AU597183B2 - An improved in-line cylinder head for internal combustion engine - Google Patents

An improved in-line cylinder head for internal combustion engine Download PDF

Info

Publication number
AU597183B2
AU597183B2 AU19048/88A AU1904888A AU597183B2 AU 597183 B2 AU597183 B2 AU 597183B2 AU 19048/88 A AU19048/88 A AU 19048/88A AU 1904888 A AU1904888 A AU 1904888A AU 597183 B2 AU597183 B2 AU 597183B2
Authority
AU
Australia
Prior art keywords
intake
valve seat
cylinder head
intake valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU19048/88A
Other versions
AU1904888A (en
Inventor
Michael E. Smith
Richard W. Smith Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autosales Inc
Original Assignee
TFS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/166,521 external-priority patent/US4919092A/en
Application filed by TFS Inc filed Critical TFS Inc
Publication of AU1904888A publication Critical patent/AU1904888A/en
Application granted granted Critical
Publication of AU597183B2 publication Critical patent/AU597183B2/en
Assigned to AUTOSALES, INCORPORATED reassignment AUTOSALES, INCORPORATED Alteration of Name(s) in Register under S187 Assignors: TFS, INC.
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

r: P i 59 S" F 65016 FORM COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATION
(ORIGINAL)
Class Int Class FOR OFFICE USE: 00 o 0 0 4 4 0 t O 0 e o o Complete Specification Lodged: Accepted: Published: Priority: Related Art: Name and Address of Applicant: TFS, Inc.
6077 Back Orrville Road Wooster Ohio 44691 UNITED STATES OF AMERICA Address for Service: Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Complete Specification for the invention entitled: An Improved In-Line Engine Cylinder Head for Internal Combustion The following statement is a full description best method of performing it known to me/us of this invention, including the 5845/3 ti 1 11-1--1 WB-7491 0 4, 4 oW o *0o
C
*0 I
OR,,
o IB *49 AN IMPROVED IN-LINE CYLINDER HEAD FOR INTERNAL COMBUSTION ENGINE RELATED APPLICATIONS This application is a continuation-in-part application of U.S. Patent Application Serial No. 094,125 filed September 8, 1987 which in turn is a continuation of application Serial No. 047,295 filed May 8, 1987 which in turn is a continuation of U.S. Patent Application Serial No. 759,747 filed July 29, 1985 now U.S. Patent 4,686,948 which issued August 18, 1987.
INCORPORATION BY REFERENCE Our prior U.S. Patent 4,686,948 is incorporated herein by reference as well as an article appearing in pages 88-89 of the August 3, 1987 issue of the magazine, BUSINESS WEEK.
15 The present invention relates generally to internal combustion engines of the type operated by combusting a mixture of fuel such as gasoline with air and more particularly to an improved cylinder head and head and valve arrangement which is especially suitable for use with high performance internal combustion engines.
The invention is particularly applicable to a cylinder head having an in-line, push rod valve arrangement and employing wedge-shaped combustion chambers and will be described with particular reference to its use on high performance engines for off-highway vehicular applications such as dragsters and the like. However, the invention has broader applications and, with some modifications, may be used in "limited editions" of mass produced automotive vehicles having high output, performance orientated engines or in commercial vehicle applications. Also, the invention, while 0 C~ WB-7491 particularly suited to an in-line push rod valve train is not necessarily limited to such arrangement, and in principle, can be applied to combustion chambers other than those of a wedge shaped configuration.
BACKGROUND
There is a need for high performance cylinder heads which can be simply retrofitted onto existing short blocks for off-highway, high horsepower automotive application.
There is also a need for a limited, mass production, high performance cylinder heads for "limited editions" of certain automobiles having high performance capabilities which can generate a suitable torque curve over the load speed range.
In addition, there is a need for mass produced high performance, gasoline fueled, internal combustion engines for power generators and commercial truck applications which can compete with diesel engines.
In considering the design of any high performance cyl- 20 inder head, ne that achieves high horsepower coordinated and matched with increased torque, there are a number of basic, engine-valve train as well as head considerations that might be initially considered. For example, it is known that an in-line valve arrangement in the head driven 25 by conventional push rods from a single cam shaft within the short block provides certain inherent features ideally suited for high performance engines of the type this invention relates to which is not present, for example, in an overhead, camshaft arrangement. The basic shape of the combus- 30 tion chamber must be considered (wedge shaped or hemispherical) and it is known that conventional, wedge shaped chambers allow for a flat burn control surface, known as a "quench" surface and it is known to modify the shape of the quench surface to achieve certain distribution of gas flows within the head. Another consideration rests in the shape -2- WB-7491 of the piston head and it is known that flat head pistons are particularly desirable for use with wedge shaped combustion chambers for the applications to which the present invention is particularly suited. The volumetric size and accordingly, the compression ratio, must be established. It is a common practice to achieve an increase in the combustion ratio of the engine by deck milling the mounting surface of the head to reduce the size of the combustion chamber. The actual valve sizes must be established within the confines of the space available in the combustion chamber and then matched to the desired horsepower and the torque.
Once the general design of the head is established by considering factors such as those discussed above, the specific objective becomes one of determining how to contour the combustion chamber and form the runners or intake and exhaust passages in the head to permit adequate ingress and egress of the gases so that the internal combustion engine 8' can adequately "breathe" at high speed. More specifically, o-o when the valve area in the combustion chamber is significantly increased to improve horsepower, eddy flow currents are established, the effects of which hinder the intake of o •8 the gases into and the exhaust of the gases out of the combustion chamber. In addition, since the valves must be o.o placed closely adjacent one another a shrouding effect oc- 88 25 curs therebetween causing an uneven flow of the gases about 8- the valves.
One approach, discussed in the cited article and now 'u almost uniformly followed to improve "breathing" is the use of multiple valves in each combustion chamber. While the S 30 benefits of a multi-valve application for general purpose 88*" automotive use is not questioned, the application of multiple valves for the high performance internal combustion engines to which this invention relates is not practical.
Such an arrangement requires overhead camshafts and the associated timing chain which does not afford the precise WB-7491 opening and closing of the valves at high speed inherently present in the push rod arrangement while also providing a further drain of engine power. More importantly though, is the simple fact that for a given combustion chamber size, two valves can occupy a greater space than three or four valves.
A more sensible approach to provide improved breathing in a two-valve arrangement is set forth in our parent patent. In our prior patent we contoured the chamber, modified the quench surface, and added a mass buildup to a portion of the chamber to achieve a funnelled, increased velocity, gas flow to and from the seats. This dramatically improved the breathing and consequently the horsepower and torque of the internal combustion engine at high speeds in excess of 5,000 rpm). Such problems have been significantly eliminated, in good part, by contouring the combustion chamber to, in effect by funneling the gases to and from the valve seats by an especially configured contour which extended from the seats to the quench surface. In our parent patent and in 20 keeping with the philosophy of increased velocity and mass flow through the valve seats, the exhaust and intake runners or passageways in the head were likewise modified to permit ingress and egress of the gases with as little back pressure as possible. More specifically, the intake valve passageway 25 was modified to provide a flow restriction in the runner or passageway to increase the velocity of the air flow through the intake passageway while maintaining a high mass flow.
