AU2020100976A4 - System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation - Google Patents

System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation Download PDF

Info

Publication number
AU2020100976A4
AU2020100976A4 AU2020100976A AU2020100976A AU2020100976A4 AU 2020100976 A4 AU2020100976 A4 AU 2020100976A4 AU 2020100976 A AU2020100976 A AU 2020100976A AU 2020100976 A AU2020100976 A AU 2020100976A AU 2020100976 A4 AU2020100976 A4 AU 2020100976A4
Authority
AU
Australia
Prior art keywords
actuator
aircraft
blades
primary
freedom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2020100976A
Inventor
Samir BOUABDALLAH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flybotix SA
Original Assignee
Flybotix SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2018/058962 external-priority patent/WO2019097425A1/en
Application filed by Flybotix SA filed Critical Flybotix SA
Priority to AU2020100976A priority Critical patent/AU2020100976A4/en
Application granted granted Critical
Publication of AU2020100976A4 publication Critical patent/AU2020100976A4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A two degrees of freedom actuator for example for multi-bladed rotor of an aircraft with at least two blades that are driven in rotation about a main rotation axis by primary actuator, and a secondary actuator that is arranged to rotate each of said blades about the respective blades' longitudinal axis, with a synchronization means that is operatively arranged for driving the secondary actuator based on an azimuth of the rotor about the main axis for obtaining a determined cyclic pitch of a given amplitude for each blade depending on the azimuth of the rotor. WO2019/097425 PCT/IB2018/058962 1/12 106 107 105 100 1030B 1020 108 101 FIGURE 1B

