AU2021202642A1 - Methods for recovering metals using oxalate compounds - Google Patents

Methods for recovering metals using oxalate compounds Download PDF

Info

Publication number
AU2021202642A1
AU2021202642A1 AU2021202642A AU2021202642A AU2021202642A1 AU 2021202642 A1 AU2021202642 A1 AU 2021202642A1 AU 2021202642 A AU2021202642 A AU 2021202642A AU 2021202642 A AU2021202642 A AU 2021202642A AU 2021202642 A1 AU2021202642 A1 AU 2021202642A1
Authority
AU
Australia
Prior art keywords
metal
binoxalate
leachate
oxalate
tetraoxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
AU2021202642A
Inventor
Verma Ankit
Richard Corbin David
Brandon Shiflett Mark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Kansas
Original Assignee
University of Kansas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Kansas filed Critical University of Kansas
Priority to AU2021202642A priority Critical patent/AU2021202642A1/en
Publication of AU2021202642A1 publication Critical patent/AU2021202642A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1608Leaching with acyclic or carbocyclic agents
    • C22B3/1616Leaching with acyclic or carbocyclic agents of a single type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Methods for recovering a metal from a metal-containing material are provided. In embodiments, such a method comprises exposing a metal-containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a soluble metal oxalate; inducing precipitation of a metal-containing precipitate comprising the metal of the soluble metal oxalate from the leachate; and recovering the metal-containing precipitate. 1/5 Bauxite KHC204 ,, Digestion (pH 2.5-2.8, T = 100 °C) Fe, Al rich solution KO H Hydrolyze to pH 13.5 Fe(OH)3 (S) H2SO4 Acidify to pH 10.5 t (s) H2SO4 Acidify to pH =2.5 KHC204 (s) K2SO4 ( FIG. 1