It was found in certain high speed instances (well in excess of 5,000 rpm) that the gasoline in the fuel-air mixture ad- 30 mitted into the intake passageway from the fuel injectors did not completely atomize or "splashed" resulting in an uneven burning of the mixture within the chamber. It was also discovered that because of the close spacing between the valves (and despite the funnel contoured shape of the chamber including the mass buildup) at very high speed -4- 5 operation, at which time the exhaust valve is not completely seated while the intake valve is opening (ie valve overlap), a portion of the fuel-air mixture exiting the intake runner through the intake valve was sucked or short circuited out the exhaust valve. This results in a smaller volume of fuel-air mixture within the combustion chamber for combustion purposes than that which would otherwise be available while also exhausting the unburnt mixture as an emission pollutant.
A problem unrelated to the high speed performance of our improved head inherent in all modified, high performance engines is the inability of the internal combustion engine to produce acceptable torque at lower speeds or rpms. This presents a limitation in the use of the cylinder head of our prior invention in commercial vehicles and to some extent, in the high performance, limited edition vehicles occasionally produced by the automobile manufacturers. Again, the approach followed in the art was to increase engine torque by increasing the air flow into the combustion chamber at lower speeds.
SUMMARY OF THE INVENTION It is the object of the present invention to overcome or S substantially ameliorate the above disadvantages.
There is disclosed herein a cast cylinder head for an internal combustion engine, said head including a flat mounting surface and having for each of several In-line circular piston areas: a wedge shaped combustion chamber extending from said mounting surface and defined by i) an especially configured, closed peripheral edge surface 4 co-planar with said mounting surface and forming the opening of said combustion chamber; ii) a concave, contoured first cavity area extending from a Scontinuou's first portion of said peripheral edge surface and tapering into said head and away from said mounting surface at a generally inclined first S"angle; angle; iii) a concave, contoured second cavity area extending from the remaining portion of said peripheral edge surface and tapering into said head and away from said mounting surface at a generally inclined second angle, said second angle greater than said first angle; M/ 8 -6iv) said first cavity area intersecting said second cavity area along a roof line; a frusto-conical intake valve seat in said first cavity area having a major diameter circular edge surface and a minor diameter circular edge surface concentric with an intake valve axis, said major diameter intake edge spaced closer to said mounting surface than said minor diameter intake edge, said intake valve seat further divided, approximately and for the reference purposes, into adjacent sequentially numbered, first, second, third and fourth quadrants, said second and third quadrants generally adjacent said peripheral edge surface, said fourth quadrant generally adjacent said second cavity area; a frusto-conical exhaust valve seat in said first cavity area having a major diameter circular edge surface and a minor diameter circular edge surface concentric with an exhaust valve axis, said major diameter "1.5 exhaust edge spaced closer to said mounting surface than said minor $0 diameter exhaust edge, said exhaust valve seat further divided, 4o00 approximately and for reference purposes, into adjacent, sequentially numbered first, second, third and fourth quadrants, said second and third quadrants generally adjacent said peripheral edge surface, said fourth quadrant generally adjacent said second cavity area and said first quadrant of said exhaust valve seat and said first quadrant of said intake valve seat generally adjacent one another; a spark plug bore in said second cavity generally between said intake valve and said exhaust valve axis; 2 intake passage means in said head for establishing fluid I ,o 0 communication with said intake valve seat and exhaust passage means in said S head for establishing fluid communication with said exhaust valve seat; said first cavity area having an annular exhaust spacing surface concentrically extending from said major diameter exhaust edge in a plane 30 generally perpendicular to said exhaust valve axis and a generally Ssurface to said peripheral edge surface about at least portions of said second and third quadrants for funnelling exhaust gases through said exhaust valve seat; and said first cavity area having an annular intake spacing surface concentrically extending from said intake major diameter edge In a plane
TM
rOSIYIYP !ii
'I
A1
A
-7generally perpendicular to said intake valve axis and a generally arcuate, concave surface extending from said intake spacing surface to said said peripheral edge surface about at least portions of said second and third quadrants for sucking, in an unshrouded manner, a mixture of fuel and air through said intake valve seat.
BRIEF DESCRIPTION OF THE DRAWINGS A preferred form of the present invention will now be described by way of example with reference to the accompanying drawings, wherein: Fig. 1 is a bottom pictorial view of a head constructed in accordance with the present invention; Fig. 2 is an enlarged partial view of the head shown in Fig. 1 with a head gasket in place to illustrate the r t t t 48U a' ft^8 WB-7491 position of the cylinder in the joined block with respect to each of several combustion chambers of the head shown in FIGURE 1; FIGURE 3 is a pictorial view similar to FIGURE 1 with certain portions of the head broken away to better iliustrate the intake passageway of the present invention; FIGURE 4 is a sectional view taken along lines 4-4 of FIGURE 3; FIGURE 5 is a sectional view taken along lines 5-5 of FIGURE 3; FIGURE 6 is a sectional view taken along lines 6-6 of FIGURE 3; FIGURE 7 is a sectional view taken along lines 7-7 of FIGURE 3; FIGURE 8 is a cross-sectional, pictorial schematic view similar to FIGURE 7 showing the flow of the air-fuel mixture o! past the intake valve during the intake stroke of the internal combustion engine; FIGURE 9 is an enlarged, partial bottom view looking into the combustion chamber of the present invention and showing the flow of the air-fuel mixture past the intake valve; FIGURE 10 is a schematic end construction view showing o' the intake valve in the present invention in the open position and illustrating the novel contoured surfaces of the inner combustion chamber at the intake valve as well as the configuration of the intake valve's passageway; FIGURE 11 is an end schematic view of the exhaust valve of the present invention similar to that of the intake valve 30 described in FIGURE FIGURE 12 is a schematic end construction view showing the novel shape of the intake passageway of the present invention as compared to the intake passageway shown in our parent patent; I; WB-7491 FIGURE 13 is a partial side view showing the opening to the intake passageway of the present invention compared to the opening employed in the parent patent and taken along lines 13-13 of FIGURE 12; FIGURE 14 is a side schematic view of the intake passage taken along lines 14-14 of FIGURE 12; FIGURE 15 is an end view illustrating the basic geometry used in constructing the intake passageway of the present invention; FIGURE 16 is an end view of the exhaust passage of the present invention similar to that shown for the intake passageway in FIGURE 12 and comparing the exhaust passage with the standard exhaust passage of a production cylinder head often used on an engine to which the present invention is adapted as well as the unique metal build-up between the .r quenching surface and the valve seat; lr FIGURE 17 is a geometric construction view showing the general configuration of the combustion chamber contoured in 2, accordance with the present invention; FIGURE 18 is a view illustrating the construction of the combustion chamber's opening or quench surface; FIGURE 19 is a schematic top view of the cylinder head modified for both high speed-low speed operation of the internal combustion engine; 25 FIGURE 20 is a schematic end view of the intake chamber taken along lines 20-20 of FIGURE 19; FIGURE 21 is a schematic, top section cross-sectional view of the intake chamber of the adaptation shown in FIGURE 19 taken along lines 21-21 of FIGURE 20; and FIGURE 22 is a top schematic view similar to FIGURE 19 and showing a modification of the intake passageway shown in FIGURE 19.
