AU4528393A - Alpha-2-adrenergic agonists for treating presbyopia - Google Patents
Alpha-2-adrenergic agonists for treating presbyopiaInfo
- Publication number
- AU4528393A AU4528393A AU45283/93A AU4528393A AU4528393A AU 4528393 A AU4528393 A AU 4528393A AU 45283/93 A AU45283/93 A AU 45283/93A AU 4528393 A AU4528393 A AU 4528393A AU 4528393 A AU4528393 A AU 4528393A
- Authority
- AU
- Australia
- Prior art keywords
- alpha
- adrenergic agonist
- adrenergic
- eye
- administered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 201000010041 presbyopia Diseases 0.000 title description 16
- 239000000048 adrenergic agonist Substances 0.000 title description 12
- 239000000384 adrenergic alpha-2 receptor agonist Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 18
- 238000011282 treatment Methods 0.000 claims description 18
- WYWIFABBXFUGLM-UHFFFAOYSA-N oxymetazoline Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CC1=NCCN1 WYWIFABBXFUGLM-UHFFFAOYSA-N 0.000 claims description 10
- 230000001800 adrenalinergic effect Effects 0.000 claims description 7
- CNIIGCLFLJGOGP-UHFFFAOYSA-N 2-(1-naphthalenylmethyl)-4,5-dihydro-1H-imidazole Chemical compound C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 CNIIGCLFLJGOGP-UHFFFAOYSA-N 0.000 claims description 6
- BYJAVTDNIXVSPW-UHFFFAOYSA-N tetryzoline Chemical compound N1CCN=C1C1C2=CC=CC=C2CCC1 BYJAVTDNIXVSPW-UHFFFAOYSA-N 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 5
- 229960001528 oxymetazoline Drugs 0.000 claims description 5
- DHSSDEDRBUKTQY-UHFFFAOYSA-N 6-prop-2-enyl-4,5,7,8-tetrahydrothiazolo[4,5-d]azepin-2-amine Chemical compound C1CN(CC=C)CCC2=C1N=C(N)S2 DHSSDEDRBUKTQY-UHFFFAOYSA-N 0.000 claims description 3
- XYLJNLCSTIOKRM-UHFFFAOYSA-N Alphagan Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 XYLJNLCSTIOKRM-UHFFFAOYSA-N 0.000 claims description 3
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 claims description 3
- WDZVGELJXXEGPV-YIXHJXPBSA-N Guanabenz Chemical compound NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl WDZVGELJXXEGPV-YIXHJXPBSA-N 0.000 claims description 3
- WXFIGDLSSYIKKV-RCOVLWMOSA-N L-Metaraminol Chemical compound C[C@H](N)[C@H](O)C1=CC=CC(O)=C1 WXFIGDLSSYIKKV-RCOVLWMOSA-N 0.000 claims description 3
- YGRFXPCHZBRUKP-UHFFFAOYSA-N Methoxamine hydrochloride Chemical compound Cl.COC1=CC=C(OC)C(C(O)C(C)N)=C1 YGRFXPCHZBRUKP-UHFFFAOYSA-N 0.000 claims description 3
- CQXADFVORZEARL-UHFFFAOYSA-N Rilmenidine Chemical compound C1CC1C(C1CC1)NC1=NCCO1 CQXADFVORZEARL-UHFFFAOYSA-N 0.000 claims description 3
- 241000593989 Scardinius erythrophthalmus Species 0.000 claims description 3
- DPQAXNSOFFYKDS-UHFFFAOYSA-N Talipexole dihydrochloride Chemical compound Cl.Cl.C1CN(CC=C)CCC2=C1N=C(N)S2 DPQAXNSOFFYKDS-UHFFFAOYSA-N 0.000 claims description 3
- IEJXVRYNEISIKR-UHFFFAOYSA-N apraclonidine Chemical compound ClC1=CC(N)=CC(Cl)=C1NC1=NCCN1 IEJXVRYNEISIKR-UHFFFAOYSA-N 0.000 claims description 3
- 229960002610 apraclonidine Drugs 0.000 claims description 3
- 229960002896 clonidine Drugs 0.000 claims description 3
- 229960001894 detomidine Drugs 0.000 claims description 3
- JXMXDKHEZLKQPB-UHFFFAOYSA-N detomidine Chemical compound CC1=CC=CC(CC=2[N]C=NC=2)=C1C JXMXDKHEZLKQPB-UHFFFAOYSA-N 0.000 claims description 3
- HRLIOXLXPOHXTA-NSHDSACASA-N dexmedetomidine Chemical compound C1([C@@H](C)C=2C(=C(C)C=CC=2)C)=CN=C[N]1 HRLIOXLXPOHXTA-NSHDSACASA-N 0.000 claims description 3
- 229960004253 dexmedetomidine Drugs 0.000 claims description 3
- 229960004553 guanabenz Drugs 0.000 claims description 3
- 230000004410 intraocular pressure Effects 0.000 claims description 3
- HRLIOXLXPOHXTA-UHFFFAOYSA-N medetomidine Chemical compound C=1C=CC(C)=C(C)C=1C(C)C1=CN=C[N]1 HRLIOXLXPOHXTA-UHFFFAOYSA-N 0.000 claims description 3
- 229960002140 medetomidine Drugs 0.000 claims description 3
- 229960002342 mephentermine Drugs 0.000 claims description 3
- RXQCGGRTAILOIN-UHFFFAOYSA-N mephentermine Chemical compound CNC(C)(C)CC1=CC=CC=C1 RXQCGGRTAILOIN-UHFFFAOYSA-N 0.000 claims description 3
- 229960003663 metaraminol Drugs 0.000 claims description 3
- 229960004269 methoxamine hydrochloride Drugs 0.000 claims description 3
- 229960005016 naphazoline Drugs 0.000 claims description 3
- 229960001802 phenylephrine Drugs 0.000 claims description 3
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 claims description 3
- 229960000764 rilmenidine Drugs 0.000 claims description 3
- 229960000337 tetryzoline Drugs 0.000 claims description 3
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 claims description 3
- 229960001600 xylazine Drugs 0.000 claims description 3
- OULQIRTYSJHFKP-UHFFFAOYSA-N 4h-imidazol-5-amine Chemical class N=C1CNC=N1 OULQIRTYSJHFKP-UHFFFAOYSA-N 0.000 claims description 2
- 206010010741 Conjunctivitis Diseases 0.000 claims description 2
- INJOMKTZOLKMBF-UHFFFAOYSA-N Guanfacine Chemical compound NC(=N)NC(=O)CC1=C(Cl)C=CC=C1Cl INJOMKTZOLKMBF-UHFFFAOYSA-N 0.000 claims description 2
- 230000002411 adverse Effects 0.000 claims description 2
- 150000001538 azepines Chemical class 0.000 claims description 2
- 150000003943 catecholamines Chemical class 0.000 claims description 2
- 229960002048 guanfacine Drugs 0.000 claims description 2
- 150000002460 imidazoles Chemical class 0.000 claims description 2
- 150000002918 oxazolines Chemical class 0.000 claims description 2