Description

1/5
Bauxite
KHC204 ,, Digestion (pH 2.5-2.8, T = 100 °C)
Fe, Al rich solution
13.5 Fe(OH)3 (S) KO H Hydrolyze to pH
H2SO4 Acidify to pH 10.5 t (s)
H2SO4 Acidify to pH =2.5 KHC204 (s)
K2SO4 (
FIG. 1
METHODS FOR RECOVERING METALS USING OXALATE COMPOUNDS BACKGROUND
[0001] Mineral commodities that are critical to the U.S. include aluminum (bauxite), antimony, arsenic, barite, beryllium, bismuth, cesium, chromium, cobalt, fluorspar, gallium, germanium, graphite (natural), hafnium, helium, indium, lithium, magnesium, manganese, niobium, platinum group metals, potash, rare earth elements (REEs), rhenium, rubidium, scandium, strontium, tantalum, tellurium, tin, titanium, tungsten, uranium, vanadium, and zirconium.
[0002] The production of metals accounts for a significant amount of global energy in the U.S. and is a top contributor to C02 emissions. Processing of ores to basic metals has increased 70% in the past 10 years, with aluminum production leading the way. As a result, the quantity of waste products and pollutants has also significantly increased. There has been an attempt to modify or replace ore refining technologies to reduce pollution and waste emission; however, this has led to a decrease in metal extraction efficiency and an increase in the total process cost.
[0003] Regarding aluminum, this material is a lightweight metal with high strength to weight ratio, low melting point, corrosion resistance, good thermal and electrical conductivity, and high reflectivity. Globally, it is used in the production of high strength alloys in combination with other metals like nickel, zinc, copper, and manganese. These alloys are used in a range of applications that vary from kitchen utensils to automobile and aeronautical applications. The primary source of aluminum is bauxite where it is present in the form of alumina trihydrate like gibbsite (A1 2 0 3 -3H 20 or Al(OH) 3 ) or monohydrate minerals such as boehmite (Al203-H20 or y-AlO(OH)) and diaspore (A1 2 0 3 -H2 0 or a AlO(OH)). Other minerals that can be found in bauxite include iron oxides (Fe203), quartz (SiO 2 ), and titanium dioxide (TiO 2 ).
[0004] The Bayer process is the most common industrial process for refining bauxite to smelting grade alumina. The process involves the digestion of crushed bauxite in concentrated sodium hydroxide solution at high temperature. This extraction process converts the aluminum oxide in the ore to soluble sodium aluminate from which aluminum trihydroxide is precipitated via seeding. Under these conditions, the majority of the aluminum-containing minerals are dissolved in the Bayer liquor, leaving behind an insoluble solid residue called red mud. The alumina industry is facing a global environmental issue because of the disposal problems associated with the caustic bauxite tailings: red mud. Typically, about 1 to 1.5 tons of red mud waste are produced from the production of 1 ton of alumina. To solve this problem, either red mud needs to be treated before disposal, or an alternative bauxite refining technology that can minimize waste production needs to be developed.
SUMMARY
[0005] Provided are methods for recovering metals from metal-containing materials, including bauxite, using certain oxalate compounds, including binoxalates and tetraoxalates. The oxalate ion is a bidentate anionic ligand that can donate two pairs of electrons to a metal ion. This electron-donating property allows the oxalate anion to bond with metal cations from two different sites within the ligand (i.e., called "chelation"). The present disclosure is based, at least in part, on the insight that if an acidic cation is present with the oxalate anion, leaching of metal from a metal-containing material with the coupled mechanism of metal dissolution and complexation can occur. Embodiments of the present methods provide optimum acidity for efficient critical metal extraction with no toxic waste emission, allow for end-of-process acid recovery, and achieve sustainable, economical, and energy-efficient critical metal recovery processes. In embodiments, a method for recovering a metal from a metal-containing material comprises exposing a metal-containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a soluble metal oxalate; inducing precipitation of a metal-containing precipitate comprising the metal of the soluble metal oxalate from the leachate; and recovering the metal-containing precipitate.
[0006] In embodiments, a method for recovering a metal from a metal-containing material comprises exposing bauxite to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a Fe soluble metal oxalate and an Al soluble metal oxalate; inducing precipitation of a Fe-containing precipitate from the leachate by adjusting the leachate's pH to a first value; recovering the Fe-containing precipitate; inducing precipitation of an Al-containing precipitate from the leachate by adjusting the leachate's pH to a second value; and recovering the Al-containing precipitate.
[0007] Other principal features and advantages of the disclosure will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Illustrative embodiments of the disclosure will hereafter be described with reference to the accompanying drawings.
[0009] FIG. 1 is a flow-chart showing the recovery of iron (Fe) and aluminum (Al) from bauxite using KHC 2 0 4 , according to an illustrative embodiment of the present methods.
[0010] FIG. 2 is a flow-chart showing the recovery of iron (Fe) and aluminum (Al) from bauxite using NH 4 HC 2 0 4 , according to another illustrative embodiment of the present methods.
[0011] FIG. 3 is a flow-chart showing the recovery of iron (Fe) and aluminum (Al) from bauxite using NaHC20 4, according to another illustrative embodiment of the present methods.
[0012] FIG. 4 is a flow-chart showing the recovery of iron (Fe) and aluminum (Al) from bauxite using KHC 2 0 4 -H2 C 2 0 4 , according to another illustrative embodiment of the present methods.
[0013] FIG. 5 is a flow-chart showing the recovery of iron (Fe) and aluminum (Al) from bauxite using KHC 2 0 4 , according to another illustrative embodiment of the present methods.
DETAILED DESCRIPTION
[0014] The present methods involve digestion of metal-containing materials using certain oxalate compounds and recovery of individual metals from which the metal-containing materials are composed. The methods may further include the recovery of the oxalate compounds, which may be recycled for re-use in a closed loop process. These steps are described further below.
[0015] The metal-containing material to be digested comprises different types of metals, which are generally present as distinct chemical compounds and/or mixed metal compounds composed of multiple types of metals. In embodiments, the metal-containing material is a mineral or an ore. Illustrative such metal-containing materials include bauxite (Al, Fe), ilmenite (Fe, Ti, Zr, V, Sc), laterite (Ni, Fe), and scheelite (W). (Metals in these metal containing materials that may be recovered are indicated in parentheses.) Bauxite is an ore that is the primary source of aluminum. The aluminum is usually present in the form of alumina trihydrate such as gibbsite (A1 2 0 3 -3H 20 or Al(OH) 3) and monohydrate minerals such as boehmite (A1 20 3 -H20 or y-AO(OH)) and diaspore (Al 2 0 3 -H20 or a-AO(OH)). Other minerals that may be present include iron oxides (Fe203), quartz (SiO 2 ), and titanium dioxide (TiO2 ). Ilmenite is an ore that is the primary source of titanium. The titanium is generally present in the form of FeTiO3, although amounts of Zr, V, Sc, Mg, and Mn may also be present. Laterites are ores including various oxides, including iron oxides, nickel oxides, and others. Scheelite is an ore including CaWO 4 . Other metal-containing materials may be digested using the present methods, such as an electrode material of a battery. For example, electrode materials from lithium-ion batteries (LIBs) include LiCoO2, although amounts of Mn and Ni may also be present. Another metal-containing material is coal fly ash, which includes various rare earth elements such as Nb.
[0016] The present methods may be used to recover metals from a variety of metal containing materials, including those described above. However, in embodiments, the metal containing material is not ilmenite. In embodiments, the metal-containing material is not an electrode material of a LIB. In embodiments, the metal-containing material is bauxite.
[0017] Digestion
