AU3419293A - A therapeutic process for the treatment of the pathologies of type II diabetes - Google Patents

A therapeutic process for the treatment of the pathologies of type II diabetes

Info

Publication number
AU3419293A
AU3419293A AU34192/93A AU3419293A AU3419293A AU 3419293 A AU3419293 A AU 3419293A AU 34192/93 A AU34192/93 A AU 34192/93A AU 3419293 A AU3419293 A AU 3419293A AU 3419293 A AU3419293 A AU 3419293A
Authority
AU
Australia
Prior art keywords
subject
insulin
dopamine agonist
prolactin
daily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU34192/93A
Inventor
Anthony H Cincotta
Albert H Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Louisiana State University
Original Assignee
Louisiana State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Louisiana State University filed Critical Louisiana State University
Publication of AU3419293A publication Critical patent/AU3419293A/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/48Ergoline derivatives, e.g. lysergic acid, ergotamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Landscapes

  • Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

A THERAPEUTIC PROCESS FOR THE TREATMENT OF THE PATHOLOGIES OF TYPE π DIABETES
BACKGROUND OF THE INVENTION
Diabetes, one of the most insidious of the major diseases, can strike suddenl or lie undiagnosed for years while attacking the blood vessels and nerves. Diabetics, as group, are far more often afflicted with blindness, heart disease, stroke, kidney diseas hearing loss, gangrene and impotence. One third of all visits to physicians are occasione by this disease and its complications are a leading cause of death in this country.
Diabetes adversely affects the way the body uses sugars and starches which during digestion, are converted into glucose. Insulin, a hormone produced by the pancreas makes the glucose available to the body's cells for energy. In muscle, adipose (fat) an connective tissues, insulin facilitates the entry of glucose into the cells by an action on th cell membranes. The injected glucose is normally metabolized in the liver to CO2 and H2 (50%); to glycogen (5 %), and to fate (30-40%), which is stored in fat depots. Fatty acid are circulated, returned to the liver and metabolized to ketone bodies for utilization by th tissues. The fatty acids are also metabolized by other organs, fat formation being a majo pathway for carbohydrate utilization. The net effect of insulin is to promote the storage an use of carbohydrates, protein and fat. Insulin deficiency is a common and serious pathologi condition in man. In Type I diabetes the pancreas produces little or no insulin, and insuli must be injected daily for the survival of the diabetic. In Type II diabetes the pancrea produces insulin, but the amount of insulin is insufficient, or less than fully effective due t cellular resistance, or both. In either form there are widespread abnormalities, but th fundamental defects to which the abnormalities can be traced are (1) a reduced entry o glucose into various "peripheral" tissues and (2) an increased liberation of glucose into th circulation from the liver (increased hepatic glucogenesis). There is therefore an extracellula glucose excess and an intracellular glucose deficiency which has been called "starvation i the midst of plenty". There is also a decrease in the entry of amino acids into muscle an an increase in lipolysis. Thus, these result, as a consequence of the diabetic condition, i elevated levels of glucose in the blood, and prolonged high blood sugar which is indicativ
SUBSTITUTE SHEET of a condition which will cause blood vessel and nerve damage. Obesity, or excess f deposits, is often associated with increasing cellular resistance to insulin which precedes th onset of frank diabetes. Prior to the onset of diabetes, the pancreas of the obese are taxe to produce additional insulin; but eventually, perhaps over several years, insulin productivit falls and diabetes results.
The reduction of body fat stores on a long term, or permanent basis i domestic animals would obviously be of considerable economic benefit to man, particularl since animals supply a major portion of man's diet; and the animal fat may end up as de nov fat deposits in man. The reduction of body fat stores in man likewise would be of significan benefit, cosmetically and physiologically. Indeed, obesity, and insulin resistance, the latte of which is generally accompanies by hyperinsulinemia and hyperglycemia, or both, ar hallmarks of Type II diabetes. Controlled diet and exercise can produce modest results i the reduction of body fat deposits. Unfortunately however no effective treatment has bee found until now for controlling either hyperinsulinemia, or insulin resistance. Hyperinsulinemia is a higher-than-normal level of insulin in the blood. Insulin resistance ca be defined as a state in which a normal amount of insulin produces a subnormal biologi response. In insulin-treated patients with diabetes, insulin resistance is considered to b present whenever the therapeutic dose of insulin exceeds the secretory rate of insulin in normal persons. Insulin resistance is also found in the setting defined by higher-than-normal levels of insulin — i.e., hyperinsulinemia — when there is present normal or elevated levels of blood glucose. Despite decades of research on these serious health problems, the etiology of obesity and insulin resistance is unknown.