Cl- WB-7491 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings wherein the showings are for the purpose of illustrating the present invention, there is shown a cast cylinder head 10 of a conventional, generally rectangular configuration. Head 10 as illustrated is for use in a V-8 engine and dimensions cited in this specification are applicable to the 302 cubic inch Ford V-8 engine although the invention is not limited in scope to that particular engine or to a V-8 engine in general. Since a V-8 application is disclosed, head 10 is adapted to be mounted in a conventional manner to the short block of the V-8 engine to cover or cap one bank of four separate cylinders, each containing a reciprocating piston. A second head is 0 00 06,o 15 then used to cap or cover the other bank of four cylinders with their associated pistons. Because the heads 10 are j ao identical for each cylinder bank, only one head will be de- Referring now to FIGURE 1 which shows an underside 20 view, head 10 has a generally flat mounting surface 12 and extending from one side of mounting surface 12 is an intake manifold surface 13 to which an intake manifold (not shown in FIGURE I but see the alternative embodiment shown in FIG- URE 19) is mounted in a conventional manner and on the opposite side of mounting surface 12 is an exhaust manifold surface 14 to which the headers of the exhaust manifold (not shown) are also mounted in a conventional manner. End surfaces 16, 17 extend upwardly from mounting surface 12 to define the general rectangular shape of head 10. Extending from mounting surface 12 into head 10 are a plurality of combustion chambers 20, specifically four combustion chambers are illustrated for head 10. Since each combustion -i chamber 20 is identical to the other, only one combustion chamber 20 will be described.
ID-
o i WB-7491 As best shown in FIGURE 8, mounting surface 12 of head is bolted in a conventional manner to short block 22 of the V-8 engine with a head gasket 23 interposed between mounting surface 12 and block 22. When mounted to block 22, combustion chamber 20 is in overlying registry with cylinder containing a reciprocating piston 26 which is shown (and which importantly for the operation of the present invention) to be of the flat head, high performance racing type piston. Flat head 27 of piston 26 cooperates with the shape of combustion chamber 20 to produce a thorough combustion of a fuel-air mixture compressed within combustion chamber during the ignition or combustion cycle stage. The registry or position of combustion chamber 20 with reference to flat head 27 is best showm in FIGURES 2 and 3 wherein a circle 15 indicating the outline of flat head 27 is drawn relative to 2 the overlying relationship of combustion chamber 20. Specific reference may be had to FIGURE 3 which shows a direct view into combustion chamber 20. There is shown a slight shift of combustion chamber 20 at reference character 32 20 relative to circle 30 indicating that combustion chamber is not precisely centered relative to cylinder 25 and piston 26 for reasons which will be hereafter explained.
The shape of combustion chamber 20 forms an essential °o part of the present invention and will be described in a general sense at this time. Combustion chamber 20 extends a into head 10 from an opening in mounting surface 12 defined by a peripheral edge surface 35 of an especially configured closed shape. Generally, combustion chamber 20 extends inwardly into head 10 from peripheral edge surface 35 in the asww 30 form or configuration of a wedge shaped cavity. The configuration of the wedge shaped cavity may best be seen by viewing any of the end section views and may be generally defined, for example, with reference to FIGURE 4, as comprising a first cavity area tapering inwardly into combustion chamber 20 generally along first cavity area center line 38 WB-7491 and a second cavity area tapering inwardly into combustion chamber 20 along second cavity area center line 40. The first cavity area intersects with the second cavity area at a roof line 42 which represents the deepest point of combustion chamber 20 relative to mounting surface 12 and which is generally not a straight line but more in the nature of an undulating line as it extends from one side to the other side of peripheral edge 35. Actually "line" is a misnomer since combustion chamber 20 is constructed so that the first cavity area is smoothly blended into the second cavity area at the "roof" of the cavity. For explanation purposes, the blended surface can be viewed as a roof line, i.e. 42.
First cavity area center line 38 extends or tapers into head at a lesser acute angle relative to mounting surface 12, 15 then does second cavity area center line 40 and thus first cavity area is significantly larger than the second cavity area. In a stock cylinder head the lesser acute angle is about 200, while in the present invention, an optimum angle of about 170 is used.
20 Formed in the first cavity area is an intake valve opening 44 and closely adjacent thereto an exhaust valve opening 45. Intake valve opening 44 is defined by a -frusto-conical intake valve seat 47 having a major diameter I°7. edge 48 and minor diameter edge 49 and exhaust valve opening 45 is similarly defined by a frusto-conical exhaust seat 51 having a major diameter edge 52 and a corresponding minor diameter edge 53. For purposes of the preferred embodiment, head 10 is cast iron with integrally formed intake and exhaust valve seats 47, 51 which are hardened by conventional .i..04 30 heat ti eating processes. Alternatively, head 10 could be cast aluminum with frusto-conical valve seat inserts post- A tioned within appropriately formed recesses in intake and exhaust valve openings 44, 45 is disclosed in our parent patent, U.S. Patent 4,686,948. Intake valve seat 47 is con- i centrically positioned relative to an intake valve center WB-7491 line 55 while exhaust valve seat 51 is concentrically positioned relative to an exhaust valve center line 56.
As best shown in FIGURES 4 and 5, an intake valve 59 and an exhaust valve 60 is provided for seating against and sealing intake valve seat 47 and exhaust valve seat 51 respectively. Intake and exhaust valves 59, 60 are modified, high performance type poppet valves having circular head portions 62, 63 respectively and stem portions 65, 66 respectively which permit the intake and exhaust valves 59, to reciprocate within intake and exhaust valve guide passages 68, 69 along intake and exhaust valve center lines 55, 56 respectively. Reference should be had to the specifications of our parent patent, U.S. Patent 4,686,948 and to FIGURES 3 and 4 thereof, for a description of the valve train which is preferably employed with the present invention for opening and closing intake and exhaust valves 59, 60. Generally, a 0900 push rod is provided for each intake and exhaust valve and too. is actuated preferably in a generally vertical upward and downward direction by a central camshaft positioned in a 20 lower portion of the engine. The push rods actuate a high performance rocker arm 70 which is provided with a roller 71 for pushing downwardly on a valve 59, 60 against the bias of a spring 73 to move the head portion 62, 63 of the valve 59, 60 away from its seat 47, 48. As noted above, this valve arrangement is preferred since it obviates the need of the timing chain to drive overhead camshafts avoiding the power drain associated therewith while providing a more precise, mechanically direct system insuring precise opening and closing of intake and exhaust valves 59, 60 during high 30 speed operation. Such arrangement is also less expensive.
Unlike the valve arrangement disclosed in the parent patent, intake and exhaust valve center lines 55, 56 are parallel with one another and are also parallel with the valve center lines of the other combustion chambers to provide a more efficient in-line valve arrangement permitting 13
/A
r f WB-7491 the use of a single camshaft referred to above. In addition, and as noted above and unlike the parent patent, intake valve center line 55 has been moved more towards the center of piston head 27 as reflected thus by the space 32 described above. By positioning intake valve 59 closer to the center of combvusion chamber 20 in combination with the uniquely formed contour of combustion chamber 20 along with other factors produces better "breathing" and more specifically an improved draw of the fuel-air mixture through intake valve seat 47.
Referring now to FIGURES 5, 11 and 16, extending from a rectangular opening 74 formed in exhaust manifold surface 14 and in communication with exhaust valve opening 45 is an exhaust valve passageway 75 and FIGURE 16 shows the crosssectional configuration of exhaust valve passageway 75 contrasted with the phantom line shape of an exhaust passageway now in use with the standard V-8 Ford 460 block engine. The configuration of exhaust valve passageway 75 when used in the preferred embodiment for the Ford 302 engine, is substantially the same as that shown and described in our parent patent, No. 4,686,948, and reference should be had to the specifications of our parent patent for a complete and t IN detailed description of the construction and operation of exhaust valve passageway 75. Generally, exhaust valve passageway 75 is opened in the vertical sense as much as possi- ble with gradual bends so as to exhaust, with as little back pressure as possible, the combusted gases from combustion chamber 20 which are funneled by the contoured shape of combustion chamber 10 into exhaust valve passageway 30 Referring now to FIGURES 4, 10 and 12-15, there is shown an intake passageway 80 originating at a rectilinear opening 81 in intake manifold surface 13 and terminating and in communication with intake valve opening 44. Intake passageway 80 includes a cylindrical base passage 84 beginning at a base line 85 adjacent minor diameter edge 49 of intake
'I
