AU2020314880B2 - System and method for producing un-hydrogenated and hydrogenated C9+ compounds - Google Patents

System and method for producing un-hydrogenated and hydrogenated C9+ compounds Download PDF

Info

Publication number
AU2020314880B2
AU2020314880B2 AU2020314880A AU2020314880A AU2020314880B2 AU 2020314880 B2 AU2020314880 B2 AU 2020314880B2 AU 2020314880 A AU2020314880 A AU 2020314880A AU 2020314880 A AU2020314880 A AU 2020314880A AU 2020314880 B2 AU2020314880 B2 AU 2020314880B2
Authority
AU
Australia
Prior art keywords
stream
hydrogenated
compounds
produce
primarily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2020314880A
Other versions
AU2020314880A1 (en
Inventor
Shehzada Khurram
Ernesto UEHARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Global Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV filed Critical SABIC Global Technologies BV
Publication of AU2020314880A1 publication Critical patent/AU2020314880A1/en
Application granted granted Critical
Publication of AU2020314880B2 publication Critical patent/AU2020314880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/52Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/26Fuel gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Abstract

A system and method for processing pyrolysis gasoline is disclosed. The system and method involves separating a pyrolysis gasoline stream to produce a first stream comprising primarily un-hydrogenated C

Description

SYSTEM AND METHOD FOR PRODUCING UN-HYDROGENATED AND
HYDROGENATED C9+ COMPOUNDS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application No. 62/874,401, filed July 15, 2019, the entire contents of which are hereby incorporated by reference in their entirety.
FIELD OF INVENTION
[0002] The present invention generally relates to the processing of pyrolysis gasoline
(pygas). More specifically, the present invention relates to a process of processing pyrolysis gasoline to produce un-hydrogenated C9+ hydrocarbons and hydrogenated C9+ hydrocarbons.
BACKGROUND OF THE INVENTION
[0003] A common process in the refining of hydrocarbon feedstocks, such as naphtha, is steam cracking. In the steam cracking (pyrolysis) process, the hydrocarbon feedstock is superheated in a reactor to temperatures as high as 750-950 °C. For the cracking process, a dilution steam generator supplies dilution steam to the reactor to reduce the partial pressure of the hydrocarbons. The superheated hydrocarbons are then rapidly cooled (quenched) to stop the reactions after a certain point to optimize cracking product yield. Pyrolysis gasoline is one of the products of the cracking process and may include components such as aromatics, olefins, and/or diolefins, among others. Typically, the pygas is hydrogenated before further processing to produce finished products such as benzene, toluene, and xylene (BTX).
[0004] Gasoline hydrogenation units (GHU) are commonly used in the chemical industry to saturate unstable compounds such as diolefins and styrene. Olefins and sulfur compound are also hydrogenated to meet final product specifications. After hydrogenation, different product cuts are separated based on downstream demand. For example, after hydrogenation of pyrolysis gasoline, a C9+ cut is normally separated at a deoctanizer to produce hydrogenated wash oil and hydrogenated C9+ residue.
[0005] WO 2018/002810 A1 relates to a separation system for separating a feed stream comprising C6+ hydrocarbons, the system comprising: i) a first distillation column for producing a first light stream comprising C6- hydrocarbons and a first heavy stream comprising C7+ hydrocarbons, wherein the first distillation column is operated between a lowest pressure and a highest pressure, ii) a second distillation column for producing a second light stream comprising C6- hydrocarbons and a second heavy stream comprising C7+ hydrocarbons, wherein the second distillation column is operated between a lowest pressure and a highest pressure, wherein the lowest pressure of the second distillation column is higher than the highest pressure of the highest distillation column and iii) a heat exchanger comprising a first reboiler for reboiling a part of the first heavy stream to produce a first boiled heavy stream and a second condenser for condensing the second light stream to produce a second condensed light stream, wherein the first reboiler and the second condenser are arranged such that heat released from the second condenser is used as heat for the first reboiler.
BRIEF SUMMARY OF THE INVENTION
[0006] As described above, conventional processes for processing of pyrolysis gasoline produce hydrogenated C9+ hydrocarbons. However, there is also a demand for un hydrogenated C9+ hydrocarbons. As far as is known, presently, there is no process that produces both un-hydrogenated and hydrogenated products concurrently. A solution to address this deficiency of conventional processes has been discovered. The disclosed process is premised on separating un-hydrogenated C9+ hydrocarbons from pyrolysis gasoline upstream of a GHU so that un-hydrogenated C9+ hydrocarbons can be recovered as a product and/or hydrogenated C9+ hydrocarbons can be recovered as a product. The discovered process provides the flexibility of producing (1) only un-hydrogenated C9+ hydrocarbons (separation upstream of GHU and not further hydrogenated), (2) un-hydrogenated C9+ hydrocarbons and hydrogenated C9+ hydrocarbons (separation upstream of GHU and GHU operated to process only a portion of the un-hydrogenated C9+ hydrocarbons), or (3) only hydrogenated C9+ hydrocarbons (GHU operated to process all of the un-hydrogenated C9+ hydrocarbons).
