AU2019409440A1 - Method and device for the post-combustion of sewage sludge ash generated in a sewage sludge mono-incineration plant - Google Patents

Method and device for the post-combustion of sewage sludge ash generated in a sewage sludge mono-incineration plant Download PDF

Info

Publication number
AU2019409440A1
AU2019409440A1 AU2019409440A AU2019409440A AU2019409440A1 AU 2019409440 A1 AU2019409440 A1 AU 2019409440A1 AU 2019409440 A AU2019409440 A AU 2019409440A AU 2019409440 A AU2019409440 A AU 2019409440A AU 2019409440 A1 AU2019409440 A1 AU 2019409440A1
Authority
AU
Australia
Prior art keywords
sewage sludge
flue gas
sludge ash
gas stream
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2019409440A
Inventor
Martin Ehmann
Gerhard Pannen
Andreas Rupp
Alexander Simon
Henning VON KROSIGK
Bernhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Europe GmbH
Original Assignee
Mitsubishi Power Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Europe GmbH filed Critical Mitsubishi Power Europe GmbH
Publication of AU2019409440A1 publication Critical patent/AU2019409440A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/30Solid combustion residues, e.g. bottom or flyash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01002Cooling of ashes from the combustion chamber by indirect heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)
  • Incineration Of Waste (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

A sewage sludge mono-incineration process is intended to provide a solution that allows sewage sludge ash to be output from a sewage sludge mono-incineration plant, which sewage sludge ash still contains an amount of unburned carbon which is, at most, low enough for the sewage sludge ash obtained to be readily usable for phosphor extraction. The solution is achieved by a method for the post-combustion of sewage sludge ash, generated in a sewage sludge mono-incineration process in a rotary kiln (3), using a hot gas or flue-gas stream that has a low oxygen content, in particular an oxygen content of 6-10 vol.% oxygen, wherein the sewage sludge ash exiting the rotary kiln (3) is supplied to the gas or flue-gas stream, which gas or flue-gas stream is removed from a fired incineration chamber (11) of an incineration plant (2a) associated with the rotary kiln (3) or from a power plant associated with the rotary kiln (3) and, as needed, is adjusted to the low oxygen content required for the post-combustion, and this sufficiently hot gas or flue-gas stream causes oxidation or post-combustion of unburned carbon contained in the sewage sludge ash.

Description

Method and device for the post-combustion of sewage sludge ash produced in a sewage sludge mono-incineration plant
The invention is directed to a method for the post-combustion of sewage sludge ash produced during sewage sludge mono-incineration in a rotary kiln, and to a device for carrying out this method.
With the amendment of the sewage sludge directive, it is foreseeable that in the future no sewage sludge from medium and large sewage treatment plants can be used directly as fertilizer. At the same time, recovery of the phosphorus contained in sewage sludge will become mandatory in the future. For sewage sludge incinerated in sewage sludge mono-incineration plants, this means that the sewage sludge ash produced will be subjected to further treatment to recover the phosphorus contained therein. However, unburned carbon components contained in the sewage sludge ash are a problem for phosphorus recovery.
The invention is therefore based on the problem of providing a solution which enables the discharge from a sewage sludge mono-incineration plant of sewage sludge ash which at most still contains such a small proportion of unburned carbon that the sewage sludge ash obtained can be used for phosphorus recovery without any problems.
The problem is solved by a method for the post-combustion of sewage sludge ash produced during sewage sludge mono-incineration in a rotary kiln using a hot gas or flue-gas stream that has a low oxygen content, in particular an oxygen content of 6 to 10 vol. % oxygen, wherein the sewage sludge ash exiting the rotary kiln is fed to the gas or flue gas stream, which is removed from a fired incineration chamber of an incineration plant associated with the rotary kiln or from a power plant associated with the rotary kiln and, as needed, is adjusted to the low oxygen content required for post-combustion, and an oxidation or post-combustion of unburned carbon contained in the sewage sludge ash is caused by this sufficiently hot gas or flue gas stream.
Likewise, this problem is solved by a device for carrying out the method according to any one of claims 1 to 10, which is characterized by a sewage sludge mono-incineration plant comprising a rotary kiln for sewage sludge incineration with connected sewage sludge feed and a first sewage sludge ash discharge with connected sewage sludge ash line, which opens into a gas or flue gas line in which a gas or flue gas stream branched off from a fired incineration chamber of an incineration plant associated with the rotary kiln or from a power plant associated with the rotary kiln is fed.
