AU569968B2 - Space frame - Google Patents

Space frame

Info

Publication number
AU569968B2
AU569968B2 AU49690/85A AU4969085A AU569968B2 AU 569968 B2 AU569968 B2 AU 569968B2 AU 49690/85 A AU49690/85 A AU 49690/85A AU 4969085 A AU4969085 A AU 4969085A AU 569968 B2 AU569968 B2 AU 569968B2
Authority
AU
Australia
Prior art keywords
space frame
longitudinal
grid
lateral
struts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU49690/85A
Other versions
AU4969085A (en
Inventor
Noel Gordon Mackenzie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLASFAB Pty Ltd
Original Assignee
PLASFAB Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLASFAB Pty Ltd filed Critical PLASFAB Pty Ltd
Priority to AU49690/85A priority Critical patent/AU569968B2/en
Publication of AU4969085A publication Critical patent/AU4969085A/en
Application granted granted Critical
Publication of AU569968B2 publication Critical patent/AU569968B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B1/1903Connecting nodes specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1924Struts specially adapted therefor
    • E04B2001/1927Struts specially adapted therefor of essentially circular cross section
    • E04B2001/193Struts specially adapted therefor of essentially circular cross section with flattened connecting parts, e.g. ends
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1957Details of connections between nodes and struts
    • E04B2001/1963Screw connections with axis at an angle, e.g. perpendicular, to the main axis of the strut
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1975Frameworks where the struts are directly connected to each other, i.e. without interposed connecting nodes or plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1981Three-dimensional framework structures characterised by the grid type of the outer planes of the framework
    • E04B2001/1984Three-dimensional framework structures characterised by the grid type of the outer planes of the framework rectangular, e.g. square, grid
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/199Details of roofs, floors or walls supported by the framework

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Joining Of Corner Units Of Frames Or Wings (AREA)
  • Refrigerator Housings (AREA)
  • Special Wing (AREA)