[0007] Embodiments of the invention include a method of processing pyrolysis gasoline, where the method involves separating a pyrolysis gasoline stream to produce a first stream comprising primarily un-hydrogenated C9+ compounds. According to embodiments of the invention, the separating of the pyrolysis gasoline is carried out upstream of the hydrogenation unit. [0008] Embodiments of the invention include a method of processing pyrolysis gasoline to concurrently produce a first stream comprising primarily un-hydrogenated C9+ compounds and a second stream comprising hydrogenated C9+ hydrogenated compounds. The method includes separating a pyrolysis gasoline stream to produce the first stream comprising primarily un-hydrogenated C9+ compounds and further includes hydrogenating a portion of the first stream to produce the second stream comprising hydrogenated C9+ hydrogenated compounds.
[0009] The following includes definitions of various terms and phrases used throughout this specification.
[0010] The terms “about” or“approximately” are defined as being close to as understood by one of ordinary skill in the art. In one non-limiting embodiment the terms are defined to be within 10%, preferably, within 5%, more preferably, within 1%, and most preferably, within 0.5%.
[0011] The terms“wt.%”,“vol.%” or“mol.%” refer to a weight, volume, or molar percentage of a component, respectively, based on the total weight, the total volume, or the total moles of material that includes the component. In a non-limiting example, 10 moles of component in 100 moles of the material is 10 mol.% of component.
[0012] The term“substantially” and its variations are defined to include ranges within
10%, within 5%, within 1%, or within 0.5%.
[0013] The terms“inhibiting” or“reducing” or“preventing” or“avoiding” or any variation of these terms, when used in the claims and/or the specification, include any measurable decrease or complete inhibition to achieve a desired result.
[0014] The term“effective,” as that term is used in the specification and/or claims, means adequate to accomplish a desired, expected, or intended result.
[0015] The use of the words“a” or“an” when used in conjunction with the term
“comprising,”“including,”“containing,” or“having” in the claims or the specification may mean“one,” but it is also consistent with the meaning of“one or more,”“at least one,” and “one or more than one.” [0016] The words“comprising” (and any form of comprising, such as“comprise” and
“comprises”),“having” (and any form of having, such as“have” and“has”),“including” (and any form of including, such as“includes” and“include”) or“containing” (and any form of containing, such as“contains” and“contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
[0017] The process of the present invention can“comprise,”“consist essentially of,” or“consist of’ particular ingredients, components, compositions, etc., disclosed throughout the specification.
[0018] The term“primarily,” as that term is used in the specification and/or claims, means greater than any of 50 wt.%, 50 mol.%, and 50 vol.%. For example,“primarily” may include 50.1 wt.% to 100 wt.% and all values and ranges there between, 50.1 mol.% to 100 mol.% and all values and ranges there between, or 50.1 vol.% to 100 vol.% and all values and ranges there between.
[0019] Other objects, features and advantages of the present invention will become apparent from the following figures, detailed description, and examples. It should be understood, however, that the figures, detailed description, and examples, while indicating specific embodiments of the invention, are given by way of illustration only and are not meant to be limiting. Additionally, it is contemplated that changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments. In further embodiments, additional features may be added to the specific embodiments described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] For a more complete understanding, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
[0021] FIG. 1 shows a system for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds, according to embodiments of the invention; [0022] FIG. 2 shows a process for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds, according to embodiments of the invention;
[0023] FIG. 3 shows a system for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ and hydrogenated wash oil compounds, according to embodiments of the invention; and
[0024] FIG. 4 shows a process for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ and hydrogenated wash oil compounds, according to embodiments of the invention.