[0018] Digestion of the metal-containing material comprises exposing the metal containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof dissolved therein. The solvent is generally water. The oxalate compound may be represented by the formula AHC20 4.(H2C20 4 )n, wherein A is a cation and n is 0 or 1. In embodiments, n is 0 and the oxalate compound is a binoxalate. In embodiments, n is 1 and the oxalate compound is a tetraoxalate. In embodiments, A is an ammonium cation, NR 4 , wherein each R is independently selected from a group consisting of hydrogen and an alkyl group. The alkyl group may be a methyl group, although other alkyl groups may be used. Although NH4 HC 2 04 may be used as a possible binoxalate, in other embodiments, the binoxalate is not NH 4 HC 2 0 4 . In embodiments, at least one R is not hydrogen. In embodiments, A is an alkali metal cation, such as Li, Na, K, etc. A single type or a combination of different types of oxalate compounds may be used. The binoxalates and tetraoxalates may be formed from an aqueous solution of oxalic acid (H 2 C 2 0 4 ) and the appropriate oxalate salt. Under the conditions of the digestion (further described below and in the Examples), the oxalic acid and oxalate salt react to form the desired binoxalate or tetraoxalate. By way of illustration, KHC 2 0 4 may be formed from an aqueous solution of oxalic acid and dipotassium oxalate, K 2 C2 0 4 . The binoxalates and tetraoxalates disclosed herein also refer to the hydrated forms of these compounds, e.g., the term "potassium tetraoxalate" and formula "KHC 2 0 4 -H 2C 20 4 " encompass potassium tetraoxalate dihydrate" and "KHC 2 04-H 2 C 2 04-2H 2 0."
[0019] The leaching solution may further comprise one or more additives. Illustrative additives include a reducing agent (e.g., a peroxide such as H2 0 2 or a solid metal of the metal to be recovered) or an oxidizing agent. In embodiments, however, certain components are excluded from the leaching solution. For example, in embodiments, the leaching solution is free of (i.e., does not comprise) oxalic acid. (This, however, does not preclude the presence of a small amount of oxalic acid remaining after the reaction with the appropriate oxalate salt to form the desired binoxalate/tetraoxalate.) As noted above, in embodiments, the leaching solution is free of (i.e., does not comprise) NH 4 HC 2 0 4 . In embodiments, the leaching solution consists of water, the binoxalate/tetraoxalate, and optionally, a reducing agent or an oxidizing agent. In such embodiments, any of the oxalate compounds described herein may be used. However, in embodiments, the oxalate compound is an alkali metal binoxalate, an alkali metal tetraoxalate, or combinations thereof.
[0020] The exposure of the metal-containing material to the leaching solution takes place under conditions which induce the chemical conversion of the metal compound(s) of the metal-containing material into various other metal compounds, including soluble metal oxalate complexes. The term "leachate" is used to refer to the liquid portion of the processed mixture of the metal-containing material in the leaching solution. (For the remainder of this disclosure, the phrase "processed mixture" will be used to refer to the processed mixture of the metal-containing material in the leaching solution.) However, solids may be present in the processed mixture, either suspended within or precipitated out of the leachate. If present, these solids may be separated from the liquid portion (leachate), e.g., via filtration.
[0021] In embodiments, each of the desired metals of the metal-containing material are dissolved in the liquid portion (leachate). For example, in embodiments involving the digestion of bauxite, both Fe and Al metals may be dissolved in the leachate, e.g., as soluble oxalate complexes. (See FIGs. 1-3 "Fe, Al rich solution.")
[0022] However, in other embodiments, a desired metal may be the solid portion (or a component thereof) of the processed mixture, which may be separated, e.g., via filtration, and further processed as described below. For example, in other embodiments involving the digestion of bauxite, the Al metal may be dissolved in the liquid portion (leachate) of the processed mixture while the Fe metal may be present as the solid portion, e.g., an insoluble oxalate compound. (See, FIG. 5.) In this embodiment, precipitation of the iron oxalate was induced by including Fe metal in the digestion step.
[0023] Regarding the digestion conditions, these refer to parameters such as the type of oxalate compound, its concentration, the pH, the temperature, the time, the atmosphere, the pressure, the solid-to-liquid ratio, the mixing conditions (e.g., agitation speed) being used. As noted above, these parameters are selected to induce the chemical conversion and specific values generally depend upon the type of metal-containing material. Binoxalate/tetraoxalate types have been described above. Illustrative binoxalate/tetraoxalate concentrations in the leaching solution include those in a range of from 0.1 M to 2 M. The pH is acidic, e.g., less than 4, less than 3, in a range of fromI to 3. Illustrative temperatures include those in a range of from room temperature (20°C to 25C) to 130°C. Illustrative times include those in a range of from 1 hour to 24 hours. The atmosphere refers to digestion being carried out under either inert conditions, reductive conditions, or oxidative conditions. Inert conditions may be achieved by using an atmosphere of an inert gas (e.g., N 2 ). Reductive conditions may be achieved by using an atmosphere of a reducing gas (e.g., H 2 ). Oxidative conditions may be achieved by using an atmosphere of an oxidating gas (e.g., air, 02). Reductive or oxidative conditions may also be achieved by use of a reducing or oxidizing agent in the leaching solution as noted above. Illustrative pressures used include atmospheric pressure to 10 bar. The solid-to-liquid ratio refers to the weight of the solid, metal-containing material to the volume of the leaching solution. In embodiments, this ratio is in a range of from 5 g/L to 25 g/L. Mixing can be accomplished by agitation under various speeds, e.g., from 100 to 1000 rpm.
[0024] Metal Recovery
[0025] After digestion of the metal-containing material, the present methods further involve recovery of the desired metals from the processed mixture. The leachate (liquid portion of the processed mixture) may be exposed to conditions sufficient to induce precipitation of the desired metal out of solution as a metal-containing precipitate. For example, metal hydroxide precipitation may be induced by adding an appropriate base to the leachate. The base generally depends upon the oxalate compound used. Specifically, it is desirable that the cation of the base is the same as the cation of the oxalate compound used. Hydroxide bases may be used. Ammonia (NH 3) may also be used. By way of illustration, if KHC 2 0 4 is used as the oxalate compound, an appropriate base is KOH. Other conditions to induce precipitation include temperature, pH, and aging time. The temperature and pH may be selected to induce precipitation of a certain desired metal over another desired metal that may be present in the leachate. Thus, these conditions depend upon the composition of the leachate and the desired metal hydroxide to be precipitated. However, illustrative temperatures include those in a range of from room temperature to 40C. Regarding pH, by way of illustration, for iron (Fe), the pH may be basic, e.g., greater than 11, greater than 12, greater than 14. Aging time refers to the time between digestion and precipitation. Illustrative aging times include those in a range of from 30 min to 12 hours. Additives may be added to the leachate to facilitate precipitation, e.g., seeding particles such as metal hydroxide particles.
[0026] When the leachate (liquid portion of the processed mixture) comprises more than one type of desired metal, recovery may involve the selective precipitation (e.g., metal hydroxide precipitation) of the desired metals by pH adjustment, wherein different desired metals precipitate out of solution at different pH values. In such a process, the pH value of the leachate is adjusted to a first value to induce precipitation of a first metal-containing precipitate; the pH value of the leachate is adjusted to a second, different value to induce precipitation of a second metal-containing precipitate; etc. The desired pH values may be obtained by adding an appropriate amount of base (see above) or acid (e.g., a mineral acid such as H 2 SO 4 , HCl, etc.). By way of illustration with reference to FIGs. 1-4, a base may be added to adjust the pH to basic conditions, e.g., greater than 11 to induce precipitation of iron hydroxide; and an acid may be added to lower the pH to induce precipitation of aluminum hydroxide. Again, the temperature may be selected to facilitate precipitation of the desired metal.
[0027] In another variation of selective precipitation of metal hydroxides by pH adjustment, a base (see above) may be added at a selected rate to adjust the pH from acidic to basic conditions. As shown in Table 1, different metals present in bauxite will precipitate out of solution as the corresponding metal hydroxide at different pH values. Again, the temperature may be selected to facilitate precipitation of the desired metal.
[0028] Table 1. pH for metal hydroxide precipitation.
Metal Starting pH Ksp
Al 3 + 3.2 1.3 x 10-"
Fe3 * 0.9 2.8 x 10-'9
Ti 4* 0.5 7.1 x 10
Zn2+ 6.1 3.0 x 10-4
Cr1+ 6.0 1.6 x 10-3 0