A 5 1^ WB-7491 valve seat 47 and terminating at a bowl shaped transition passage 87 which in turn blends into trough passage 89 having a generally rectilinear cross-section configuration which, in turn, terminates at intake passageway opening 81.
The dimensioning of intake passageway 80 relative to the size of intake valve 59 is essential to the draw or suction of the fuel-air mixture into combustion chamber 20. This is believed to be accomplished by sizing and configuring intake passageway 80 in a manner which assures a sufficient volumetric flow of an air-fuel mixture to impart high performance characteristics to the internal combustion engine while causing a rich-lean fuel-air mixture to be distributed within combustion chamber 20 in a manner which will hereafter be discussed in detail.
15 Trough passage 89 begins at intake Opening 81 which as t best shown in FIGURE 13 is generally rectangular with a \height "H2" and a width "W 2 The cross-sectional area A 2 of intake opening 81 may be defined as x "W 2 and is equal to 72 percent of the intake valve's 59 area. Intake Lr 20 valve's 59 diameter and area is the area of the head portion 62 which seats against frusto-conical valve seat 47 as is known in the art. For purposes of ease of explanation, ref- \erence to head portion 62 means the intake valve's diameter and valve area. Intake valve's diameter for the 302 cylin- 25 der head described herein is 1.94 in which produces a valve .area, Va of 2.95 in 2. The width W 2 equals 53% of H 2 at area A 2 and, accordingly, W 2 can be calculated as 1.1" and
H
2 calculated as 1.95". The cross-sectional area of trough S, passage 89 gradually increases until it reaches a maximum value of A 1 at the juncture of trough passage 89 with transition passage 87. The cross-sectioned area of A 1 equals intake valve's area Va. A 1 is generally rectangular and has a width "Wl" and a height H 1 and W i is equal to approximately 97% of H i Dimensionally, W 1 is equal approximately to 1.69" and H 1 equals approximately 1.74" making area A 1 *1f i I- WB-7491 almost a square. Importantly, the width W of trough passage 89 increases while the height H decreases from A 2 to A 1 It is believed that the turbulent flow of the fuel-air mixture drawn through intake passageway 80 is materially reduced by increasing the width W from A 2 to A 1 to the extent that the height H is actually reduced from A 2 to A 1 Increasing the cross-sectional area A from A 2 to A, eliminates a venturi effect within trough passage 89 maintaining or even slowing the velocity of the fuel-air flow and tending to promote laminar flow in trough passage 89. To enhance this effect and eliminate any eddy current effect the corners 93 of the rectilinear cross-section of trough passage 89 are rounded. In addition, the floor 91 of trough passage 89 is "belied" out as at 93 to provide a smooth transition. It is thought that as the fuel-air mixture is drawn through trough passage 87, increasing the width W from *4
A
2 to A 1 tends to stabilize the fuel-air flow and is more 0010 significant in this regard than the height H. In order then to minimize turbulence, the height H is actually made larger at A 2 so that it can be reduced while the area A expands "from A 1 to A 2 thus permitting a further enlargement of W from W2 to W
I
While it cannot be accurately predicted with complete certainty as to what is happening within trough oo passage 89 and intake passageway 80, various prototype designs indicate the fuel in the fuel-air mixture, and particularly the large size droplets tend to move by gravity from the roof 92 of the trough passage 89 towards the floor 91 to promote a richer fuel-air mixture about floor 91 than about roof 92. In this connection, the valve guide which extends into transition passage 87 has an arcuately shaped boss O (FIGURE 4) assists in the movement of heavier fuel droplets towards the floor of intake passageway 80. In addition, heat from the adjacent exhaust passageway 75 (FIGURE 7) heats the interior or vertically standing wall 94 of trough passage 87 through a thin separating wall 96 thus tending to ~r c _i: WB-7491 vaporize the fuel about the wall of intake passageway adjacent the exhaust valve 60. Separating wall 96 is reduced when compared to the parent patent since the intake and exhaust valves 59, 60 are closer to one another. Thus, the fuel-air mixture is lighter or leaner about that portion of the intake passageway's wall adjacent the exhaust valve and heavier or richer about the portion of the intake passageway 80 which is remote from the exhaust valve and the remote portion of intake passageway 80 includes a portion of the floor 91 removed from interior wall 94 of trough passage 89 adjacent exhaust chamber Base passage 84 is essentially a cylinder defined by a radius R 3 which is equal to approximately 45% of intake valve diameter Vd and is concentric with intake valve center line 55 and extends into head 10 a distance as shown as M in FIGURE 15 from a valve base line 85. In practice, this distance is 28% of the intake valve diameter Vd and is relatively short limiting somewhat the helical swirling effect "r of the fuel-air within base passage 84. The cross-sectional 20 area of the base passage 84 is approximately 93% of crosssectional area A 1 and thus there is a slight funnelling or orifacing action as the fuel-air mixture is slightly expanded as it passes through intake valve seat 45 and enters como: *bustion chamber 20 in a manner which will be described later.
Providing a transition between cylindrical base passage 84 and trough passage 89 is bowl-shaped transition passage 87 which as best shown in FIGURE 15 includes an outer arcuate surface defined by radius R 1 tangential to the end 30 portion of cylindrical base passage portion 84, i.e, at the end of dimension and tangential at the end of trough passage 89, i.e. cross-sectional "A 1 and an inner arcuate surface defined by radius R 2 tangential also to both trough passage 89 and cylindrical base passage 84. Outer arcuate surface R 1 is essentially spherical or bowl shaped as it WB-7491 blends into trough passage 89 and R 1 preferably is equal to 2.44 times the radius of the intake valve and R 2 is 0.665 times the radius of the intake valve. Both arcs for R 1 and
R
2 are struck or centered on a line passing through a plane which intersects base passage 84 with transition passage 87.
Extending into bowl-shaped transition passage 87 as best shown in FIGURES 4 and 14 is a boss portion 95 of intake guide 68 which has a cylindrical shape blending into the roof line R 1 of bowl passage portion 87. As noted above, boss portion 95 of exhaust guide 69 is believed to further enhance the breakup of any fuel droplets directing them towards the floor of intake passageway 80 while smoothly reducing the cross-sectional area of transition passage 89. The flow in trough passage 89 is generally laminar and 15 bowl passage 84 tends to keep the laminar flow so that the distribution of the rich-lean fuel mixture is not disturbed.
When the fuel-air flow reaches boss 95, it is actually believed that boss 95 acts as a venturi within transition pas- ,1 t sage 87 increasing the flow velocity and causing an under 20 pressure zone immediately thereafter in turn causing the fuel-air to expand radially outwardly in base passage 84 and because ef the short height of base passage 84, turbulence Ot and excessive mixing therefrom does not radically occur. As the fuel-air expands further as an annulus through intake 25 valve seat 47, it could be characterized as an inner annulus o* or core of substantially air or a very lean fuel-air mixture with a richer outer annulus of a fuel-air mixture. Importantly, the outer annulus is a lean air-fuel mixture adjacent exhaust valve seat 51 because of the heat from separa- 30 tor wall 96 and the action of trough passage 89, while the outer annulus remote from exhaust valve seat 51 is a rich fuel-air mixture.
The angular relationships between base passage 84, transition passage 87 and trough passage 89 is shown in FIG- URE 15. The centerline of base passage 55 intersects the i 1 -WB-7491 centerline 90 of trough passage 89 at an angle of 82° and the angle of roof 92 of trough passage 89 is 84 0 relative to a plane perpendicular to trough centerline Referring now to FIGURES 3, 7, 17 and 18, combustion chamber 20 begins at configured peripheral edge surface which, as is well known for wedge combustion chambers, defines a flat burn control surface known as a quench surface.