Description

Title: "SPACE FRAME"
BACKGROUND OF THE INVENTION
/•*-- 1. Field of the Invention
This invention relates to a space frame.
5 . Description of the Prior Art
Space frames are widely used particularly in situations where it is required to erect a cover over an extensive area with a minimum of pillars and maximum of uninterrupted floor space. A space frame is usually
10 of double-layer type, consisting of spaced upper and lower grids of longitudinal and lateral chords, the nodes, or junctions of chord members, of the upper and lower grids being interconnected by oblique struts or braces. The two grids are relatively displaced, both
15 laterally and longitudinally so that, except at the periphery of the upper grid, each node of either grid is equidistant from, and connected by oblique struts to, four nodes of the other grid. At each of these nodes, then, provision must be made for the firm interconnect-
20 ion of intersecting chords and a series of oblique struts. Tubular members are generally to be preferred for the chords and the struts, and it is desirable that at each node the axes of the longitudinal and lateral chords, and of the struts, should intersect. Space frames which
25 satisfy these requirements generally have connectors and chord and strut members which are expensive to make and laborious to instal.
BRIEF SUMMARY OF THE PRESENT INVENTION The present invention has been devised with the
30 general object of providing a space frame of the type described in which the chord and strut members may be simply and economically manufactured and may be quickly and easily interconnected rigidly and in optimum relat¬ ionship.
35 With the foregoing and other objects in view, the invention resides broadly in a space frame of the type having spaced upper and lower grids of longitudinal and lataral chords, the nodes of the upper and lower grids being interconnected by oblique struts, wherein at a node, substantially vertical attachment plates at the ends of longitudinal and lateral chord sections are disposed in a cruciform assembly; flanges, per¬ pendicular to each other, at the ends of oblique struts, are engaged in the angles of the cruciform assembly; and fasteners secure together flanges of succeeding struts and interposed attachment plates of the cruciform assembly. The longitudinal and lateral chords are preferably tubular, the attachment plates being flattened portions at the ends of the longitud¬ inal and lateral chord sections. Preferably the struts also are tubular, each having its end flatten- ed and angled to form the said perpendicular flanges which meet along a line oblique to the axis of the main tubular part of the strut. Other features of the invention will become apparent from the following description. BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS In order that a preferred embodiment of the invention may be readily understood and carried into practical effect, reference is now made to the accomp¬ anying drawings, wherein:- FIG. 1 is a diagrammatic plan view of part of a building including a space frame according to the invention,
FIG. 2 is a side elevational view of a node of the upper grid of the space frame, for example the node in circle 2 of FIG. 1 ,
FIG. 3 is a plan view of the node shown in FIG.
2,
FIG. 4 is a view from below the node, FIG. 5 is a perspective view of an end portion_ of one of the oblique struts of the space frame, and FIG. 6 is a sectional view taken along line 6-6 in FIG. 1 , to larger scale than FIG. 1 but of smaller scale than FIGS. 2, 3 and 4.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
The space frame illustrated has an upper grid of longitudinal chords 10 and lateral chords 11, a lower grid of longitudinal chords 12 and lateral chords 13, and oblique struts 14 interconnecting the nodes or chord intersections of the upper and lower grid. The space frame is supported horizonta¬ lly within an external wall 15 including vertical space frame supports 16 which serve also as glazing mullions. The space frame supports floor panels 17 and below it there are installed ceiling panels 18.
At the space frame upper grid node shown part¬ icularly in FIGS. 2, 3 and 4 of the drawings, a longit¬ udinal chord member 10, two sections 11 of a lateral chord and four oblique struts 14 are rigidly inter- connected, all of these members being of round-section metal tube of similar diameter.
At the node the longitudinal chord member 10 is flattened to form a vertical connector plate 19. The nodal ends of the lateral chord sections 11 are also flattened to form vertical connector plates 20 which are in alignment and meet perpendicularly the opposite sides of the middle of the connector plate 19, in a cruciform assembly.
The four oblique struts 14 are similar, each being deformed at both ends by metal pressing operat¬ ions to flatten the tube and shape the flattened part to an angle member of which the two flanges 21 are perpendicular, their junction line 22 being oblique to the axis of the main tubular part of the strut. Each of the flanges 15 is formed with two bolt holes 23- - Bolt holes (not shown) are also formed through the vertical connector plate 19 of the longitudinal chord member 10, and through each of the vertical conn¬ ector plates 20 of the lateral .chord sections 11. These bolt holes are so located that when the struts 14 are positioned as shown, each with its deformed and angled end within one of the angles of the cruciform assembly of the flattened vertical attachment plates of the long¬ itudinal and lateral chords, bolts 24 may be engaged in aligned bolt holes in the strut flanges 15 and in the interposed attachment plates 13 and 14 of the chord ' members and engaged by nuts 25 to secure the whole assembly rigidly together. The parts are so made and arranged that, as indicated by chain-broken lines in FIG. 2, the axes of the chord members and of the strut members intersect at a single point.
Instead of the lateral chords of the space frame being made in sections flattened at the ends, each may be flattened at each node, similarly to the longitudinal chord members, one of the flattened parts being slotted from above, the other slotted from below, so that at each node the longitudinal and lateral chord members are inter- fitted, their axes in a common plane.
Alternatively, the longitudinal chords, as well as the lateral chords, may be composed of a number of similar sections, each flattened and formed with bolt holes at both ends, so that at each node two longitudinal chord sections and two lateral chord sections are brought together in a cruciform assembly and are secured together by being bolted between pairs of flanges 21 of the struts 14.
In the space frame illustrated the sides and ends of the upper grid extend beyond the lower grid and at each of the peripheral nodes of the upper grid (except- ing the corner nodes) two oblique struts only are conn¬ ected. At these nodes, simple fish-plates (not shown) are bolted at the outer sides of the nodes. At the corner nodes of the upper grid, from which a single oblique strut leads, simple angle brackets (not shown) are bolted outside the corners.
As all of the strut members of the space frame may be identical, all longitudinal chords of each grid may be similar, and all lateral chord sections of the space frame may also be similar, the various members used in the construction may be simply and economically produced, and quickly bolted together without any high degree of skill being required. If the longitudinal chords as well as the lateral chords are made in sections, the whole space frame may be erected of only two basic types of structural members, that is to say, of similar chord members and similar struts.
The floor panels 17 may be of cast reinforced concrete construction, square in plan view and, as shown in FIG. 6, each of greatest depth at the middle, reducing in depth to all four sides where they are supported on a grid of floor panel supports 26 of inverted T-section, welded or otherwise secured on the upper grid. The ceiling panels 18, which may be of fire-resisting acoustic material, are also of square shape and are supported at their edges by a grid of
T-bars 27 fixed in any suitable way below the lower grid of the space frame.
If the space frame is not required to support a roof or ceiling, node caps, as shown in FIG. 2 at 28, may be applied to the space frame nodes. The cap illustrated is of cylindrical shape, closed at its top and formed from the bottom with slots 29 shaped to fit to the nodal ends of the chords and struts. Similar caps may be inverted and applied to the nodes of the lower grid, the caps of upper end lower grids being secured in any suitable way.

