockwise from the 6 o'clock towards the 3 o'clock position. Second, rotational force has to be applied to adjustment knob 132 in the counterclockwise direction in order to disengage ring teeth 134 from rack teeth 130.
Figures 7A and 7B show the security gate in a top cross-sectional profile in two different states of extension. In Figure 7A the gate is shown in its relatively ful ly collapsed i.e. unextended state in which the panels 22 and 24 most face each other. According to the preferred embodiment of the invention the upper and lower coarse gate extension mechanism includes a pair of adjustment knobs 32 and a pair of adjustment slots 40. For balance, a second pair of pins and slots is provided in order to keep the loading symmetrical. This balance is provided by slider 144 which is mounted on post 142 molded into panel 22 and which travels in and along slot 42 of panel 24.
The security gate illustrated in Figure 7A is shown in the unlocked and most collapsed position as indicated by the position of knob extension 140. The security gate is extended by placing the adjustment knob 32 in the unlocked position shown h in Figures 6A and 6B and then pulling the panels 22 and 24 apart so that they travel horizontally away from each other. Figure 7B illustrates the security gate extended to an intermediate 'I position. Note that the extension of panels 22 and 24 with respect to each other causes the indi.cator 44 to assume a 19 f J different indicia position 43 along the teeth 130 of rack 145 and also causes the slider 144 to assume a different position with respect to slot 42.
Figure 8A and 8B are provided to illustrate the inside views of panels 22 and 24. It is useful to note that most of the mechanical moving parts of the invention are housed within panel 24 which adds to increased ease of assembly.
Figure 9A-91 illustrate the steps by which the user installs the gate in a doorway 12 and the manrner in which the r' 10 user subsequently removes the gate after use. First, in order to install the gate, the user 110 depresses the resilient boss 138 shown in Figure 9A to release knob extension 140 thereby permitting it to be rotated counterclockwise from the locked 6 o'clock position in the direction of arrow 146 to the unlocked 3 S' IE o'clock position.
Second, the user 110 places the security gate in the doorway 12 and pulls panels 22 and 24 horizontally away from each other in the direction of arrows 148 until the pressure pads just touch the door jambs 14 and 16 as shown in Figure 9B. The user 110 then notes the position of the upper of the two !l indicators 44 when the pressure pads 30 are just touching the edges of the door frame.
Third, as shown in Figure 9C the user 110 expands the gate by two notches. According to the preferred embodiment of the invention two notches equals 1/2" because the indicia marks
G.
Q
43 relative to indicator 44 are located at 1/4" intervals.
Pulling the two panels 22 and 24 further apart by two notches causes the gate to expand in the direction of arrows 150 as shown in Figure 9C.
Fourth, as shown in Figure 9D, the user 110 rotates knob 32 in the clockwise direction of arrow 152 from the unlocked 3 o'clock position to the locked 6 o'clock position so that the resilient boss 138 holds the knob extension 140 securely in the locked mode.
Fifth, as shown in Figure 9E, the user 110 exerts thumb 112 pressure downwardly in the direction of arrow 3115 against either handle interlock release button 38. The conoseuence of this action was previously described with reference to Figures 3D, 4B and 4C. Depression of either handle interlock reJ,ease button 38 permits the user 110 to pull up on handle 36.