The principal unit of biological time measurement, the circadian or daily rhythm, is present at all levels of organization. Daily rhythms have been reported for many hormones inclusive of the adrenal steroids, e.g., the glucocorticosteroids, notably cortisol, and prolactin, a hormone secreted by the pituitary. In the early article, discussing the state- of-the-art at that time, it is reported that "Although correlations have been made between hormone rhythms and other rhythms, there is little direct evidence that the time of the daily presence or peak level of hormones has important physiological relevance." See Temporal Synergism of Prolactin and Adrenal Steroids by Albert H. Meier, General and Comparative
SUBSTITUTE SHEET Endocrinology, Supplement 3, 1972 Copyright 1972 by Academic Press, Inc. The articl then describes avian physiological response to prolactin injections given over daily periods These responses include increases and decreases in body fat stores, dependent on the time o day of the injection and season, the season being a determinant of normal high body weigh and consequent low fat stores within the animal. Prolactin was thus found to stimulat fattening only when injected at certain times of the day, and the time of the response t prolactin was found to differ between lean animals and fat animals. In an article title Circadian and Seasonal Variation of Plasma Insulin and Cortisol Concentrations in the Syria Hamster. Mesocricetus Auratus by Christopher J. de Souza and Albert H. Meier, Chronobiology International, Vol. 4, No. 2, pp. 141-151, 1987, there is reported a study o circadian variations of plasma insulin and cortisol concentrations in scotosensitive an scotorefractory Syrian hamsters maintained on short and long periods of daylight to determin possible seasonal changes in their daily rhythms. The baseline concentration of insulin wa found to be greater in female than in male scotosensitive hamsters on short daylight periods. There differences it is reported, may account for the observed heavy fat stores in female an low fat stores in male scotosensitive hamsters kept on short daylight periods. The plasm concentrations of both cortisol and insulin varied throughout the day for the groups of animals tested, but were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylight. The circadian variation of insulin, in contrast, differed markedly. Neither the daily feeding pattern or glucose concentration varied appreciably with seasonal condition, or daylight. The time of day, or the season, it is reported do not appear to affect the concentrations in glucose or cortisol levels. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems, and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores. The circadian rhythms of prolactin and glucocorticosteroid hormones, e.g., cortisol, have thus been perceived as having important though far from fully understood roles in regulating daily and seasonal changes in body fat stores and in the organization and integration of total animal metabolism. See Circadian Hormone Rhythms in Lipid Regulation, by Albert H. Meier and John T. Burns, Amer. Zool. 16:649-659 (1976).
SUBSTITUTE SHEET Insulin is a hormone with a multitude of biological activities, many of whic are tissue specific. For example, insulin can augment milk production in the mammar gland, stimulate fat synthesis in the liver, promote the transport of glucose into muscle tissue stimulate growth of connective tissues, and the like. The effects of the insulin molecule i one tissue are not necessarily dependent upon its effect in other tissues. That is, these insuli activities can be and are molecularly separate from each other. In contradistinction from th previous art of Meier and Cincotta which teaches that dopamine agonists (e.g. , bromocriptin inhibit liver cell lipogenic ( or fat synthesizing) responsiveness to insulin, the new technolog described and demonstrated herein teaches that appropriately timed daily administration o a dopamine agonist (e.g., bromocriptine) has another new and distinctly unique beneficial medicinal capability which is to stimulate whole body (primarily muscle) tissue hypoglycemic (or glucose disposal) responsiveness to insulin. This new discovery of this new medical utility of dopamine agonists (e.g., bromocriptine) represents an entirely opposite effect, upon an entirely different biological activity of the insulin molecule, and upon an entirely different tissue of the body from the previous dopamine agonist work of Meier and Cincotta.
OBJECTS OF THE INVE TION
It is the primary objective of the present invention to provide a process, or method, for regulating, and resetting insulin sensitive and plasma glucose and insulin levels of vertebrates, i.e., animals, including humans.
In particular, it is an object to provide a process for resetting the circadian neural centers of animals, including humans, to produce long lasting changes in the amount of body fat stores, the sensitivity of the cellular response of a species to insulin, and overcome hyperinsulinemia and. or hyperglycemia which generally accompanies insulin resistance.
A more specific object is to provide a process for resetting the circadian neural centers of animals, including humans, to decrease obesity and maintain the more normal body fat stores of a lean animal, or lean human, on a long term basis.
A further, and equally specific object is to provide a process for resetting on a long term basis the circadian neural centers, particularly in humans, to increase and
SUBSTITUTE SHEET improve the sensitivity and responsiveness of the cells to insulin, and suppres hyperinsulinemia and hyperglycemia, or both.
