AU599044B2 - Enhanced circulation drill bit - Google Patents

Enhanced circulation drill bit Download PDF

Info

Publication number
AU599044B2
AU599044B2 AU62223/86A AU6222386A AU599044B2 AU 599044 B2 AU599044 B2 AU 599044B2 AU 62223/86 A AU62223/86 A AU 62223/86A AU 6222386 A AU6222386 A AU 6222386A AU 599044 B2 AU599044 B2 AU 599044B2
Authority
AU
Australia
Prior art keywords
flow
bore
passageways
rotor
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU62223/86A
Other versions
AU6222386A (en
Inventor
Doyle W. Mccullough
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AU62223/86A priority Critical patent/AU599044B2/en
Publication of AU6222386A publication Critical patent/AU6222386A/en
Application granted granted Critical
Publication of AU599044B2 publication Critical patent/AU599044B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Description

~ij dy-SWH AU-AI-62223/36 PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION INTERNATIONAL APP ATI. natip BUtreaATY INTERNATIONAL APPLICATIlU ISi UUER TE PAENT COOPERATION TREATY (PCT) (51) International Patent Classification 4 (11) International Publication Number: WO 88/ 01007 E21B 10/18, 10/60 Al (43) International Publication Date: 11 February 1988 (11.02.88) (21) International Application Number: PCT/US86/01618 Published With international search report.
(22) International Filing Date: 4 August 1986 (04.08.86) (71)(72) Applicant and Inventor: McCULLOUGH, Doyle, W. [US/US]; 26603 I.H. 45 North, The Woodlands, TX 77380 (US).
(74) Agent: HEWITT, Lester, Pravel, Gambrell, Hewitt Kimball, Tenth Floor, 1177 West Loop South, Houston, TX 77027 (US).AR 1 A. L E. 2^ MAR 1988 (81) Designated States: AT (European patent), AU, BE (Eu- .x ropean patent), BR, CH (European patent), DE (European patent), FR (European patent), GB (European AUSTRAL1AN patent), IT (European patent), JP, LU (European patent), MW, NL (European patent), NO, SE (European 2 4 FE 1988 patent), PAENT
OFFIC
(54)Title: ENHANCED CIRCULATION DRILL BIT (57) Abstract The enhanced flow drill bit in one embodiment includes an upper body section (1 la) having a bore (14) therein and a lower 27 body section (I Ib) formed integrally with the upper body la) and j including three passageways (18a-c) to transmit fluid outwardly of the drill bit body, The passageways (18a-c), when intermittently adi open, transmit fluid flowing downwardly through the drill bit body do s and outwardly of the passageways (18a-c) to cause cross flow in the area of the cone-type cutters A rotor (25) is mounted within a bore (14) within the upper body section (1 la) to intermittently open and close passageways (18a-c) to provide for an intensification of s 0 flow through the remaining open passageway to create high jet im- J pact force of fluid flowing outwardly of the drill cuttings. Annular s -t internal reflective surfaces (53a, 53c) are provided to substantially soe utilize the effect of any transient pressure surges that are created during operation of the invention, s-2 8 a" c-r 17 171i B t3 A SWO88/01007 PCT/US86/01618 Title: Enhanced Circulation Drill Bit Specification Cross-Reference to Related Application This application is a continuation-in-part of U.S.
Patent Application Serial No. 641,577, entitled "Enhanced Circulation Drill Bit", filed August 16, 1984.
Technical Field of the Invention This invention relates to oil well or other drilling utilizing a drill bit with drilling fluid circulating therethrough.
Background of the Invention In order to drill an oil or gas well, it is wellknown to mount a drill bit at the bottom end of a line of drill pipe, commonly known as a drill string, and to rotate the drill bit and drill string into the earth in order to drill a borehole. Typically, a drill bit consists of a drill body which supports cone-type cutters which are rotated by the rotation of the drill string in order to cause the bits to grind and cut through the earth's formations. The grinding and cutting action of the drill bit creates drill cuttings which have to be removed from the bottom of the borehole so that the drill bit can continue its grinding and cutting without bogging down. In order to remove such drill cuttings, to clean ^-;~Nrrrrr.s;~ii~~ LI1 -r-~lu-r i, WO 88/01007 PCT/US86/1'61S -2and cool the drill bits, and for other reasons, it is known to circulate a drilling fluid, commonly known as "mud", downwardly through the drill string and outwardly of the drill bit with the fluid circulating upwardly in the annular area between the drill string and the borehole walls thus returning to the earth's surface. Upon return to the earth's surface, the drilling fluid is cleaned for re-circulation.
The importance of efficient removal of the drill cuttings cannot be over emphasized. Without efficient removal of the cuttings, the drill bit tends to re-grind the drill cuttings and thus lose efficiency. Efficiency of operation of the drill bit is directly proportional to the effectiveness of the removal of drill cuttings.
1i A number of attempts have been made to enhance removal of drill cuttings. U.S. Patent 3,216,514 of Nelson discloses a rotary drilling apparatus having a valve means in the drill bit housing which is rotated in response to rotation of the drill bit cones due to the mechanical interconnection between the drill bit cones and the valve means. The valve means opens and closes passageways in the drill bit body in order to, as is taught in the patent, interrupt flow of fluid in the bit in order to cause a sudden downward force or water hammer effect to be exerted on the bit to increase the pressure of cutters on the formation and to reduce the hydrostatic pressure exerted by the fluid on the formation whereby the cuttings will be more readily broken away from the formation and entrained in the drilling fluid to be carried upwardly through the annulus. U.S. Patent 4,114,705 of Milan discloses a drill bit utilizing two opposed pulsed jets 180° out of phase which is achieved by utilizing a pivotally mounted ball which oscillates between two positions to respectively close off one of two outlet ducts leading to the nozzles to produce alternating pulsed flow. U.S. Patent 3,897,836 of Hall and Clipp discloses the utilization of a hammer and piston
K