- 150000004897 thiazines Chemical class 0.000 claims description 2
- 229960001262 tramazoline Drugs 0.000 claims description 2
- QQJLHRRUATVHED-UHFFFAOYSA-N tramazoline Chemical compound N1CCN=C1NC1=CC=CC2=C1CCCC2 QQJLHRRUATVHED-UHFFFAOYSA-N 0.000 claims description 2
- -1 Imidazolineε Chemical class 0.000 claims 1
- 150000002357 guanidines Chemical class 0.000 claims 1
- 238000012800 visualization Methods 0.000 claims 1
- 210000000695 crystalline len Anatomy 0.000 description 32
- 210000003205 muscle Anatomy 0.000 description 27
- 230000001886 ciliary effect Effects 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 25
- 230000004308 accommodation Effects 0.000 description 17
- 230000002350 accommodative effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 238000009472 formulation Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 6
- 230000000699 topical effect Effects 0.000 description 6
- 239000000556 agonist Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000030214 innervation Effects 0.000 description 5
- 230000002889 sympathetic effect Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 102000030484 alpha-2 Adrenergic Receptor Human genes 0.000 description 4
- 108020004101 alpha-2 Adrenergic Receptor Proteins 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000000219 Sympatholytic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000004406 elevated intraocular pressure Effects 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 231100000344 non-irritating Toxicity 0.000 description 3
- 201000005111 ocular hyperemia Diseases 0.000 description 3
- 230000001734 parasympathetic effect Effects 0.000 description 3
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000674 adrenergic antagonist Substances 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 102000004305 alpha Adrenergic Receptors Human genes 0.000 description 2
- 108090000861 alpha Adrenergic Receptors Proteins 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 2
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 2
- 239000002876 beta blocker Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001713 cholinergic effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 229940124274 edetate disodium Drugs 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002357 osmotic agent Substances 0.000 description 2
- 239000000734 parasympathomimetic agent Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000001179 pupillary effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000008174 sterile solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000000948 sympatholitic effect Effects 0.000 description 2
- 229960004605 timolol Drugs 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- HBLPYIOKPJVFQW-UHFFFAOYSA-N 6-ethyl-4,5,7,8-tetrahydro-[1,3]oxazolo[4,5-d]azepin-2-amine;hydron;dichloride Chemical compound Cl.Cl.C1CN(CC)CCC2=C1OC(N)=N2 HBLPYIOKPJVFQW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 208000006550 Mydriasis Diseases 0.000 description 1
- PIJVFDBKTWXHHD-UHFFFAOYSA-N Physostigmine Natural products C12=CC(OC(=O)NC)=CC=C2N(C)C2C1(C)CCN2C PIJVFDBKTWXHHD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004480 accommodation of the lens Effects 0.000 description 1
- VRYMTAVOXVTQEF-UHFFFAOYSA-N acetic acid [4-[2-(dimethylamino)ethoxy]-2-methyl-5-propan-2-ylphenyl] ester Chemical compound CC(C)C1=CC(OC(C)=O)=C(C)C=C1OCCN(C)C VRYMTAVOXVTQEF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000951 adrenergic alpha-1 receptor antagonist Substances 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 210000004240 ciliary body Anatomy 0.000 description 1
- 231100000478 corneal permeability Toxicity 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960003509 moxisylyte Drugs 0.000 description 1
- 230000036640 muscle relaxation Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 230000008397 ocular pathology Effects 0.000 description 1
- 229940127242 parasympathomimetic drug Drugs 0.000 description 1
- 230000001499 parasympathomimetic effect Effects 0.000 description 1
- 229940005542 parasympathomimetics Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- PIJVFDBKTWXHHD-HIFRSBDPSA-N physostigmine Chemical compound C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C PIJVFDBKTWXHHD-HIFRSBDPSA-N 0.000 description 1
- 229960001697 physostigmine Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/155—Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
ALPHA-2-ADRENERGIC AGONISTS FOR TREATING PRESBYOPIA.
Background of the Invention
Presbyopia, or age-related loss of accommodative ability, is a very common ocular pathology. Accommodative ability refers to the capacity of the eye to focus for near vision by changing the shape of the lens to become more convex. The ocular tissues involved in the accommodative response include the lens, the zonules (suspensory ligaments) of the lens, and the ciliary muscle. These structures function together in accommodating the eye for focusing on close objects.
Within the eye, the lens is centrally suspended between the anterior and posterior chambers, behind the pupillary opening of the.iris. The lens is supported by a radially oriented array of zonules which extend from the lateral edges of the lens to the inner border of the circumferential ciliary muscle. The ciliary muscle is attached to the scleral coat of the eye.