The configuration of peripheral edge surface 35 is important to the operation of the present invention as is the contour of combustion chamber 20 relative to peripheral edge surface Peripheral edge surface 35 and the contour of combustion chamber 20 will be described with reference to the intake and exhaust valve seats 47, 51 and the relative positions of the first and second cavity areas of combustion 15 chamber *r FIGURES 17 and 18 illustrate the general scheme used to construct peripheral edge surface 35 with FIGURE 17 corresponding to the end view shown in FIGURE 7 and FIGURE 18 f 'illustrating the general shape of peripheral edge surface and corresponding to the shape shown in FIGURE 3. Now with reference to FIGURE 17, the general shape of the contour of combustion chamber 20 about exhaust valve seat 51 and at one side of peripheral edge surface 35 is a generally, frusto-conical, funnelling surface 100 similar to that uti- 25 lized in parent Patent 4,686,948. In contrast, a bowl ao e: shaped or arcuate unshrouding surface 101 extends from intake valve seat 47 on the opposite side of peripheral edge surface 35. The intersection of funnel surface 100 and unshrouding arcuate surface 101 with mounting surface 12 30 produces peripheral edge surface 35 shown in FIGURE 18 at opposite sides thereof. Unlike our parent patent, valve center lines 55, 56 are parallel to one another. Nevertheless as indicated above both intake valve seat 47 and exhaust valve seat 51 lie in the first cavity area along first cavity area center line 38 which forms an angle of about "0 if' C .1 WB-7491 15-20° (200 is the stock angle for exiting heads) and optimally 170 with mounting surface 12 see FIGURE 21 of parent Patent 4,686,948) and thus the height of funneling surface 100 and arcuate unshrouding surface 101 will vary at various points about peripheral edge 35. Because of the inclined cavity area, the actual shape of peripheral edge surface 35 insofar as reference to funnel surface 100 and arcuate surface 101 are concerned is a locus of points determined by the projections of such surface from intake and exhaust valve seats 47, 51 to mounting surface 12 and such surface, while arcuate, will not be truly circular. References to segments of circular edge surface 35 defined as arcuate segments of a given radius means the projection of the radius to mounting surface 12. The approximate location 15 of roof line 42 is superimposed on the plan construction view of peripheral edge 35 shown in FIGURE 18 to define the first cavity area 104 falling on one side thereof and the steeper second cavity area 105 on the other side thereof.
Also, for definitional purposes, the circular configuration 20 of peripheral edge surface 35 about intake valve center line is divided into quadrants, namely a first quadrant 107, a second quadrant 108, a third quadrant 109 and a fourth quad- 4 t t rant 110. Similarly the configuration of peripheral edge C. surface 35 about exhaust valve center line 56 is likewise divided into a first quadrant 112, a second quadrant 113, a third quadrant 114 and a fourth quadrant 115. For orientation purposes, fourth quadrant 110 associated with intake valve center line 55 and fourth quadrant 115 associated with 0:4* 0 exhaust valve center line 56 are substantially in second 30 cavity area 105 while the other quadrants may be viewed as lying in first cavity area 104. In addition, first quadrant 107 associated with intake valve center line 55 and first quadrant 112 associated with exhaust valve center line 56 are adjacent one another.
WB-7491 Peripheral edge surface 35 will now be described as comprising an intake arcuate surface segment 120 resulting from the projection of arcuate unshrouding surface 101 in third quadrant 109 extending approximately midway into the second quadrant 108 and fourth quadrant 110 comprising substantially one side of peripheral edge surface 35. On the opposite side of peripheral edge surface 35 is an exhaust arcuate segment 121 which is a projection of tunnelling surface 100 and similar to intake arcuate surface segment 120, extends substantially about third quadrant 114 of exhaust valve center line 56 and and to approximately midway of the second quadrant 113 and fourth quadrant 115. A tangential arcuate segment 122 smoothly blends intake arcuate segment 120 with exhaust arcuate segment 121 in second cavity area 105. In contrast, extending approximately from the midpoint of second quadrant 108 is a second intake arcuate segment 124 defined by a radius larger than that of intake arcuate segment 120 but tangential to intake arcuate segment 120 within second quadrant 108. Similarly, a second exhaust 20 arcuate segment having a larger radius than exhaust arcuate segment 121 is tangential to exhaust arcuate segment 121 extending from approximately the midpoint of second quadrant 113. Second intake arcuate segment 124 intersects with second exhaust arcuate segment 125 at a relatively sharp Vshaped point defining a velocity protuberance point 127 which is associated with first quadrant 107 of intake valve center line 55 and first quadrant 112 of exhaust valve center line 56. In practice, the shape is slightly blended but is definitely a pointed rather than an undulating con- S 30 figuration and in marked distinction to that of our prior patent.
.w Referring now to the end section views shown in FIGURES 4, 5 and 6, the center section view shown in FIGURE 7 and the general contour of combustion chamber 20 best shown in FIGURE 3, it should be noted that there is a generally flat WB-7491 annular spacing surface 130 extending about intake valve seat 47 and exhaust valve seat 51 and originated from major diameter edge 48 of intake valve seat 47 and major diameter edge 52 of exhaust valve seat 51. The general profile of annular spacing surface 130 is shown by the dash line 131 in FIGURE 3. It should be noted that the width of spacing surface 130 varies at different positions relative to the intake and exhaust valve seats 47, 51 for reasons which will be explained. The configuration of combustion chamber between annular spacing surface 130 and peripheral edge surface 35 about exhaust valve seat 51 is that of the frusto-conical funnelling surface 100 to assure the funnelling or shrouding of combustion gases through exhaust valve seat 51 as explained more fully in parent Patent 4,686,948.
15 In contrast, the contour of combustion chamber 20 about intake valve seat 47 and between annular spacing surface 130 and peripheral edge 35 is the bowl shape or arcuate unshrouding surface 101 and flat annular surface 130 in the second quadrant 108 of intake valve seat 51 tapers in a 20 helical manner to peripheral edge surface As best shown in FIGURE 3, positioned between intake and exhaust valve seats 47, 51 is spark plug bore 132 within second cavity area 105 having a center line 133. The contour surface 140 of the combustion chamber on the side of spark plug center line 133 adjacent intake valve seat 47 is j 9 curved in a concave manner blending with arcuate unshrouding surface 101. On the opposite side of spark plug center line 133 adjacent exhaust valve seat 51, a contoured surface 141 is frusto-conical blending with funnelling surface 100.
30 Within first quadrant 107 of intake valve seat 47 and I first quadrant 112 of exhaust valve seat 51 and specifically with respect to the shape of combustion chamber 20 between intake and exhaust valve seats 47, 51 annular spacing surface 130 at the closest points that as best shown at 150 in FIGURE 7. Along a headline 136 extending from velocity 22z WB-7491 protuberance point 127 which is elevated relative to and extends approximately to flat space 150 is a metal buildup on both sides of headline 136. The metal buildup is best shown by the shading in FIGURE 3. The exhaust metal buildup 151 on the side of headline 136 adjacent exhaust valve seat 51 and within the first quadrant 112 and a portion of second quadrant 113 is frusto-conical blending into annular spacing surface 130 from a high point at the velocity protuberance point 127 to a low point at flat space 150. On the other side of headline 136 adjacent intake valve seat 47 is a concave, arcuate intake metal buildup 152 similar blending into annular spacing surface 130 in first quadrant 107 and in a portion of second quadrant 108 but along a helical or elliptical line 155. The frusto-conical shape of exhaust mass buildup 151 adjacent exhaust valve seat 51 and emanating .o from velocity protuberance point 127 funnels or forces the exhaust gases in a shrouded manner to exit exhaust valve seat 51 in a more efficient manner than that of our prior Patent 4,686,948 since velocity protuberance point 127 is 20 much more pronounced and the metal buildup more inclined not only about headline 136 but also about spark plug bore 132.
The draw of the fuel-air mixture through intake valve seat 47 utilizes a radically different concept than that described in our prior Patent 4,686,948 and produces dramatic results. What we believe is occurring in combustion chamber 20 based on our tests and experiences is that the unshrouding of the combustion chamber about intake valve seat 47 in the manner described includes a uniform flow of the fuel-air mixture pass intake valve seat 47 which is 7" 30 swirling in a helical manner in combustion chamber 20. The swirl may start in base passage 84 but because of the short °Zt' height of base passage 84 becomes pronounced within combustion chamber 20, and is believed generally in the direction of arrows shown in FIGURES 8 and 9. For reasons noted in the description of intake passageway 80, the fuel-air 23
A-{
WB-7491 mixture is lean adjacent exhaust seat 51 and becomes richer and richer as it reaches the opposite side of intake valve seat 47. While there may be a tendency, because of the helical swirl to drive more fuel-air mixture from intake valve seat's 47 side remote from exhaust valve seat 51, the lighter, lean fuel-air mixture balances out any such tendency and assures, as noted above, uniform flow past intake valve seat 47 or alternatively or in combination, the inner annulus of air or a very lean fuel-air mixture is uniformly pulled past the intake valve seat 47 assuring uniform flow.