WO 88101007 PCT/US86/01618 3internally mounted in a housing above the drill bit to cause continuously supplied compressed air to cyclically operate the hammner and piston to create a pulsed jet of water. Other attempts to enhance the removal of drill cuttings include the use of nozzles having certain flow restricti characteristics and extended tribes extending downwardly from the bit housing to enhance cross flow. It has also been taught to combine extended nozzles with return conduits to enhance cross flow.
Further, general fluid flow technology teaches that a sudden halt to fluid flow, for examle, in a pipe by the closing of a valve, can cause a rise in pressure and creation of pressure waves that travel upstream to reverberate off of any reflecting surface, and are commonly known as hydraulic transients.
While many attempts have therefore been made to enhance circulation of dril.ling fluid outwardly of the drill bit in ,order to remove drill cuttings, it is believed that the. state of the art may yet be improved.
Summary of the Invention It is the object of this invention to provide a new and improved enhanced circulation drill bit adapted to be mounted at the end of the drill string for enhancing the remcval of drill bit cuttings from the bottom of the borehole being drilled. It Ls another object of this invention to provide a new and improved means for intermittently concentrating the flow of drilling fluid through the drill bit in order to increase the jet impact force of the fluid. It is a furthAer object of this invention to provide an enhanced circulation drill bit which provides intermittently delivered high velocity flow downhole while substantially utilizing part of the effects of the hydraulic transients whic:h are created.
The enhanced circulation drill bit includes a drill boy having an upper body section adapted to be attached to a drill string and a lower body section having thereon
C
WO 88/01007 PCT/US86/01618 -4a drill bit. The upper body section has a bore therein in fluid communication with the drill string in order to receive circulating drilling fluid. The lower body section includes a plurality of passages which extend from the bcre of the upper body section and terminate outwardly of the lower body section in proximity to the drill bit cones. A flow response means is mounted for rotation within the bore of the upper body section for intermittently opening and closing off flow through the passages in response to the velocity of the circulating drilling fluid in order to deliver intermittent high velocity flow downwardly and outwardly of the drill bit to enhance cross circulation and removal of drill cuttings.
In an additional embodiment, means are provided for utilizing a substantial part of the hydraulic transients which are created due to the intermittent opening and closing off of flow through the passage in the lower body section.
This description of this invention is intended as a summary only. The patentable features of this invention will be described in the claims and the structure and function of the drill bit of this invention will be described in the description of the preferred embodiment to follow.
Brief Description of the Drawings Fig. 1 is a side view partly in section of the enhanced flow drill bit of one preferred embodiment of this invention illustrating schematically the enhanced cross flow provided by this embodiment of the invention; Vig. 2 is a side view of the static and rotating vanes utilized in the flow director and rotation means of this embodiment of this invention; Fig. 3 is a sectional view taken along line 3--3 of Fig. 1 illustrating the circumferential spacing of the three passageways through the lower section of the drill bit body; r, ~i I~ WO 88/01007 PCT/U;S86/01618 Fig. 4 is a sectional view through the rotor of the rotation means through a plane along line 4--4 of Fig. 1 illustrating the arc size and location of flow blocking element; Fig. 5 is a view similar to Fig. 4 illustrating a variation in the location and size of the flow blocking element; Fig. 6 is a view similar to Figs. 5 and 4 illustrating another variation in the size of the flow blocking element; and Fig. 7 is a side view partly in section of another embodiment for an enhanced flow drill bit including means for substantially utilizing part of the effects of the hydraulic transients that are created.
Description of the Preferred Embodiment Referring to the drawing and in particular to Fig. 1, the enhanced circulation drill bit D is illustrated in.
Soperating position at the bottom B of the borehole generally designated as H. An additional embodiment D-l for an enhanced circulation drill bit is illustrated in Fig. 7 and will be described after drill bit D is fully described. The drill bit D is mounted at the end of a drill string which is generally designated as S.
Typically, the drill string S consists of a series of drill pipes screwed together to provide a mechanical connection and internal passageway from the drilling rig at the surface down to the bottom of the drill string and to the drill bit D attached at the end of the drill string. The actual final joint of the drill string S may be a drill bit coupling joint or a heavier type of drill pipe known as drill collar. Whether the end of drill string S is typical drill pipe, a drill bit coupling or joint or drill collar, each of these types of joints terminate in an internally threaded "box" end portion designated as 10. The enhanced circulation drill bit D of the preferred embodiment of this invention is threadedly WO 88/01007 PCT/US86/01619 -6attached to the internally threaded end portion 10 of the drill string S. This drill string type S includes an inter'al bore extending all the way from the surface rig down to the drill bit to allow for the flow of drilling fluid downwardly into the drill bit D in a well-known manner.
The enhanced circulation drill bit D of the preferred embodiment of this invention is provided for enhancing the removal of drill bit cuttings such as C-l and C-2 which have been ground and/or cut out of the earth by the drill bit D. The drill bit D includes an upper or first generally cylindrical body section lla and a lower or second generally cylindrical body section llb formed integrally with the upper body section lla, The upper body section lla is frusto-conical and has an outer, upper and inwardly tapered surface 12a threaded for threaded engagement with the internally threaded end portion 10 of the bottom of the drill string S. The upper body section lla further includes an internal bore 14 formed by cylindrical internal wall 12b, the bore wall 12b terminating in a bottom circular flat surface 12c. The bore 14 is formed by the internal cylindrical wall 12b and bottom circular wall 12c.