Description

1030B
1020
108
101
FIGURE 1B
SYSTEM FORMING A TWO DEGREES OF FREEDOM ACTUATOR, FOR EXAMPLE FOR VARYING THE PITCH ANGLE OF THE BLADES OF A PROPELLER DURING ROTATION
Corresponding application
The present application claims priorityto earlier US provisional application USSN 62/585,576filed
on November 14, 2017 in the name of Samir BOUABDALLAH, the content of this earlier
application being incorporated by reference in its entirety in the present application.
Field of the invention
The primary field of the present invention is a two degrees of freedom (DoF) actuator.
More specifically, the present invention concerns the field of such actuators used in different
applications. In the present description, the main illustrative examples and embodiments will
relate to applications in the field of aircrafts such as helicopters and drones but this should not
be regarded as limiting as regards the teaching of the present invention as will be discussed in
detail in the present application.
More specifically, embodiments of the present invention concern a two degrees of freedom
actuator for example for multi-bladed rotor of an aircraft with at least two blades that are driven
in rotation about a main rotation axis by primary actuator, and a secondary actuator that is
arranged to rotate each of said blades about the respective blades' longitudinal axis, with a
synchronization means that is operatively arranged for driving the secondary actuator based on
an azimuth of the rotor about the main axis for obtaining a predetermined cyclic pitch of a given
amplitude for each blade depending on the azimuth of the rotor.
Description of related art
Quadrotor helicoptersystems, or other multirotor systems including a plurality of coplanar rotary wings are known to be very agile, simple, and reliable. They are, however aerodynamically inefficient once downscaled, thereby substantially reducing flight time.
Another class of rotary-wing aircraft includes the so-called coaxial helicopters, that are compact, and downscale efficiently, preserving flight time.
Conventional full scale helicopters use complex swashplate mechanisms to achieve cyclic and collective blade pitch control. However, swashplate mechanisms are difficult to miniaturize as they become fragile, maintenance intensive and unreliable. Accordingly, they cannot be applied efficiently, for example to build small scale helicopters or drones and other similar flying machines.
EP2028099 describes a variable-pitch propeller with two coaxial electric motors driving two drive gears, which are arranged on the axis. This system acts collectively on the propeller blades.
US 4648345 describes a propeller system with electronically controlled cyclic and collective pitch control, using a plurality of electromagnets positioned in a ring adjacent the rotor's hub.
W02014160526 A3 describes a passive rotor control mechanism for micro air vehicles. The behavior and benefits of traditional cyclic control in one rotor may be implemented with a simple under-actuated passive mechanism. An air vehicle employing the disclosed technology maintains lifting thrust by regulating the average rotor speed and generates control moments through coordinated pulsing of the motor torque.
Summary of the invention
An aim of the present invention is to improve the known actuation systems and methods.
A further aim of the present invention is to provide a system that is simple and allow an efficient miniaturization, for example in applications related to flying machines such as drones.
A further aim of the present invention is to combine the advantages of known quadrotor systems
and conventional helicopters by using a simple system to achieve cyclic blade pitch control.
Another object of the present invention is a system for varying the pitch angle of the blades of a
propeller during rotation.
Another object of the present invention is a system for varying the pitch angle of a plurality of
blades of a propeller cyclically.
Another object of the present invention is a system for varying the pitch angle of a plurality of
blades of a propeller cyclically not necessarily in a sinusoidal manner.
Another object of the present invention is a system for varying the pitch angle of a plurality of
blades of a propeller cyclically without any swash-plate or complex mechanics.
Another object of the present invention is an electronic control system for simultaneously varying
the pitch of a plurality of blades of a propeller cyclically.
o Another object of the present invention is a steering and propulsion system for precision steering
of an aircraft in six degrees of freedom (DoF).
Another object of the present invention is a rotary wing aircraft, for example a helicopter or an
aerial drone capable of decoupling vehicle rotational motion from translational motion. Of
course, the present invention is not limited to these applications and to models.
According to the invention, these and other aims are achieved by means of non-limiting
embodiments of the invention described herein, illustrated in the figures and as defined in the
appended claims.
In an embodiment, the invention concerns a two-degree of freedom actuator, for example for a two-bladed rotor of an aircraft, said actuator comprising at least a primary actuator carrying a secondary actuator, wherein the primary actuator comprises a primary rotating part around a primary axis (A) and the secondary actuator comprises secondary rotating parts rotating around a secondary axis (B), wherein the secondary axis is essentially perpendicular to said primary axis, wherein the actuator comprises a coil which is fixed with respect to said primary and secondary actuator and a magnet rotating with the primary actuator and tilting with the secondary actuator in the coil, wherein the magnet is diametrically-magnetized and able to rotate around the secondary axis thereby leading a rotation of the secondary rotating parts around the secondary axis, the position of the secondary rotating parts being set by the magnetic field of the coil.
In embodiments, the secondary rotating parts comprises an axis such as a shaft.
In embodiments, the two-degree of freedom actuator comprises a motor, for example an electric motor.
In embodiments, the two-degree of freedom actuator comprises at least one energy source. The source may be a battery, for example a rechargeable battery or another equivalent source.
o In embodiments, the two-degree of freedom actuator comprises electronic means to control the actuator. The control is made at least via energization of the coil and the influence of the magnetic fields on the magnet.