[0025] FIG. 5 shows a system and process for processing pyrolysis gasoline to produce un-hydrogenated C9+ and un-hydrogenated wash oil compounds, according to an embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0026] Gasoline hydrogenation units (GHU) are commonly used to saturate unstable compounds such as diolefins and styrene found in pyrolysis gasoline. Olefins and sulfur compounds are also hydrogenated to meet final product specifications. After hydrogenation, different product cuts are separated based on downstream demand. For example, after hydrogenation of pyrolysis gasoline, a C9+ cut is normally separated at the deoctanizer to produce hydrogenated wash oil and hydrogenated C9+ residue. This process, however, does not contribute to meeting the demand for un-hydrogenated C9+ products. A solution to address this deficiency of the conventional process has been discovered. The discovered process is premised on separating un-hydrogenated C9+ hydrocarbons from pyrolysis gasoline upstream of a GHU so that un-hydrogenated C9+ hydrocarbons can be recovered as a product and as hydrogenated C9+ hydrocarbons can likewise be recovered as a product.
[0027] FIG. 1 shows system 10 for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds (e.g., un-hydrogenated hydrocarbons), according to embodiments of the invention. FIG. 2 shows process 20 for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds, according to embodiments of the invention. System 10 may be used to implement process 20. [0028] According to embodiments of the invention, process 20 includes, at block 200, separating pyrolysis gasoline stream 100, in separation unit 121 to produce stream 101 (C9+ compounds/stream), which comprises primarily un-hydro genated C9+ compounds. Wash oil is used to control the build-up of polymers on cracked gas compressors, turbines, seals, and heat exchangers. A good wash oil has a fairly high initial boiling point so that it won’t immediately flash to vapor, combined with a high C9+ aromatic content for dissolving polymeric compounds. The wash oil described herein is hydrogenated to saturate the dienes before using to control the build-up of polymers. Stream 101 may include 10 to 100 wt.% C9+ compounds and all ranges and values there between, including ranges of 10 to 20 wt.%, 20 to 30 wt.%, 30 to 40 wt.%, 40 to 50 wt.%, 50 to 60 wt.%, 60 to 70 wt.%, 70 to 80 wt.%, 80 to 90 wt.%, and 90 to 100 wt.%, and 0 to 90 wt.% wash oil and all ranges and values there between, including ranges of 0 to 10%, 10 to 20%, 20 to 30%, 30 to 40%, 40 to 50%, 50 to 60%, 60 to 70%, 70 to 80%, 80 to 90%, and 90 to 100%.
[0029] According to embodiments of the invention, block 201 includes flowing at least a portion of stream 101 to GHU reactor 115 and hydrogenating that portion or all of stream 101 in GHU reactor 115 to produce stream 102 comprising hydrogenated C9+ compounds (e.g., hydrogenated hydrocarbons). In other words, in embodiments of the invention, all of stream 101 may be hydrogenated or, as shown in FIG. 1, stream 101 may be separated into stream 101-1 and stream 101-2 and only stream 101-1 is hydrogenated in GHU reactor 115. In some embodiments, GHU reactor 115 is not operated and, instead, is bypassed such that stream 101 is flowed to flash drum 116 so that only un-hydrogenated C9+ compounds are produced. In this way, system 10 is adapted to have the flexibility to produce (1) only un-hydrogenated C9+ compounds (GHU reactor 115 not operated), (2) un-hydrogenated C9+ compounds and hydrogenated C9+ compounds (GHU reactor 115 operated to process only a portion of the un- hydrogenated C9+ compounds), or (3) only hydrogenated C9+ compounds (GHU reactor 115 operated to process all of the un-hydrogenated C9+ compounds). According to embodiments of the invention, the reaction conditions in GHU reactor 115 include a temperature in a range of 100 to 200 °C and all ranges and values there between including ranges of 100 to 110 °C, 110 to 120 °C, 120 to 130 °C, 130 to 140 °C, 140 to 150 °C, 150 to 160 °C, 160 to 170 °C, 170 to 180 °C, 180 to 190 °C, and 190 to 200 °C, a pressure in a range of 10 to 30 bar and all ranges and values there between including ranges of 10 to 12 bar, 12 to 14 bar, 14 to 16 bar, 16 to 18 bar, 18 to 20 bar, 20 to 22 bar, 22 to 24 bar, 24 to 26 bar, 26 to 28 bar, and 28 to 30 bar, a WHSV of 2 to 8 h-1 and all ranges and values there between including ranges of 2 to 3 h-1, 3 to 4 h-1, 4 to 5 h-1, 5 to 6 h 1, 6 to 7 h-1, and 7 to 8 h-1, and in the presence of a catalyst comprising Ni/Al2O3 to Pd/Al2O3.
[0030] At block 202, according to embodiments of the invention, stream 102, which comprises hydrogenated C9+ compounds is flowed to flash drum 116, wherein stream 102 is separated to produce stream 103 comprising hydrogenated wash oil and stream 104 comprising hydrogenated C9+ compounds. In embodiments of the invention, stream 103 comprises 0 to 90 wt.% wash oil and all ranges and values there between including ranges of 0 to 10 wt.%, 10 to 20 wt.%, 20 to 30 wt.%, 30 to 40 wt.%, 40 to 50 wt.%, 50 to 60 wt.%, 60 to 70 wt.%, 70 to 80 wt.%, and 80 to 90 wt.%, and stream 104 comprises 10 to 100 wt.% hydrogenated C9+ compounds and all ranges and values there between including ranges of 10 to 20 wt.%, 20 to 30 wt.%, 30 to 40 wt.%, 40 to 50 wt.%, 50 to 60 wt.%, 60 to 70 wt.%, 70 to 80 wt.%, 80 to 90 wt.%, and 90 to 100 wt.%.