At rest, the eye is focused for distant vision with the lens held in a somewhat flattened, or slightly convex, shape by tension exerted on its periphery by the zonules. These ligaments pull the edges of the lens towards the ciliary body. During accommodation, the shape of the lens becomes more convex. This action is achieved through contraction of the ciliary muscle which allows the ciliary attachment of the zonules to move inward towards the lens, thereby reducing the tension in the zonules. This reduction in tension allows the lens to increase in convexity, resulting in an increase in dioptric power which enables near objects to be imaged clearly on the retina.
Loss of accommodative ability can be measured as the progressive* regression of the near point of accommodation, which is the closest point for which the eye can accommodate
so that a clear image is formed on the retina. The near point of accommodation is nearest to the eye in the young and recedes gradually until about the age of 45 years, when a much more rapid recession of the near point ensues. This recession continues unabated until about the age of 60 years, by which time all accommodation has been lost.
The amplitude of accommodation may also be quantified by measuring the dioptric power of the eye, a measure of refractive power. The dioptric power is measured in diopters (D) . Accomodative ability is greatest in childhood and slowly decreases until it is lost in middle age. At the age of 8 years the dioptric power of the eye can be raised by accommodation to approximately 14 D; at the age of 20 years this has fallen to 11 D. At the age of 30 years the eye can accommodate 9 D. By the age of 50 years, less than 2 D remain.
By the age at which the loss of the amplitude of accommodation has made the near point so far removed that the subject cannot read fine print, the eye has become presbyopic. Presbyopia is the age-related recession of the near point of accommodation, and usually is evident by the age of 45 years. In an otherwise normal eye, convex glasses are prescribed to correct for the decrease in the accommodative power of the lens. In a myope, bifocals will be needed. The necessity for corrective lenses in essentially all people as they age imposes obvious financial costs. Safety and efficiency are also threatened when corrective lenses are not used for reasons of convenience, accessibility or cosmetic undesirability.
The etiology of presbyopia is not yet well defined, but changes in several tissues, including lens, zonules, and ciliary muscle, probably contribute to the progressive loss of accomodative ability. With age, the lens mass hardens, adhesion between the lens fibers increases, and the elasticity of the lens capsule decreases; the lens finally is unable to assume a more convex, accomodated shape despite
maximal contraction of the ciliary muscle. The progressive rigidity of the lens is exacerbated by an apparent loss of refractivity of the lens tissue. The loss of refractive power in the lens tissue means that the age-impaired lens needs to assume a more convex shape for close focusing than does the lens of a younger person.
The progressive lens hardening and loss of refractive power appear to be inevitable with age. The prevailing view is currently that treatment of presbyopia is not feasible, except for the symptomatic prescribing of corrective glasses.
Age related changes in the zonules may also contribute to the development of presbyopia. With age, the location of zonule attachment to the lens capsule shifts from the lens equator onto the anterior surface of the crystalline lens. This apparently necessitates a greater movement of the ciliary muscle to produce a unit change of accommodation with age.
Although early studies suggested that changes in the ciliary muscle with age might contribute to the loss of accommodation, recent studies indicate that the ciliary muscle does not change substantially with age, but rather is relatively immobilized by its attachments to the lens, choroid and scleral spur.
The ciliary muscle controls the shape of the lens and thereby implements accommodation. Like most smooth muscles, the ciliary muscle has a dual innervation, receiving both sympathetic and parasympathetic fibers. In the ciliary muscle, the contraction necessary for accommodation is under parasympathetic (cholinergic) control, which clearly predominates. Opposing cholinergic control, the sympathetic (adrenergic) innervation, which plays a minor role, is responsible for relaxation of the ciliary muscle or inhibition of accommodation.
The role of sympathetic innervation in accommodation in" ■ • humans has* been the subject of several recent pharmacological investigations. The ciliary muscle can be made to "dilate"
(the ciliary muscle ring widens) by alpha-adrenergic stimulation, which causes decreased accommodation. In one study, an alpha-adrenergic antagonist caused an average increase in accommodative amplitude of 1.5 D, which peaked 40 minutes after instillation and decayed rapidly to baseline in less than 2 hours. The effect appeared specifically related to alpha-adrenergic receptors in the ciliary muscle, rather than a non-specific effect on either pupil size or vasodilation of blood vessels.
The ciliary muscle also has beta-adrenergic receptors which, when stimulated, trigger ciliary muscle relaxation. Conversely, beta-adrenergic antagonists, like timolol, in certain circumstances can cause a net increase in accommodation, which is enhanced by concurrent parasympathetic activity. This effect has not been demonstrated in presbyopic patients. Beta-adrenergic antagonists like timolol have been used topically to control elevated intraocular pressure, but can cause significant systemic side effects.
There are no currently available treatments for presbyopia based on therapeutically manipulating the autonomic innervation of the ciliary muscle. In 1972, Eskridge reported a brief increase in the maximum accomodative response in a 36 year old subject treated with the parasympathomimetic drug eserine (Am. J. Optometry, August, 1972, pp. 632-635). A similar transient gain in accomodation was measured after treating subjects with the alpha-1 antagonist thymoxamine (Zetterεtrom, Acta Ophthalmologica 65:699-704, 1987). The use of alpha-2 agonists was not suggested in these references.
No attempt has been made to utilize the accomodation-enhancing effect of parasympathomimetics or of sympatholytic drugs in any way for the treatment of presbyopia. Specifically, these drugs have not been used either to delay the onset of clinically evident presbyopia,
or to treat clinically evident presbyopia in conjunction with concurrent use of corrective lenses.
Compounds which decrease adrenergic tone by acting at alpha-adrenergic receptors are currently available for use in the eye and comprise two types, the alpha-l antagonists and the alpha-2 agonists. Alpha-l adrenergic antagonists, when used in the eye for blocking pupillary mydriasis, are known to cause vasodilation and marked hyperemia, or reddening, of the eyes, often associated with discomfort.