The method according to the invention and the device according to the invention allow that, in the case of sewage sludge ash initially exiting a rotary kiln in the course of a sewage sludge mono-incineration, the carbon content of unburned carbon contained in the sewage sludge ash is oxidized and thus post combusted using a sufficiently tempered and oxygen-containing gas or flue gas stream in a downstream step associated with the sewage sludge mono incineration and sewage sludge mono-incineration plant, respectively. The content of unburned carbon in the sewage sludge finally discharged from the sewage sludge mono-incineration plant thereafter can thus be significantly reduced and, in particular, reduced to such a proportion that the sewage sludge ash obtained can be readily further processed in subsequent steps, in particular for phosphorus recovery of the phosphorus contained in the sewage sludge ash. Flue gas streams from incineration chambers of incineration plants have proven to be advantageous in that they have a sufficiently high temperature and a sufficiently low oxygen content on the one hand, but a sufficiently high oxygen content on the other hand, which is necessary for the post-combustion of the unburned carbon particles contained in the sewage sludge ash. In order to be able to ensure post-combustion nevertheless, it can be advantageous to provide possibilities for still specifically raising the oxygen content of the flue gas stream.
In an advantageous manner, the post-combustion takes place after the sewage sludge ash has been fed into the gas or flue gas stream, by feeding this sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture into a reaction chamber or a reaction space; in this respect, it is also possible for the flow cross-section of the flue gas line carrying this sewage sludge ash
/ gas stream mixture or sewage sludge ash / flue gas stream mixture to be configured as such a reaction chamber or reaction space. In a further embodiment, the method according to the invention is therefore characterized in that the mixture of hot gas or flue gas stream and supplied sewage sludge ash is supplied to a reaction chamber, in particular a reaction chamber, in which the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash takes place.
In particular, the conditions for the post-combustion of the unburned carbon content contained in the sewage sludge ash are set in such a way that, on the one hand, the temperature is sufficiently high to ensure post-combustion of the carbon, but, on the other hand, it is sufficiently low to prevent slagging of the flue gas line carrying the sewage sludge / gas stream or flue gas stream mixture. Therefore, in an embodiment of the method, the invention further provides that the temperature of the hot gas stream or flue gas stream is adjusted such that, on the one hand, it is sufficiently high to cause oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash, and, on the other hand, it is sufficiently low so that the temperature increase of the sewage sludge ash / gas stream mixture or sewage sludge / flue gas stream mixture resulting from the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash does not cause slagging of the reaction chamber or the reaction space or of the gas or flue gas line carrying the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture.
The combustion quality is determined, amongst others, by the mixing of the ash particles with the oxidizing hot flue gas in the reaction space or reaction chamber. To assist in this, a "cold" flue gas stream can be used which is connected to the reaction space or reaction chamber at one or more points. This "cold" flue gas stream has the additional effect of avoiding temperature peaks and thus further reduces possible slagging of the reaction space and downstream plant components. In the context of the present invention, "cold" flue gas stream is understood to mean a, preferably recirculated, flue gas in the temperature range from 100 0C to 250 0 C, in particular 120 0C to 2000 C, which is extracted, for example, downstream of an electrostatic filter of a/the incineration plant or of a/the associated power plant.
In order to support the combustion quality by intensifying the mixing of the ash particles with the oxidizing hot flue gas in the reaction space or in the reaction chamber, a "cold" flue gas stream is introduced into the reaction space or the reaction chamber. In this respect, in a further development of the method, the invention is characterized in that cold flue gas, preferably having a temperature in the temperature range from 1000 C to 2500 C, in particular 1200 C to 2000 C, is supplied to the reaction space or the reaction chamber.
In order to produce a sufficient surface and the smallest possible particles of unburned carbon in the sewage sludge ash, it is advantageous to grind the sewage sludge ash before bringing it into contact with the hot gas or flue gas stream. The method therefore further provides that the sewage sludge ash is ground in a mill which is preferably configured as a ball mill, prior to being fed to the gas or flue gas stream. Ball mills have proven to be particularly advantageous for grinding the sewage sludge ash.