When the valve overlap condition occurs, two things will occur. First the lean fuel-air mixture will buffer the rich circuit through exhaust valve seat 51. Secondly, the helical swirl imparted to the flow coupled with the position of the rich fuel-air mixture will drive the rich fuel-air mixture past head 63 of exhaust valve 60. Both features act "ir in combination to significantly dissipate the adverse ef- SaC fects of leaking a significant amount of a fuel-air mixture through exhaust valve seat 51 in a valve overlap condition to improve the efficiency of heat Thus, the mass flow of the fuel-air mixture passing through intake valve seat 47, from a theoretical consideration, need not be as great as that of prior art arrangements since the volume of the fuel-air mixture available for combustion can remain constant. Alternatively, the volume is
S.,
increased to result in a higher performance engine. Importantly, since the short circuiting of the fuel-air mixture through exhaust valve seat 51 is minimized, the pollutants 30 otherwise discharged through the exhaust valve because of the valve overlap condition described above does not occur *resulting in a more pollution free internal combustion engine. Another incidental benefit resulting from the flow pattern described is that the relatively cool fuel-air mixture acts to cool exhaust valve 60, an important _yj' ~iv i r WB-7491 consideration in the field of high performance engines. A still further benefit resulting from the flow pattern of the air-fuel mixture is that the adverse effects of any gasoline droplets resulting from the condition described above is dissipated.
Referring now to FIGURES 19 through 22, there is shown a modification to head 10 for purposes of enabling the internal combustion engine equipped with heads 10 to generate satisfactory torque characteristics at low operating speeds and reference numbers heretofore used to designate various surfaces, shapes and parts when followed by a prime will be used to designate like surfaces, shapes and parts where possible. The in-line arrangement of the intake and exhaust valve openings 47, 51 is shown in FIGURE 19 with a principal "o 15 difference between head 10' of FIGURE 19 and head 10 as shown in FIGURE 1 being the construction of intake passageway 81'. More specifically, as shown in FIGURES 19 and 21, a bisecting wall 200 divides rectangular passage portion 89' into a first rectangular passage 202 and a second rectangu- 20 lar passage 203 which are equal in cross-sectional area to one another. As indicated, bisecting wall 200 extends to and blends in with boss portion 95' thus effectively extenda ing first and second rectangular passages 202, 203 through transition bowl portion 87' with cylindrical base portion 84' which is identical to cylindrical base portion 84 of the preferred embodiment. Bisecting wall 200 thus enhances the under pressure characteristics of cylindrical base portion 84' considering either rectangular passage 202, 203 singularly when compared with intake passageway 80 of the pre- 30 ferred embodiment. Bisecting wall 200 adjacent intake manifold surface 13' is flared or increased in metal thickness to support a push rod bore 205 in which an intake push rod 206 is reciprocally disposed. As best shown in FIGURE 21, push rod bore 205 for intake push rods 206 is slightly offset to one side of intake valve center line 55' in contrast -2 7(4V WB-7491 to the push rod bore in the preferred embodiment (which is not shown in the drawings) which is slightly offset to the opposite side of intake valve center line 55 to avoid any obstruction within intake passageway 80. This in turn resuits in a slight skewing of narrow rectangular passage portion 89 of the preferred embodiment as best shown in FIGURE 9. Push rod bores 205 for both the intake push rod 206 and the exhaust push rods are axially aligned with one another as best shown in FIGURES 19 and 21.
Attached to intake manifold surface 13' of head 10' is an intake manifold 210. Intake manifold 210 has a central cavity 211 through which a volume of air is drawn in a known manner and from which extends a plurality of especially configured intake cavities 212. Each intake cavity 212 is 15 configured to match intake passageway openirng 81' and inr •c eludes a diverter wall 214 which matches and joins with bil secting wall 200 to in effect extend first and second rectangular passages 202, 203 into intake cavity 212 of Intake manifold 210. Positioned on one side of diverter wall 214 20 is a primary fuel injector 215 while a secondary fuel injector 216 is positioned on the opposite side of diverter wall 214. A microprocessor 218 meters the flow of fuel through lines 219 to secondary fuel injectors 216 while microproces- 0 0. sor 218 also controls the flow of fuel through lines 221 to primary fuel injectors 216 with a conventional fuel pump 222 downstream of microprocessor 218 drawing fuel from fuel reservoir or gas tank 223 and pressurizing same through lines 219 and 221 to provide a fuel spray in a conventional manner -through primary and secondary fuel injectors 215, 216.
30 Since first and second rectangular passages 202, 203 are approximately equal in area, primary and secondary fuel injectors 215, 216 have the same capacity to emit or meter the same amount of fuel into first and second rectangular passages 202, 203 respectively.
-A-
-P ir i i- l;tr WB-7491
IT
t tl I Ir ft I iI III i I e4 41 *4 4 44 Within intake cavity 212 and positioned between secondary fuel injector 216 and central cavity 211 is a butterfly valve 225 which in an open position allows air to flow into second rectangular passage 203 from central cavity 211 while in a closed position prevents any significant flow of air through second rectangular passage 203 in intake passageway 81'. As best shown in FIGURES 19 and 20, butterfly valve 225 is secured to a ratable shaft 226 which in turn is fixed to an intermediate link 228 in turn pinned to an actuator link 229. Actuator link 229 is pinned to all the intermediate links 228 of all butterfly valves 225 and is axially movable along a longitudinal direction by a vacuum actuator 230 in turn controlled by microprocessor 218.
When the internal combustion engine is operating at a 15 high speed, that is in excess of 5,000 rpm, actuator 230 is so positioned that butterfly valve 225 is fully opened and a full metered flow of gasoline is sprayed into first and second rectangular passages 202, 203 through primary and secondary fuel injectors 215, 216 while a full volume of air is 20 drawn through first and second rectangular passages. At a lesser operating speed of the internal combustion engine, vacuum actuator 230 is actuated to close butterfly valve 225 thus preventing air from entering second intake passageway 213 and at the same time microprocessor 218 shuts off fuel to sec.-ndary fuel injector 216. While it is possible to vary the opening of butterfly 225 along with an associated increase of the gas metered through secondary fuel injector 216, the on/off operation described is preferred because i) it is simpler to control and ii) using only first rectangular passage 202 insures the development of an adequate back pressure and under pressure zone within intake passageway to produce the highly efficient desired helical swirl pattern described above at low speeds thus producing more torque from the internal combustion engine at lower speeds than that which would otherwise be available.
*7 WB-7491 FIGURE 22 shows a further modification to the alternative embodiment shown in FIGURE 19. In FIGURE 22, push rod bores 205 are moved outside of narrowing rectangular passage portion 89' thus resulting in a reduction to the thickness of bisecting wall 200 but also at the same time resulting in a gradually spiral shape of first and second rectangular passages 202, 203. FIGURE 22 is merely shown as an alternative configuration which can be employed for first and second rectangular passages 202, 203. However, the configuration shown in FIGURE 19 is preferred considering the valve train design and also the preferred flow of a fuel-air mixture afforded by the relative straight first and second rectangular passages 202, 203 of the FIGURE 19 embodiment.
With a conventional 302 engine equipped with standard 15 heads, a maximum brake horsepower of 25 occurs at 4,000 rpm Sand a torque curve is generated which produces 300 Ibs torque at 3,200 rpm but which drops rapidly at higher speeds. When the 302 engine was equipped with heads of the C present invention maximum brake horsepower of 300 300 oc- .Vrct 20 curred at 5,000 rpm. The torque curve generated parallel that of the conventional engine but linearly increased (no drop off) until reaching 350-400 Ibs torque at 5,000 rpm.
The present invention has been described with reference to a preferred and alternative embodiment. Obviously, modifications and alterations will suggest themselves to those Sskilled in the art. It is our intention to include all such modifications and alterations insofar as they come within the scope of the present invention.
4 zg 2-y:

Claims (22)

1. A cast cylinder head for an internal combustion engine, said head Including a flat mounting surface and having for each of several In-line circular piston areas: a wedge shaped combustion chamber extending from said mounting surface and defined by i) an especially configured, closed peripheral edge surface co-planar with said mounting surface and forming the opening of said combustion chamber; ii) a concave, contoured first cavity area extending from a continuous first portion of said peripheral edge surface and tapering Into said head and away from said mounting surface at a generally inclined first angle; iii) a concave, contoured second cavity area extending from the o remaining portion of said peripheral edge surface and tapering into said head and away from said mounting surface at a generally inclined second angle, said second angle greater than said first angle; il iv) said first cavity area Intersecting said second cavity area along a roof line; a frusto-conical intake valve seat in said first cavity area having a major diameter circular edge surface and a minor diameter circular edge surface concentric with an intake valve axis, said major diameter intake edge spaced closer to said mounting surface than said minor diameter intake edge, said intake valve seat further divided, approximately and for the reference purposes, into adjacent sequentially numbered, first, second, Sthird and fourth quadrants, said second and third quadrants generally Sadjacent said peripheral edge surface, said fourth quadrant generally adjacent said second cavity area; a frusto-conical exhaust valve seat in said first cavity area having a major diameter circular edge surface and a minor diameter circular Sedge surface concentric with an exhaust valve axis, said major diameter S exhaust edge spaced closer to said mounting surface than said minor diameter exhaust edge, said exhaust valve seat further divided, approximately and for reference purposes, into adjacent, sequentially numbered first, second, third and fourth quadrants, said second and third quadrants generally adjacent said peripheral edge surface, said fourth S. ;I L_ I I1L~LI_ 30 quadrant generally adjacent said second cavity area and said first quadrant of said exhaust valve seat and said first quadrant of said intake valve seat generally adjacent one another; a spark plug bore in said second cavity generally between said intake valve and said exhaust valve axis; intake passage means in said head for establishing fluid communication with said intake valve seat and exhaust passage means in said head for establishing fluid communication with said exhaust valve seat; said first cavity area having an annular exhaust spacing surface concentrically extending from said major diameter exhaust edge in a plane generally perpendicular to said exhaust valve axis and a generally frusto-conical funnelling surface extending from said exhaust spacing surface to said peripheral edge surface about at least portions of said second and third quadrants for funnelling exhaust gases through said exhaust valve seat; and said first cavity area having an annular intake spacing surface concentrically extending from said intake major diameter edge in a plane generally perpendicular to said intake valve axis and a generally arcuate, concave surface extending from said intake spacing surface to said said peripheral edge surface about at least portions of said [third] second and I third quadrants for sucking, in an unshrouded manner, a mixture of fuel and air through said intake valve seat.
2. The cylinder head of claim 1 wherein said second cavity area adjacent a portion of said fourth quadrant of said intake valve seat and So extending from said intake spacing surface to said peripheral edge surface S is a generally arcuate, concave surface and said second cavity area :oo adjacent a portion of said fourth quadrant of said exhaust valve seat and extending from said exhaust spacing surface to said peripheral edge surface is a generally frusto-conical surface. 0 o* 3. The cylinder head of claim 2 wherein said peripheral edge a surface defining one end of said second cavity area has a first arcuate segment of a first radius at one side of said second cavity, a second arcuate segment of a second radius at the opposite side of said second cavity and an intermediate segment therebetween tangential to said first and second arcuate segments, and said peripheral edge surface defining the end of said first cavity having a third arcuate segment of said first n K *T 9 48 nix~ 7~ d~C -31 radius at one side of said first cavity and extending from said first arcuate segment to a first tangential point, a fourth arcuate segment of said second radius at the opposite side of said first cavity having a radius equal to said second radius and extending from said second arcuate segment to a second tangential point, a fifth arcuate segment extending from said first tangential point and a sixth arcuate segment extending from said second tangential point said fifth segment intersecting with said second segment at a generally v-shaped velocity increasing point.
4. The cylinder head of claim 3 wherein said fifth arcuate segment is defined by a radius greater than said first radius and said sixth arcuate segment is defined by a radius greater than said second radius, said first radius greater than said second radius. The cylinder head of claim 4 wherein said first tangential point is approximately midway in said second quadrant of said intake valve seat and said second tangential point is approximately midway in said second quadrant of said exhaust valve seat. t C6. The cylinder head of claim 3 wherein said velocity increasing point defines the beginning of a ridge line extending into said first cavity area between said first quadrant portion of said intake valve seat and said first quadrant portion of said exhaust valve seat and blending into and becoming co-planar with said exhaust spacing surface and said intake spacing at a point where said intake valve seat and said exhaust valve seat are closest to one another, a metal mass buildup on each side of said ridge line, said added metal mass blending from said intake spacing S surface in a contoured, concave manner into said ridge line over a portion o of said intake valve's first and second quadrants and said added metal mass blending from said exhaust spacing surface in a frusto-conical manner into said ridge line over a portion of said exhaust valve's first and second quadrants to define a velocity increasing zone within said combustion chamber.
7. The cylinder head of claim 6 wherein said added mass of metal blends into said intake spacing surface along a helical line terminating in said intake valve's second quadrant and said arcuate concave surface in portions of said third and fourth quadrants intersects with said intake spacing surface a helical line which extends into said intake valve's second quadrant whereby the fuel-air mixture is drawn through said intake 948U i 32 valve seat in an especially configured manner tending to pass over the exhaust valve seat.
8. The cylinder head of claim 7 wherein said spark plug bore is blended into said first and second cavities on that side of its center facing said exhaust valve seat in a frusto-conical manner and is blended into said first and second cavities on that side of its center facing said intake valve seat in a generally concave, arcuate manner.
9. The cylinder head of claim 8 wherein said second arcuate segment of said peripheral edge surface is generally tangential to a circle defining said circular piston area while said first arcuate segment is spaced slightly inwardly from said piston circle whereby said intake centerline is shifted towards the center of said piston circle. The cylinder head of claim 9 wherein the radius of said second S arcuate segment is equal to the major diameter of a frusto-conical segment extending from said major diameter of said exhaust valve seat to said peripheral edge surface. 0 .t t11. The cylinder head of claim 10 wherein the radius of said first arcuate segment is defined by a locus of points, each point representing the intersection of an arcuate surface extending from a point on said major diameter of said intake valve seat to said peripheral edge surface.
12. The cylinder head of claim 7 wherein said peripheral edge surface is adapted to overlay a circle defined by a piston, one side of said peripheral edge surface is generally tangential to a circle defining said circular piston area while the diametrically opposite side of said t peripheral edge surface is spaced slightly inwardly from said piston circle Swhereby said intake valve centerline is shifted towards the center of said piston circle.
13. The cylinder head of claim 3 wherein the radius of said second arcuate segment is equal to the major diameter of a frusto-conical segment extending from said major diameter of said exhaust valve seat to said peripheral edge surface.
14. The cylinder head of claim 14 wherein the radius of said first arcuate segment is defined by a locus of points, each point representing the intersection of an arcuate surface extending from a point on said major diameter of said intake valve seat to said peripheral edge surface. z M 48jI si'I 777-- ;i 19 048/88 i- i~ll~ -~iiiii~r~ 33 The cast cylinder head of claim 2 wherein said cylinder head has an intake manifold surface extending from said flat mounting surface at one side thereof and an exhaust manifold surface extending from said flat mounting surface at the opposite side thereof; and in combination an intake poppet valve for each intake valve seat, said intake valve having a stem portion and a circular head portion attached to said stem portion, said head portion having a frusto-conical valve seating surface about said head with a major diameter valve seat edge; said stem concentric with said intake valve axis and means for reciprocally moving said valve stem along said intake valve axis; said head having, for each combustion chamber, an intake valve passageway extending from a generally rectangular intake opening in said intake surface to said intake valve seat; said intake passageway including three passages, a cylindrical base passage concentric with said intake valve axis and extending from said intake valve seat into said first cavity, and expanding, generally rectangular trough passage extending from said intake opening and a bowl-shaped, transition passage connecting said trough passage with said base passage, the cross-sectional area of said intake valve passageway at the intersection of said trough passage with said transition passage approximately equal to the area of the head of said intake valve.
16. The cylinder head combination of claim 16 wherein the cross-sectional area of said generally rectangular opening in said intake manifold surface is equal to approximately 70-75% of said cross-sectional area at the intersection of said trough and transition passages.
17. The cylinder head combination of claim 17 wherein said generally rectangular cross-sectional configuration at the intersection of said trough passage and said transition passage has a width equal to about 97% of the height.
18. The cylinder head combination of claim 18 wherein said generally o rectangular opening in said intake manifold surface has a width equal to approximately to 53% of the height of said rectangular opening and equal approximately to 87% of the diameter of said intake valve, the width of said trough passage gradually increasing from said opening to said intersection between said trough passage and said transition passage while the height of said trough passage is gradually reduced. !TM 948; rn i 34
19. The cast cylinder head of claim 19 wherein the diameter of said cylindrical base portion is approximately equal to 90/. of the diameter of the head of said intake valve. The cast cylinder head of claim 20 wherein the length of said base portion is approximately equal to 29% of the diameter of the head of said intake valve.
21. The cast cylinder head of claim 21 wherein said base passage has a generally vertically extending centerline co-incident with the centerline of said intake valve and said trough passage has a generally longitudinally extending centerline intersecting said base passage at an acute angle of about 820.
22. The cast cylinder head of claim 22 wherein said transition outer spherical surface defined by an arc having a radius approximately equal to 2.44 times longer than one-half the diameter of the head of said intake valve and centered on a line passing through the intersection of 0o0* said base passable with said transition passage.
23. The cylinder head combination of claim 23 wherein said inner S spherical surface is defined by an arc having a radius approximately equal to 0.66 times longer than one-half the diameter of the head of said intake valve and centered on a line passing through the intersections of said base passage with said transition passage.
24.The cylinder head combination of claim 16 wherein the diameter of said cylindrical base portion is approximately equal to 90% of the diameter of the head of said intake valve. The cylinder head combination of claim 16 wherein said peripheral edge surface defining one end of said second cavity area has a °00 ~first arcuate segment of a first radius at one side of said second cavity, 00° a second arcuate segment of a second radius at the opposite side of said second cavity and an intermediate segment therebetween tangential to said first and second arcuate segments, and said peripheral edge surface defining the end of said first cavity having a third arcuate segment of said first radius at one side of said first cavity and extending from said first arcuate segment to a first tangential point, a fourth arcuate segment of having a radius equal to said second radius and extending from said second arcuate segment to a second tangential point, a fifth arcuate i 35 segment extending from said first tangential point and a sixth arcuate segment extending from said second tangential point said fifth segment intersecting with said second segment at a generally V-shaped velocity increasing point.
26. The cylinder head combination of claim 26 wherein said velocity increasing point defines the beginning of a ridge line extending into said first cavity area between said first quadrant portion of said intake valve seat and said first quadrant portion of said exhaust valve seat and blending into and becoming co-planar with said exhaust spacing surface and said intake spacing at a point where said intake valve seat and said exhaust valve seat are closest to one another, a metal mass buildup on each side of said ridge line, said added metal mass blending from said intake spacing surface in a contoured, concave manner into said ridge line over a oo p-rtion of said intake valve's first and second quadrants and said added 0 metal mass blending from said exhaust spacing surface in a frusto-conical manner into said ridge line over a portion of said exhaust valve's first 0000 *get, and second quadrants to define a velocity increasing zone within said combustion chamber. I 27. The cylinder head of claim 26 wherein said added mass of metal blends into said intake spacing surface along a helical line terminating in said intake valve's second quadrant and said arcuate concave surface in portions of said third and fourth quadrants intersects with said intake spacing surface along a helical line which extends into said intake valve's second quadrant whereby the fuel-air mixture is drawn through said intake valve seat into said combustion chamber in a helical swirling manners.
28. The cast cylinder head of claim 1 wherein said combination S further including an intake manifold secured to said intake manifold surface, said manifold having a central cavity and for each intake Spassageway, a secondary cavity in communication therewith, a cavity S partition wall in each secondary cavity dividing each secondary cavity into two equal sections, valving means associated with said intake passageway for reducing the volume of said intake passageway and correspondingly the air mass drawn into said intake passageway when said internal combustion cylinder is operated at low speeds and increasing the volume of said intake passageway and correspondingly the volume of air mass drawn into said passageway when said internal combustion engine is operated at higher RV 8 2' K- li-. IFI .I .~-im-(lnl i; I 36 speeds whereby the torque developed by said internal combustion engine is increased at lower operating speeds.
29. The cylinder head combination of claim 28 wherein said valving means includes a partition wall extending the length of said intake passageway and dividing said intake passageway into first and second intake passages, a butterfly valve generally adjacent said intake manifold surface for opening and closing one of said intake passages and microprocessor control means for regulating the position of said butterfly valve. The cylinder head combination of claim 29 wherein said intake valve axis and said exhaust valve axis of each combustion chamber lies on a longitudinal axis extending the length of said cylinder head to define a valve-in-line cylinder head, and said partition wall extends generally perpendicular to said longitudinal axis.
31. The cylinder head combination of claim 28 wherein said first and second intake passages are of equal volume.
32. A cast cylinder head for an internal combustion engine substantially as hereinbefore described with reference to the accompanying I drawings. DATED this THIRTIETH day of AUGUST 1989 TFS Inc It ti Patent Attorneys for the Applicant SPRUSON FERGUSON 00 0 o oo f o i r O^ -4
AU19048/88A 1988-03-10 1988-07-14 An improved in-line cylinder head for internal combustion engine Expired AU597183B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US166521 1988-03-10
US07/166,521 US4919092A (en) 1985-07-29 1988-03-10 In-line cylinder head for internal combustion engine