[0031] In embodiments of the invention, separating pyrolysis gasoline stream 100 (at block 200) comprises, as shown at block 201-1, distilling the pyrolysis gas stream in depentanizer column 112 to produce stream 105 as an overhead stream comprising primarily C4 and C5 compounds and stream 106 as a bottoms stream comprising primarily C6+ compounds. In this way, according to embodiments of the invention, a C4 to C5 fraction is separated as an un-hydrogenated stream upstream of any GHU. This provides an advantage where valuable diene components can be separated from this stream. In embodiments of the invention, separating pyrolysis gasoline stream 100 further includes, at block 201-2, flowing stream 106 from depentanizer column 112 to deoctanizer column 113 and distilling stream 106 in deoctanizer column 113 to produce stream 107 comprising primarily C6 to C8 compounds and un-hydrogenated C9+ compounds/stream 101. More specifically, at deoctanizer column 113, un-hydrogenated BTX is flowed from the top for deoctanizer column 113 and un- hydrogenated C9+ compounds are flowed from the bottom of deoctanizer column 113. The un- hydrogenated C9+ compounds can be used un-hydrogenated or, if necessary, can be hydrogenated by passing through GHU reactor 115. This is possible because system 10 has the flexibility to be operated in any mode, either hydrogenated, un-hydrogenated, or a combination of both. In embodiments of the invention, a separation flash drum can be installed before GHU reactor 115, where an overhead un-hydrogenated wash oil and bottom un- hydrogenated C9+ residue can be produced. The separation of the un-hydrogenated C9+ compounds/stream 101 can require the operation of deoctanizer column 113 at low temperature, for example, 70 to 100 °C and all ranges and values there between including ranges of 70 to 75 °C, 75 to 80 °C, 80 to 85 °C, 85 to 90 °C, 90 to 95 °C, and 95 to 100 °C, on the reboiler and at high vacuum, for example 0.04 to 0.9 bara and ranges and values there between including ranges of 0.04 to 0.1 bara, 0.1 to 0.2 bara, 0.2 to 0.3 bara, 0.3 to 0.4 bara, 0.4 to 0.5 bara, 0.5 to 0.6 bara, 0.6 to 0.7 bara, 0.7 to 0.8 bara, and 0.8 to 0.9 bara. Low temperature can be achieved by using the reboiler condensate. And to reduce fouling, a fouling inhibitor can be injected in the deoctanizer column and/or the depentanizer column. Thus, as shown in FIG. 1, TBC package 120 supplies 4-tert -Butylcatechol (TBC), an organic chemical compound, as a fouling inhibitor to depentanizer column 112 and deoctanizer column 113.
[0032] Process 20 may further include, at block 203, flowing stream 107 from deoctanizer column 113 to GHU reactor 114 and hydrogenating stream 107 in GHU reactor 114 to produce stream 108 comprising benzene, toluene, and xylene. According to embodiments of the invention, the reaction conditions in GHU reactor 114 include a temperature in a range of 100 °C to 200 °C and all ranges and values there between including ranges of 100 to 110 °C, 110 to 120 °C, 120 to 130 °C, 130 to 140 °C, 140 to 150 °C, 150 to 160 °C, 160 to 170 °C, 170 to 180 °C, 180 to 190 °C, and 190 to 200 °C, a pressure in a range of 10 to 30 bar and all ranges and values there between including ranges of 10 to 12 bar, 12 to 14 bar, 14 to 16 bar, 16 to 18 bar, 18 to 20 bar, 20 to 22 bar, 22 to 24 bar, 24 to 26 bar, 26 to 28 bar, and 28 to 30 bar, a WHS V of 2 to 8 h-1 and all ranges and values there between including ranges of 2 to 3 h-1, 3 to 4 h-1, 4 to 5 h-1, 5 to 6 h-1, 6 to 7 h-1, and 7 to 8 h-1, and in the presence of a catalyst comprising Ni/Al2O3, to Pd/Al2O3
[0033] According to embodiments of the invention, process 20, includes, at block 204, flowing stream 105 from depentanizer column 112 to stabilizer 117 and processing stream 105 in stabilizer 117 to produce stream 109 comprising fuel gas and stream 110 comprising primarily C4 and C5 compounds. Block 205 involves flowing stream 110 from stabilizer 117 to GHU reactor 118 and hydrogenating stream 110, in GHU reactor 118, to produce stream 111 comprising primarily hydrogenated C4 and C5 compounds, in embodiments of the invention. According to embodiments of the invention, the reaction conditions in GHU reactor 118 includes a temperature in a range of 40 to 140 °C and all ranges and values there between including ranges of 40 to 50 °C, 50 to 60 °C, 60 to 70 °C, 70 to 80 °C, 80 to 90 °C, 90 to 100 °C, 100 to 110 °C, 110 to 120 °C, 120 to 130 °C, and 130 to 240 °C, a pressure in a range of 20 to 40 bar and all ranges and values there between including ranges of 20 to 22 bar, 22 to 24 bar, 24 to 26 bar, 26 to 28 bar, 28 to 30 bar, 30 to 32 bar, 32 to 34 bar, 34 to 36 bar, 36 to 38 bar, and 38 to 40 bar, a WHSV of 10 to 16 h-1 and all ranges and values there between including ranges of 10 to 11 h-1, 11 to 12 h-1, 12 to 13 h-1, 13 to 14 h-1, 14 to 15 h-1, and 15 to 16 h-1, and in the presence of a catalyst comprising Ni/Al2O3, to Pd/Al2O3.
[0034] Process 20 may further include, at block 206, flowing stream 111 from GHU reactor 118 to cracker 119 and subjecting stream 111 to cracking conditions in cracker 119 to form C2 to C4 light olefin, LPG, and H2 in cracker effluent stream 122.
[0035] FIG. 3 shows system 30 for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds, according to embodiments of the invention. FIG. 4 shows process 40 for processing pyrolysis gasoline to produce a stream comprising primarily un-hydrogenated C9+ compounds, according to embodiments of the invention. System 30 may be used to implement process 40. System 30, according to embodiments of the invention, includes the elements 100 to 122 of system 10 as well as further elements 300 to 309. Likewise, process 40, in embodiments of the invention, includes operating elements 100 to 122 to carry out steps of blocks 200 to 206 as described in process 20.