[0029] Another technique for metal recovery involves adding a reducing agent to the leaching solution or the leachate (the liquid portion of the processed mixture). By way of illustration, an amount of iron (Fe) metal may be added to the leachate to reduce Fe 3+ in solution to Fe2, which precipitates out of solution as an insoluble iron oxalate. As shown in FIG. 5, addition of such a reducing agent may take place at the same time as digestion (i.e., the reducing agent is added to the leaching solution) to provide an Al-rich leachate and insoluble FeC204 solids, which may be recovered, e.g., via filtration and further processed as described below.
[0030] Yet another technique for metal recovery involves adding certain extractants and organic solvents to the leachate (the liquid portion of the processed mixture). By way of illustration, Ti4 * can be selectively extracted from an aqueous solution containing other metals like Fe 3 + and A13+, using Cyanex 301 (bis-(2,4,4-trimethylpentyl)dithiophosphinic acid) or Cyanex 302 (bis-(2,4,4-trimethylpentyl)monothiophosphinic acid). These extractants can be used in various organic solvents like toluene, cyclohexane, and kerosene. An organic phase prepared using the solvent and extractant may be mixed with the aqueous leachate. The contact time between both phases, concentration of extractant present in the organic phase, and pH are parameters which may be adjust to optimize Ti 4 + extraction. Regarding pH, extraction is particularly effective in the pH range where Ti 4 + exists in the form of Ti(OH)22+.In such cases the formation of Ti(OH) 2R2 occurs through a cation exchange process with the extractant. After extraction, Cyanex 301 or Cyanex 302 can be stripped using an acid like H 2 SO4 for Ti4 + recovery, which can be further hydrolyzed into Ti(OH) 4 using an appropriate base.
[0031] However generated, metal-containing precipitates, e.g., metal hydroxides, may be recovered from the processed leachate, e.g., via filtration. As shown in FIGs. 1 and 2, the binoxalates KHC 2 04 and NH4 HC 2 04 enable the recovery of the precipitated metal hydroxides with high purity. As shown in FIG. 3, use of NaHC204 may result in a mixture of the metal hydroxide and sodium oxalate.
[0032] Referring back to FIG. 5, in which iron was extracted from bauxite in the digestion step as an insoluble iron oxalate, the solid can be recovered and a base added to convert the iron oxalate to an iron oxide, which may be recovered, e.g., viafiltration.
[0033] Metal-containing precipitates, e.g., metal hydroxides, may then be calcined under appropriate conditions to form the corresponding oxides. By way of illustration, precipitated alumina hydrate may be calcined into A1 2 0 3 , which is a feedstock for the Hall-Hefoult process for the production of aluminum. Metal hydroxides such as Fe and Ti may be converted into their metal oxides (Fe203 and TiO 2 ) via calcination. Structure directing agents such as ZnCl2 may be added to control the crystalline phase (e.g., TiO 2 rutile versus anatase).
[0034] Binoxalate/TetraoxalateRecovery
[0035] The present methods may further involve the recovery of the oxalate compound reagent, and if desired, recycling of the reagent by feeding it back into earlier steps, e.g., digestion. This forms a closed loop process which minimizes external inputs to the method. The term "recovered" may be used with respect to specific reagents when identifying them as having been recovered from a previous step of the method.
[0036] Recovery of the oxalate compound can depend upon the type of oxalate compound used, as well as conditions used in earlier steps. As shown in FIGs. 1,3, and 4, after removal of desired metals, the pH of the processed leachate (or filtrate therefrom) is further adjusted (e.g., lowered) to induce precipitation of the oxalate compound, which may be recovered, e.g., by filtration, and fed back into a digestion step.
[0037] As shown in FIG. 2, pH adjustment of the processed leachate (or filtrate therefrom) may result in an aqueous mixture of the binoxalate with a sulfate.
[0038] As shown in FIG. 5, a processed leachate (or filtrate therefrom) may be rich in oxalates. As shown in this figure, alkali metal oxalate solutions (in FIG. 5, dipotassium oxalate, DKO) may be subjected to strong acid cationic resins (H-resins) so as to exchange alkali metal ions in the aqueous solutions for H' ions. The used ion exchange resin (in FIG. 5,
K-resin) may be regenerated by exposure to an acid (e.g., H 2 SO 4 ). Diammonium oxalate solutions may be subjected to crystallization of the diammonium oxalate, followed by thermal diammoniation to produce the ammonium binoxalate.
[0039] The present methods may further comprise repeating the initial digestion step of exposing the metal-containing material (e.g., a new batch of the metal-containing material) to recovered oxalate compound. This offers a closed loop process that is more efficient and cost-effective than existing methods.
EXAMPLES
[0040] Examples on extraction of iron and aluminum metal using potassium binoxalate
[0041] Example ]A: Metal extraction experiment at 0.75 Mpotassium binoxalate
[0042] In a 1000 ml Ace Glass reactor flask were charged 6 g NIST SRM 600 Bauxite ore (CAS Number [1318-16-7]), 18.91 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 27.64 g K2 C 2 04-H 20 (Alfa AesarTM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of potassium binoxalate in aqueous solution was 0.75 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 1.11 g. PXRD of solids recovered matches exactly to quartz (SiO 2 ) indicating essentially complete dissolution of Fe and Al.
[0043] Example JB: Metal extraction experiment at 0.50 Mpotassium binoxalate
In a 1000 ml Ace Glass reactor flask were charged 6 g NIST SRM 600 Bauxite ore (CAS Number [1318-16-7]), 12.60 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 18.42 g K2 C2 0 4 -H 2 0 (Alfa AesarTM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236,
CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.50 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 1.12 g. PXRD of solids recovered matches exactly to quartz (SiO 2 ) indicating essentially complete dissolution of Fe and Al.
[0044] Example IC: Metal extraction experiment at 0.25 Mpotassium tetraoxalate
[0045] In a 1000 ml Ace Glass reactor flask were charged 6 g NIST SRM 600 Bauxite ore (CAS Number [1318-16-7]), 18.91 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 9.21 g K2 C 2 04-H 2 0 (Alfa AesarTM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.50 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium tetraoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 1.01 g. PXRD of solids recovered matches exactly to quartz (SiO 2 ) indicating essentially complete dissolution of Fe and Al.
[0046] Example JD: Metal extraction experiment at 0.25 Mpotassium tetraoxalate
[0047] In a 1000 ml Ace Glass reactor flask were charged 8 g NIST SRM 600 Bauxite ore (CAS Number [1318-16-7]), 18.91 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 9.21 g K2 C 2 04-H 2 0 (Alfa AesarTM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 20 g/L and the concentration of oxalate in aqueous solution was 0.50 M.
The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 6 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium tetraoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 1.34 g. PXRD of solids recovered matches exactly to quartz (SiO 2 ) indicating essentially complete dissolution of Fe and Al.
[0048] Example JE: Metal extraction experiment at 0.75 Mpotassium binoxalate
[0049] In a 1000 ml Ace Glass reactor flask were charged 3.30 g Bayerite (Alcoa C-37), 2.73 g Bayferrox@ 512z (CAS Number [1309-37-1]), 18.91 gH 2 C 2 0 4 -2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 27.63 g K 2 C 2 04-H 2 0 (Alfa AesarT M Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. No residue was recovered, and a clear green filtrate was obtained indicating complete dissolution of Fe and Al.
[0050] Example IF: Metal extraction experiment at 0.50 Mpotassium binoxalate
[0051] In a 1000 ml Ace Glass reactor flask were charged 6 g Bauxite ore (Sargent Welch, 170 mesh, Al 41 %, Fe 5 %, Si 3 %), 12.60 g H 2 C2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 18.42 g K 2 C 2 0 4 -H2 0 (Alfa AesarTM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.50 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. Duringfiltration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 1.32 g. The residue was digested in aqua regia and analyzed using ICP. The ICP analysis indicates 85 % Al and 42
% Fe extraction in the aqueous phase.
[0052] Example IG: Metal extraction experiment at 0.75 Mpotassium binoxalate
[0053] In a 1000 ml Ace Glass reactor flask were charged 6 g Bauxite ore (Sargent Welch, 170 mesh, Al 41 %, Fe 5 % and Si 3 %), 18.90 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 27.30 g K 2 C 2 04-H 2 0 (Alfa AesarT M Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 8 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 0.86 g. The residue was digested in aqua regia and analyzed using ICP. The ICP analysis indicates 90 % Al and 75 % Fe extraction in the aqueous phase.
[0054] Example 1H. Metal extraction experiment at 0.75 Mpotassium binoxalate