In embodiments, the invention concerns aircraft comprising at least one actuator as defined herein.
In embodiments, the aircraft preferably comprises two blades.
In embodiments, the aircraft comprises two actuators as defined herein.
In embodiments, the primary axis of the two actuators are essentially parallel or coaxial.
In embodiments, the aircraft may comprise a protection. The protection may have any appropriate shape (circular, oval etc.).
The protection may comprise a ring with tubes on which the actuators are mounted. The tubes may have another shape than tubular, in equivalent variants.
In embodiments, the aircraft may comprise a payload like vision means or detectors. The payload or vision means may comprise at least an optical camera or a thermal camera or both. It may comprise other sensors, such as distance or proximity sensors using technologies such as: capacitive, doppler, photoelectric etc.
In embodiments, the invention concerns a device comprising at least one actuator as defined herein, wherein the device further comprises a functionalized head attached to the secondary actuator. The functional head may be a camera or a laser or a mirror or a cutting head or a painting head or have another function.
In embodiments, the invention concerns a combination of a two degree of freedom actuator as described herein or of an aircraft as described herein or a device as described herein and of a o remote control.
In embodiments, the invention concerns a method of controlling an aircraft, such as a helicopter or a drone, comprising at least a rotor with at least two blades, with a collective control for the up, down and yaw movements and a cyclic blade pitch control for the forward, backward, sideward, roll and pitch movement of the aircraft, wherein the cyclic control is implemented by using a two degrees-of-freedom actuator acting on the blades as described herein, and the collective control is achieved by accelerating or decelerating the rotor of the aircraft.
Detailed description of embodiments of the Invention
Figure 1A illustrates a perspective view of an embodiment of the present invention;
Figure 1B illustrates a cut view of the principle of the invention according to an embodiment of
the present invention;
Figure 1C illustrates a cut view in perspective of the principle of the invention according to an
embodiment of the present invention;
Figure 1D illustrates a cut view in perspective of the principle of the invention according to an
embodiment of the present invention;
Figure 2 illustrates a perspective view of an embodiment of the present invention;
Figure 3 illustrates a perspective view of an embodiment of the present invention;
Figure 4 illustrates the principle of an embodiment of the present invention;
Figure 5 illustrates a perspective view of an embodiment of the present invention;
Figure 6 illustrates a perspective view of an embodiment of the present invention;
Figure 7 illustrates a perspective view of an embodiment of the present invention;
Figure 8 illustrates a perspective view of an embodiment of the present invention;
Figure 9 illustrates a perspective view of an embodiment of the present invention;
Figures 10A and 10B illustrate perspective top and side views of an embodiment of the present
invention.
In an embodiment, the present invention stems from the preferred synergistic combination of
several elements: a. A system for simultaneously varying the pitch of a two blades propeller cyclically (CPC). b. A system for propulsion and steering (SPS) of an aircraft in six degrees of freedom, comprising two CPC systems described in (a). c. A system materializes the SPS system described in (b) into an aerial vehicle application, for example a drone, or a helicopter. The aerial drone aircraft ("ADA") is capable of decoupling the rotation motion from the translation motion. Meaning, the drone's rolling or pitching does not necessarily imply a linear translation of the drone. o d. The aerial drone operation is managed through control algorithms specifically developed for the systems ADA, SPS and CPC systems.
Cyclic Propeller Control (CPC) In conventional helicopters, the propulsion is ensured with a main rotor, while the steering is done with a swashplate and a tail rotor. The swashplate has typically two main functions: collective blade- pitch-control for the up and down movements of the vehicle (helicopter) and cyclic blade-pitch-control for the forward or back movement of the helicopter. In embodiments, the present invention presents a swashplate-less system, based on the separation of the cyclic and the collective controls. The cyclic control is implemented thanks to the use of a two degrees of-freedom actuator, while the collective control is simply and preferably achieved by accelerating or decelerating the rotor.
Figures 1A to 1D illustrate the principle of a possible embodiment of the cyclic propeller control system. The system comprises a main motor (203), typically an electric motor, which drives the shaft 103 to spin (motion A) the rotor comprising the blades 100 and 101 and the rotor-attached parts: namely a magnet 104, mechanical parts 105 and 106, and shaft 107.
A secondary actuator comprising the axially wounded air-cored coil 102 and the magnet 104 control the longitudinal tilting of the blades (motion B). The part 106 is fixed to the shaft 103. The magnet 104 is fixed to the part 105. Part 105 can tilt relatively to part 106 around the longitudinal axis of shaft 107. The parts 104 and 105 can rotate about a main axis ("motion A"), essentially vertical and tilting about a secondary axis, essentially orthogonal to the main axis ("motion B").
Figures 1B to 1D illustrate section views of the system shown in Figure 1A. Part 108 represents a Printed Circuit Board ("PCB") that comprises sensors 109 and 110 which allow to detect the angular position of the shaft 103 ("azimuth"). The part 111 is a mechanical support to the coil 102.
Preferably, the main motor 203 spins the rotor about a main axis, essentially vertical (motion A). The blades are driven by the secondary actuator in such a mannerthat they rotate simultaneously and in the same direction about a transversal axis (motion B), essentially orthogonal to the main axis. The desired cyclic pitch (for example sinusoidal) can be obtained by a suitable control of the secondary actuator dependent on the azimuth (angular position) of the rotor (shaft 103) around the main axis, for example detected by sensors 109/110. By an appropriate current injection in the coil 102 and the resulting magnetic field, the magnet 104 which is diametrically-magnetized will be driven (i.e. tilted) to transmit a tilting motion to the parts 105 around the axis of shaft 107and thus produce the pitch/motion B to the blades. This tilting motion is possible notably via the bearings 106' placed between shaft 107 and part 106. This construction gives a maximum torque through push-pull effect on the pitch rotation of the magnet 104 which is transmitted to o the blades 100, 101.