In order to prevent evaporation of the sewage sludge ash obtained after incineration in the rotary kiln and to avoid a supply of oxygen, as well as to bring the temperature of the sewage sludge ash to the temperature required for the mill, the invention also provides in an embodiment of the method that the sewage sludge ash, after leaving the rotary kiln, is first fed to a first cooling conveyor designed as a cooling screw and then, in particular before entering the mill, to a rotary valve.
In order to be able to discharge, after oxidation or post-combustion of the unburned carbon initially still contained in the sewage sludge ash, the then obtained, post-processed sewage sludge ash from the sewage sludge mono incineration plant, but on the other hand also in order to be able to bring the gas or flue gas stream to a further use, the method according to the invention is in an embodiment further characterized in that that the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture is fed downstream of the reaction space or the reaction chamber to a centrifugal separator, in particular a cyclone, and in the centrifugal separator, in particular a cyclone, the sewage sludge ash and the gas or flue gas stream are separated from each other.
A further use of the gas or flue gas stream separated in the centrifugal separator, which is particularly favorable in terms of energy, is to feed it to the rotary kiln of the sewage sludge mono-incineration plant. Therefore, in an embodiment of the method, the invention further provides that the gas or flue gas stream is fed to the rotary kiln downstream of the centrifugal separator, in particular the cyclone.
In particular, the method according to the invention is suitable for continuous sewage sludge combustion and treatment of obtained sewage sludge ash, so that the invention is further characterized in that the feeding of the sewage sludge ash into the gas or flue gas stream as well as the oxidation or post combustion of the unburned carbon content contained in the sewage sludge ash are carried out continuously and without intermediate storage. Likewise, in a configuration of the invention, it is provided that the feeding of the gas or flue gas stream separated from the sewage sludge ash in the centrifugal separator, in particular the cyclone, to the rotary kiln is carried out continuously and without intermediate storage.
According to an embodiment, in order to enable the adjustment of the oxygen content, the device according to the invention is characterized in that at least one oxygen supply device or oxygen introduction device is arranged in the gas or flue gas line upstream of the inlet of the sewage sludge ash line, by means of which oxygen can be supplied to the flue gas stream carried in the gas or flue gas line.
It is particularly advantageous with regard to the configuration of the device according to the invention if a reaction space or a reaction chamber is formed in the gas or flue gas line downstream of the inlet of the sewage sludge ash line, in which, during operation of the sewage sludge mono-incineration plant and the fired incineration chamber, the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash takes place, the flow cross-section of the gas or flue gas line preferably being shaped as forming the reaction space or reaction chamber, which is also provided by the invention.
In order to be able to treat the sewage sludge ash before it is brought together with the hot gas or flue gas stream for carrying out the desired reaction, the apparatus according to the invention is in a further embodiment characterized in that a first cooling conveyor in the form of a cooling screw, a rotary valve and a mill, preferably configured as a ball mill, are arranged in the sewage sludge ash line upstream of the branching of the latter into the gas or flue gas line in the direction of flow of the sewage sludge ash, which are integrated into the sewage sludge ash line and through which the sewage sludge ash can flow.
For the separation of sewage sludge ash and the gas stream or flue gas stream loaded therewith, the invention provides for the arrangement or configuration of a centrifugal separator. In an embodiment of the invention, the invention is in this respect also characterized in that a centrifugal separator, in particular a cyclone, is arranged in the gas or flue gas line in the direction of flow of the sewage sludge ash / gas stream or flue gas stream mixture downstream of the confluence of the sewage sludge ash line and the reaction chamber or reaction space for separating sewage sludge ash and gas or flue gas stream.
In order to be able to bring the components of the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture to further uses after passing through the centrifugal separator, the device is in a further embodiment designed in such a way that the centrifugal separator, in particular cyclone, has an exhaust gas line opening into the rotary kiln and a sewage sludge ash discharge line opening into a further cooling conveyor designed as a cooling screw. In this way, both the gas or flue gas stream and the further processed sewage sludge ash can be advantageously supplied for appropriate further processing.