[0055] In a 1000 ml Ace Glass reactor flask were charged 6 g Bauxite ore (Sargent Welch, 170 mesh, Al 41 %, Fe 5 % and Si 3 %), 18.91 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 27.31 g K 2 C 2 04-H 2 0 (Alfa AesarT M Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 400 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The flask was connected to a Duran style head with a stirring rod and temperature controllers enclosed in a heating jacket. The reactor was stirred at 600 rpm and heated from 20 °C to 98 °C and held at the temperature for 24 h before allowing to cool.
Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, reactor was disassembled, and filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 0.69 g. The residue was digested in aqua regia and analyzed using ICP. The ICP analysis indicates 94 %Al and 86 % Fe extraction in the aqueous phase.
[0056] Examples of metal extraction experiments and precipitation studies on small scale
[0057] Example 2A: Aluminum extraction experimentfrom bayerite (AI(OH)) at 0.75 M potassium binoxalate
[0058] In a 20 ml glass vial were charged 154 mg of bayerite, 486 mgH 2 C2 0 4 -2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number
[6153-56-6]), 718 mg K2 C 2 04-H 2 0 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 10.7 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The vial was stirred on a magnetic stirring and heating plate at 500 rpm and heated from 20 °C to 80 °C and held at the temperature for 3 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 21 mg. PXRD of solids recovered matches to the starting material. Together the mass recovered and PXRD data indicates 86 % of aluminum extraction.
[0059] Example 2B: Aluminum extraction experimentfrom boehmite (AIO(OH)) at 0.75 Mpotassium binoxalate
[0060] In a 20 ml glass vial were charged 153 mg of boehmite, 472 mg H 2 C2 0 4 -2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number
[6153-56-6]), 728 mg K2 C 2 04-H 2 0 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 10.5 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The vial was stirred on a magnetic stirring and heating plate at 500 rpm and heated from 20 °C to 80 °C and held at the temperature for 3 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 39 mg. PXRD of solids recovered matches to the starting material. Together the mass recovered and PXRD data indicates 74 % of aluminum extraction.
[00611 Example 2C: Iron extraction experimentfrom hematite (Fe203) at 0.75 M potassium binoxalate
[0062] In a 20 ml glass vial were charged 157 mg of Bayferrox@ 512z (CAS Number
[1309-37-1]), 476 mg H2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]), 747 mg K2 C 2 0 4 -H2 0 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 10.2 g deionized water. The solid-to-liquid ratio of this mixture was 15 g/L and the concentration of oxalate in aqueous solution was 0.75 M. The vial was stirred on a magnetic stirring and heating plate at 500 rpm and heated from 20 °C to 80 °C and held at the temperature for 3 h before allowing to cool. Under these conditions, oxalic acid and potassium oxalate monohydrate react to form potassium binoxalate. After cooling down, filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 20 mg. PXRD of solids recovered matches to the starting material. Together the mass recovered and PXRD data indicates 86 % of iron extraction. The exact experiment was duplicated to generate additional filtrate for further analysis.
[00631 Example 2D: Alumina precipitationfrom filtrate ofExample 2A using KOH
[0064] In a 20 ml glass vial, filtrate from Example 2A was taken and charged with 0.38 g of KOH (Alfa Aesar TM, Catalog Number A18854, CAS Number [1310-58-3]). The mixture was stirred at 500 rpm for 15 minutes and pH of the aqueous phase increased from 2.85 to 10.14. To separate the solid and aqueous phase, the mixture was centrifuged at 2500 rpm for minutes. The aqueous phase at the top was clear in color and a white gel-like solid phase was settled at the bottom. In the aqueous phase, 88 ppm of Al was present indicating a 98 %
efficient precipitation.
[0065 Example 2E: Ferrichydroxide precipitationfrom filtrate ofExample 2C using KOH
[0066] In a 20 ml glass vial, green filtrate from Example 2C was taken and charged with 0.14 g of KOH (Alfa Aesar TM , Catalog Number A18854, CAS Number [1310-58-3]). The mixture was stirred at 500 rpm for 15 minutes and pH of the aqueous phase increased from 2.85 to 7.79. To separate the solid and aqueous phase, the mixture was centrifuged at 2500 rpm for 5 minutes. The aqueous phase at the top was light green in color and a dark orange gel-like solid phase was settled at the bottom. The light green phase was separated and was charged with 0.23 g of KOH (Alfa Aesar TM, Catalog Number A18854, CAS Number [1310 58-3]). The mixture was stirred at 500 rpm for 15 minutes and pH of the aqueous phase increased from 7.79 to 13.7. To separate the solid and aqueous phase, the mixture was centrifuged again at 2500 rpm for 5 minutes. The aqueous phase at the top was clear in color and a dark orange gel-like solid phase was settled at the bottom. In the aqueous phase, 0.30 ppm of Fe was present indicating a 99.99 % efficient precipitation.
[0067] Example 2F: Ferrichydroxide precipitationfrom filtrate ofExample 2C using iron metalpowder
[0068] In a 20 ml glass vial, green filtrate from Example 2C was taken and charged with 0.067 g of iron metal powder (Alfa Aesar TM , Catalog Number S25370, CAS Number [7439 89-6]). The mixture was stirred at 500 rpm for 15 hours and a yellow precipitate was observed. To separate the yellow solid and light-yellow aqueous phase, filtration was performed using a 11 m cellulose filter. During filtration, residue was washed with deionized water. Later, residue was kept for drying overnight and obtained a total mass of 0.47 g. The precipitate recovered was identified as FeC204-2H20 (ferrous oxalate dihydrate) using PXRD. The aqueous phase had a remaining iron concentration of 1487 ppm with no iron metal powder left.
[0069] Examples on regeneration of potassium binoxalate and potassium tetraoxalate dihydrate
[0070] Example 3A: Regeneration ofpotassium binoxalatefrom a model solution using sulfuric acid
[0071] In an 80 ml glass bottle were charged 3.77 g K2 C2 0 4 -H 2 0 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 20 g deionized water. The mixture was stirred for 10 minutes at 450 rpm on a magnetic stir plate. In the resulting solution, 0.13 g of KOH (Alfa AesarTM Catalog Number A18854, CAS Number [1310-58-3]) was added to prepare a solution of pH
13.43. In the model solution, 1.29 g of 98 % sulfuric acid (Fisher Scientific, Catalog Number A300500, CAS Number [7664-93-9]) was added and pH decreased to 2.14. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 1.62 g of white precipitate was recovered. The residue was washed with 10 g deionized water. The white precipitate recovered was identified as KHC 2 0 4 (potassium binoxalate) using PXRD.
[0072] Example 3B: Regeneration ofpotassium tetraoxalatedihydratefrom a model solution using sulfuric acid
[0073] In an 80 ml glass bottle were charged 3.77 g K2 C2 0 4 -H 20 (Alfa Aesar TM potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 20 g deionized water. The mixture was stirred for 10 minutes at 450 rpm on a magnetic stir plate. In the resulting solution, 0.14 g of KOH (Alfa AesarTM Catalog Number A18854, CAS Number [1310-58-3]) was added to prepare a model solution of pH 13.55. In the model solution, 2.08 g of 98 % sulfuric acid (Fisher Scientific, Catalog Number A300500, CAS Number [7664-93-9]) was added and pH decreased to 1.32. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 2.20 g of white precipitate was recovered. The residue was washed with g deionized water. The white precipitate recovered was identified as KHC 2 04-H 2 C 2 04-2H 2 0 (potassium tetraoxalate dihydrate) using PXRD.
[0074] Example 3C: Regeneration ofpotassium binoxalatefrom a model solution using hydrochloric acid
[0075] In an 80 ml glass bottle were charged 3.77 g K2 C2 0 4 -H 20 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 20 g deionized water. The mixture was stirred for 10 minutes at 450 rpm on a magnetic stir plate. In the resulting solution, 0.12 g of KOH (Alfa AesarTM Catalog Number A18854, CAS Number [1310-58-3]) was added to prepare a model solution of pH 13.40. In the model solution, 1.78 g of 37 % hydrochloric acid (ACS Reagent, Catalog Number 258148, CAS Number [7647-01-0]) was added and pH decreased to 3.63. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 1.51 g of white precipitate was recovered. The residue was washed with g deionized water. The white precipitate recovered was identified as KHC 2 0 4 -H20 (potassium binoxalate monohydrate) using PXRD. The filtrate was charged with an additional 1.08 g of 37 % hydrochloric acid (ACS Reagent, Catalog Number 258148, CAS Number [7647-01-0]) and pH decreased to 0.87. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 0.72 g of white precipitate was recovered. The residue was washed with 10 g deionized water. The white precipitate recovered was identified as KHC 2 0 4 -H2 C2 0 4 -2H 2 0 (potassium tetraoxalate dihydrate) using PXRD.
[0076] Example 3D: Regeneration ofpotassium tetraoxalatedihydratefrom a model solution using hydrochloric acid with a methodfor determination of unrecovered oxalate