i Sixth, the user, as shown in Figure 9F, exerts upward pressure on handle 36 in the direction of arrow 114 and places the security gate back within the doorway 12 so that the plunger assemblies 26 and 28 clear the vertical door jamb 16. Thumb pressure should continue to be exerted on the either handle release button 38 as the user 110 pulls p, on handle 36.
i Seventh, and lastly, as also shown in Figure 9F, once the security gate is in position between door jambs 14 and 16, 1) the user 110 releases hand pressure on handle 36. The plunger assemblies 26 and 28 will then urge the pressure pads 30 against 3 the' vertical jamb 16 thereby firmly holding the security gate in position across the doorway 12. As previously discussed, the link slots 64 and 98 permit the plunger assemblies 26 and 82 to accommodate irregular door jamb surfaces 16.
The security gate is illustrated in its fully installed mode across a doorway 12 in Figure 9G. It would be relatively difficult for a child 20 to accidentally release the gate for several reasons. First, it would be difficult for the child to accidentally release the plungers 26 and 28. In order to do 10 so the child would have to be rel tively strong and have a:f relatively broad hands in order to push down on either handle release interlock button 38 and simultaneously pull up with approximately 15 lbs. strength on handle 36. The additional spring loading on the top plunger assembly 26 with respect to the '16 lower plunger assembly 28 gives the security gate more strength where it is normally needed, namely, at the top of the gate.
j Second, it would be relatively difficult for the child 20 to release the gate extension knob 32. The gate extension knob 32 is intentionally placed on the rear of the gate facing away from 2o the child 20. In order for the child 20 to release the extension adjustment knob 32 it would be necessary for that child to apply a substantial amount of pressure to resilient boss 138 thereby permitting the knob 32 to be rotated in the counterclockwise direction towards its unlocked position. The depression of boss 138 would have to be performed simultaneous 0 0 with the rotation of knob 32 in order to bring the gate into its unlocked extendable mode. It is well known that it is impossible to create a security gate that is absolutely safe under all conditions, however, the Eresent gate is believed to be significantly more safe than many other prior art gates due to its unique use of extension and handle interlocks which provide additional security by virtue of the fact that they require at least two distinct separate actions to be carried out by a moderately strong individual.
Removal of the security gate from the doorway 12 is accomplished by following the steps illustrated in Figures 9H and 91.
First, the user 110 presses down with his or her thumb in the direction of arrow 115 on either handle release interlock button 38 in the manner shown in Figure 9H.
Second, as shown in Figure 91, the user 110 pulls up on handle 36 in the direction of arrow 114, while keeping pressure on either interlock release button 38, thereby withdrawing plunger assemblies 26 and 28 from contact with door jamb 16. The gate can then be lifted without changing hands, removed and stored until use is required again. If the user 110 intends to use the security gate at the same doorway 12, then it is not necessary for the user 110 to repeat the coarse extension adjustment steps illustrated and described with respect bo J 25 Figures 9A 9F. However, if a different doorway is I I contemplated, then it would be necessary for the user to repeat the steps illustrated in Figures 9A 9F in order to accommodate a different width door frame.
While the invention has been described with reference to the preferred embodiment thereof, it will be appreciated by those of ordinary skill in the art that various modifications can be made to the structure and parts of the invention without departing from the spirit and scope of the invention as a whole.
4