DETAILED DESCRIPTION OF THE INVENTION These objects and others are achieved in accordance with the present invention characterized as a process, or method, for the regulation of lipid and glucose metabolism t produce long term, lasting, and permanent effects by the administration of timed dail dosages to a vertebrate, animal or human, of a dopamine agonist, or prolactin inhibitor, suc as L-dope and various ergot-related compounds. The dosages are continued on a daily basi for a period sufficient to reset the phase oscillation of the prolactin rhythm, or oscillations of both the prolactin and glucocorticosteroid rhythms which are expressions of the prolactin and glucocorticosteroid neural oscillations, respectively. The phase relationship of the prolactin oscillation, and preferably both neural oscillations are modified and reset such that, on cessation of the daily dosages of the dopamine agonist, or prolactin inhibitor, the lipi metabolism of the animal, or human, continues over a long term period (at least one month), if not permanently, at the altered metabolic setpoint, or setpoints.
A dopamine agonist, or prolactin inhibiting compound is administered to the vertebrate, animal or human, preferably orally, sublingually or by subcutaneous or intramuscular injection into the bloodstream. Thus, a prolactin-inhibiting compound, preferably an ergot-related prolactin-inhibiting compound, is administered to a subject exhibiting any one or more of the symptoms desirable of change, e.g., obesity, insulin resistance, hyperinsulinemia or hyperglycemia. Exemplary of prolactin-inhibiting, ergot related compounds are 2-bromo-alpha-ergocryptine; 6-methyl-8beta-carbobenzyloxy- aminomethyl-lOalpha-ergoline; 1 ,6-dimethyl-8beta carbobenzyloxy-aminomethyl-lOalpha- ergoline; 8-acylaminoergolenes, such as 6-methyl-8alpha-(N-acyl)amino-9-ergolene and 6- methyl-8alpha-(N-phenylacetyl)amino-9-ergolene; ergocomine; 9, 10-dihydroergocomine; and D-2-halo-6-alkyl-8-substituted ergolines, e.g., D-2-bromo-6-methyl-8-cyanomethylergoline. Moreover, the non-toxic salts of the prolactin-inhibiting ergot-related compounds formed from pharmaceutically acceptable acids are also useful in the practice of this invention.
SUBSTITUTE SHEET Bromocriptine, or 2-bromo-alpha-ergocryptine, has been found particularly useful in th practice of this invention.
In the treatment of an animal, or human subject, the stores of body fat can b depleted or increased, the treatments continued until the stores of body fat are stabilized an optimum or near-optimum level dependent on the level of body fat stores desired in th subject, for time sufficient that on termination of the treatment the prolactin rhythm, an preferably both the prolactin and glucocorticosteroid rhythms, is reset to maintain on a lon term basis the reduced, or increased, body weight stores. In humans, the objective is almos invariably to reduce body fat stores, and obesity. It has been established that a relationshi exists between obesity and insulin resistance, and that obesity can lead to increased insuli resistance. Likewise, it has been established that the circadian rhythms of plasma prolacti and glucocorticosteroid concentrations, respectively, have important consequences in th regulation of body fat stores, and that the phase relationship between the prolactin an glucocorticosteroid levels, respectively, differ in lean and fat animals. In a fat anima prolactin will reach a peak level at a given hour of a 24 hour period (in a human usually near midday), and the prolactin level of a lean animal at another time of day (in a human usually during sleep). In a lean animal the glucocorticosteroids, e.g., cortisol, will peak during a 24 hour period at a given hour (generally at a time different from that of prolactin); in a human generally several hours after waking. Thus, the phase relations of the cortisol and prolactin rhythms differ in lean and fat animals. The peak period of prolactin and glucocorticosteroid production, respectively, may differ to some extent between male and females of any given species. This being so, it has been found that daily dosages of a dopamine agonist, or prolactin inhibitor, given to an obese subject shortly after the normal time of day that the prolactin is at its peak in a lean subject of the same species and sex will produce a weight reduction in the obese subject. Such treatment will, if continued over a sufficient period, reset on a long term or permanent basis the phase of the neural oscillations for both the prolactin and glucocorticosteroid rhythms in the obese individual to that present in a lean subject. The obese subject, on initiation of the treatment with the dopamine agonist, or prolactin inhibitor, will lose body fat stores, and the body fat deposits of the obese subject on continuation of the treatments on a daily basis will drop to and stabilize at that of a lean
SUBSTITUTE SHEET subject of the same species. On discontinuing the daily treatments, the rise and fall of t prolactin, or prolactin and glucocorticosteroid levels in the blood of the treated patient on daily basis will correspond to that of a lean subject of the same species, and for a period long duration. The effect of resetting the prolactin, or prolactin and glucocorticostero rhythms, in this manner also increases the sensitivity of the cells of the subject to insuli reduces hyperinsulinemia or hyperglycemia, or both, and thus alters long term pathologi which are characteristic of the onset of Type π diabetes.