[0077] In an 80 ml glass bottle were charged 3.77 g K2 C2 0 4 -H 20 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 20 g deionized water. The mixture was stirred for 10 minutes at 450 rpm on a magnetic stir plate. In the resulting solution, 0.12 g of KOH (Alfa AesarTM Catalog Number A18854, CAS Number [1310-58-3]) was added to prepare a model solution of pH 13.46. In the model solution, 3.53 g of 37 % hydrochloric acid (ACS Reagent, Catalog Number 258148, CAS Number [7647-01-0]) was added and pH decreased to 0.75. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 2.28 g of white precipitate was recovered. The residue was washed with g deionized water. The white precipitate recovered was identified as KHC 2 04-H 2 C 2 04-2H 2 0 (potassium tetraoxalate dihydrate) using PXRD. The filtrate was
charged with 0.70 g of CaCl2-2H2O (ACS Reagent, Catalog Number 223506, CAS Number
[10035-04-8]) and was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 0.30 g of white precipitate was recovered. The residue was washed with 10 g deionized water. The white precipitate recovered was identified as CaC204-2H20 (calcium oxalate dihydrate) using PXRD. Approximately, 84 % of oxalate was recovered initially in KHC 2 04-H 2 C 2 0 4 -2H2 0 and remaining 16 % of oxalate was recovered in CaC204-2H20.
[0078] Example 3E: Regeneration ofpotassium tetraoxalatedihydratefrom a model solution using sulfuric acid with a methodfor determination of unrecovered oxalate
[0079] In an 80 ml glass bottle were charged 3.77 g K2 C2 0 4 -H 20 (Alfa Aesar TM Potassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number [6487-48-5]) and 20 g deionized water. The mixture was stirred for 10 minutes at 450 rpm on a magnetic stir plate. In the resulting solution, 0.09 g of KOH (Alfa AesarTM
Catalog Number A18854, CAS Number [1310-58-3]) was added to prepare a model solution of pH 13.29. In the model solution, 2.04 g of 98 % sulfuric acid (Fisher Scientific, Catalog Number A300500, CAS Number [7664-93-9]) was added and pH decreased to 1.29. The glass bottle was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 2.06 g of white precipitate was recovered. The residue was washed with g deionized water. The white precipitate recovered was identified as KHC 2 04-H2 C 2 04-2H2 0 (potassium tetraoxalate dihydrate) using PXRD. The filtrate was charged with 1.19 g of CuSO4-5H20 (ACS Reagent, Catalog Number 209198, CAS Number
[7758-99-8]) and was stirred at 450 rpm for 1 h. After 1 h, filtration was performed using an 11 m cellulose filter and 0.36 g of aqua green precipitate was recovered. The residue was washed with 10 g deionized water. The precipitate recovered was identified as CuC204-H20 (copper oxalate monohydrate) using PXRD. Approximately, 79 % of oxalate was recovered initially in KHC 2 0 4 -H2 C 2 0 4 -2H2 0 and remaining 21 % of oxalate was recovered in CuC204-H20.
[0080] Comparative examples between ammonium binoxalate, sodium binoxalate and potassium binoxalate
[0081] Example 4A: Synthesis of ammonium binoxalate
[0082] In a 20 ml glass vial were charged 0.80 g (NH4 ) 2 C 2 0 4 -H2 0 (Acros Organics ammonium oxalate monohydrate, Catalog Number AC206270010, CAS Number [6009-70 7]), 0.71 g H 2 C 2 04-2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]) and 15.3 g deionized water. The concentration of oxalic acid was 0.375 M. The molar ratio of (NH4 ) 2 C 2 0 4 -H2 0 and H 2 C 2 0 4 -2H 2 0 was 1:1. The mixture was stirred for 30 minutes at 450 rpm on a magnetic stir plate and resulted in a clear solution. Under these conditions, H 2 C 2 0 4 -2H2 0 and (NH4 ) 2 C 2 0 4 -H2 0 react to form ammonium binoxalate. No precipitate observation indicates the formation of a soluble ammonium binoxalate under specified conditions.
[0083] Example 4B: Synthesis ofpotassium binoxalate
[0084] In a 20 ml glass vial were charged 1.04 g K 2 C 2 0 4 -H2 0 (Alfa Aesar TMPotassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number
[6487-48-5]), 0.71 g H 2 C 2 04-2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]) and 15.1 g deionized water. The concentration of oxalic acid was 0.375 M. The molar ratio of K 2 C2 0 4 -H2 0 andH 2 C2 0 4 -2H 2 0 was 1:1. The mixture was stirred for 30 minutes at 450 rpm on a magnetic stir plate. After 30 minutes, filtration was performed using an 11 m cellulose filter and 0.41 g of white precipitate was recovered. The precipitate recovered was identified as KHC 2 04 (potassium binoxalate) using PXRD.
[0085 Example 4C: Synthesis ofsodium binoxalate
[0086] In a 20 ml glass vial were charged 0.75 g Na2C204 (Alfa Aesar TMsodium oxalate, 99 %, Catalog Number AAA1164822, CAS Number [62-76-0]) and 15.1 g deionized water. Na2C204 remained insoluble after stirring for 30 minutes at 450 rpm and 20 °C on a magnetic stirring and heating plate. To dissolve the remaining Na2C20 4 , temperature of heating plate was increased to 70 °C. The clear solution after cooling down was charged with 0.71 g H 2 C 2 0 4 -2H2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]). The concentration of oxalic acid was 0.375 M and the molar ratio of Na2C204-H20 and H2 C 2 0 4 -2H20 was 1:1. The mixture was stirred for 30 minutes at 450 rpm on a magnetic stir plate. After 30 minutes, filtration was performed using an 11 m cellulose filter and 1.05 g of white precipitate was recovered. The precipitate recovered was identified as NaHC204-H20 (sodium binoxalate monohydrate) using PXRD.
[0087 Example 4D: Synthesis ofpotassium tetraoxalate
[0088] In a 20 ml glass vial were charged 1.26 g K 2 C 2 0 4 -H2 0 (Alfa Aesar TMPotassium oxalate monohydrate, ACS, 98.8-101.0 %, Catalog Number AA1345236, CAS Number
[6487-48-5]), 2.58 g H 2 C 2 04-2H 2 0 (Sigma Aldrich reagent grade oxalic acid dihydrate, Catalog Number 247537, CAS Number [6153-56-6]) and 20.63 g deionized water. The concentration of oxalic acid was 0.99 M. The molar ratio of K 2 C20 4 -H 20 and H2 C20 4 -2H 20 was 1:3. The mixture was stirred for 30 minutes at 450 rpm on a magnetic stir plate. After 30 minutes, filtration was performed using an 11 m cellulose filter and 2.96 g of white precipitate was recovered. The precipitate recovered was identified as KHC 2 04-H2 C 2 04-2H2 0 (potassium tetraoxalate dihydrate) using PXRD.
[00891 Example 4E: Sodium binoxalate and sodium oxalate
[0090] Example 4C was repeated with no filtration performed to keep both aqueous and solid phase together. To the slurry, 0.68 g of NaOH (Alfa Aesar TM, Catalog Number A16037, CAS Number [1310-73-2]) was added. On stirring the mixture at 450 rpm for 30 minutes, pH increased from 2.35 to 13.48. After 30 minutes, filtration was performed using an 11 m cellulose filter and 0.91 g of white precipitate was recovered. The residue was washed with g deionized water. The white precipitated recovered was identified as Na2C204 (sodium oxalate) using PXRD.
[0091] The word "illustrative" is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as "illustrative" is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, "a" or "an" means "one or more."
[0092] If not already included, all numeric values of parameters in the present disclosure are proceeded by the term "about" which means approximately. This encompasses those variations inherent to the measurement of the relevant parameter as understood by those of ordinary skill in the art. This also encompasses the exact value of the disclosed numeric value and values that round to the disclosed numeric value.
[0093] The foregoing description of illustrative embodiments of the disclosure has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principles of the disclosure and as practical applications of the disclosure to enable one skilled in the art to utilize the disclosure in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the claims appended hereto and their equivalents.
[0094] Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
[0095] It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
[0096] According to a first aspect, the present invention provides a method for recovering a metal from a metal-containing material, the method comprising:
(a) exposing a metal-containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a soluble metal oxalate;
(b) inducing precipitation of a metal-containing precipitate comprising the metalof the soluble metal oxalate from the leachate; and
(c) recovering the metal-containing precipitate.
[0097] According to a second aspect, the present invention provides a method for recovering a metal from bauxite, the method comprising:
(a) exposing bauxite to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a Fe soluble metal oxalate and an Al soluble metal oxalate;
(b) inducing precipitation of a Fe-containing precipitate from the leachate by adjusting the leachate's pH to a first value;
(c) recovering the Fe-containing precipitate;
(d) inducing precipitation of an Al-containing precipitate from the leachate by adjusting the leachate's pH to a second value; and
(e) recovering the Al-containing precipitate.
[0098] According to a third aspect, the present invention provides a metal when recovered by a method according to the first or second aspects.
[0099] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