A combination of typically magnetic, optical, or similar sensors 109, 110 may be used to detect the rotation of the main motor in order to command the secondary actuator to act (tilt) at the right azimuth and with the right amplitude. The combination of sensors is also used to detect the longitudinal tilt angle of the blades.
Preferably, at every rotor revolution, , the cyclic blade pitch control algorithm ("CPCA") energizes the coil at the azimuth and with the amplitude commanded by the ADA drone stabilization algorithm ("ADAA"). The generated coil's magnetic field will cause the diametrically-magnetized magnet to tilt around the longitudinal axis of the shaft 107, trying to align its magnetic field with the magnetic field of the coil.
As an example, exactly half a rotor revolution later, the CPCA algorithm energizes the coil in the
opposite direction by inverting the current. This way, the magnet will, in every rotor revolution
tilt at the commanded: azimuth, direction and amplitude.
Exemplary embodiment of a System for Propulsion and Steering (SPS) There exist several configurations of helicopters and drones, ranging from single rotor, tandem
rotors, quadrotors and multi-rotors in general. The present invention combines two cyclic
propeller control (CPC) systems in a 6 DoF propulsion and steering system. The two CPC systems
o are laid out head to tail ("tte-b6che") in an embodiment illustrated in figure 2.
Figure 2 illustrates a possible embodiment of a system 150 for propulsion and steering of an aerial
drone in 6 DoF. It combines two cyclic propeller control (CPC) systems 202 as illustrated in figures
1A and 1B with blades 100, 101, motors 203 which rotate the shaft 103 (figures 1A and 1B) and
some structural elements 200 and 201, such as support plates (for example in metal, plastic or
carbon, or a mixtherefrom). This forms a unitthat can be used in an aerial vehicle such as a drone
as illustrated in the next figure 3.
Exemplary embodiment of an Aerial Drone Aircraft (ADA) The Aerial Drone Aircraft (ADA) 300 comprises at least one (SPS) system 150 as disclosed above
in figure 2, mechanically linked to an external ring 302, as illustrated in Figure 3 as an exemplary
embodiment. The ring 302 is not only protecting the blades 100, 101, but serves also as a support
for various components like a camera, a battery and several sensors, or other elements as desired
as will be described later in the present specification. A battery (such as a rechargeable battery)
is identified by reference 204, and placed in the middle of the system 150 (figure 2 shows the
system 150 without the battery 204).
In a conventional rotary wing aircraft, rotation and translation motions are inherently coupled.
In fact, when the vehicle pitches or rolls, it causes the vehicle to translate in longitudinal or lateral
directions. In some applications this coupling might be undesirable. In order to avoid this
coupling, the aircraft (ADA) according to the present invention is constructed in a way to achieve roll or pitch without necessarily a translation. This is obtained through the combination of the head to tail ("t6te-b6che") layout of the SPS system of Figures 2/3 and the central positioning of the aerial drone center of gravity between the two CPC systems forming the system 150 and by using appropriate sensors and control algorithms. This way, the horizontal components of the thrust forces compensate each other and the system remains on the spot despite the tilt motion. The motion of the ADA 300 is controlled through an appropriate control algorithm. This provides the unique ability of setting at will and controlling the attitude of the aircraft while hovering on the spot.
o Figure 3 illustrates the Aerial Drone Aircraft (ADA) in a possible embodiment. Parts 301 are structural elements such as tubes, for example to link the external ring 302 to the plates 200/201 (see figure 2). Part 302 is a structural element protecting the propellers 100, 101 from colliding with humans or objects. Part 302 is typically made out of foam or carbon as an example.
Figure 4 is a schematic representation of the free force diagram of the SPS and ADA systems. The vertical components of the two thrust forces compensate the weight, while the horizontal components of the two thrust forces compensate each other. Using an appropriate control system, the tilt on the spot of the SPS and ADA systems is achieved.
Other exemplary embodiments of Systems for Propulsion and Steering (SPS) Figures 5 and 6 illustrate another embodiment of a system for propulsion and steering (SPS) 400. This system is basically similar to the one described previously and comprises the same features as described in reference to figures 1A and 1B. The one difference with respect to the embodiment of figure 2 is that the shafts 103 of each unit are placed coaxially. This brings a very compact construction.
A frame holds the motors 203 in position, the frame comprising mainly four pillars 401, and two crosses 402 at each end to build a stable structure. The crosses 402 also hold the PCBs 108 used for the control of the motors and the tilting system of the present invention.
At the end of the pillars 401, there are four apertures 403 that will be explained later.
Figure 6 illustrates the same embodiment as figure 5, but with a battery 204 which is inserted in
the middle of the structure and held by appropriate means, for example clip 404 (one being on
the other side of the battery 204 and not visible in figure 6). Appropriate connecting means are
of course provided so that introduction of the battery allows the energy of the battery 204 to be
brought to the motors 203 and tilting system.
Other embodiments of ADAs Figure 7 illustrates another embodiment of an aerial drone aircraft 500 according to the present
invention. This drone 500 comprises the SPS 400 of figures 5 and 6 which is held by tubes 501 in
a ring 502. Both ends of the tubes 501 are attached to the ring and the SPS 400 is fixed on the
tubes via the apertures 403 which are used to clamp the tubes, once the SPS 400 is at the proper
position in the ring 502. This principle is of course applicable to the structure illustrated in figure
3 as well.
The ring may be made with synthetic / plastic materials, foam, carbon fibers and/or a mix