[0036] Process 40 as implemented by system 30, like process 20 implemented by system 10, includes blocks 200 to 206, in embodiments of the invention, except that GHU reactor 118 is not required as reactor 304 can hydrogenate stream 110 and GHU reactor 114 is similarly not required. Process 40 further includes, at block 400, routing stream 103, stream 107, and stream 110 to feed drum 300 where they are combined to form combined stream 301. Hydrogenation of the combined stream 301 may be carried out by injecting hydrogen stream 302, as shown at block 401, to form hydrogenated combined stream 303. Block 402 involves, in embodiments of the invention, flowing hydrogenated combined stream 303 to reactor 304, where hydrogenated combined stream 303 is subjected to reaction conditions sufficient to saturate diolefins and partially saturate the olefins. According to embodiments of the invention, stream 305 is used to heat hydrogenated combined stream 303 in heat exchanger 306. At block 403, stream 305 is separated in separator 307 to form vapor stream 308 comprising water and H2 and stream 309. At block 404, stream 309 is split into two portions, stream 309-1 and stream 309-2. In embodiments of the invention, at block 405, stream 309-2 is recycled to reactor 304. At block 406, stream 309-1 is separated to form a BTX stream, a stream comprising primarily hydrogenated wash oil, a fuel gas stream and a stream comprising primarily C5 compounds.
[0037] Although embodiments of the present invention have been described with reference to blocks of FIG. 2 and FIG. 4, it should be appreciated that operation of the present invention is not limited to the particular blocks and/or the particular order of the blocks illustrated in FIG. 2 and FIG. 4. Accordingly, embodiments of the invention may provide functionality as described herein using various blocks in a sequence different than that of FIG. 2 and FIG. 4. It should be noted that, in FIG. 1 and FIG. 3, a stream shown from a first element or apparatus to a second element or apparatus is a disclosure that the first element or apparatus is in fluid communication with the second element or apparatus in a manner such that the flow of the stream shown, or described in the specification, can take place.
[0038] The systems and processes described herein can also include various equipment that is not shown and is known to one of skill in the art of chemical processing. For example, some controllers, piping, computers, valves, pumps, heaters, thermocouples, pressure indicators, mixers, heat exchangers, and the like may not be shown.
[0039] In the context of the present invention, at least the following 20 embodiments are shown. Embodiment 1 is a method of processing pyrolysis gasoline. The method includes separating a pyrolysis gasoline stream to produce a first stream containing primarily un hydrogenated C9+ compounds. Embodiment 2 is the method of embodiment 1 wherein the first stream contains 98 to 100 wt.% C9+ compounds. Embodiment 3 is the method of embodiment 1 further including hydrogenating a portion of the first stream to produce a second stream containing hydrogenated C9+ hydrogenated compounds. Embodiment 4 is the method of embodiment 3, wherein the hydrogenating of the first portion of the first stream is carried out under reaction conditions including a temperature in a range of 100 °C to 200 °C, a pressure in a range of 10 bar to 30 bar, a WHSV of 2 h-1 to 8 h-1, and in the presence of a catalyst containing Ni/Al2O3 to Pd/Al2O3. Embodiment 5 is the method of either of embodiments 3 or 4 further including separating the second stream to produce a third stream containing hydrogenated wash oil and a fourth stream containing hydrogenated C9+ residue. Embodiment 6 is the method of embodiment wherein third stream contains 0 to 90 wt.% wash oil and the fourth stream contains 10 to 100 wt.% hydrogenated C9+ compounds. Embodiment 7 is the method of either of embodiments 5 or 6, further including subjecting the third stream to reaction conditions to hydrogenate the third stream. Embodiment 8 is the method of embodiment 1, wherein the separating of the pyrolysis gasoline stream includes distilling the pyrolysis gas stream in a depentanizer column to produce a fifth stream containing primarily C4+ compounds and a sixth stream containing primarily C6+ compounds. Embodiment 9 is the method of embodiment 8 wherein the separating of the pyrolysis gasoline stream further includes distilling the sixth stream in a deoctanizer column to produce a seventh stream containing primarily C6 to C8 compounds and the first stream. Embodiment 10 is the method of embodiment 9 including hydrogenating the seventh stream to produce an eighth stream containing benzene, toluene, and xylene. Embodiment 11 is the method of embodiment 10, wherein the hydrogenating of the seventh stream is carried out under reaction conditions including a temperature in a range of 100 °C to 200 °C, a pressure in a range of 10 bar to 30 bar, a WHSV of 2 h-1 to 8 h-1, and in presence of a catalyst containing Ni/Al2O3, to Pd/Al2O3,. Embodiment 12 is the method of embodiment 8 further including processing the fifth stream in a stabilizer to produce a ninth stream including fuel gas and a tenth stream containing primarily C4 and C5 compounds. Embodiment 13 is the method of embodiment 12 further including hydrogenating the tenth stream to produce an eleventh stream containing primarily C4 and C5 compounds. Embodiment 14 is the method of embodiment 13, wherein the hydrogenating of the tenth stream is carried out under reaction conditions including a temperature in a range of 40 °C to 140 °C, a pressure in a range of 20 bar to 40 bar, a WHSV of 10 h-1 to 16 h-1, and in presence of a catalyst containing Ni/Al2O3 to Pd/Al2O3. Embodiment 15 is the method of either of embodiments 13 or 14 further including subjecting the eleventh stream to cracking conditions to form C2 to C4 light olefins, LPG, and H2.