Claims (20)

WHAT IS CLAIMED IS:
1. A method for recovering a metal from a metal-containing material, the method comprising: (a) exposing a metal-containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a soluble metal oxalate; (b) inducing precipitation of a metal-containing precipitate comprising the metal of the soluble metal oxalate from the leachate; and (c) recovering the metal-containing precipitate.
2. The method of claim 1, wherein the metal-containing material is not ilmenite and is not a lithium-ion battery electrode material.
3. The method of claim 1, wherein the metal-containing material is bauxite.
4. The method of claim 1, wherein the binoxalate has formula AHC20 4and the tetraoxalate has formula AHC 2 0 4 .H2C 20 4 , wherein A is an ammonium cation, NR 4 , wherein
each R is independently selected from a group consisting of hydrogen and an alkyl group; or A is an alkali metal cation.
5. The method of claim 4, wherein at least one R is not hydrogen.
6. The method of claim 4, wherein the binoxalate is not NH 4 HC 2 0 4 .
7. The method of claim 1, wherein the binoxalate has formula AHC 2 04 and the tetraoxalate has formula AHC 2 0 4 .H2 C 2 0 4 , wherein A is an alkali metal cation.
8. The method of claim 7, wherein the binoxalate is KHC 2 04, NaHC20 4 , or a combination thereof and the tetraoxalate is KHC 2 0 4 .H2 C 2 0 4 .
9. The method of claim 1, wherein at least two metals of the metal-containing material to be recovered are each present in the leachate as respective soluble metal oxalates.
10. The method of claim 1, further comprising:
(d) inducing precipitation of a second metal-containing precipitate from the leachate comprising a second soluble metal oxalate, the second metal-containing precipitate comprising the metal of the second soluble metal oxalate; and (e) recovering the second metal-containing precipitate.
11. The method of claim 10, wherein the metal-containing precipitate precipitates out of the leachate at a first pH value and step (d) comprises adjusting the pH of the leachate to a second pH value to induce precipitation of the second metal-containing precipitate.
12. The method of claim 1, further comprising recovering the binoxalate, the tetraoxalate, or the combination thereof, from the leachate.
13. The method of claim 12, wherein the binoxalate, the tetraoxalate, or the combination thereof, is recovered by adjusting the leachate's pH to induce precipitation of the binoxalate, the tetraoxalate, or the combination thereof.
14. A method for recovering a metal from bauxite, the method comprising: (a) exposing bauxite to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a Fe soluble metal oxalate and an Al soluble metal oxalate; (b) inducing precipitation of a Fe-containing precipitate from the leachate by adjusting the leachate's pH to a first value; (c) recovering the Fe-containing precipitate; (d) inducing precipitation of an Al-containing precipitate from the leachate by adjusting the leachate's pH to a second value; and (e) recovering the Al-containing precipitate.
15. The method of claim 14, further comprising recovering the binoxalate, the tetraoxalate, or the combination thereof from the leachate.
16. The method of claim 14, wherein the binoxalate has formula AHC 2 0 4 , wherein A is an ammonium cation, NR 4 , wherein each R is independently selected from a group consisting of hydrogen and an alkyl group; or A is an alkali metal cation.
17. The method of claim 14, wherein the binoxalate has formula AHC 2 04 and the tetraoxalate has formula AHC 2 0 4 .H2 C 2 0 4 , wherein A is an alkali metal cation.
18. The method of claim 17, wherein the binoxalate is KHC 2 0 4 , NaHC20 4 , or a combination thereof and the tetraoxalate is KHC 2 0 4.H 2 C 2 0 4
. 19. The method of claim 17, wherein the binoxalate is KHC 2 0 4 and the tetraoxalate is KHC 20 4.H 2 C 20 4
20. The method of claim 14, wherein the Al-containing precipitate is processed to form aluminum oxide and the aluminum oxide is used as a feedstock for the production of aluminum metal.
University of Kansas
Patent Attorneys for the Applicant/Nominated Person
SPRUSON&FERGUSON
AU2021202642A 2021-04-28 2021-04-28 Methods for recovering metals using oxalate compounds Pending AU2021202642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021202642A AU2021202642A1 (en) 2021-04-28 2021-04-28 Methods for recovering metals using oxalate compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2021202642A AU2021202642A1 (en) 2021-04-28 2021-04-28 Methods for recovering metals using oxalate compounds