therefrom. In one embodiment, the ring may comprise reinforcing means, for example a carbon
ring.
The embodiment of figure 7 also comprises an optical camera 503, a thermal camera 504 with
are shielded by protections 505. Of course, only one camera may be used and these means are
applicable to all embodiments disclosed herein.
Figure 8 illustrates the ADA 400 of figure 7 seen from the bottom.
Figure 9 illustrates another embodiment of an ADA. For example, this may be the ADA 500 of
figures 7 and 8, on which a grid or wire mesh 506 has been added for protection purposes. This
grid may also participate to the rigidity of the ADA. Of course, such a grid 506 may be used in the
ADA of figure 3 and other embodiments not specifically illustrated herein but falling within the
scope of the present specification.
Exemplary embodiments as application of ADA drone technology The exemplary embodiments in a drone system (ADA) presented above and herein may be used
in, but not limited to applications like: aerial photography, inspection, payload delivery,
surveillance, aerial filming, mapping, entertainment. Unlike many other existing aircraft, the tilt
on the spot feature removes the need for attaching a gimbal system when a camera or a payload
is used.
As is usual in the field, particular of drones but not limited thereto, the aircraft may be remote
controlled, for example by a user. Accordingly, a remote control system (507, see figure 9) and
capabilities may be provided in an embodiment of the invention, with appropriate
antennas/transmission means (used for remote control and/or data transmission, 508, 509 see
figure 9), remote control unit (507), remote vision and/or Virtual reality (VR) for example using
parts/sensors of the device on which the actuator according to the invention is mounted, GPS
capabilities to guide the device (such as an aircraft) to a desired position (as an aim, or for a safe
landing or emergency landing), distance evaluation means (such as optical sensors or distance
sensors) may be provided on the device to avoid collisions with obstacles. Also patterns may be
stored in the system to define a predetermined functioning of the actuator. In the case of the
application to an aircraft, a pattern could be a predetermined flight to reach a certain point, the
pattern following a route determined (for example) by GPS coordinates which are then
transformed into automatic or semi-automatic flight controls of the aircraft.
Although not specifically, described, it is clear for a skilled person that the present invention
comprises electronic means, such as a chip (or IC, such as 109, 110) for example, in which the
necessary programs/codes/routines are stored and/or accessible via radio/remote command as
appropriate for proper monitoring and control. Other electronic parts such as wires, energy
sources, antenna 508, 509 etc. are also present as necessary to operate the system of the
invention, notably as a remote controlled object, all being within the scope of the present
specification and invention.
Preferably, the parts of the system described herein are made in material that are light and rigid.
For example, the parts forming the actuator 103, 105-107, 200, 201, 202 or the supports 301,
401, 402, 403, 501, 506 are made of metal (for example aluminum or another light
metal/material), the blades 100, 101, protections 302, 502, 505 are made of synthetic materials
as non-limiting examples. Carbon may also be used alone or in combination with other materials
for any part of the system, as appropriate.
Embodiments of Control Algorithms There are several control algorithms needed to ensure a good operation of the ADA drone. The
main ones are: Cyclic blade pitch control (CPCA) at the right azimuth; ADA drone 6 DoF
stabilization (ADAA); Tilt on the spot control algorithm (TOSA).
The Cyclic blade pitch control algorithm (CPCA) executes the following steps:
1. Continuous detection of the main motor angular position relatively to the ADA drone
frame.
2. Depending of the desired ADAA control input, the CPCA energizes the coil 102 at least
twice in a one rotor revolution.
Of course, other control algorithms may be used in embodiments of the invention, depending on
the application of the actuator described herein. Also the signal energizing the coil 102 may be a
sinusoidal signal or it may have another shape which is not sinusoidal or it may by symmetrical
or non-symmetrical or a combination thereof.
The embodiments and features of the present invention are given as illustrative examples and
should not be construed in a limiting manner. The principle of the present invention may be
applied to any vehicle, in particular aerial vehicles such as drones, helicopter or the like aircrafts,
with no size limitation.
Also, the main examples and embodiments given herein relate to drones and flying aircrafts but
the present invention is not limited to this application. The principles of a two degree of freedom
actuator or support according to the present invention may be used in other applications such as
a support for a functionalized head such as cameras and other similar devices, for a laser and
laser head, for a mirror, for a cutting head (for example jet cutting head), for a painting head, for
optical or illumination means etc. Figures 10A and 10B illustrate the principle of a device with a functionalized head 600 able to carry out the functions listed above as application examples. The actuator is the one described herein and as illustrated in figures 1A-1D and the blades 100, 101 are replaced by the desired functionalized head 600. The description above thus applies correspondingly to this embodiment. Head 600 may be the functionalized head per se or a supportfor the head.
Exemplary embodiments have been described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the systems and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the systems and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined not solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. A number of problems with conventional methods and systems are noted herein and the methods and systems disclosed herein may address one or more of these problems. By describing these problems, no admission as to their knowledge in the art is intended. A person having ordinary skill in the art will appreciate that, although certain methods and systems are described herein with respect to o different embodiments, the scope of the present invention is not so limited. Moreover, while this invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, it is intended to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this invention.