In treating vertebrates, generally, dosages of the dopamine agonist, orprolact are given once a day on a daily basis, generally over a period ranging from about 10 da to about 150 days, at levels ranging from about 3 micrograms to about 100 micrograms, p pound of body weight, to reset the circadian plasma prolactin rhythm. In treating human the dopamine agonist, or prolactin inhibitor, is given daily, preferably at dosage leve ranging from about 3 micrograms to about 40 micrograms, more preferably from micrograms to about 20 micrograms, per pound of body weight. Such treatments over period of about 10 days to about 150 days, preferably about 30 days to about 120 days, mo preferably from about 30 days to about 90 days, most preferably about 30 days to about 6 days, given an obese person daily just a short period after — generally about 1 hour to abo 8 hours thereafter, preferably from about 4 hours to about 8 hours thereafter ~ the prolacti concentration peaks in a lean person will modify and reset the lipid metabolism of the obes person to that of a lean person. Prolactin peaks in an insulin sensitive lean person during th sleep period, generally at about the middle of the sleep period; and hence the time fo administering the dopamine agonist to reduce fat stores in an obese subject, improve th sensitivity of a subject to insulin, suppress hyperinsulinemia, or hyperglycemia, or bot suppress hyperinsulinemia and reduce hyperglycemia, ranges from about 1 hour to about 1 hours from the middle of the sleep period, from about 1 hour to about 8 hours - preferabl from about 1 hour to about 8 hours from the middle of the sleep period, more preferabl from about 1 hour to about 4 hours from the middle of the sleep period. Body fat deposits inclusive of adipose, arterial wall and plasma fat, within the obese person will be reduced levelled out and maintained after the treatments are discontinued at that of a lean person, ove an extended period of time. A lean or obese person showing the effects of insulin resistance
> 8 _ _*
>Ufe or hyperinsulinemia and/or hyperglycemia, or both insulin resistance and hyperinsulinemia and/or hyperglycemia, treated with the dopamine agonist, or prolactin inhibitor, will become more sensitive to Insulin (i.e., will have a lower insulin resistance), and the effects of hyperinsulinemia and/or hyperglycemia will be reduced on a long term basis. The injections of the dopamine agonist, or prolactin inhibitor, will thus reset the phase relations of the two neural oscillations and their multiple circadian expressions to alter metabolism on a long term basis, if not permanently. In other words, there will be as a result of the timed daily dosages of the dopamine agonist, or prolactin inhibitor, a long term reversal of the major pathologies generally associated with the development of Type II diabetes. The levels of body fat stores, plasma insulin concentrations and insulin resistance, hyperglycemia, or all of these pathologies can be reduced on a long term basis by such or treatments, from the high levels often found in obese, hyperinsulinemic persons to that of the much lower and more desirable levels found in lean insulin sensitive persons.
In terms of the human subject, "obesity can be defined as that body weight over 20 percent above the ideal body weight for a given population" (R. H. Williams, Textbook of Endocrinology, 1974, p. 904-916.). The time of day when the prolactin and glucocorticosteroid levels, respectively, will peak in the blood of humans during a day differs between obese subjects and lean subjects, and the peak in each type of subject can be readily determined by measurement of the fat and lean specimens, as defined. In other animal species what constitutes obese and lean members, respectively, of a species can be readily determined by body weight patterns correlated with the prolactin and glucocorticosteroids levels, respectively, in the plasma of the lean and obese members, respectively. The levels differ between members of the different species, but among members of the same species there is close correlation between the prolactin and glucocorticosterone levels, respectively, at certain time of the day dependent on the obesity or leanness of a given specimen.
These and other features of the invention will be better understood by reference to the following information and data of experimental work with animals and humans. In the examples the terminology "LD" refers to the light/dark cycle the first number following the expression LD refers to the hours of light, and the second to the hours of darkness in the cycle. Thus LD 14:10 refers to a cycle having 14 hours of light and 10 hours of darkness,
SUE3STITUTE SHEET and the period of a day is expressed in terms of 2400 hours. The letter n refers to th number of animals in a group, "BW" designates body weight, g represents grams and "μg is an expression of micrograms.
In the following example data are given which show the altered phas relationships of the circadian rhythms of plasma corticosteroid and prolactin concentration in swine; changes beneficial in the treatment of diabetics.
Example 1
Adult female pigs, six in number, were given bromocryptine implants (1 mg/pig/day) lasting over a period of time while the pigs were subjected to daily periods o daylight and darkness (12:12). Bromocriptine from implants may be expected to enter th circulation in greater amounts near the onset of daily activity. A control group of six pig were similarly treated to periods of daylight and darkness except that no bromocryptine wa administered to the pigs of the control group. The period of darkness was from 1800 t 0600, and the period of daylight from 0600 to 1800. Daily tests were made of the blood" o the pigs at four hour intervals over a 14 day period to determine the plasma cortisol level (μg/dl) and plasma prolactin level (μg/ml) of both groups. The average for each series, o tests made on each group are given as follows:
UBSTITUTE SHE 5
10
The effects of bromocriptine implants on fat stores and plasma concentrations of triglyceride, 15 glucose and insulin are given as follows:
-20
* lOmg/day/pϊg
Notes: Backfat thickness was used as an index in deterrnining fat stores. These data
25 were obtained 28 days after treatment of the animals.
Plasma was sampled at 1600, 2000 and 2400 after two weeks of treatment. Each pig of the treatment group and control group was sampled.