Publications (1)

Publication Number Publication Date
AU2021202642A1 true AU2021202642A1 (en) 2022-11-17

Family

ID=83999978

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2021202642A Pending AU2021202642A1 (en) 2021-04-28 2021-04-28 Methods for recovering metals using oxalate compounds

Country Status (1)

Country Link
AU (1) AU2021202642A1 (en)

Similar Documents

Publication Publication Date Title
CN101688267B (en) Method of recovering metal values from ores
MX2012002018A (en) A method of producing titanium.
CN104603303A (en) Processes for recovering rare earth elements and rare metals
AU2014207355A1 (en) Extraction of metals from metallic compounds
US4233063A (en) Process for producing cobalt powder
Zhaobo et al. Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium
Zheng et al. Selective recovery of Cr from electroplating nanosludge via crystal modification and dilute acid leaching
US11473170B2 (en) Treatment of non-sulfidic nickeliferous resources and recovery of metal values therefrom
JPS6254843B2 (en)
WO2013040694A1 (en) Process for upgrading tantalum and niobium ores and concentrates with the recovery of manganese and rare earths oxides
US4278463A (en) Process for recovering cobalt
CN105776140A (en) Method for recovering hydrochloric acid and metal oxides from metal chloride solution
WO2021056110A1 (en) Process for the recovery of vanadium oxides from various materials
Verma et al. Extraction of aluminum and iron from bauxite: A unique closed‐loop ore refining process utilizing oxalate chemistry
EP0028638B1 (en) Method for producing cobalt metal powder
CN111534699A (en) Method for recovering valuable substances from cemented carbide scrap
AU641593B2 (en) Oxalate salt roasting of vanadium bearing concentrates
US20220349025A1 (en) Methods for recovering metals using oxalate compounds
AU2021202642A1 (en) Methods for recovering metals using oxalate compounds
RU2571244C1 (en) Method for obtaining pure tungstic acid
JPH0340094B2 (en)
US20210395857A1 (en) Methods for recovering metals from metal-containing materials
CN116981784A (en) Method for recovering material from bauxite residue, microwave reactor for heating mining products and method for heating mining products
Ehsani et al. Preparation of different zinc compounds from a smithsonite ore through ammonia leaching and subsequent heat treatment
CA2115421A1 (en) Zirconium extraction