Compounds that have alpha-2 adrenergic agonistic activity are considered relatively safe drugs for topical use. For example, compounds that have alpha-2 adrenergic agonistic activity are currently marketed for topical use in relief of eye redness, although the alpha-2 activity is not believed to be responsible for the therapeutic effect. In addition, alpha-2 agonists are used for decreasing intraocular pressure.
SUMMARY OF THE INVENTION
According to the invention, a method for increasing the accommodative ability of an eye of a presbyopic subject is provided by treatment of the eye with an amount of an alpha-2 adrenergic agonist sufficient to increase the accomodative ability of the subject by at least 0.5 diopters. The treatment is intended in particular for subjects who are otherwise free of indications for ophthalmic treatments calling for an alpha-2 adrenergic agonist. In other words, treatment is given to subjects who do not exhibit, among other things, conjunctivitis, increased intraocular pressure or red eye.
The compound is administered in a pharmaceutically acceptable ophthalmic preparation. The compound may be administered topically by application of the compound to the eye, preferably in a non-irritating sterile solution or
suspension. Preferably, the solution or suspension is at a pH compatible with the eye.
It is an object of the invention to provide means and method for increasing accommodation in presbyopes by topical treatment with alpha-2 adrenergic agonist compounds.
Other features and advantages of the invention will be apparent from the following description and from the claims.
Detailed Description of the Preferred Embodiments
This invention encompasses therapeutic compounds and methods of treatment for decreasing the severity of clinically evident presbyopia. By clinically evident presbyopia, we mean a state of diminished accomodative ability characterized by discomfort or blurred vision when the affected person attempts to focus on nearby objects, for example fine print. The compounds and methods claimed increase the ability of the ciliary muscle to contract, and thus to change the curvature of the ocular lens, by decreasing the opposing muscle tone stimulated by sympathetic innervation.
While not limiting the treatment of this invention to the validity of one proposed mechanism of action, it is believed that the compounds of the invention may delay or relieve the symptoms of presbyopia by inhibiting the action of the sympathetically-stimulated components of the ciliary muscle, thereby sparing the parasympathetically-stimulated ciliary muscle components. The parasympathetically-stimulated components of the muscle control the tonic accommodation of the lens and contract to allow maximal accommodative ability; the sparing of, these muscles by blocking their sympathetically-controlled muscle antagonists may delay or decrease presbyopic symptoms.
The compounds, useful in practicing this invention are any alpha-2 adrenergic agonists. As used herein, the term alpha-2 adrenergic agonist means compounds that produce a net
sympatholytic response, resulting in increased accomodation, by binding either to prejunctional alpha-2 receptors on sympathetic postganglionic nerve endings or to postjunctional alpha-2 receptors on smooth muscle cells. A sympatholytic response is characterized by the inhibition, diminishment, or prevention of the effects of impulses conveyed by the sympathetic nervous system. The alpha-2 adrenergic agonists of the invention bind to the alpha-2 adrenergic receptors prejunctionally, causing negative feedback to decrease the release of neuronal norepinephrine. Additionally, they also work on alpha-2 adrenergic receptors poεtjunctionally, inhibiting beta-adrenergic receptor-stimulated formation of cyclic AMP, which contributes to the relaxation of the ciliary muscle, in addition to the effects of postjunctional alpha-2 adrenergic receptors on other intracellular pathways. Activity at either pre- or postjunctional alpha-2 adrenergic receptors will result in decreased adrenergic tone and thus less relaxation of the ciliary muscle to oppose cholinergically stimulated contraction.
Without limiting the invention to the specific groups and compounds listed, the following is a list of representative alpha-2 adrenergic agonists useful in this invention: Imino-imidazolines, including Clonidine (U.S. Patent 3,202,660 to Boehringer Ingelheim) , Apraclonidine (U.S. Patent 4,517,199 to Alcon) and UK 14,304 (5-bromo-6-(2-imidazolin-2-ylamino)
-quinoxaline, (Serle et al . , Arch. Ophthalmol. 109:1158-1162, 1991); Imidazolines, including Naphazoline (U.S. Patent 2,161,938 and Danish Patent 62,889), Oxymetazoline (German Patent 1,117,588 to Merck), Tetrahydrozoline (U.S. Patent 2,842,478 to Pfizer and U.S. Patent 2,731,471 to Sahyi . Labs), and Tramazoline (German Patent 1,191,381 and 1,195,323 to Thomae); Imidazoles, including Detomidine (U.S. Patent 4,443,466 and Eur. Patent Appl. 24,829, both to Farmos), Medetomidine (U.S. Patent 4,544,664 to Farmos and British Patent Appl. 2,101,114 to A. J. Karjalainen, K.O.A. Kurkela) ,
and Dexmedetomidine (U.S. Patent 5,091,402 to Orion-Yhtyma Oy. Orion Pharmaceutical Co.); Azepines, including B-HT 920 (6-allyl-2-amino-5,6,7,8 tetrahydro-4H-thiazolo- [4,5-d]-azepine, U.S. Patent 5,030,630 to Boehringer Ingelheim) and B-HT 933 (Rubin et al., J. Cardiovasc. Pharmacol. 4:527-530, 1982); Thiazines, including Xylazine (German Patent 1,173,475; Belgian Patent 634,552; U.S. Patent 3,235,550, all to Bayer); Oxazolines, including Rilmenidine (German Patent 2,362,754, U.S. Patent 4,102,890 to Sci. Union et Cie. Soc. France Recher Med.); Guanidineε, including Guanabenz (British Patent 1,019,120 to Shell; German Patent 1,804,634 to Sandoz) and Guanfacine (French Patent 1,584,670, U.S. Patent 3,632,645, both to Wander); Catecholamines, including Phenylephrine (U.S. Patents 1,932,347 and 1,954,389), Mephentermine (U.S. Patent 2,590,079 to Wyeth) , Metaraminol (British Patent 353,361, Swiss Patent 162,367 and U.S. Patent 396,951, all to I.G. Farben; U.S. Patents 1,948,162 and 1,951,302 to Hartung; U.S. Patent 1,995,709 to Sharp & Doh e) , and Methoxamine Hydrochloride (U.S. Patent 2,359,707 to Burroughs Wellcome).