These data clearly show that the bromocriptine implants altered the phase
30 relationships of the circadian rhythms of plasma corticosteroid and prolactin concentrations, and produced changes beneficial to diabetics. The data show that, near sunset, when
Iipogenesis is normally greatest in pigs, bromocriptine reduced plasma triglyceride concentration by 48%. Since lipid is produced in the liver and transported in the blood to
SUBSTITUTE SHEET adipose tissue, the triglyceride reduction is further evidence that bromocriptine has an inhibitory effect on fat synthesis and deposition. In addition, although the reduction i plasma insulin concentration was not statistically significant, bromocriptine reduced plasm glucose levels by 13 % during the early period of darkness (2000-2400). The reduction i blood glucose, without an increase in blood insulin concentration, can be explained as decrease in insulin resistance (greater hypoglycemic responsiveness to insulin). Bromocriptine reduced body fat stores by 14% in the 28 day period of treatment.
Further studies were done on humans, these indicating that the symptoms o non insulin dependent, or Type 11 diabetes can be reduced by treatment with bromocriptine. Examples follow.
Example 2
A 50 year old woman, showing the symptoms of diabetes, was daily given bromocriptine tablets (1.25-2.50 mg/day), taken orally, just after awakening. At the beginning of the treatment, blood glucose concentration was shown by routine testing to be near 250 mg/dl. In the weeks following the initial treatment, the patient's glucose levels fell to 180 mg/dl, to 155 mg/dl, to 135 mg/dl, to 97 mg/dl and to 101 mg/dl. Fasting levels below 120 mg/dl are considered normal. Body weight and indices of body fat were also reduced about 12% by the treatment.
Example 3
A 45 year old woman was being treated with a hypoglycemic agent (diabenase) which had reduced the blood glucose of the patient from 250 mg/dl to about 180 mg/dl during one year of treatment. Following daily oral administration of bromocriptine (parlodel, 1.25- 2.5 mg/day) about an hour after awakening, the blood glucose level fell dramatically to 80 mg/dl in 2 weeks. Removal of the hypoglycemic agent allowed glucose levels to rise and remain near 100 mg/dl (a normal level) in the succeeding two months. Body weight and fat were reduced about 10% by the bromocriptine treatment.
SUBSTITUTE SHEET Example 4
A 55 year old man weighing nearly 300 pounds was known to be a diabetic bu had resisted all previous admonitions for treatment. At the beginning of oral bromocriptin treatment (parlodel, 2.5 mg/day), given between two and three hours after awakening, hi plasma glucose concentration averaged near 350 mg/dl. During 2.5 months of bromocriptin treatment, body weight and plasma glucose concentration gradually but continuousl decreased. Body weight has dropped 22 pounds and plasma glucose levels decreased to 160 mg/dl.
The following exemplifies the effect of bromocriptine treatments on a group of persons, both male and female, diagnosed as having noninsulin dependent, Type 11, diabetes. The individual subjects described by reference to Examples 2, 3 and 4 are included within the subject population included in the Table given in the example.
Example 5 Fifteen persons, diagnosed with noninsulin dependent (Type D) diabetes, were treated with bromocriptine to determine the effects of the treatments on body fat and hyperglycemia. Seven diabetics (2 males and 5 females) were being treated orally with stimulants for endogenous insulin secretion (hypoglycemic drugs: diabenase and micronase) and seven diabetics (2 males and 5 females) were receiving daily injections (morning and evening administrations) of insulin. Only those who were found to be very hyperglycemic (i.e., fasting plasma glucose > 160 mg/dl) in the morning after a night of fasting and before insulin injection or taking other medications were accepted for the study. One obese man with severe hyperglycemia who refused conventional treatment for diabetes was permitted to participate in this bromocriptine study and is included with the group receiving hypoglycemic drugs.
Bromocriptine was taken orally daily at times calculated to reset circadian hormone rhythms to phase relationships that cause loss of body fat. Generally, bromocriptine was administered in the morning within 5 hours after awakening. Nausea was usually avoided by starting with the lower dosage (1.25 mg) for 2-3 days and then raising the dosage levels to 2.5 mg daily. Only mild nausea was observed by less that 10% of the participants
SUBSTITUTE SHEET and was transient, lasting only for the first few days. The participants were carefully instructed not to alter their daily activity or eating habits during the course of treatment. Patient compliance was excellent as indicated by weekly interviews of subjects who monitored their food intake, and the transient anorexic effects sometimes produced by higher doses of bromocriptine did not occur in this study.
Skinfold thickness was measured on the left side of the body by a trained anthropometrist in four regions: biceps, triceps, subscapular, and suprailiac, following the recommendations of the International Biological Program. Because of its frequent use, percent body fat was estimated from the common logarithm of the sum of the four skinfolds, using the equations of Durnin and Rahman and of Siri. A recent study indicates very similar estimations of body fat by hydrodensitometry and skinfold thickness measurement methods. Skinfold measurements were taken initially and at weekly intervals by the same individual. Blood pressure was also determined at these times. Morning fasting plasma glucose in the diabetic group was determined initially and after 4-8 weeks. Reference is made to the Table below.