The lower body section llb is integrally formed with the upper body section lla and includes a generally cylindrical main lower body portion 15a having three circumferentially spaced support legs such as depending downwardly from the main lower body portion Referring to Fig. 1, only support leg 15b is actually shown but it is understood that there are three support legs such as 15b circumferentially spaced 1200 apart about the bottom of the main lower body portion 15a. In a manner known in the art, each of the support legs such as has a cone-type cutter 16 mounted onto an internal support surface 15c for rotation in response to rotation of the drill string S. Typically, the cone-type cutters 16 are mounted by sealed bearings to provide for rotation WO 88/01007 PCT/US86/01618 -7and engagemiant of the drill bit against the earth in response to rotation of the drill string. Although there are many patents directed to various features of the mounting of cone-type cutters, the reader is referred for the purposes of example only to the previously mentioned U.S. patents 3,216,514; 4,114,705 and 3,897,836 all which disclose various bearings and seals for mounting the cone-type cutters.
The 'lower body section llb further includes three circumf erenti ally spaced nozzle landings such as 17 which extend downwardly and provide a bottom nozzle face 17a in between each of the depending support legs 15b for the cone-type cutters 16. Three passageways such as 18a-c are formed into the, lower body section 1lb for providing the fluid communication between the upper body section bore 14 and the bottom-~ B below the drill bit D. Each of the pa ssageways, 1.a illustrated in Fig. 2. and 18a-c illustrated in Fig. 3 terminate at their upper end opening 19b into the circular bottom 12c of the upper body section bore 14. The passageways 18a-.c each extend in a generally 'IS" direction in cross-section (Fig. 1) downwardly and terminate in an opening 19a in the landing faces such as face 17a of each of the three landings such as 17. The passages are round in cross-section and have mounted at their lower end 19a a constricting flow nozzle insert whioh includes an outer portion of constricted diameter to increase the velocity of fluid exiting through each passageway. The flow of fluid outwarxdly from the passageway 18a of Fig. 1 is schematically illustrated by a series of' directional arrows 21. Fluid is circulated through passageways 18a-c down into the area around the cone-type cutters such as 16 and then upwardly in the recessed area between the three depending support legs such as if the drill cuttings such as C-1 are not sufficiently removed, the drill cuttings tend to be re-ground by the drill bit thus creating inefficiency and i-~.l-lill~- I YYIYI~~~~- WO 88/01007 pCT/US86/01619 -8loss of effective penetration. However, the drill bit D of the preferred embodiment of this invention further includes a flow response means generally designated as F mounted in the upper body section bore 14 for intermittently opening and closing the passageways 18a-c in some combination in response to the velocity of fluid entering the upper body section bore 14 in order to provide for the delivery of intermittent high velocity flow outwardly of one or more of the nozzles 18a-c to I0, enhance cross circulation and removal of drill bit cuttings out of the path of the rotating drill bit D.
The drilling fluid typically circulates downwardly through the passageway in the drill string S and through a drill bit such as D and outwardly of variously placed nozzles. In the embodiment illustrated, the fluid circulates downwardly through the passageway in the drill string S through the upper body section bore 14 of the drill bit D and outwardly through the passageways 18a-c into the newly created borehole area bottom B wherein the cone-type cutters 16 are cutting into the earth's formations. The flow response means F is provided for alternately opening and closing flow through one or more of the openings 18a-c in order to cause a channeling of flow at increased pressure and velocity through various of the passages 18a-c. The flow response means F includes a rotation means generally designated as 25 mounted within the upper body section bore 14 for rotating therein in response to the flow of fluid entering the bore, The rotation means includes a flow blocking means illustrated in particular in Figs. 4-6 and generally designated by the number 26 mounted with the rotation means 25 for rotation therewith. The flow blocking means 26 provides for the intermittent blocking of the flow into two, but less than all of the passageways 18a-c from the upper body section bore 14 as the rotation means 25 rotates. A flow director means generally designated as 27 is mounted upstream of WO 88/01007 PCT/US86/01618 -9the rotation means for directing fluid flow against the rotation means 25 to cause rotation of the rotation means.
The rotation means 25 is a cylindrically-shaped rotor having a rounded upper end. The rotation rotor 25a is cylindrical in configuration such that an annular space is created between the outside surface of the rotor 25a and the internal wall 12b of the upper body section bore 14.
The rotation rotor 25a is mounted for rotation within the bore 14 by a thrust and radial bearing mounting member 28 which is mounted into the lower body section and extends upwardly at the center of the circular bottom face 12c of the bore 14. This mounting member 28 receives a support bearing 29 which is mounted in a recess in the bottom portion of the rotor 25a whereby the bearing support member 25 and the thrust and radial bearing mount member 28 cooperate to provide means mounting the rotor for rotation.