Analogs of the foregoing compounds that function as alpha-2 adrenergic agonists also are specifically intended to be embraced by the invention. The ability of such analogs to increase accomodation according to the invention can be tested easily using no more than routine experimentation.
The therapy is suited in particular for subjects who are otherwise free of indications for ophthalmic treatments calling for an alpha-2 adrenergic agonist. It should be understood by those of ordinary skill in the art that there currently are ophthalmic conditions that are treated using alpha-2 adrenergic agonists. For example, elevated intraocular pressure can be advantageously treated with compounds having alpha-2 adrenergic activity. As a further example, red eye, a condition characterized by abnormal dilation of vessels on the surface of the eye, can oe treated using compounds which are generally sympathomimetic, with
both alpha-l and alpha-2 agonist activity. By "free of indications", it is meant that the subject does not have symptoms or a clinical history that call for treatment with an alpha-2 adrenergic agonist (other than the indications which exist as a result of this invention) , and that the subject also is free of symptoms or a clinical history that call for treatment with another adrenergically-active compound which has significant alpha-2 adrenergic agonist activity.
The alpha-2 adrenergic agonists of the invention may be administered per se (neat) or in the form of a pharmaceutically acceptable salt. When used in medicine, the salts of the alpha-2 adrenergic agonists should be both pharmacologically and pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare the free active compound or pharmaceutically acceptable salts thereof. Pharmacologically and pharmaceutically acceptable salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicyclic, p-toluenesulfonic, tartaric, citric, methanesulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzenesulphonic. Also, pharmaceutically acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group. Thus, the present invention provides pharmaceutical formulations which comprise alpha-2 adrenergic agonists together with one or more pharmaceutically acceptable carriers and optionally other therapeutic ingredients. The carrier(s) and other ingredients of course must be pharmaceutically acceptable. Such formulations preferably contain the alpha-2 adrenergic agonist in pharmaceutically effective concentrations and amounts and most preferably are in formulations and containers adapted for topical delivery.
Certain of the compounds of the invention are known for use in the art for other purposes, and are known to be safe under ordinary conditions of use. Thus, the treatment of this invention can be administered by substantially conventional means, consistent with known eye treatments and while avoiding irritation, discomfort or the need for unusual application procedures. The commercially available alpha-2 adrenergic agonists have reasonable shelf life and can be packaged, stored and transported for ophthalmic use without unusual difficulty or cost.
Formulations of the invention include any formulation in which the compounds of the invention may be delivered to the eye. Preferably, the alpha-2 agonists of the invention are applied to the eye in a topical preparation, By a topical preparation, it is meant a preparation which is adapted to be applied to the surface of the eye. In such a preparation, the therapeutic compounds of the preparation contact the surface of the eye, and penetrate into the deeper tissues of the eye. Such preparations usually have liquid carriers which can be aqueous solutions or suspensions.
The compounds of the invention may be applied in a pharmaceutically acceptable ophthalmic preparation, meaning a preparation which produces medically desirable therapeutic effects without concurrently causing clinically significant adverse effects. Clinically significant side effects refer to unacceptable side effects of the preparation, including . either medically or cosmetically unacceptable effects. Examples of unacceptable side effects include reddened or irritated eyes, impaired long distance vision, and elevated intraocular pressure.
The compounds of the invention are administered in therapeutically effective amounts. A therapeutically effective amount is one which causes medically useful increase in accommodative ability of a presbyopic eye. Such an increase is at least one diopter. The compounds are typically added to the ophthalmic preparations 'of the
invention at concentrations of 0.01-10% by weight of the entire composition.
In the preferred embodiments, the compounds of the invention are administered topically, delivered in a medically acceptable, substantially sterile, nonirritating ophthalmic preparation. The ophthalmic preparations may routinely contain pharmaceutically acceptable concentrations of salts, buffering agents, preservatives, viscosity modifiers, osmotic agents, and delivery enhancing agents.
Salts which can be used include but are not limited to sodium chloride, zinc sulfate, and potassium chloride. Buffers which can be used include but are not limited to boric acid and citric acid. Preservatives which can be used include but are not limited to benzalkonium chloride and edetate disodium. Viscosity modifiers which can be used include but are not limited to methyl cellulose, glycerol, and polyethylene glycol. Osmotic agents which can be used include but are not limited to mannitol and sorbitol. Delivery enhancing agents that facilitates the delivery of the therapeutic compound of the invention into the aqueous humor, include substances which increase corneal permeability, such as surfactants, wetting agents, liposomes, DMSO, and the like. A wetting agent is a substance which facilitates corneal penetration by mildly disrupting the outer corneal surface. A preferred wetting agent is benzalkonium chloride. Other examples of wetting agents include sorbitan esters, and polyoxyethylene ethers.
It should be understood that although specific formulations have been defined, many variations are possible. In all cases, the ophthalmic formulations useful in the eye are nonirritating and nondamaging to the eye in the preferred form, and are effective to provide the results desired. Normally, such formulations can be applied in a liquid carrier, with an aqueous carrier being preferred although in some, instances, quick dissolving forms of the medicaments may be administered in powder form or rubbed into
the eye from applicators of various types. Spraying of the eye, eyedrops, and other methods of application can be used.
Dosage levels will vary greatly depending upon the individual to be treated and the specific medicament used. Proper dosing can be determined without undue experimentation and according to procedures well known to those of ordinary skill in the art.
Humans are characterized by a mean amplitude of accomodation (measured in diopters) that decreases steadily with age. The methods of this invention are useful with subjects having a maximal dioptric power of 10 or less, preferably with subjects having a maximal dioptric power of 6 or less, and most preferably with subjects having a maximal dioptric power of 4 or less.