TABLE
SUBSTITUTE SHEET 1 Every individual in the groups taking hypoglycemic drugs (8 subjects) or insulin (7 subjects) lost plasma glucose, skinfold thickness and total body fat. The losses are signigicant (p < 0.05).
Initial skinfold measurements (mm) for the subscapular, triceps, biceps, and suprailiac regions were 26 +_ 3, 14 +_ 2, 9 +_ 0 and 19 ± 2 in those taking hypoglycemic drugs and 26 ±_ 2, 15 +__ 2, 12 +. 2 and 19 ± 1 in those taking insulin.
Both blood glucose concentrations and skinfold measurements were reduced in every diabetic subject after 4-8 weeks of bromocriptine treatment, as will be observed by reference to the Table. The initial fasting blood glucose concentrations before morning medications for diabetes were 283 +/- 14 mg/dl and 231 +/- 19 mg/dl for those taking insulin and hypoglycemic drags, respectively. After 4-8 weeks, mean glucose concentrations were reduced (p < .05; student's t) to 184 +/- 22 mg/dl (insulin) and 166 +/- 19 mg/dl (hypoglycemic drugs). Oral hypoglycemic medication was completely discontinued during bromocriptine treatment in three individuals and blood glucose levels remained near normal (< 1 20 mg/dl) for at least two months after bromocriptine treatment was terminated. Doses of hypoglycemic drugs and insulin were reduced in three other subjects during bromocriptine treatment. Body fat stores were substantially reduced by timed bromocriptine treatment in NIDDM subjects taking hyperglycemic drugs as evidenced by a mean reduction of 21 % in the skinfold measurements at the four regions examined. This reduction amounts to a mean loss of 10 pounds for each individual and a decline in total body fat of 10.7% within 4 to 8 weeks. The reductions in skinfold (16%), body fat (3.1 pounds) and % body fat (5.1) were less in those subjects taking insulin. Body weights were perhaps shghtly reduced (2.4 pounds per subject, not statistically significant) in subjects taking hypoglycemic drugs and not at all reduced in those taking insulin.
These results demonstrate that bromocriptine treatment can dramatically reduce body fat stores in human subjects. Bromocriptine treatment also substantially reduced hyperglycemia within two months in noninsulin dependent (Type H) diabetics. These results were achieved without changing individual existing diets and exercise regimens.
SUBSTITUTE SHEET It is incredible that the reductions in body fat (4.4% of the body weight) achieved in the present study after 6 weeks without food restriction are equivalent to those obtained utilizing a very low calorie diet (420 kcal/day) for a similar period of time. Amatruda and coworkers, in contrast, reported an 8 % reduction of body weight in obese NIDDM subjects of which less than 50% can be assumed to be fat under these conditions. Furthermore, Kanders et al reported an average body weight loss of 2.3 pounds per week in nondiabetic obese females subjected to similar very low calorie diets. This also amounts to a reduction of about one pound of fat per week under these restricted calorie conditions, which is less than the fat loss of 1.4 pounds per week average achieved with bromocriptine treatment in the present study.
The reduction of body fat produced by bromocriptine treatment differs in a significant way from reduction of fat achieved by caloric restriction. With very low calorie diets only about 45 % of the weight loss is lipid: the remainder includes protein, carbohydrate and water. The data show that metabolic states are regulated at least in part by an interaction of circadian neuroendocrine rhythms. This hypothesis proposes that the daily rhythms of cortisol and prolactin are individual expressions of two separate circadian systems and that the daily injections of these hormones can reset the phase relations of these two systems. Thus, in a hamster model it has been found that the 0-hour relation resets the circadian oscillations into a pattern that maintains the lean, insulin sensitive state and the 12- hour relation permits retention of a pattern that maintains the obese, insulin resistant state. Another important addition of the present study is that the effects of timed injections of a dopamine agonist, or prolactin inhibiting compound, are long lasting. Apparently once reset, the phase relation of the two circadian oscillations tends to maintain its altered pattern. Changes in the phase relations of two circadian neuroendocrine oscillations are evidenced by changes in the phase relations of their circadian expressions. This expectation is fulfilled respecting plasma glucocorticosteroid and prolactin rhythms. In several species examined, the phase relations of the two hormone rhythms differ in lean and fat animals.
The phase relation between the circadian rhythm of plasma insulin concentration and the rhythm of lipogenic responsiveness to insulin is shown to differ in lean
SUBSTITUTE SHEET and fat animals. Whereas the daily interval of lipogenic responsiveness remains near ligh onset, the phase of the insulin rhythm varies markedly. The peak concentration of insulin e.g., occurs near light onset in obese female hamsters held on short day-lengths. That is, th daily peaks of the lipogenic stimulus (i.e., insulin) and the lipogenic response to insuli coincide in fat animals and not in lean animals.
The phase relations of both prolactin and insulin rhythms as well as th rhythms of tissue responses to the hormones are important elements in the regulation o lipogenesis. All of these rhythms, then, would be phase adjusted to regulate lipogenesis. Phase adjustment of these and perhaps other rhythms may also account for insulin resistance. It is apparent that various modifications and changes can be made without departing the spirit and scope of this invention.
SUBSTITUTE SHEET