Referring to Figs. 1 and 2, rotor 25a has mounted thereon a plurality of circumferentially spaced vanes which extend radially outwardly from the outside surface of the rotor 25a into the annular area between the rotor and the bore wall 12b. The vanes 30 are circumferentially spaced about the rotor 25a and include a fluid impinging surface 30a which receives fluid flow that drives the vanes and imparts rotational motion to the rotor The flow director means 27 comprises first and second concentric stationary mounting rings 31a and 31b having welded or otherwise attached between the mounting rings a plurality of static vanes 32 which thus extend radially between the mounting rings 31a and 31b. Each of the vanes 32 includes a fluid impinging surface 32a which is inclined in a direction opposite to the fluid impinging surface 30a of the rotor vanes 30 whereby fluid is directed by the static vanes surfaces 32a in a dire-tion to impinge against the rotor vane surfaces 30a in order to cause rotation of the rotor 25a. The concentric mounting u~ WO 88/01007 PCT/US86/01618 rings 31a and 31b cooperate with the static vanes 32 connected there between to provide a static vane mount means fixedly attaching the vanes 32 for directing fluid flow against the rotor vanes 30. Set screws are provided for threaderly engaging the outer mounting ring 31a and the upper portion of the upper body section lla for holding the moiunting rings 31a and 31b in position.
Therefore, the static vanes 32 are mounted in the annular space between the rotor and the internal cylindrical wall 12b of the bore 14 to direct fluid entering the anrnlar space downwardly and at an angle of incline to directly impinge upon the rotor vanes 30 and cause rotation of the rotor. The static vanes create a directional vortex of flow to direct against the vanes of the rotor and then continue downwardly in the annular space between the rotor and bore wall 12b toward the first openings 19b of the passages 18a-c.
Flow blocking means generally designated-in Fig. 1 as 26 are mounted onto the bottom of rotor 25a and extend radially outwardly from the rotor into the annular space between the rotor and the interior wall 12b of the bore 14 for rotation with the rotor and intermittent blocking of one or more of the passageways 18a-c. Referring to Figs.
4-6, various configurations for the flow blocking means 26 are provided. The flow blocking means includes one or more radially extending flanges or lobes such as 26a and 26b in Fig, 4 which extend radially outwardly into the annular space between the rotor 25a and the internal bore wall 12b. Referring to Fig, 4, the lobes 26a and 26b each have a circumferential arc of approximately 450. The two lobes are spaced apart a circumferential arc of 120°. In operation, rotation of the rotor 25a will cause the lobes 26a and 26b to cover two of the ports 18a-c at one time thereby concentrating flow in the remaining open passageway and thus increasing the pressure in the remaining open passageway to cause an intensification of the resultant flow through this passageway, This WO 88/01007 PCT/US86/01618 -11intensification causes an effect which enhances cross flow of the drilling fluid leaving the temporarily open passageway such as 18a illustrated in Fig. 1 thereby enhancing cross flow in the direction of arrows 21 and removal of cuttings such as C-l and C-2, Referring to Fig, 5, an alternate design for the flow blocking means 26 is illustrated which includes a lobe 26a having the 450 circumferential arc and a lobe 26c having greater than a 450 arc. Referring to Fig. 6, a single lobe 26d is illustrated which has a circumferential arc greater than 120° but less than 1800. In each instance, rotation of the rotor 25a will cause alternate opening and closing of the passageways 18a-c in some combination to thereby concentrate flow through less than all three openings intermittently to cause pressure and velocity concentration through the remaining openings such as 18a to thereby create cross flow and cause a greater impact of the fluid against the bottom of the borehole to further enhance drilling. It is within the scope of this invention to utilize various numbers and arc sizes of lobes to create various combinations of pressures and velocities as necessary to operate under varying drill conditions.
The advantages of this invention can be described in terms of the following formulas recognized to apply to downhole drilling fluid circulation. The mud flows through the drill string to the drill bit at constant volume due to positive displacement pumps. Therefore, whenever all of the flow is channeled through one bore the flow rate remains constant and therefore in accordat.,e with the following formula, the jet velocity of the channelized flow increases due to the decrease in An V 0.32086 0 n
A
n Accordingly, the increase in the jet velocity in an increase in the jet impact force as follows WO 88/01007 PCT/US86/01618 -12- I 0.000516 p Q Vn Nomenclature: Q Circulation Rate (gpm) p (rho) Mud Weight (Ib/gal)
A
n Area of Nozzle (in 2 V_ Jet Velocity (ft/sec) f Jet Impact Force (lb) In this manner, the maximum hydraulic energy available from the constant volume flow is obtained resulting in a greater impact and velocity and a greater circulation of cuttings outwardly through the annulus through the intermittent application of the mud flow outwardly of the single nozzle. The increased force of impact and increased velocity hitting the bottom of the Shole causes a deflection within the hole which further i 15 enhances the cross-flow.
Referring now to Eig. 7, a second embodiment D-1 for an enhanced circulation drill bit is illustrated. This second embodiment is identified as D-1 and where ever applicable, the same numbers and letters will be used to describe this second embodiment D-l as were used to describe the first embodiment D.
It has long been known that the sudden stopping of a flow of fluid, such as through an immediate closing of a valve, may cause the pressure to rise not only as a result of the valve closure itself but also as a result of the creation of hydraulic transients. Such hydraulic transients are pressure waves that are created by the sudden closing of a valve and reverberate upstream to reflect off of any reflecting surface. Such hydraulic transnts may be created in the drill bit D due to the sudden closing off of any of the passageways 18a-18c, thus causing hydraulic transients to travel within the internal bore 14. The second embodiment D-1 for an improved enhanced circulation drill bit is designed with the principal features of the first embodiment D and additionally includes means for substantially utilizing WO 88/017 PCT/US86/0 1618 -13part of the effects of the reverberating pressure surges which are caused by the flow blocking of any of the passages within the tool body.