The preparations are preferably to be packaged as sterile solutions in dropper bottles, as are well known in the trade. Other containers, including eye cups, can also be used. The preparation is preferably packaged with instructions for using the preparation in treating presbyopia, typically directing the user of the preparation to administer 1 to 2 drops of the solution to each eye.
In a specific example of this invention, a base solution can be formulated as follows: Sodium Chloride 0.3%; Edetate Disodium 0.1%; Boric Acid 1.0%; Benzaliconium Chloride 0.01% Sodium Gydroxide (adjust to pH 6.4) and Water. Oxymetazoline, at a concentration of 0.1% weight/volume, is added to the base solution.
The above-formulation is administered to the eye of a fifty year old human adult with presbyopia, shown by his discomfort when reading, or his inability to read fine print. Vision is improved after administration of the eye drops.
When other alpha-2 adrenergic agonists are substituted for oxymetazoline, similar results are obtained.
Equivalents
It should be understood, however, that the foregoing description of the invention is intended merely to be illustrative by way of example only and that other modifications, embodiments, and equivalents may be apparent to those skilled in the art without departing from its spirit
Claims (25)
- an alpha-2 adrenergic agonist in an amount sufficient to increase the accomodative ability of the subject by at least 0.5 diopters.
- 2. The method of claim 1 wherein the alpha-2 adrenergic agonist is administered topically to the eye in a pharmaceutically acceptable ophthalmic preparation.
- 3. The method of claim 2 wherein the alpha-2 adrenergic agonist is administered to a subject that is otherwise free of indications for ophthalmic alpha-2 adrenergic agonist treatment.
- 4. The method of claim 2 wherein the alpha-2 adrenergic agonist is administered to a subject that is free of indications for conjunctivitis, increased intraocular pressure, and red eye.
- 5. The method of claim 3 wherein the alpha-2 adrenergic agonist is selected and is administered in an amount whereby the treatment is free of clinically significant adverse effects on the visualization of distance objects.
- 6. The method of claim 3 wherein the alpha-2 adrenergic agonist is selected and is administered in an amount whereby the treatment is free of medically unacceptable side effects.
- 7. The method of claim 1 wherein the alpha-2 adrenergic agonist is selected from the group consisting of:Imino-imidazolines, Imidazolineε, Imidazoles, Azepines, Thiazines, Oxazolines, Guanidines, and Catecholamines. 8. The method of claim 1 wherein the alpha-2 adrenergic agonist is selected from the group consisting of:Clonidine, Apraclonidine, [5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline] , Naphazoline, Oxymetazoline, Tetrahydrozoline, Tramazoline, Detomidine, Medetomidine, Dexmedetomidine, B-HT 920 (6-allyl-2-amino-5,6,7,
- 8 tetrahydro-4H-thiazolo-[4,5-d]-azepine) , Xylazine, Rilmenidine, Guanabenz, Guanfacine, Phenylephrine, Mephentermine, Metaraminol, and Methoxamine Hydrochloride.
- 9. The method of claim 1 wherein the alpha-2 adrenergic agonist is Clonidine.
- 10. The method of claim 1 wherein the alpha-2 adrenergic agonist is Apraclonidine.
- 11. The method of claim 1 wherein the alpha-2 adrenergic agonist is 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline.
- 12. The method of claim 1 wherein the alpha-2 adrenergic agonist is Naphazoline.
- 13. The method of claim 1 wherein the alpha-2 adrenergic agonist is Oxymetazoline.
- 14. The method of claim 1 wherein the alpha-2 adrenergic agonist is Tetrahydrozoline.
- 15. The method of claim 1 wherein the alpha-2 adrenergic agonist is Detomidine.
- 16. The method of claim 1 wherein the alpha-2 adrenergic agonist is Medetomidine.
- 17. The method of claim 1 wherein the alpha-2 adrenergic agonist is Dexmedetomidine.
- 18. The method of claim 1 wherein the alpha-2 adrenergic agonist is B-HT 920 (6-allyl-2-amino-5,6,7,8 tetrahydro-4H-thiazolo-[4,5-d]-azepine) .
- 19. The method of claim 1 wherein the alpha-2 adrenergic agoniεt is Xylazine.
- 20. The method of claim 1 wherein the alpha-2 adrenergic agonist is Rilmenidine.
- 21. The method of claim 1 wherein the alpha-2 adrenergic agonist is Guanabenz.
- 22. The method of claim 1 wherein the alpha-2 adrenergic agonist s Phenylephrine.
- 23. The method of claim 1 wherein the alpha-2 adrenergic agonist iε Mephentermine.
- 24. The method of claim 1 wherein the alpha-2 adrenergic agonist is Metaraminol.