Claims (20)

WHAT TS f.T.AT FT> TS.
1. A process for the therapeutic modification and regulation of lipid and glucose metaboUsm in an animal, or human subject, which comprises administering to a subject, diagnosed as being insensitive to insulin, or diabetic, or both, on a timed daily basis a dopamine agonist in dosage amount and for a period sufficient to improve the sensitivity of the subject to insulin, suppress hyperinsulinemia, or reduce hyperglycemia, or both suppress hyperinsulinemia and reduce hyperglycemia.
2. The process of Claim 1 wherein after discontinuing treatment with the dopamine agonist the effects of the treatment continue for at least one month.
3. The process of Claim 1 wherein the dopamine agonist administered on a timed daily basis to said subject is sufficient to modify and reset the neural phase oscillations of both the prolactin and glucocorticosteroid.
4. The process of Claim 1 wherein the timed daily dosages of the dopamine agonist are given daily, once a day, over a period ranging from about 10 days to about 150 days, at levels ranging from about 3 micrograms to about 100 micrograms, per pound of body weight.
5. The process of Claim 1 wherein the timed daily dosages of the dopamine agonist are given daily in amount ranging from about 3 micrograms to about 40 micrograms, per pound of body weight, in treating humans, over a period of from about 10 days to about 150 days.
6. The process of Claim 5 wherein the dosage is given in amount ranging from about 3 micrograms to about 20 micrograms, per pound of body weight, over a period ranging from about 30 days to about 120 days.
7. The process of Claim 5 wherein the dopamine agonist is given an insulin resistant or insulin resistant diabetic person daily at times ranging from about 1 hour to about 8 hours after that corresponding to that in which the prolactin concentration peaks in a lean insulin sensitive person to modify and reset the metabolism of the person treated to that of a lean person.
SUBSTITUTE SHEET
8. The process of Claim 1 wherein the dopamine agonist is selected fro the group consisting of 6-methyl-8 beta-caΛobenzyloxy-aminoethyl-lOalpha-ergoline; 1, dimethyl-8 beta-carboberutyloxy-aminomethyl- 10 alpha-ergoline; 8-acylaminoergolene ergocomine; 9,10-dihydiOergocornine; bromocriptine, and D-2-halo-6-alkyl-8-substitute ergolines.
9. A process for therapeutically modifying and resetting the neural phas oscillations of the brain which controls prolactin levels in the bloodstream of a human subje which comprises administering to a human diagnosed as being insensitive to insulin, o diabetic, or both, a dopamine agonist on a daily basis at an hour, in amount, and for a perio sufficient that the glucose disposal effects of insulin in a human will be increased an hyperglycemia decreased.
10. The process of Claim 9 wherein the dopamine agonist is administere to the human to reduce hyperinsulinemia.
11. A process for therapeutically modifying and resetting the neural phas oscillations of the prolactin rhythm, or both the prolactin and glucocorticosteroid rhythms, in an insulin insensitive, or diabetic, animal or human subject, which comprises administerin to the subject diagnosed as being insensitive to insulin, or diabetic, a dopamine agonist on daily basis at the time of day such that the prolactin and cortisol levels will peak in the bloo at times similar to those of a lean insulin sensitive subject, in dosage amount ranging from about 3 micrograms to about 40 micrograms, per pound of body weight, and continuing the treatments over a period ranging from about 10 days to about 150 days sufficient to improve the sensitivity of the subject to insulin, suppress hyperinsulinemia or reduce hyperglycemia, or both suppress hyperinsulinemia and reduce hyperglycemia, and on cessation of the treatments the neural phase oscillation of the prolactin in the body of the treated subject will correspond substantially with that of a lean insulin sensitive subject, and this effect will continue on a long term basis.
12. The process of Claim 11 wherein the dosages of dopamine agonist are given over a period ranging from about 30 days to about 120 days.
13. The process of Claim 11 wherein the dopamine agonist is administered daily to a subject at the time of day corresponding to that which will produce a plasma
SUBSTITUTE SHEET prolactin rhythm, or both prolactin and cortisol rhythms, that will peak as in an obese subject of the same species to increase the body fat content of the lean subject.
14. The process of Claim 11 wherein the dopamine agonist is administered daily to the subject to increase the cellular sensitivity of the treated subject to the glucose disposal effects of insulin.
15. The process of Claim 11 wherein the dopamine agonist is administered daily to a subject to reduce hyperinsulinemia.
16. The process of Claim 11 wherein the dopamine agonist is administered daily to a subject to reduce hyperglycemia.
17. The process of Claim 11 wherein the dopamine agonist is selected from the group consisting of 6-methyl-8 beta-carbobenzyloxy-aminoethyl-10 alpha-ergoline; 1,6- dimethyl-8 beta-carbobenzyloxy-aminomethyl-10 alpha-ergoline; 8-acylaminoergolenes; ergocomine; 9,10-dihydroergocornine; bromocriptine, and D-2-halo-6-alkyl-8-substituted ergolines.
18. A process for the modification and regulation of lipid and glucose metabolism in a hyperinsulinemic, insulin resistant, or diabetic human subject which comprises administering to the subject diagnosed as exhibiting any one or all of these pathologies which are characteristic of the onset of Type II diabetes, over a period ranging from about 30 days to about 120 days, at levels ranging from about 3 micrograms to about 40 micrograms, per pound of body weight, daily doses of a dopamine agonist at from about 1 to about 10 hours after the normal time of day that the prolactin level is at its peak in a lean subject of the same species and sex who does not exhibit any of these pathologies, to produce a change of the neuroendocrine system of the diagnosed human subject to mimic that of the lean subject such that sensitivity to insulin in the diagnosed human subject is improved, and hyperinsulinemia suppressed or hyperglycemia reduced, or both hyperinsulinemia is suppressed and hyperglycemia is reduced, to alter long term these pathologies which are characteristics of the onset of Type π diabetes.
19. The process of Claim 18 wherein the dopamine agonist is administered on a timed daily basis sufficient to modify and reset the neural phase oscillations of the neuroendocrine system of the diagnosed subject.
SUBSTITUTE SHEET
20. The process of Claim 18 wherein the dopamine agonist is selected fro the group consisting of 6-methyl-8 beta-carbobenzyloxy-aminoethyl-10 alpha-ergoline; 1,6 dimethyl-8 beta-caΛobeiizyloxy-aminomethyl- 10 alphaergoline; 8-acylaminoergolenes; ergocomine; 9,10-__ihydroergocornine; bromocriptine, and D-2-halo-6-alkyl-8-substitute ergolines.
SUBSTITUTE SHEET
AU34192/93A 1991-12-23 1992-12-22 A therapeutic process for the treatment of the pathologies of type II diabetes Abandoned AU3419293A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US813135 1985-12-24
US81313591A 1991-12-23 1991-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU74178/94A Division AU662876B3 (en) 1991-12-23 1994-09-23 A therapeutic process for the treatment of the pathologies of type II diabetes