Referring to Fig. 7, the embodiment D-l is adapted to be attached to the drill string S in a manner similar to the embodiment D. The drill string S includes female or box type threads 10 for receiving the body generally designated as 50 of the drill bit D-l. The body includes an upper body section 50a which is frustro-conical and has an outer, upper and inwardly tapered surface 50b which is threaded to be screwed into threaded engagement with the internal threads 10 for the drill string S. The body 50 further includes an intermediate body section 50c and an lower body section 50d. The body sections 50a, c and d are integrally formed and are typically machined from a forged, steel member.
Similar to lower body section llb of embodiment D, the lower body section O50d includes three circumferentially spaced support legs 15b downwardly depending from the main lower body section 50d. Referring to Fig. 7, only the support leg 15b is actually illustrated but it should be understood that there are three such support legs such as 15b circumferentially spaced 1200 apart about the bottom of the lower body section 50d. As is known in the art, each of the support legs such as 15b includes a cone-type cutter 16 mounted by sealed bearings to provide for rotation and engagement of the drill bit D-l against the earth in response to rotation of the drill string S.
The lower body section 50d includes three circumferentially spaced nozzle landings 17 which extend downwardly and provide a bottom nozzle face 17a in between each of the depending support legs A bore generally defined as 51 is machined internally of the upper and intermediate body sections, 50a ard to provide fluid communication between the bore in the drill string and the bottom of the bore hole in a manner WO 88/01007 PCT/US86/01618 -14to be further described hereinafter. The internal bore 51 includes an upper bore section 51a generally located in the upper body section 50a and a lower or intermediate bore section 51b generally located in the intermediate body section 50c of the drill bit. The upper bore section 51a, as viewed in the cross section of Fig. 7, includes a generally cylindrical portion 52a which joins a converging inverted, frustro-conical surface portion 52b. The intermediate internal bore portion 51b is formed of a generally cylindrical wall 53a which terminates in a bottom circular face 53b. The intermediate bore section 51b further includes an upper outer rim or ledge which is generally designated as 53c which is annular in i configuration and joins to the inverted frustro-conical internal bore portion 52b. The internal diameter of the cylindrica-. wall portion 53a of the intermediate or lower bore 51b is approximately equal to the diameter of the cylindrical- portion 52a of the upper bore 51a. For purposes of definition, the entire body 50 as well as the bore sections 51a and 51b have a center line 54.
A plurality of three passageways such as 55a extend from the bottom face 53b of the intermediate bore 51b through the lower body portion 50d and open to the surfaces of the land 17. In the cross sectional view of Fig. 7, it is seen that the passageway 55a is generally S-shaped and is provided to provide fluid communication from the internal bore sections 51a and 51b through the remainder of the tool body downwardly to the bore B of the borehole. As best illustrated with respect to the embodiment D, there are three passageways but only Spassageway 55a is illustrated in Fig. 7; however, it should be understood that there are three passageways which are circumferentially spaced at 120° with respect to each other in a manner similar to the passageways 18a-18c as illustrated in Fig. 3 with respect to the first embodiment D. Each of the passageways 55a terminate in a nozzle 20 as previously described with respect to the WO 88/01007 PCT/US86/01618 first embodiment D. Each of the passageways such as is cylindrical in cross section such as illustrated with respect to Fig. 3 and thus each passageway has a center point 55b in the plane of bottom face 53b.
The annular ledge 53c of the intermediate internal bore section 51b will now be particularly described. In the cross sectional view of the annular surface 53c illustrated in Fig. 7, two sections of the surface 53c are actually illustrated. The configuration of each of said surfaces is a parabolic reflecting surface or paraboloid.
The parabolic surface 53c is a segment of a parabolic curve generated according to the formula for a parabola 2 y 4ax wherein a is the focal point of the parabola and x and y are coordinates. The coordinate is actually parallel to center line 54 and the coordinate is perpendicular thereto. For the purposes of generation of the parabolic surface 53c, the focal point a is the distance along line 56 between the center point 55b of the intersection of opening 55a with bottom bore surface 53c to the vertex for the parabolic curve of surface segment 53c. This distance is illustrated by line 56, sometimes known as the axis, with respect to the passageway 55a. The parabolic surface which is illustrated in two portions in the cross-sectional view of Fig. 7 is then generated as an annular surface about bore center line 54. The purpose of the annular, parabolic surface is to provide a reflecting surface to receive transient pressure surges and reflect some of the transient pressure surges to the focal point 51b of the passageway 55a. In this manner, a portion of the transient pressure surges are reflected back into the passageway such as 55a for transmission outwardly of the passageways unless blocked.
The flow director means 27 is also utilized in the embodiment D-l. The flow director means 27 includes first and second concentric, stationary mounting rings 31a (outer) and 31b (inner) having welded or otherwise 4 iL 1- WO 88/01007 PCT/US86/0161- -16 attached between the mounting rings a plurality of static vanes 32 which thus extend radially between the mounting rings 31a and 31b.
A flow rotation means generally designated as 60 is a rotor 61 which is mounted within the bore sections 51a and 51b for the purpose of rotating in response to fluid passing through the flow director means 27. The rotor 61 has the general configuration of an hour glass and includes an upper portion 61a and a lower portion 61b.