[0040] Embodiment 16 is method of processing pyrolysis gasoline. The method includes concurrently producing (1) a first stream containing primarily un-hydro genated C9+ compounds and (2) a second stream containing hydrogenated C9+ hydrogenated compounds, wherein the producing includes separating a pyrolysis gasoline stream to produce the first stream containing primarily un-hydrogenated C9+ compounds and hydrogenating a portion of the first stream to produce the second stream containing hydrogenated C9+ hydrogenated compounds. Embodiment 17 is the method of embodiment 16 further including producing a stream containing primarily un-hydrogenated C4+ compounds.
[0041] Embodiment 18 is a method of processing pyrolysis gasoline. The method includes separating a pyrolysis gasoline stream to produce a first stream containing primarily un- hydrogenated C9+ compounds and hydrogenating a portion of the first stream to produce a second stream containing hydrogenated C9+ compounds. The method further includes separating the second stream to produce a third stream containing hydrogenated wash oil and a fourth stream containing hydrogenated C9+ residue The separating of the pyrolysis gasoline stream includes distilling the pyrolysis gas stream in a depentanizer column to produce a fifth stream containing primarily C4+ compounds and a sixth stream containing primarily C6+ compounds. The method also includes distilling the sixth stream in a deoctanizer column to produce a seventh stream containing primarily C6 to C8 compounds and the first stream. In addition, the method includes processing the fifth stream in a stabilizer to produce a ninth stream containing fuel gas and a tenth stream containing primarily C4 and C5 compounds. The method further includes combining the third stream, the seventh stream, and the tenth stream to form a combined stream and flowing the combined stream to a reactor. Embodiment 19 is the method of embodiment 18, further including subjecting the combined stream to reaction conditions sufficient to form a reactor effluent. Embodiment 20 is the method of embodiment 19 further including processing the reactor effluent to produce a BTX stream, a stream containing primarily hydrogenated wash oil, a fuel gas stream and a stream containing primarily C5 compounds.
EXAMPLES
[0042] The present invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes only, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results.
Example 1
Producing un-hydrogenated C9+ compounds from pyrolysis gasoline
[0043] A first cut model was built in Aspen-Plus V10 Software. Simulations were performed according to an embodiment of the current disclosure as shown in FIG. 5. Separated streams containing C4 - C5 compounds, un-hydrogenated C6 to C8 compounds, un- hydrogenated wash oil, un-hydrogenated C9+ residues were obtained from a pyrolysis gasoline stream. The pyrolysis gasoline stream contained C4 compounds, C5 compounds, benzene, toluene, xylene, styrene, indene, indane, dicyclopentadiene (DCPD), methyldicyclopentadiene (MDCPD), and others (e.g. other C6-C8 paraffinic and olefinic components, and C9+ paraffinic, olefinic, napthenic and aromatic components). The pyrolysis gasoline stream was distilled in a depentanizer column to obtain a stream containing the C4 and C5 compounds from the top of the column, and a C6+ stream containing un-hydrogenated C6+ compounds from the bottom of the column. The C6+ stream contained benzene, toluene, xylene, styrene, indene, indane, DCPD, MDCPD and the other. The C6+ stream was distilled in a deoctanizer column to obtain a C6-8 stream containing un-hydrogenated C6 to C8 compounds from the top of the column, and a C9+ stream containing un-hydrogenated C9+ compounds from the bottom of the column. The C6-8 stream contained benzene, toluene, xylene and a portion of other (e.g. C6-C8 paraffinic and olefinic components,). The C9+ stream contained styrene, indene, indane, DCPD, MDCPD and a portion of the other (e.g. C9+ paraffinic, olefinic, napthenic and aromatic components). The C9+ stream was separated in a separation flash drum to obtain a stream containing un- hydrogenated wash oil from the top and a stream containing un-hydrogenated C9+ residues from the bottom. The compositions, flow rate of the streams are provided in Tables 1-7. A TBC package, containing 4-tert -Butylcatechol (TBC) as fouling inhibitor, was supplied to the depentanizer column, deoctanizer column and the flash drum to reduce fouling.
Table 1: Pyrolysis gasoline stream
Table 2: C4-C5 stream
Table 3: C6+ stream
Table 4: C6-8 stream
Table 5: C9+ stream
Table 6: Wash oil Table 7: C9+ residue stream
[0044] Although embodiments of the present application and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the above disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (20)