Claims (16)

1. A security gate apparatus for attar Tent across an opening having at least one vertical portion, said apparatus comprising: a first gate panel; a second gate panel; first control means for connecting said first and second gate panels together and for determining the extension of the gate apparatus; retractable engaging means housed within said first panel for engaging said vertical portion; second control means connected to said engaging means for retracting said engaging means; and R, spring means attached to said engaging means for biasing said engaging means against said vertical portion.
2. The apparatus of claim 1 further comprising releasable interlock means for preventing the manipulation of the second control means, until after said releasable interlock mewns has been released.
3. A security gate apparatus for attachment acrnss an opening having at least one vertical portion, said apparatus comprising: a first gate panel; a second gate panel; gate extension adjusting means for connecting said first and second gage panel together and for determining the extension of said gate apparatus a linkage housed within said first panel; a handlU connected to said linkage; Sat least one resili:nt pad connected to said linkage for i contacting said vertical portlon; j at least one spring attached to said linkage for biasing said pad against said veitical portion; and releasably handle interlock means for preventing the manipulation of said handle until after said releasably handle interlock mean has been released, said releasable handle interlock means comprising: at least one depressible button; a bar ')Used within said first panel and movable by depression of at least one depresslble button; 26 a centering spring contacting said bar and said first panel for returning said bar to a centered position; wherein said bar In Its centered position interferes with the motion of said handle so as to prevent It from being accidentally released unless said depressible button is depressed.
4. The apparatus of claim 3 further comprising: a rib carried by said handle; an interference pin means carried by said bar for Interfering with the movement of said rib when said handle is pulled upwardly and said bar is in Its centered position; and, at least one passageway adjacent said Inteference pin mean for permitting said rib to pass by said interference pin means when said depressible button Is depressed. The apparatus of claim 4 wherein two of said depressible buttons are located on opposite sides of said handle.
6. The apparatus of claim 1 further comprising: releasable gate extension interlock means for locking said gate extension adjusting means in place until said gate extension interlock means is released.
7. A security gate apparatus for attachment across an opening having at least one vertical portion, said apparatus comprising: a first gate panel; a second gate panel; gate extension adjusting means for connecting said first and second gate panels together and for determining the extension of said gate apparatus; a linkage housed within said first panel; a handle connected to said linkage; at least one resilient pad connected to said linkage for contacting said vertical portion; at least one spring attached to said linkage for biasing said pad against said vertical portion; and releasable gate extension interlock means for locking said gate extension adjusting means to place until said gate extension interlock means is released; said gate extension adjusting means comprising: -KEH/Zi L h H I :I 27 a knob rotatable from an unlocked position to a locked position and back to said unlocked position and mounted on said first gate panel; a cammable ring for contacting said knob band for moving from a first position when said knob is in the unlocked position to a second position when said knob is in the locked position, said cammable ring including teeth thereon; a rack mounted on said second gate panel and also including teeth thereon; wherein the said knob is in the locked position, said teeth of said cammable ring engage the teeth of said rack and when said knob is in the unlocked position, said teeth of said cammable ring are disengaged from said teeth of said rack.
8. The apparatus of claim 7 wherein said knob includes a knob extension for hand manipulation. 9, The apparatus of claim 8 wherein said gate extension interlock means comprises: a boss carried by said first gate panel for engaging said knob extension when said knob is in the locked position, wherein engagement of said knob extension by said boss holls said knob extension so that said knob remains in the locked position until said boss is depressed thereby releasing said knob extension, The apparatus of claim 3 wherein said linkage includes; a first crank connected to said handle and pivotally carried by sod first gate panel; a pin carried on said first crank; a first link having a first and a second end and connected at said first end to said pin on said first crank; and, a first spring for normally biasing said first link outwardly with respect to said first gate panel.
11. The apparatus of claim 10 further comprising: a first resilient pad connected to said second end of said first link.
12. The apparatus of claims 10 or 11 wherein said linkage further includes: an aperture in said first crank; 25 41 K4~ h 28 a of sald having second said fl respecl I pull rod having an upper end and a lower end, with said upper end 1 pull rod engagably in said aperture In said first crank; a second crank pivotally carried by said first gate panel and an aperture therein and carrying a pin thereon said aperture of said crank engagably by said lower end of said pull rod; a second link having a first and second end and connected at irst end to said pin on said second crank and, a second spring for biasing said second link outwardly with t to said first gate panel.
13. The apparatus of claim 12 further comprising: a second resilient pad connected to said second end of said 4oaa o 4n 4 444g 44 4 4 44 4 44 441 4 44B 4 4 4 4444 L44* 4 e* 4*4 9 ttr second link. 14, The apparatus of claim 13 further including: a handle return spring connected between said second crank and said first gate panel.
15. The apparatus of claim 14 further comprising: independent pad adjustment means or automatically and independently adjusting the travel of said first and second links in response to surface irregularities of said vertical portion of said opening.
16. The apparatus of claim 15 wherein said independent pad adjustment means comprises: a slot in said first end of said first link for engaging said pin on said first crank; and, a slot in the first end of said second link for engaging said pin on said second crank.
17. The apparatus of claim 12 wherein said first and second springs are mounted in said first gate panel in a compressed state.
18. The apparatus of claim 17 wherein the static compression force of said first spring in its mounted compressed state is greater than the static compression force of said second spring in its mounted compressed state.
19. The apparatus of claim 18 wherein the compression state of said first and second springs is in the range of 3 to 10 lbs/in. The apparatus of claim 19 wherein the preferred compression rate of said first and second springs is approximately 51bs/in. .z;rLTe _KEH/25841 <1 -29
21. Security gate apparatus as hereinbefore described with reference to the accompanying drawings. DATED this SIXTEENTH day of OCTOBER 1990 The Quaker Oats Company Patent Attorneys for the Applicant SPRUSON FERGUSON 4 4 I 4' 4 441 4141 4 4444 4t 4 4 4 4 4 It 4 4 4 KEI/25841
AU22471/88A 1987-09-23 1988-09-21 Security gate operable with one hand Ceased AU605910B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/100,336 US4846246A (en) 1987-09-23 1987-09-23 Security gate operable with one hand
US100336 1987-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU75297/91A Division AU633790B2 (en) 1987-09-23 1991-04-23 Security gate operable with one hand