The upper portion 61a terminates in an upper dome-shaped Sor rounded upper end 61c which fits within the inner concentric ring 31b of the flow director means 27. The upper rotor portion 61a is generally cylindrical in configuration and converges to an intermediate point of smallest diameter located generally in the plane of intersection between the upper bore 51a and the lower bore 51b, which is generally a plane which passes through the annular parabolic surface 53c. The lower rotor portion 61b completes the'hour glass configuration and includes an upper portion of reduced diameter and a lower portion which is generally cylindrical. The lower portion 61b of the rotor terminates in flow blocking lobes generally designated by the number 26, which are identical to the flow blocking means and lobes previously described with respect to the embodiment D. Further, the mounting of the rotor 61 is similar to the mounting of the rotor 25 of embodiment D and therefore the rotor 61 is mounted for rotation within the lower bore section 51b by a thrust and radial bearing mounting member 28 which is mounted into the lower body section and extends upwardly at the center of the circular bottom face 53b of the bottom bore section 51b. The mounting member 28 receives a support bearing 29 which is mounted in a recess in the bottom portion of the bottom rotor section 61b whereby the rotor 61 is mounted for rotation by the radial mount member 28 at the bottom and at the top by the intetmal cylindrical wall of the inside concentric ring 31b. Rotor 61 includes a plurality WO 88/01007 PCT/US86/01618 -17of vanes 63 positioned circumferentially about the upper rotor section 61a and angled so as to rotatingly drive the rotor in response to fluid flow in a manner similar to the rotational movement described with respect to the rotor of the embodiment of Fig. 1 as illustrated in particular in Fig. 2.
It has previously been described, with respect to operation of the embodiment of Figs. 1-6, that the enhanced flow drill bit D is designed to channel substantially all the flow through one of the passageways 18a-c for the purpose of concentrating flow to cause pressure and velocity concentration and thereby create a greater cross flow and a greater impact of the fluid against Lhe bottom of the bore hole B to further enhance drilling. The configurations for the lobes of the flow blocking means 26 have previously been described with respect to Figs. 3-6. Under the various configurations, flow is channeled interimittently through one or more passageways as other passageways are blocked by the location of a lobe section such. as 26c in Fig. 5 over a passageway. Turning now to the present embodiment, when a lobe such as 26c is positioned over a passageway such as and flow is blocked through the passageway, pressure surge waves are created which travel upstream and reflect off of the annular, parabolic surface 53c. Such pressure surges can reverberate between reflecting surfaces any number of times, until dissipated, and some of these will enter passageway openings 19b that are not blocked at the moment to further enhance flow through passageways The creation of transient pressure surges or pressure waves tends to increase the pressure caused by the blocking of flow through one or more passageways such as according to the following formula, a Jk p AH= a AV g WO 88/01007 PCT/US86/01618 -18wherein: a velocity of pressure wave (fl,/sec) K bulk modulus of fluid (Ib/ft 2 p Rho, density of fluid (lb/ft 3 A change H pressure (head in feet) g acceleration of gravity (ft/sec 2 V velocity of fluid (ft/sec).
According to these formulas, pressures and flow velocities within the bores 55a-c are increased not only because of the blocking off of flow through the passageways but also because of the induced created pressure surges.
The annular parabolic surface 53c which extends radially inwardly from the cylindrical wall 53a of the intermediate bore section 51b is provided to receive and reflect such pressure surges or waves downwardly (as viewed in the figure) and to focus such waves at the focal point 55b located in the center of each passageway such as 55a. Such annular surface 53a is in general axial alignment with said circumferentially positioned passageways. The focusing of such pressure waves at is accomplished due to the scientifically established fact that parabolic surfaces reflect parallel waves back to the focal point of a parabolic surface. By constructing the annular parabolic surface segment 53a about a focal point at the center of each of three passageways such as 55a, a portion of the pressure surges are reflected back to such focal points and thus outwardly of such passageways when they are opened. In this manner, some of the hydraulic transients within the intermediate bore 51b are directed through the passageways 55a-c thereby creating a greater efficiency of channelization of the flow outwardly of the body. Such greater channelization of the flow thus provides for more efficient cross flow and more efficient circulation of cuttings outwardly through the annulous during drilling operations.
I WO 88/01007 PCT/US86/01618 -19- The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction may be made without departing from the spirit of the invention.
For example, the type of drill bit body illustrated in the drawings is a cone-type bit body having three dependent legs. The embodiments of this invention are applicable to other types of drill bit bodies which are generally cylindrical such as diamond bits and the newer polycrystalline diamond bits utilizing a series of studs having polycrystalline diamond compact surfaces.
While the drilling fluid has been described as liquid, it is within the scope of this invention to utilize a gas such as air as the drilling fluid. It should be understood that, although the drill bits D and D-1 of the preferred embodiments of this invention have been described with respect to a vertical borehole utilized in oil and gas well drilling, the drill bits D and D-l may be used in variously directed boreholes for oil and gas well drilling. Additionally, the drill bits D and D-l of the embodiments of this invention may be used ini horizontal operations such as in mining and oil and gas drilling wherein drill bits are utilized to form horizontal boreholes.