CLAIMS What is claimed is:
1. A method of processing pyrolysis gasoline, the method comprising: separating a pyrolysis gasoline stream to produce a first stream comprising primarily un-hydrogenated C9+ compounds.
2. The method of claim 1 wherein the first stream comprises 98 to 100 wt.% C9+ compounds.
3. The method of claim 1 further comprising:
hydrogenating a portion of the first stream to produce a second stream comprising hydrogenated C9+ hydrogenated compounds.
4. The method of claim 3, wherein the hydrogenating of the first portion of the first stream is carried out under reaction conditions comprising a temperature in a range of 100 °C to 200 °C, a pressure in a range of 10 bar to 30 bar, a WHSV of 2 h-1 to 8 h-1, and in the presence of a catalyst comprising Ni/Al2O3, to Pd/Al2O3.
5. The method of claims 3 or 4 further comprising:
separating the second stream to produce a third stream comprising hydrogenated wash oil and a fourth stream comprising hydrogenated C9+ residue.
6. The method of claim 5 wherein third stream comprises 0 to 90 wt.% wash oil and the fourth stream comprises 10 to 100 wt.% hydrogenated C9+ compounds.
7. The method of any of claims 5 or 6, further comprising:
subjecting the third stream to reaction conditions to hydrogenate the third stream.
8. The method of claim 1, wherein the separating of the pyrolysis gasoline stream comprises:
distilling the pyrolysis gas stream in a depentanizer column to produce a fifth stream comprising primarily C4+ compounds and a sixth stream comprising primarily C6+ compounds.
9. The method of claim 8 wherein the separating of the pyrolysis gasoline stream further comprises: distilling the sixth stream in a deoctanizer column to produce a seventh stream comprising primarily C6 to C8 compounds and the first stream.
10. The method of claim 9 comprising:
hydrogenating the seventh stream to produce an eighth stream comprising benzene, toluene, and xylene.
11. The method of claim 10, wherein the hydrogenating of the seventh stream is carried out under reaction conditions comprising a temperature in a range of 100 °C to 200 °C, a pressure in a range of 10 bar to 30 bar, a WHSV of 2 h-1 to 8 h-1, and in presence of a catalyst comprising Ni/Al2O3, to Pd/Al2O3.
12. The method of claim 8 further comprising:
processing the fifth stream in a stabilizer to produce a ninth stream comprising fuel gas and a tenth stream comprising primarily C4 and C5 compounds.
13. The method of claim 12 further comprising:
hydrogenating the tenth stream to produce an eleventh stream comprising primarily C4 and C5 compounds.
14. The method of claim 13, wherein the hydrogenating of the tenth stream is carried out under reaction conditions comprising a temperature in a range of 40 °C to 140 °C, a pressure in a range of 20 bar to 40 bar, a WHSV of 10 h-1 to 16 h-1, and in presence of a catalyst comprising Ni/Al2O3, to Pd/Al2O3.
15. The method of claims 13 and 14 further comprising subjecting the eleventh stream to cracking conditions to form C2 to C4 light olefins, LPG, and H2.
16. A method of processing pyrolysis gasoline, the method comprising: concurrently producing (1) a first stream comprising primarily un-hydrogenated C9+ compounds and (2) a second stream comprising hydrogenated C9+ hydrogenated compounds, wherein the producing comprises separating a pyrolysis gasoline stream to produce the first stream comprising primarily un-hydrogenated C9+ compounds and hydrogenating a portion of the first stream to produce the second stream comprising hydrogenated C9+ hydrogenated compounds.
17. The method of claim 16 further comprising:
producing a stream comprising primarily un-hydrogenated C4+ compounds.
18. A method of processing pyrolysis gasoline, the method comprising:
separating a pyrolysis gasoline stream to produce a first stream comprising primarily un-hydrogenated C9+ compounds;
hydrogenating a portion of the first stream to produce a second stream comprising hydrogenated C9+ compounds;
separating the second stream to produce a third stream comprising hydrogenated wash oil and a fourth stream comprising hydrogenated C9+ residue, wherein the separating of the pyrolysis gasoline stream comprises:
distilling the pyrolysis gas stream in a depentanizer column to produce a fifth stream comprising primarily C4+ compounds and a sixth stream comprising primarily C6+ compounds;
distilling the sixth stream in a deoctanizer column to produce a seventh stream comprising primarily C6 to C8 compounds and the first stream;
processing the fifth stream in a stabilizer to produce a ninth stream comprising fuel gas and a tenth stream comprising primarily C4 and C5 compounds;
and
combining the third stream, the seventh stream, and the tenth stream to form a combined stream and flowing the combined stream to a reactor.
19. The method of claim 18, further comprising:
subjecting the combined stream to reaction conditions sufficient to form a reactor effluent.
20. The method of claim 19 further comprising:
processing the reactor effluent to produce a BTX stream, a stream comprising primarily hydrogenated wash oil, a fuel gas stream and a stream comprising primarily C5 compounds.
AU2020314880A 2019-07-15 2020-07-13 System and method for producing un-hydrogenated and hydrogenated C9+ compounds Active AU2020314880B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962874401P 2019-07-15 2019-07-15
US62/874,401 2019-07-15
PCT/IB2020/056588 WO2021009666A1 (en) 2019-07-15 2020-07-13 System and method for producing un-hydrogenated and hydrogenated c9+ compounds