Publications (2)

Publication Number Publication Date
AU2247188A AU2247188A (en) 1989-03-23
AU605910B2 true AU605910B2 (en) 1991-01-24

Family

ID=22279244

Family Applications (2)

Application Number Title Priority Date Filing Date
AU22471/88A Ceased AU605910B2 (en) 1987-09-23 1988-09-21 Security gate operable with one hand
AU75297/91A Ceased AU633790B2 (en) 1987-09-23 1991-04-23 Security gate operable with one hand

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU75297/91A Ceased AU633790B2 (en) 1987-09-23 1991-04-23 Security gate operable with one hand

Country Status (6)

Country Link
US (1) US4846246A (en)
EP (1) EP0309176A1 (en)
JP (1) JPH01153107A (en)
AU (2) AU605910B2 (en)
CA (1) CA1307155C (en)
DK (1) DK531988A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272840A (en) * 1991-09-04 1993-12-28 Gerry Baby Products Company Security gate with walk through feature
US5535552A (en) * 1994-11-02 1996-07-16 Innova Development Corporation Pressure-fit gate
US5528859A (en) * 1994-11-03 1996-06-25 Fisher-Price, Inc. Pressure-fit gate with toggle handle
GB2298669B (en) * 1995-03-10 1998-11-18 Hago Prod Ltd Gates
USD384752S (en) * 1996-07-17 1997-10-07 Brk Brands, Inc. Safety gate
US5782039A (en) * 1996-07-17 1998-07-21 Brk Brands, Inc. Portable gate
GB2317637B (en) * 1996-09-26 2000-07-19 Beldray Ltd Nursery gates
US5924242A (en) * 1996-10-28 1999-07-20 Safety 1St, Inc. Safety gate
US5829505A (en) * 1996-10-30 1998-11-03 Safety 1St, Incorporated Safety gate
US6112460A (en) * 1998-10-23 2000-09-05 Evenflo Company, Inc. Walk-through gate with top rail support
US6178694B1 (en) 1998-10-23 2001-01-30 Evenflo Company, Inc. Walk-through gate with concealed hinge and latch
AU6323500A (en) * 1999-07-29 2001-02-19 Nubis B.V. Locking mechanism for a stair gate, gate provided with such locking mechanism, and gate for closing off an opening
US6449901B1 (en) 2000-06-05 2002-09-17 Safety 1St, Inc. Security gate
US7305800B1 (en) * 2004-04-13 2007-12-11 Amy Lynn Calfee Storm barrier assembly
US7716874B2 (en) * 2004-09-21 2010-05-18 Evenflo Company, Inc. Expandable gate
GB0423309D0 (en) * 2004-10-21 2004-11-24 Cooper Howard L Locking mechanism
US20060260195A1 (en) * 2005-05-02 2006-11-23 Witman Thomas J Repositionable gate
GB0713567D0 (en) * 2007-07-12 2007-08-22 Lindam Ltd Gate assembly
US20090102204A1 (en) * 2007-10-23 2009-04-23 Eddie Hilliard Gate latch extension handle
CN107532450B (en) 2015-05-18 2020-06-05 道尔青少年集团公司 Safety gate
CN110259357A (en) * 2019-06-18 2019-09-20 徐其兵 Steel structure assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756469A (en) * 1954-07-22 1956-07-31 Gardner Wood Products Co Inc Barrier for a doorway or the like
US2896277A (en) * 1956-07-30 1959-07-28 Joseph C Halligan Gate structure
US3885616A (en) * 1973-03-27 1975-05-27 Norton J Berkowitz Child{3 s gate