- 25. The method of claim 1 wherein the alpha-2 adrenergic agonist is Methoxamine Hydrochloride
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US893734 | 1992-06-05 | ||
US07/893,734 US5459133A (en) | 1992-06-05 | 1992-06-05 | Methods and products for treating presbyopia |
PCT/US1993/005360 WO1993025199A1 (en) | 1992-06-05 | 1993-06-04 | Alpha-2-adrenergic agonists for treating presbyopia |
Publications (1)
Publication Number | Publication Date |
---|---|
AU4528393A true AU4528393A (en) | 1994-01-04 |
Family
ID=25401991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU45283/93A Abandoned AU4528393A (en) | 1992-06-05 | 1993-06-04 | Alpha-2-adrenergic agonists for treating presbyopia |
Country Status (6)
Country | Link |
---|---|
US (1) | US5459133A (en) |
EP (1) | EP0643576A1 (en) |
JP (1) | JPH07507801A (en) |
AU (1) | AU4528393A (en) |
CA (1) | CA2137285A1 (en) |
WO (1) | WO1993025199A1 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996004270A1 (en) | 1994-08-04 | 1996-02-15 | Synaptic Pharmaceutical Corporation | Novel benzimidazole derivatives |
US5801188A (en) * | 1997-01-08 | 1998-09-01 | Medtronic Inc. | Clonidine therapy enhancement |
US6495583B1 (en) | 1997-03-25 | 2002-12-17 | Synaptic Pharmaceutical Corporation | Benzimidazole derivatives |
US6164282A (en) * | 1999-01-27 | 2000-12-26 | Allergan Sales, Inc. | Methods for restoring and/or enhancing accommodation in pseudo phakia |
US6730691B1 (en) | 2000-02-10 | 2004-05-04 | Miles A. Galin | Uses of alpha adrenergic blocking agents |
US7635388B1 (en) * | 2000-05-04 | 2009-12-22 | Tyler Thomas D | Device and method for incremental correction of sight disorders and occular diseases |
US20050026924A1 (en) * | 2000-07-14 | 2005-02-03 | Allergan, Inc. | Compositions containing alpha-2-adrenergic agonist components |
US20040214829A1 (en) * | 2000-07-14 | 2004-10-28 | Allergan, Inc. | Compositions containing alpha-2-adrenergic agonist components |
US8858961B2 (en) | 2000-07-14 | 2014-10-14 | Allergan, Inc. | Compositions containing alpha-2-adrenergic agonist components |
CN101897704B (en) * | 2000-07-14 | 2014-10-29 | 阿勒根公司 | Compositions containing alpha-2-adrenergic agonist components |
EP2153819B1 (en) * | 2000-07-14 | 2012-09-05 | Allergan, Inc. | Use of a solubility enhancing component in an aqueous composition comprising brimonidine tartrate |
US7935332B2 (en) * | 2000-08-16 | 2011-05-03 | Encore Health, Llc | Presbyopia treatment by lens alteration |
AU2002243589B2 (en) * | 2000-08-16 | 2007-06-07 | Encore Health, Llc | Presbyopia treatment by lens alteration |
US8147816B2 (en) * | 2000-08-16 | 2012-04-03 | Encore Health, Llc | Presbyopia treatment by lens alteration |
US8697109B2 (en) | 2000-08-16 | 2014-04-15 | Encore Health, Llc | Caged mercaptan and seleno-mercaptan compounds and methods of using them |
AU2007202325B2 (en) * | 2000-08-16 | 2009-12-17 | Encore Health, Llc | Presbyopia treatment by lens alteration |
US8647612B2 (en) * | 2008-03-05 | 2014-02-11 | Encore Health, Llc | Dithiol compounds, derivatives, and treatment of presbyopia |
AU2001283386A1 (en) * | 2000-08-16 | 2002-02-25 | Refocus, Llc. | Presbyopia treatment by lens alteration |
US6923955B2 (en) | 2000-08-16 | 2005-08-02 | Newlens, Llc | Presbyopia treatment by lens alteration |
US7914815B2 (en) * | 2000-08-16 | 2011-03-29 | Encore Health, Llc | Method for delivery of pharmaceuticals for treating or preventing presbyopia |
US20050112113A1 (en) * | 2000-08-16 | 2005-05-26 | Till Jonathan S. | Presbyopia treatment by lens alteration |
JP2005506096A (en) * | 2001-01-19 | 2005-03-03 | ニューレンズ、エルエルシー | Presbyopia treatment by lens change |
DK1654002T4 (en) | 2003-08-07 | 2014-02-17 | Allergan Inc | Compositions for applying therapeutic agents to the eyes |
US8088773B2 (en) * | 2005-05-12 | 2012-01-03 | The Texas A&M University System | Therapeutic compositions and methods |
WO2007070463A2 (en) * | 2005-12-12 | 2007-06-21 | Riolan Technologies, Inc. | Compositions, methods and kits for removing debris from an ocular area |
US8911496B2 (en) | 2006-07-11 | 2014-12-16 | Refocus Group, Inc. | Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods |
MX357548B (en) | 2006-07-11 | 2018-07-13 | Refocus Group Inc Star | Scleral prosthesis for treating presbyopia and other eye disorders and related devices and methods. |
US8102027B2 (en) * | 2007-08-21 | 2012-01-24 | Broadcom Corporation | IC package sacrificial structures for crack propagation confinement |
US9192571B2 (en) * | 2008-03-03 | 2015-11-24 | Allergan, Inc. | Ketorolac tromethamine compositions for treating or preventing ocular pain |
US7842714B2 (en) * | 2008-03-03 | 2010-11-30 | Allergan, Inc. | Ketorolac tromethamine compositions for treating ocular pain |
US9044439B2 (en) * | 2008-03-05 | 2015-06-02 | Encore Health, Llc | Low dose lipoic and pharmaceutical compositions and methods |
WO2009111635A2 (en) | 2008-03-05 | 2009-09-11 | Encore Health, Llc | Dithiol compounds, derivatives, and uses therefor |
US8299079B2 (en) * | 2009-05-22 | 2012-10-30 | Kaufman Herbert E | Preparations and methods for ameliorating or reducing presbyopia |
ES2579173T3 (en) | 2009-06-15 | 2016-08-05 | Encore Health, Llc | Choline esters to treat presbyopia and cataracts |
EP4082542A1 (en) * | 2009-06-15 | 2022-11-02 | Encore Health, LLC | Dithiol compounds, derivatives, and uses therefor |
US8492422B2 (en) | 2010-09-16 | 2013-07-23 | Allergan, Inc. | Ester pro-drugs of [3-(1-(1H-imidazol-4-yl)ethyl)-2-methylphenyl] methanol for treating skin diseases and conditions |