In order to be able to selectively enrich the gas stream with oxygen, in particular if it is a flue gas stream, the invention also provides, in an advantageous further embodiment, that the gas or flue gas line has at least one oxygen supply device or oxygen introduction device in the flow direction of the gas or flue gas stream upstream of the confluence of the sewage sludge ash line. This allows the hot flue gas to be adjusted, in particular to be raised to the oxygen content required for the incineration or post-combustion of the sewage sludge ash, and the required oxidizing hot flue gas to be generated if the oxygen content of the flue gas taken from the incineration plant is otherwise insufficient for this purpose.
In accordance with the invention, the sewage sludge mono-incineration by means of a rotary kiln can be combined in a particularly advantageous manner with a waste incineration plant or a waste-fired power station, from which the hot flue gas stream causing the post-combustion of the sewage sludge ash then originates. The invention is therefore also characterized in that the associated incineration plant is a waste incineration plant or the associated power plant is a waste-fired power station.
Finally, the device is in a further configuration also characterized in that at least one flue gas inlet device for supplying cold flue gas having a temperature of preferably 100 0C to 250 0C, in particular 120 0C to 200 0C, opens into the reaction space or the reaction chamber.
The invention is illustrated schematically in more detail below by means of a fundamental representation.
The only Figure shows a schematic representation of a sewage sludge mono incineration plant 1 with an associated waste incineration plant 2. The sewage sludge mono-incineration plant 1 comprises a rotary kiln 3 with connected sewage sludge feed 4. By means of the sewage sludge feed 4, which is configured in the form of a pipe, sewage sludge originating, for example, from a sewage treatment plant is fed to the rotary kiln 3 and incinerated in the rotary kiln 3 to form sewage sludge ash. At its end opposite to the sewage sludge feed 4, the rotary kiln 3 has a first sewage sludge ash discharge 5. From the first sewage sludge ash discharge 5, a connected sewage sludge ash line 6 leads off, which opens into a gas or flue gas line 7. In the sewage sludge ash line 6, during operation of the sewage sludge mono-incineration plant 1, sewage sludge ash discharged from the rotary kiln 3 is fed to a gas or flue gas stream flowing in the gas or flue gas line 7 and mixed with it. By means of the sewage sludge ash line 6, the sewage sludge ash discharged from the rotary kiln 3 is first fed in the direction of flow of the sewage sludge ash to a first cooling conveyor 8 configured as a cooling screw, then passed through a rotary valve 9 and subsequently through a mill 10, which is preferably configured as a ball mill, before it is then fed to the gas or flue gas line. Thus, in the sewage sludge ash line 6, the first cooling conveyor 8 configured as a cooling screw, the rotary valve 9 and the mill 10 are arranged in the direction of flow of the sewage sludge ash before it opens into and is integrated into the gas or flue gas line 7, which are integrated into the sewage sludge ash line 6 and through which the sewage sludge ash can flow.
The sewage sludge mono-incineration plant 1, in particular the rotary kiln 3, is assigned as associated incineration plant 2a the waste incineration plant 2, which has a fired incineration chamber 11. The gas or flue gas line 7 branches off from the boiler 12 of the incineration plant 2a and thus from the boiler 12 associated with the incineration chamber 11, so that flue gas originating from the incineration chamber 11 can be fed through this gas or flue gas line to the junction point where the sewage sludge ash line 6 opens in the gas or flue gas line 7. On the way there, along the gas or flue gas line 7, an oxygen supply device or oxygen introduction device 13 is arranged, by means of which the gas or flue gas stream carried in the gas or flue gas line 7 can be supplied in metered doses with the oxygen that may be necessary to set the desired oxygen content which is as low as possible. Air serves as the oxygen carrier. In the embodiment example, the gas or flue gas line 7 is assigned a plurality of so called "blowing guns" or compressed air introduction devices 13a, by means of which compressed air can be blown into the gas or flue gas line 7. The blowing guns 13a are arranged at structurally suitable locations and keep the gas or flue gas line 7 or this flow channel free of deposits by blowing in compressed air under increased pressure.