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US903564A (en) * 1908-06-19 1908-11-10 Jacob Wysong Portable-gate.
US1120361A (en) * 1913-11-25 1914-12-08 Adam J Bauer Adjustable window-screen.
US1683204A (en) * 1926-10-12 1928-09-04 Edgar T Mills Fly screen
US1662167A (en) * 1926-12-28 1928-03-13 Otto M Rexinger Window grating
US2581857A (en) * 1948-03-29 1952-01-08 Bertram M Harrison Removable gate
FR992830A (en) * 1949-06-01 1951-10-23 Locking device, especially for doors and windows
US2559066A (en) * 1949-10-12 1951-07-03 William A Diefenbronn Adjustable gate
US2851746A (en) * 1953-11-30 1958-09-16 Mcphaden Lawrence Portable gate
US2928146A (en) * 1958-05-07 1960-03-15 Travers Welding Co Inc Removable door gate
US3000063A (en) * 1959-12-16 1961-09-19 Hoog Lawrence John Safety gate
US3163205A (en) * 1962-06-07 1964-12-29 Gottlieb Robert Adjustable gate
US3216482A (en) * 1963-10-11 1965-11-09 Donald W Lindholm Adjustable gate
JPS6056359B2 (en) * 1979-01-25 1985-12-10 三菱電機株式会社 Sound reproduction method
US4492263A (en) * 1981-07-13 1985-01-08 Gerico, Inc. Infant security door gate assembly
US4465262A (en) * 1982-07-14 1984-08-14 Gary Itri Portable expandable barrier
FR2543209B1 (en) * 1983-03-24 1985-11-15 Menetrieux Stephane DEVICE FOR PROTECTING WINDOWS, OR OTHER OPENINGS OF A BUILDING, AGAINST ATTEMPTS TO PASS
US4607455A (en) * 1984-10-01 1986-08-26 North States Industries, Inc. Adjustable gate for doorways
GB2187495B (en) * 1986-01-17 1989-11-01 Hago Prod Ltd Safety barrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756469A (en) * 1954-07-22 1956-07-31 Gardner Wood Products Co Inc Barrier for a doorway or the like
US2896277A (en) * 1956-07-30 1959-07-28 Joseph C Halligan Gate structure
US3885616A (en) * 1973-03-27 1975-05-27 Norton J Berkowitz Child{3 s gate

Also Published As

Publication number Publication date
JPH01153107A (en) 1989-06-15
US4846246A (en) 1989-07-11
EP0309176A1 (en) 1989-03-29
DK531988D0 (en) 1988-09-23
AU633790B2 (en) 1993-02-04
DK531988A (en) 1989-03-24
CA1307155C (en) 1992-09-08
AU2247188A (en) 1989-03-23
AU7529791A (en) 1991-07-18

Similar Documents

Publication Publication Date Title
AU605910B2 (en) Security gate operable with one hand
US5052461A (en) Security gate operable with one hand
US5306221A (en) Weight adjusting device for muscle training machine
US3983724A (en) Changeable combination padlock
US4968071A (en) Security gate operable with one hand
US5735577A (en) Adjusting mechanism for use on the armrest of a vehicle&#39;s seat
US5890320A (en) Barrier gate especially for small children
US4648638A (en) Sliding door lock assembly
WO2004010828A1 (en) Safety fence for infant
US3097712A (en) Weighing scale
JPH0440367Y2 (en)
US4137738A (en) Time lock with automatic reset
JP2893254B2 (en) Locking device for toilet door
AU605286B2 (en) Lock
AU2003100903A4 (en) Combination Lock
KR101312239B1 (en) Opening and closing device for exit
JPS63117870U (en)
US4848111A (en) Locking device for cases, such as briefcases and the like
KR101572326B1 (en) Door Lock Device
JPH0234377Y2 (en)
EP0418416B1 (en) Dial lock assembly
JPH0433357Y2 (en)
KR102290788B1 (en) Push type locking device for windows and doors
JPH08450Y2 (en) Drop bar device
US993235A (en) Bolt mechanism for doors.