Claims (1)

  1. 4. WO 88/01007 PCT/US86/0r61& -22- i 9. The structure set forth in claim 8, wherein: 2 said rotor is mounted centrally of said upper 3 body section bore, said upper body section bore and said 4 rotor being cylindrical such that an annular flow space is formed there between; 6 said rotor vanes and said static vanes being 7 mounted in said annular space. 1 10. The structure set forth in claim 8, including: 2 said rotor vanes and said static vanes having 3 opposing inclined surfaces. 1 11. The structure set forth in claim 1, including: 2 said lower body section includes spaced nozzle 3 landings depending downward; 4 each nozzle landing having said second end of one of said passageways opening outwardly in order to 6 deliver fluid flowing from said bore in said upper body 7 section through each of said passageways. 1 12. The structure set forth in claim 5, wherein said 2 flow blocking element is: 3 a first radially extending lobe having an arc of 4 about 450; and a second radially extending lobe having an arc 6 of about 450, said second radially extending lobe being 7 positioned about 1200 from said first radially extending 8 lobe. 1 13, The structure set forth in claim 5, wherein said 2 flow blocking element is: 3 a first radially extending lobe having an arc of 4 about 450°; and a second radially extending lobe having an arc 6 of greater than 1 14. The structure set forth in claim 5, wherein said 2 flow blocking element is a radially extending lobe greater 3 than 120° but less than 180 0 1 15. The structure set forth in claim 1, including; 2 flow director means for directing fluid flow to 3 said flow response means. iilXii;ii-I; il WO 88/01007 PCTUS86/01618 -23- 1 16. An enhanced circulation drill bit adapted to be 2 mounted at the end of a drill string for enhancing the 3 removal of d:rill bit cuttings from the bottom of the 4 borehole being drilled, comprising: a drill body having a first body section adapted 6 to be attached to a drill string and a second body section 7 having mounted therewith a plurality of cone-type cutters; 8 said first body section having a bore therein 9 adapted to be in fluid communication with the bore of the drill string to receive drilling fluid flowing downwardly 11 through drill string; 12 said second body section having at least two 13 passageways therethrough, each of said passageways having 14 a first and a second end opening, said passageways being in fluid communication with said b re of said first body 16 section at said first end opening and said passageways 17 extending through said second body section to a second end 18 opening; 19 flow response means mounted in said first body section bore for intermittently opening and closing said 21 passageways in response to the flow of fluid entering said 22 upper body section bore in order to intermittently deliver 23 concentrated high velocity flow outwardly of said second 24 end of a passageway to the end of the borehole to increase jet impact force and enhance cross circulation and removal 26 of drill bit cuttings; 27 said flow response means including rotation 28 means mounted with said first body section bore for 29 rotating therein in response to fluid entering said bore and flow blocking means mounted with said rotation means 31 and rotating therewith for intermittently blocking flow to 32 said passageways as said rotation means rotates; and 33 pressure surge reflection means mounted with 34 said bore of said first body section for substantially utilizing at least a portion of pressure surges within 36 said bore created by said flow blocking means 37 intermittently blocking flow to said passageways, WO 88/01007 PCT/US86/016 18, -24- 1 17. The structure set forth in claim 16, including: 2 flow director means for directing fluid flow 3 against said rotation means to cause rotation thereof. 1 18. The structure set forth in claim 16, including: 2 said second body section having three 3 passageways extending therethrough, said passageways being 4 in fluid communication with said bore of said first body section at a first end opening, said passageways extending 6 downwardly to a second end opening in proximity to said 7 cone-type cutters; and 8 said first ends of said passageways are arranged 9 circumferentially in an annular row in said first body bore. 1 19. The structure set forth in claim 16, wherein: 2 said rotation means includes a rotor; 3 rotation mount means is mounted with said rotor 4 and with said drill body for mounting said rotor for rotation in said bore of said first body sections and 6 said flow blocking means including 'a flow 7 blocking element mounted with said rotor and moving 8 circumferentially to intermittently block off flow to one 9 or more of said first ends of said passageways, 1 20. The structure set forth in claim 19, including: 2 said rotor having vanes mounted thereon, said 3 vanes extending radially outwardly for implementing 4 rotation of said rotor in response to fluid flow. 1 21. The structure set forth in claim 19, wherein 2 said flow blocking element is: 3 a first radially extending lobe having an arc of 4 about 45°; and a second radially extending lobe having an arc 6 of about 45°, said second radially extending lobe being 7 positioned about 1200 from said first radially extending 8 lobe. i 1 t_ i I WO 88/01007 PCT/US86/01618 1 22. The structure set forth in claim 19, wherein 2 said flow blocking element is: 3 a first radially extending lobe having an arc of 4 about 450; and a second radially extending lobe having an arc 6 of greater than 1 23. The structure set forth in claim 19, wherein 2 said flow blocking element is a radially extending lobe 3 greater than 1200 but less than 180°. 1 24. The structure set forth in claim 19, including: 2 said rotor mounted for rotation in said first 3 body section bore; 4 said first body section bore including first and second bore sections and said rotor being mounted in both 6 sections; 7 said flow blocking elements mounted with said 8 rotor in said second bore section; and 9 said pressure surge reflecting means including a reflective surface in said second bore section for 11 receiving and reflecting transient pressure surges created 12 by said flow blocking element blocking off flow through 13 one or more first ends of said passageways. 1 25. The structure set forth in claim 24, including: 2 said reflective surface is annular and is in 3 generally axial alignment with said passageways. 1 26, The structure set forth in claim 25, including: 2 said reflective surface is parabolic in cross- 3 section. 1 27. The structure set forth in claim 26, including 2 said parabolic surface has as a focal point the center of 3 the first end of said passageways. -i
AU62223/86A 1986-08-04 1986-08-04 Enhanced circulation drill bit Ceased AU599044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU62223/86A AU599044B2 (en) 1986-08-04 1986-08-04 Enhanced circulation drill bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU62223/86A AU599044B2 (en) 1986-08-04 1986-08-04 Enhanced circulation drill bit