Publications (1)

Publication Number Publication Date
AU3419293A true AU3419293A (en) 1993-07-28

Family

ID=25211542

Family Applications (1)

Application Number Title Priority Date Filing Date
AU34192/93A Abandoned AU3419293A (en) 1991-12-23 1992-12-22 A therapeutic process for the treatment of the pathologies of type II diabetes

Country Status (5)

Country Link
AU (1) AU3419293A (en)
CZ (1) CZ282909B6 (en)
HU (1) HUT67688A (en)
RU (1) RU2104698C1 (en)
WO (1) WO1993012793A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744477A (en) * 1988-05-10 1998-04-28 The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for treatment of obesity using prolactin modulators and diet
US5585347A (en) * 1988-05-10 1996-12-17 Ergo Science Incorporated Methods for the determination and adjustment of prolactin daily rhythms
US5696128A (en) * 1994-07-07 1997-12-09 The Board Of Supervisors Of Louisiana University And Agricultural And Mechanical College Method of regulating immune function
IL112106A0 (en) * 1993-12-22 1995-03-15 Ergo Science Inc Accelerated release composition containing bromocriptine
DE69736928T2 (en) * 1996-05-07 2007-06-28 Pliva Istrazivanje I Razvoj D.O.O. METHOD AND COMPOSITION FOR TREATING FAULTS OF FAT AND GLUCOSE METABOLISM
US9655865B2 (en) 2002-07-29 2017-05-23 Veroscience, Llc Therapeutic treatment for metabolic syndrome, type 2 diabetes, obesity, or prediabetes
US8821915B2 (en) 2002-08-09 2014-09-02 Veroscience, Llc Therapeutic process for the treatment of the metabolic syndrome and associated metabolic disorders
AU2013263800B2 (en) * 2007-03-30 2016-05-05 Veroscience Llc Methods of treating metabolic syndrome using dopamine receptor agonists
CA2703260A1 (en) * 2007-11-07 2009-05-14 Burnham Institute For Medical Research Method and compounds for modulating insulin production
US9352025B2 (en) 2009-06-05 2016-05-31 Veroscience Llc Combination of dopamine agonists plus first phase insulin secretagogues for the treatment of metabolic disorders
EP3311842A1 (en) * 2013-06-13 2018-04-25 VeroScience LLC Compositions and methods for treating metabolic disorders

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659715A (en) * 1986-03-07 1987-04-21 Louisiana State University And Agricultural And Mechanical College Method of inhibiting body fat stores
DE3722383A1 (en) * 1986-07-14 1988-01-28 Sandoz Ag NEW USE OF BROMOCRIPTIN

Also Published As

Publication number Publication date
CZ282909B6 (en) 1997-11-12
RU2104698C1 (en) 1998-02-20
HU9401900D0 (en) 1994-09-28
WO1993012793A1 (en) 1993-07-08
RU94037557A (en) 1996-05-20
HUT67688A (en) 1995-04-28
CZ155494A3 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5756513A (en) Therapeutic process for the treatment of the pathologies of type II diabetes
US5866584A (en) Therapeutic process for the treatment of the pathologies of type II diabetes
US5654313A (en) Method for modifying or regulating the glucose metabolism of an animal or human subject
AU687034B2 (en) Improved methods for the determination and adjustment of prolactin daily rhythms
US6004972A (en) Therapeutic process for the treatment of the pathologies of type II diabetes
US5760047A (en) Method for treatment of obesity using prolactin modulators and diet
US5830895A (en) Methods for the determination and adjustment of prolactin daily rhythms
AU3419293A (en) A therapeutic process for the treatment of the pathologies of type II diabetes
US5716932A (en) Process for the long term reduction of body fat stores, insulin resistance, and hyperinsulinemia in vertebrates
US5700800A (en) Methods for the long term reduction of body fat stores, insulin resistance, hyperinsulinemia and hyperglycemia in vertebrates with a prolactin stimulatory compound