During operation of the sewage sludge mono-incineration plant 1 and the incineration plant 2a or of the waste incineration plant 2, the hot gas or flue gas stream 7 conducted in the gas or flue gas line 7 and the sewage sludge ash supplied by means of the sewage sludge ash line 6 to the confluence with the gas or flue gas line 7 mix to form a sewage sludge gas stream or flue gas stream mixture which is supplied to a reaction space 20 not shown in greater detail or to a reaction chamber 20 not shown in greater detail, which can also be configured as a corresponding configuration of the flow cross-section of the gas or flue gas line 7. This reaction space 20 or this reaction chamber 20 is thus formed in the direction of flow of the sewage sludge / gas stream or flue gas stream mixture downstream of the confluence of the sewage sludge ash line 6 with the gas or flue gas line 7 and is indicated in the Figure by means of dashed lines. In this reaction chamber 20 or in this reaction space 20, during operation of the sewage sludge mono-incineration plant 1 and the fired incineration chamber 11, the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash takes place by means of the hot gas or flue gas stream having a suitable oxygen content as low as possible and supplied through the gas or flue gas line 7.
Lines for supplying "cold" flue gas 19 are connected to the reaction space 20 or the reaction chamber 20 at one or more points. The supply of "cold" flue gas 19 causes good mixing of the sewage sludge / gas stream mixture or sewage sludge / flue gas stream mixture present in the reaction space 20 or the reaction chamber 20, increases the degree of conversion of the residual carbon to be burned in the sewage sludge / gas stream mixture or sewage sludge / flue gas stream mixture, and prevents the occurrence of temperature peaks in the reaction space or reaction chamber. "Cold" flue gas or "cold" flue gas stream means, for example, flue gas branched off from the exhaust line 15 of the centrifugal separator, in particular cyclone 14, or recirculated from the incineration plant 2a or the waste incineration plant 2, which, if necessary after appropriate cooling or in particular after an electrostatic filter, is taken from the incineration plant 2a or the waste incineration plant 2 and has a temperature between 100 0C and 250°C, in particular between 1200 C and 200°C. Advantageously, a flue gas (re)circulation is formed.
In the direction of flow of the sewage sludge ash / gas stream or flue gas stream mixture, a centrifugal separator, in particular cyclone 14, for separating the sewage sludge ash / gas stream or flue gas stream mixture into a sewage sludge ash portion and a gas stream or flue gas stream portion is arranged downstream of the confluence of the sewage sludge ash line 6 with the gas or flue gas line 7 and downstream of the reaction chamber 20 or the reaction space 20.
An exhaust gas line 15 branches off from the centrifugal separator, in particular cyclone 14, which opens into the rotary kiln 3 in the area of the first sewage sludge ash discharge 5. Through this exhaust gas line 15, the gas stream or flue gas stream separated from the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture in the centrifugal separator, in particular cyclone 14, during operation of the sewage sludge mono-incineration plant 1 and the incineration plant 2a or the waste incineration plant 2, respectively, is introduced into the rotary kiln 3 and serves there to support the combustion of the remaining volatile components of the sewage sludge.
The exhaust gas from the rotary kiln 3 is fed into the boiler 12 of the waste incineration plant 12 via a further flue gas line 21 at its end having the sewage sludge feed 4. Thus, it is possible to return a portion of the boiler flue gas to the boiler 12 through the gas or flue gas line 7, the cyclone 14, the exhaust gas line 15, the rotary kiln 3 and the further flue gas line 21, thereby recirculating flue gas.
Furthermore, the centrifugal separator, in particular cyclone 14, is connected to a sewage sludge ash discharge line 16, through which the sewage sludge separated from the sewage sludge ash / gas stream or flue gas mixture in the centrifugal separator, in particular cyclone 14, post-combusted and oxidized, is discharged from the centrifugal separator, in particular cyclone 14, and fed to a further cooling conveyor 17 configured as a cooling screw, into which the sewage sludge ash discharge line 16 opens. At the opposite end of the further cooling conveyor 17 there is then a discharge line 18 which forms the final, second sewage sludge ash discharge 18a of the sewage sludge mono incineration plant 1.