Publications (2)

Publication Number Publication Date
AU1904888A AU1904888A (en) 1989-09-14
AU597183B2 true AU597183B2 (en) 1990-05-24

Family

ID=22603663

Family Applications (1)

Application Number Title Priority Date Filing Date
AU19048/88A Expired AU597183B2 (en) 1988-03-10 1988-07-14 An improved in-line cylinder head for internal combustion engine

Country Status (1)

Country Link
AU (1) AU597183B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770227A (en) * 1952-11-28 1956-11-13 Gen Motors Corp Combustion chamber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770227A (en) * 1952-11-28 1956-11-13 Gen Motors Corp Combustion chamber

Also Published As

Publication number Publication date
AU1904888A (en) 1989-09-14

Similar Documents

Publication Publication Date Title
AU658051B2 (en) Internal combustion engine
US5735240A (en) Direct injected engine
CN1149904A (en) Cylinder oil injection type IC engine
EP0216477B1 (en) Internal combustion engine with cylinder intake port
US5076224A (en) In-line cylinder head for internal combustion engine
US6065444A (en) Direct-injection spark-ignition engine
US5477823A (en) Control valve for engine intake control system
JP2004519617A (en) Fuel injection system
US4919092A (en) In-line cylinder head for internal combustion engine
EP1081366B1 (en) Intake port structure in four-stroke cycle internal combustion engine
US4519350A (en) Intake system for an internal combustion engine
US4686948A (en) Head for high performance internal combustion engine
CN1124408C (en) IC engine
US5056486A (en) Combustion engine
US5138990A (en) In-line cylinder head for internal combustion engine
EP0529676B1 (en) Induction system for an internal combustion engine
US5257612A (en) In-line cylinder head for an internal combustion engine
US5462027A (en) Induction system for engine
JP4336582B2 (en) Combustion method using charge stratification for a direct injection spark ignition internal combustion engine
US4773382A (en) Head for high performance internal combustion engine
AU597183B2 (en) An improved in-line cylinder head for internal combustion engine
US4553514A (en) Internal combustion engine
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
US4160432A (en) Internal combustion engine having main and auxiliary combustion chambers
AU2539999A (en) Internal combustion engine