Publications (2)

Publication Number Publication Date
AU6222386A AU6222386A (en) 1988-02-24
AU599044B2 true AU599044B2 (en) 1990-07-12

Family

ID=3747200

Family Applications (1)

Application Number Title Priority Date Filing Date
AU62223/86A Ceased AU599044B2 (en) 1986-08-04 1986-08-04 Enhanced circulation drill bit

Country Status (1)

Country Link
AU (1) AU599044B2 (en)

Also Published As

Publication number Publication date
AU6222386A (en) 1988-02-24

Similar Documents

Publication Publication Date Title
US4673045A (en) Enhanced circulation drill bit
US4531592A (en) Jet nozzle
US4819745A (en) Flow pulsing apparatus for use in drill string
US5632349A (en) Vortex drill bit
US5803187A (en) Rotary-percussion drill apparatus and method
US4440247A (en) Rotary earth drilling bit
US4436166A (en) Downhole vortex generator and method
AU2016206187B2 (en) Multi fluid drilling system
EP0591196A1 (en) Method and apparatus for jet cutting
US3414070A (en) Jet drilling bit
CN111577173A (en) Self-rotating-magnetic-transmission underground detritus bed removing tool
JP2012506962A (en) Whirling prevention drill bit, well site system and method of use thereof
CN211008515U (en) Pulse jet rock debris cleaning tool
US4512420A (en) Downhole vortex generator
CN110748311A (en) Pulse jet rock debris cleaning tool
CN104763338B (en) One kind is pulled back reaming assembly and its reaming drilling method
AU599044B2 (en) Enhanced circulation drill bit
CA1263374A (en) Enhanced circulation drill bit
US4363367A (en) Large diameter drill bit
US20230125332A1 (en) Cleaning Tool and Method
CN211448547U (en) Torque-reducing pup joint and drilling tool assembly
JPH01503316A (en) Drill bit with improved circulation power
JP5832897B2 (en) Self-stabilizing and whirl-proof drill bit, bottom hole assembly and system, and method of use thereof
US20230366271A1 (en) Cartridge for a rotary drill bit
RU2078191C1 (en) Drill bit