By means of the combination of a sewage sludge mono-incineration plant 1 with an incineration plant 2a shown in the Figure, by way of example a sewage sludge mono-incineration plant 1 comprising a rotary kiln 3 and an incineration plant 2a configured as a waste incineration plant 2, the sewage sludge ash produced by incineration of sewage sludge fed to the rotary kiln 3 is subjected to oxidation or post-combustion of unburned carbon contained in the sewage sludge ash by means of a hot gas stream or flue gas stream having an oxygen content as low as possible and suitable for the post-combustion of sewage sludge incinerated in the rotary kiln 3 or sewage sludge ash formed therein, in particular having an oxygen content of 6 to 10 vol.% oxygen. The sewage sludge ash exiting the rotary kiln 3 is fed to a gas stream or flue gas stream guided in the gas or flue gas line 7, and this sufficiently hot, in particular 7500 C to 1100 0C, preferably 800 0C to 1000C, gas stream or flue gas stream then causes the oxidation and post-combustion of the unburned carbon contained in the sewage sludge ash. The gas or flue gas stream taken from the fired incineration chamber 11 of the associated incineration plant 2a is adjusted, if desired, to the low oxygen content required for the post-combustion of the sewage sludge by means of at least one oxygen supply device or oxygen introduction device 13 arranged on the gas or flue gas line 7. The portions of unburned carbon present in the mixture of hot gas or flue gas stream and supplied sewage sludge ash are oxidized and post-combusted in the reaction space 20 or the reaction chamber 20. For this purpose, the hot gas or flue gas stream flowing in the gas or flue gas line 7 has such a set temperature which, on the one hand, is sufficiently high to cause the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash and, on the other hand, is sufficiently low so that the temperature increase of the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture resulting from the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash does not cause slagging of the reaction chamber 20 or of the reaction space 20 or of the gas or flue gas line 7 carrying the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture. In order to flush or keep the gas or flue gas line 7 free of deposits, blowing guns 13a with a flow outlet directed and acting into the flow cross-section of the gas or flue gas line 7 are also arranged on the latter.
The feeding of the sewage sludge ash into the gas or flue gas stream as well as the oxidation or post-combustion of the unburned carbon content contained in the sewage sludge ash are carried out continuously and without intermediate storage. Likewise, the feeding of the gas or flue gas stream separated from the sewage sludge ash in the centrifugal separator, in particular cyclone 14, to the rotary kiln 3 is carried out continuously and without intermediate storage.
The process measures and process steps set out above each arise during ongoing operation of the sewage sludge mono-incineration plant 1 and the incineration plant 2a. In this connection, the sewage sludge mono-incineration plant 1 comprises, in particular, the complex comprising the sewage sludge feed 4, the rotary kiln 3, the first cooling conveyor 8, the rotary valve 9, the mill 10, the cyclone 14, the further cooling conveyor 17, and the lines 6, 15, 16 respectively connecting these and the gas or flue gas line 7 with associated oxygen introduction device 13 and associated blowing guns 13a and the discharge line 18, as well as the reaction space 20 or the reaction chamber 20 with associated feed lines/flue gas introduction devices 19 for supplying "cold" flue gas.
The essential aspect of the device according to the invention and the method according to the invention is directed to the post-treatment of the sewage sludge ash discharged from the rotary kiln 3 by corresponding oxidation and post-combustion of the unburned carbon fractions contained in the sewage sludge ash, so that a reduction of the content of unburned carbon in the sewage sludge ash is achieved and a corresponding use of the post-treated sewage sludge ash discharged from the further cooling conveyor 17 is possible, in particular for phosphorus recovery.
The reduction of the unburned carbon content is achieved by oxidation and post-combustion. The process or procedure runs in particular continuously and preferably without intermediate storage of resulting sewage sludge ash and consists of the following, substantial steps:
- the sewage sludge ash exiting the rotary kiln 3 is conveyed by means of a cooling screw or the first cooling conveyor 8 and passed through the rotary valve 9 under exclusion of air;
- subsequently, the sewage sludge ash is ground to increase the particle fines content therein in the mill 10;
- the ground sewage sludge ash exiting the mill 10 is fed to the hot flue gas stream drawn off from the furnace or incineration chamber 11 or the boiler 12 downstream thereof and guided in the gas or flue gas line 7. The temperature of the hot flue gas is both sufficiently high for the initiation of the oxidation or post-combustion and sufficiently low so that the temperature increase resulting from the oxidation or post-combustion does not cause slagging of the downstream flue gas section in the gas or flue gas line 7 following the reaction space 20 or the reaction chamber 20. The flue gas stream led from the incineration plant 2 to the inlet of the sewage sludge ash line 6 in the gas or flue gas line 7 has a reduced or decreased, i.e. a low proportion of oxygen compared to air. By admixing air or oxygen by means of the oxygen introduction device 13, the oxygen content of this gas or flue gas stream can be controlled to a value suitable for the post-combustion of the unburned carbon present in the sewage sludge ash;
- after the sewage sludge ash has been fed into the gas or flue gas stream conducted in the gas or flue gas line 7, the desired oxidation or post-combustion of the unburned residual carbon content contained in the sewage sludge ash takes place in the reaction chamber 20 or the reaction space 20 in order to lower the unburned residual carbon content in the sewage sludge ash;
- the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture exiting the reaction chamber 20 or the reaction space 20 is passed into the cyclone 14, where separation of the sewage sludge ash and gas or flue gas stream occurs. The sewage sludge ash discharged from cyclone 14 is brought to a subsequent treatment by means of suitable conveying means, for example the further cooling conveyor 17;
- the gas or flue gas stream exiting the cyclone is fed to the rotary kiln 3.