Claims (7)

1. A space frame of the type having spaced upper and lower grids of longitudinal and lateral chords, the nodes of the upper and lower grids being interconnected by oblique struts wherein, at a node, substantially vertical attachment plates at the ends of longitudinal and lateral chord sections are disposed in a cruciform assembly, flanges, perpendicular to each other, at the ends of oblique struts, are engaged in the angles of the cruciform assembly, and fasteners secure together flanges of succeeding struts and interposed attachment plates of the cruciform assembly.
2. A space frame according to Claim 1 wherein: the longitudinal and lateral chords are tubular, and the attachment plates are flattened portions at the ends of the longitudinal and lateral chord sections.
3. A space frame according to either of the preceding claims wherein: the oblique struts are tubular, and each end of each strut is flattened and angled to form the said perpendicular flanges meeting at a line oblique to the axis of the intermediate tubular part of the strut.
4. A space frame according to any one of the preced¬ ing claims wherein: the fasteners comprise bolts engaged by nuts.
5. A space frame according to any one of the preceding claims wherein: a grid of floor support bars is secured above the upper grid, and rectangular floor panels are supported at their edges" on the floor support bars.
6. A space frame according to any one of the preceding claims wherein: a grid of ceiling support bars is secured under the lower grid, and rectangular ceiling panels are supported at their edges on the ceiling support bars.
7. A space frame substantially as herein described with reference to the accompanying drawings.
AU49690/85A 1984-10-11 1985-10-08 Space frame Ceased AU569968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49690/85A AU569968B2 (en) 1984-10-11 1985-10-08 Space frame

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPG7588 1984-10-11
AU758884 1984-10-11
AU49690/85A AU569968B2 (en) 1984-10-11 1985-10-08 Space frame

Publications (2)

Publication Number Publication Date
AU4969085A AU4969085A (en) 1986-05-02
AU569968B2 true AU569968B2 (en) 1988-02-25

Family

ID=3698284

Family Applications (1)

Application Number Title Priority Date Filing Date
AU49690/85A Ceased AU569968B2 (en) 1984-10-11 1985-10-08 Space frame

Country Status (5)

Country Link
EP (1) EP0228376A1 (en)
JP (1) JPS62500531A (en)
CN (1) CN85107671A (en)
AU (1) AU569968B2 (en)
WO (1) WO1986002397A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562681A (en) * 1985-02-05 1986-01-07 Gte Products Corporation Web section for a space frame
US5165214A (en) * 1988-07-29 1992-11-24 Harley Systems Pty Ltd. Space frame
CN103498559A (en) * 2013-10-11 2014-01-08 四川省第四建筑工程公司 Splicing movable bridge frame of steel structure industrial factory building and construction method for applying splicing movable bridge frame to roof construction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3620978A (en) * 1977-05-17 1979-11-22 Hibble, R.M. Space frame
AU7282181A (en) * 1980-07-11 1982-01-14 Harley Systems Pty. Ltd. Frame construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466824A (en) * 1968-01-10 1969-09-16 Arthur L Troutner Modular space deck
US3914063A (en) * 1973-05-24 1975-10-21 Unistrut Corp Space frame connecting fixture
US4211044A (en) * 1978-07-28 1980-07-08 Gugliotta Paul F Tube space frame system
FR2481385A1 (en) * 1980-02-06 1981-10-30 Schaff Alfred MULTIDIRECTIONAL BONDING SYSTEM FOR STRUCTURES
AU562145B2 (en) * 1983-08-23 1987-05-28 Harley Systems Pty. Ltd. Space frames

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3620978A (en) * 1977-05-17 1979-11-22 Hibble, R.M. Space frame
AU7282181A (en) * 1980-07-11 1982-01-14 Harley Systems Pty. Ltd. Frame construction

Also Published As

Publication number Publication date
JPS62500531A (en) 1987-03-05
CN85107671A (en) 1986-06-10
EP0228376A1 (en) 1987-07-15
AU4969085A (en) 1986-05-02
WO1986002397A1 (en) 1986-04-24

Similar Documents

Publication Publication Date Title
US4742665A (en) Metallic spatial framework structure composed of single elements for erecting buildings
US3999351A (en) Structural frame
AU2005243304B2 (en) Two-way architectural structural system and modular support member
US5704169A (en) Space truss dome
US4887406A (en) Structural member for buildings
US20060053726A1 (en) Connection node for a universal truss joint and double layer grid
US4201021A (en) Building frame construction
US3731450A (en) Metal structure and sections
EP0063118B1 (en) Space frames
US3818671A (en) Frame structure
US4178736A (en) Housing module and space frame
CA1269509A (en) Modular building construction
EP3583274B1 (en) Primary shell load-bearing support structure
FI83447C (en) Three-dimensional framework
AU569968B2 (en) Space frame
JP2928832B2 (en) Pillar configuration method
EP0267914A4 (en) Adjustable space frames.
US4573294A (en) Framework for building construction
CN112482641A (en) Continuous arc-shaped steel beam roof structure with folded angles, double spans and multiple curved surfaces and application
US3530624A (en) Structural element for aircraft hangers and the like
EP0280050A2 (en) Structural elements, frames thereof, panels and prefabricated building structures
JPH0743288Y2 (en) Residential unit for industrialized housing
JPH07122306B2 (en) Triangular solid truss structure, method of constructing triangular solid truss, and method of supporting triangular solid truss or triangular solid truss structure
CA1172823A (en) Space frames
JPS63226426A (en) Construction of large space building