Publications (2)

Publication Number Publication Date
AU2020314880A1 AU2020314880A1 (en) 2022-01-27
AU2020314880B2 true AU2020314880B2 (en) 2023-03-09

Family

ID=71728834

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2020314880A Active AU2020314880B2 (en) 2019-07-15 2020-07-13 System and method for producing un-hydrogenated and hydrogenated C9+ compounds

Country Status (6)

Country Link
US (1) US20220315847A1 (en)
EP (1) EP3999614A1 (en)
CN (1) CN114008179A (en)
AU (1) AU2020314880B2 (en)
CA (1) CA3146793A1 (en)
WO (1) WO2021009666A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230024175A1 (en) * 2021-07-16 2023-01-26 Uop Llc Process for saturating aromatics in a pyrolysis stream

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023332A1 (en) * 1999-09-30 2001-04-05 Phillips Petroleum Company Hydrocarbon upgrading process
FR2916450A1 (en) * 2007-05-24 2008-11-28 Cpc Corp Taiwan Preparing high-energy fuels, useful as aviation or jet fuels, comprises distilling pyrolysis gasoline to separate carbon fraction from carbon and heavier carbon fractions and hydrogenating obtained unsaturated moieties of carbon derivative
US20190177626A1 (en) * 2016-10-11 2019-06-13 Sabic Global Technologies B.V. Maximizing high-value chemicals from mixed plastic using different steam-cracker configurations

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388055A (en) * 1966-04-15 1968-06-11 Air Prod & Chem Catalytic hydrogenation of unsaturated hydrocarbons
BE756546A (en) * 1969-09-23 1971-03-23 British Petroleum Co IMPROVEMENTS RELATED TO THE HYDROGENATION OF UNSATURATED ESSENCES
US5925799A (en) * 1996-03-12 1999-07-20 Abb Lummus Global Inc. Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant
US6090270A (en) * 1999-01-22 2000-07-18 Catalytic Distillation Technologies Integrated pyrolysis gasoline treatment process
WO2006063201A1 (en) * 2004-12-10 2006-06-15 Bhirud Vasant L Steam cracking with naphtha dearomatization
CA2541051C (en) * 2005-09-20 2013-04-02 Nova Chemicals Corporation Aromatic saturation and ring opening process
JP5105326B2 (en) * 2007-04-19 2012-12-26 昭和電工株式会社 Hydrogenation method and petrochemical process
SG176087A1 (en) * 2009-06-11 2011-12-29 Shell Int Research A process for the selective hydrogenation and hydrodesulferization of a pyrolysis gasoline feedstock
EP2336272A1 (en) * 2009-12-15 2011-06-22 Total Petrochemicals Research Feluy Debottlenecking of a steam cracker unit to enhance propylene production.
SG11201508904WA (en) * 2013-07-02 2016-01-28 Saudi Basic Ind Corp Method for cracking a hydrocarbon feedstock in a steam cracker unit
SG11201508916TA (en) * 2013-07-02 2016-01-28 Saudi Basic Ind Corp Process for upgrading refinery heavy residues to petrochemicals
US20150231611A1 (en) * 2014-02-19 2015-08-20 Uop Llc Methods and apparatuses for regenerating catalysts for hydrocarbon production
US10131853B2 (en) * 2014-02-25 2018-11-20 Saudi Basic Industries Corporation Process for producing BTX from a mixed hydrocarbon source using pyrolysis
US10294432B2 (en) * 2015-06-26 2019-05-21 Exxonmobil Chemical Patents Inc. Steam cracker product fractionation
WO2017168320A1 (en) * 2016-03-31 2017-10-05 Sabic Global Technologies B.V. Process for the utilization of c5 hydrocarbons with integrated pygas treatment
WO2018002810A1 (en) 2016-06-27 2018-01-04 Sabic Global Technologies B.V. System and method for separating hydrocarbon stream
US10472579B2 (en) * 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking
WO2019036426A1 (en) * 2017-08-15 2019-02-21 Sabic Global Technologies, B.V. Light olefin production via an integrated steam cracking and hydrocracking process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023332A1 (en) * 1999-09-30 2001-04-05 Phillips Petroleum Company Hydrocarbon upgrading process
FR2916450A1 (en) * 2007-05-24 2008-11-28 Cpc Corp Taiwan Preparing high-energy fuels, useful as aviation or jet fuels, comprises distilling pyrolysis gasoline to separate carbon fraction from carbon and heavier carbon fractions and hydrogenating obtained unsaturated moieties of carbon derivative
US20190177626A1 (en) * 2016-10-11 2019-06-13 Sabic Global Technologies B.V. Maximizing high-value chemicals from mixed plastic using different steam-cracker configurations

Also Published As

Publication number Publication date
AU2020314880A1 (en) 2022-01-27
CN114008179A (en) 2022-02-01
CA3146793A1 (en) 2021-01-21
WO2021009666A1 (en) 2021-01-21
EP3999614A1 (en) 2022-05-25
US20220315847A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
CN110234739B (en) Integration of catalytic cracking process with crude oil to chemical process
CN109477005B (en) Recovery system and process of methanol-to-propylene and steam cracking device
AU2013301887B2 (en) Process for converting hydrocarbon feeds to olefin-containing product streams by thermal steamcracking
JP6181181B2 (en) Process for producing olefins by thermal steam cracking in a cracking furnace
EP3110923B1 (en) Process for converting hydrocarbons into olefins and btx.
KR102454266B1 (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
AU2020314880B2 (en) System and method for producing un-hydrogenated and hydrogenated C9+ compounds
US20210292660A1 (en) Process integration between hncc and crude oil atmospheric distillation column
CN106062147B (en) Method for converting hydrocarbons to alkene
US20230357653A1 (en) Methods for integrated separation of dienes
CN101962564A (en) Method for preventing ethylene device gasoline fractionating tower from scale formation and blockage
US11939540B2 (en) Systems and processes integrating steam cracking with dual catalyst metathesis for producing olefins
US20240059983A1 (en) Systems and methods for producing wash oil
WO2024012995A1 (en) Systems and methods of producing olefins and/or aromatics by low and medium severity aquaprocessing followed by high severity aquaprocessing and steam cracking
TW201529828A (en) Method and apparatus for producing hydrocarbon products

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)