Claims (17)

Claims
1. A two-degree of freedom actuator, for example for a two-bladed rotor of an aircraft, said
actuator comprising at least a primary actuator (103) carrying a secondary actuator (105, 106,
107), wherein said primary actuator comprises a primary rotating part (103) around a primary
axis (A) and said secondary actuator comprises secondary rotating parts (105,106,107) rotating
around a secondary axis (B), wherein said secondary axis is essentially perpendicular to said
primary axis, wherein said actuator comprises a coil (102) which is fixed with respect to said
primary and secondary actuator and a magnet (104) rotating with said primary actuator in said
coil, wherein said magnet is diametrically-magnetized and able to rotate around said secondary
axis thereby leading a rotation of said secondary rotating parts around said secondary axis, the
position of the secondary rotating parts being set by the magnetic field of the coil.
2. The two-degree of freedom actuator according to claim 1, wherein said secondary
rotating parts comprises a shaft (107).
3. The two-degree of freedom actuator according to claim 1 or 2, wherein said actuator
comprises a motor (203).
4. The two-degree of freedom actuator according to any of claims 1 to 3, wherein said
actuator comprises at least one energy source (204).
5. The two-degree of freedom actuator according to any of claims 1 to 4, wherein said
actuator comprises electronic means (108) to control of the actuator.
6. An aircraft comprising at least one actuator as defined in one of the preceding claims.
7. The aircraft according to the preceding claim, wherein said shaft (107) carries two blades
(100,101).
8. The aircraft according to any of the preceding claim 6 or 7, wherein said aircraft comprises
two actuators as defined in one of the preceding claims. 1 to 5.
9. The aircraft according to the preceding claim, wherein the primary axis (103) of said two
actuators are essentially parallel or coaxial.
10. The aircraft according to the preceding claim, wherein said aircraft comprises a protection
(302,502).
11. The aircraft according to the preceding claim, wherein said protection (302, 502)
comprises a ring with tubes (301, 501) on which said actuators are mounted.
12. The aircraft accordingto any of claims 6 to 11, said aircraft comprising a payload like vision
means (503,504) or detectors.
13. The aircraft according to the preceding claim, wherein said vision means comprise at least
an optical camera (503) or a thermal camera (504).
14. A device comprising at least one actuator as defined in one of claims 1 to 5, wherein said
devices further comprising a functional head (600) attached to said secondary actuator.
15. A device as defined in the preceding claim, wherein said functional head is a camera or a
laser or a mirror or a cutting head, or a painting head.
16. A combination of a two degrees of freedom actuator as defined in one of claims 1 to 5 or
of an aircraft as defined in one of claims 6 to 13 or a device as defined in claims 14 or 15 and a
remote control (507).
17. A method of controlling an aircraft, such as a helicopter or a drone, comprising at least a
rotor with at least two blades, with a collective control for the up, down and yaw movements
and a cyclic blade pitch control for the forward, backward, sideward, roll and pitch movements of the aircraft, wherein the cyclic control is implemented by using a twodegrees-of-freedom actuator acting on the blades as defined in one of claims 1 to 5, and the collective control is achieved by accelerating or decelerating the rotor of the aircraft.
AU2020100976A 2017-11-14 2020-06-10 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation Active AU2020100976A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020100976A AU2020100976A4 (en) 2017-11-14 2020-06-10 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62/585,576 2017-11-14
PCT/IB2018/058962 WO2019097425A1 (en) 2017-11-14 2018-11-14 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation
AU2020100976A AU2020100976A4 (en) 2017-11-14 2020-06-10 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/058962 Division WO2019097425A1 (en) 2017-11-14 2018-11-14 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation

Publications (1)

Publication Number Publication Date
AU2020100976A4 true AU2020100976A4 (en) 2020-07-16

Family

ID=71523980

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2020100976A Active AU2020100976A4 (en) 2017-11-14 2020-06-10 System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation

Country Status (1)

Country Link
AU (1) AU2020100976A4 (en)

Similar Documents

Publication Publication Date Title
US11866166B2 (en) System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation
US11267565B2 (en) Self-tightening rotor
AU2019260589B2 (en) Thrust allocation for aerial vehicle
KR101554487B1 (en) Multi rotor aerial vehicle
KR100812756B1 (en) Quadro copter
JP2010254264A (en) Unmanned aircraft landing and departing perpendicularly by tilt wing mechanism
KR20170135577A (en) Unmanned aerial vehicle with tilting and controllable pitch system
US20180065736A1 (en) Fixed rotor thrust vectoring
JP6229184B2 (en) Aircraft and control method of aircraft
KR20220034024A (en) AERIAL VEHICLES WITH UNCOUPLED DEGREES OF FREEDOM
EP3795470B1 (en) Flight vehicle and method of controlling flight vehicle
CN107908193B (en) Non-planar eight-rotor omnidirectional aircraft and control method
KR20160102826A (en) Multi rotor unmanned aerial vehicle
KR101621210B1 (en) Tilt-Cube-In-Wing Unmanned Aerial Vehicle
CN107444606B (en) Novel aircraft and aircraft system
AU2020100976A4 (en) System forming a two degrees of freedom actuator, for example for varying the pitch angle of the blades of a propeller during rotation
CN107054638A (en) A kind of underneath type coaxial double-rotary wing unmanned plane
George et al. On the design and development of a coaxial nano rotorcraft
CN117799881A (en) Spherical coaxial unmanned aerial vehicle
EP3645389A1 (en) Rotary-wing unmanned aerial vehicle

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)