US20120225918A1 (en) | 2011-03-03 | 2012-09-06 | Voom, Llc | Compositions and Methods for Non-Surgical Treatment of Ptosis |
EP2758047B1 (en) * | 2011-09-20 | 2018-12-19 | Allergan, Inc. | Compositions and methods for treating presbyopia, mild hyperopia, and irregular astigmatism |
EP2782569A1 (en) | 2011-11-21 | 2014-10-01 | Allergan, Inc. | Pharmaceutical compositions comprising 4-[1-(2,3-dimethylphenyl)ethyl]-3h-imidazole derivatives for treating retinal diseases |
JP2015519398A (en) | 2012-06-11 | 2015-07-09 | マククリア・インコーポレイテッド | Therapeutic formulations and methods of treatment |
US10507245B2 (en) * | 2012-07-19 | 2019-12-17 | Luis Felipe Vejarano Restrepo | Ophthalmic formulation and method for ameliorating presbyopia |
TWI704933B (en) | 2013-10-07 | 2020-09-21 | 美商帝國製藥美國股份有限公司 | Dexmedetomidine transdermal delivery devices and methods for using the same |
CN105764496B (en) | 2013-10-07 | 2020-09-25 | 帝国制药美国公司 | Methods and compositions for transdermal delivery of a non-sedative amount of dexmedetomidine |
KR101831290B1 (en) | 2013-10-07 | 2018-02-22 | 테이코쿠 팔마 유에스에이, 인코포레이티드 | Methods and compositions for treating attention deficit hyperactivity disorder, anxiety and insomnia using dexmedetomidine transdermal compositions |
CN112641720A (en) | 2014-03-03 | 2021-04-13 | 诺华股份有限公司 | Lipoic acid choline ester compositions and methods of use |
WO2019204401A1 (en) * | 2018-04-19 | 2019-10-24 | Presbyopia Therapies Llc | Compositions and methods for the treatment of presbyopia |
HRP20220762T1 (en) | 2018-04-24 | 2022-09-16 | Allergan, Inc. | Use of pilocarpine hydrochloride for the treatment of presbyopia |
US11077053B2 (en) | 2018-08-21 | 2021-08-03 | Allergan, Inc. | Alpha-2-adrenergic receptor agonists for treatment of presbyopia, visual glare, visual starbursts, visual halos and night myopia |
EP3683618A1 (en) | 2019-01-21 | 2020-07-22 | Essilor International (Compagnie Generale D'optique) | System and method for demonstrating an optical disorder |
US10814001B1 (en) | 2019-05-06 | 2020-10-27 | Rvl Pharmaceuticals, Inc. | Oxymetazoline compositions |
KR102473858B1 (en) * | 2020-03-18 | 2022-12-06 | 한국과학기술연구원 | Use of Xylazine for enhancing visual acuity |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4443441A (en) * | 1981-08-07 | 1984-04-17 | Galin Miles A | Fixation of intraocular lenses |
US4496558A (en) * | 1981-11-27 | 1985-01-29 | Smithkline Beckman Corporation | Pharmaceutical compositions and methods for producing alpha antagonism |
FR2518882A1 (en) * | 1981-12-30 | 1983-07-01 | Pos Lab | THERAPEUTIC COMPOSITION, BASED ON INOSINE MONOPHOSPHATE, FOR THE TREATMENT OF EYE ACCOMMODATION DISORDERS |
DK335086A (en) * | 1985-08-05 | 1987-02-06 | Michele Testa | CHEMICAL COMPOSITIONS AND PHARMACEUTICAL PREPARATIONS FOR TOPICAL USE CONTAINING AT LEAST ONE OF THE CHEMICAL COMPOSITIONS IN A THERAPEUTIC ACTIVITY |
FR2638356A1 (en) * | 1988-10-28 | 1990-05-04 | Anben | New 2-(arylimino)imidazolidine derivatives for decreasing intraocular pressure and treating glaucoma |
-
1992
- 1992-06-05 US US07/893,734 patent/US5459133A/en not_active Expired - Fee Related
-
1993
- 1993-06-04 WO PCT/US1993/005360 patent/WO1993025199A1/en not_active Application Discontinuation
- 1993-06-04 JP JP6501614A patent/JPH07507801A/en active Pending
- 1993-06-04 AU AU45283/93A patent/AU4528393A/en not_active Abandoned
- 1993-06-04 EP EP93915216A patent/EP0643576A1/en not_active Ceased
- 1993-06-04 CA CA002137285A patent/CA2137285A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US5459133A (en) | 1995-10-17 |
EP0643576A1 (en) | 1995-03-22 |
WO1993025199A1 (en) | 1993-12-23 |
CA2137285A1 (en) | 1993-12-23 |
JPH07507801A (en) | 1995-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5459133A (en) | Methods and products for treating presbyopia | |
US6291466B1 (en) | Cholinergic agents in the treatment of presbyopia | |
US5488050A (en) | Methods and products for treating presbyopia | |
US6164282A (en) | Methods for restoring and/or enhancing accommodation in pseudo phakia | |
US6455590B1 (en) | Deprenyl compounds for treatment of glaucoma | |
KR20140076587A (en) | Compositions and methods for treating presbyopia, mild hyperopia, and irregular astigmatism | |
EP3654964B1 (en) | Composition comprising atropine and a miotic agent and its use in the treatment of myopia | |
US20220257593A1 (en) | Carabachol-bromonidine formulation to enhance anti-presbyopia effects | |
Cantor et al. | Brimonidine | |
CN114588156B (en) | Ophthalmic preparation and application thereof in treating presbyopia | |
KR20220041151A (en) | Compositions and methods for treating presbyopia | |
US6462066B2 (en) | Method and composition for treatment of ischemic neuronal reperfusion injury | |
JPWO2020087021A5 (en) | ||
Hurwitz et al. | The effects of the sympathetic nervous system on accommodation: II. Alpha sympathetic nervous system | |
KR20230098630A (en) | Low dose synergistic ophthalmic compositions effective for the prevention, control and eradication of presbyopia | |
Mekki et al. | Dopamine-2 receptor blockade does not affect the ocular hypotensive action of timolol. | |
JPS6256130B2 (en) | ||
MXPA01000803A (en) | Cholinergic agents in the treatment of presbyopia | |
US20090197930A1 (en) | Eyedrops | |
AU7168900A (en) | Deprenyl compounds for treatment of glaucoma | |
EP0456988A2 (en) | Use of naproxen as mydriatic agent |