Sewage sludge mono-incineration is understood to mean the incineration of at least substantially exclusively sewage sludge, i.e. only sewage sludge is incinerated without any intended admixture of other fuels or fuel components. However, unintentional or insignificant additions of other fuels or fuel components, in particular in the sense of components contained in the sewage sludge, are possible. However, processes and devices in which an intended and deliberate co-combustion of sewage sludge with other fuels, e.g. coal, takes place are to be excluded.
The feed of sewage sludge ash and a gas or flue gas stream, in particular a flue gas stream recirculating from and to the boiler 12 of the incineration plant 2a, may be directly into a/the reaction space 20 or a/the reaction chamber 20. That is, the sewage sludge ash line 6 and the gas or flue gas line 7 and, if applicable, the flue gas introduction device 19 for supplying "cold" flue gas may all open directly into the reaction space 20 or the reaction chamber 20.
List of reference signs
1 sewage sludge mono-incineration plant 2 waste incineration plant 2a incineration plant 3 rotary kiln 4 sewage sludge feed 5 first sewage sludge ash discharge 6 sewage sludge ash line 7 gas or flue gas line 8 first cooling conveyor 9 rotary valve 10 mill 11 fired incineration chamber 12 boiler 13 oxygen introduction device 13a blowing gun 14 cyclone 15 exhaust gas line 16 sewage sludge ash discharge line 17 cooling conveyor 18 discharge line 18a second sewage sludge ash discharge 19 feed line of "cold" flue gas; flue gas introduction device for supplying "cold" flue gas 20 reaction space / reaction chamber 21 further flue gas line

Claims (19)

Claims
1. Method for the post-combustion of sewage sludge ash produced during sewage sludge mono-incineration in a rotary kiln (3) using a hot gas or flue gas stream having a low oxygen content, in particular an oxygen content of 6 to 10 vol.% oxygen, wherein the sewage sludge ash exiting the rotary kiln (3) is fed to the gas or flue gas stream, which is taken from a fired incineration chamber (11) of an incineration plant (2a) associated with the rotary kiln (3) or from a power plant associated with the rotary kiln (3) and, as needed, is adjusted to the low oxygen content required for post-combustion, and an oxidation or post-combustion of unburned carbon contained in the sewage sludge ash is caused by this sufficiently hot gas or flue gas stream.
2. Method according to claim 1, characterized in that the mixture of hot gas or flue gas stream and supplied sewage sludge ash is supplied to a reaction space (20), in particular a reaction chamber (20) in which the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash takes place.
3. Method according to claim 1 or 2, characterized in that the temperature of the hot gas or flue gas stream is adjusted in such a way that, on the one hand, it is sufficiently high to cause the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash and, on the other hand, it is sufficiently low so that the temperature increase of the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture resulting from the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash does not cause slagging of the reaction chamber (20) or the reaction space (20) or of the gas or flue gas line (7) carrying the sewage sludge ash / gas stream mixture or sewage sludge ash / flue gas stream mixture.
4. Method according to claim 2 or 3, characterized in that cold flue gas, preferably having a temperature in the temperature range from 1000 C to 250 0C, in particular 120°C to 200°C, is supplied to the reaction space (20) or the reaction chamber (20).
5. Method according to any one of the preceding claims, characterized in that the sewage sludge ash is ground in a mill (10) which is preferably configured as a ball mill before being fed to the gas or flue gas stream.
6. Method according to any one of the preceding claims, characterized in that, after exiting the rotary kiln (3), the sewage sludge ash is first fed to a first cooling conveyor (8) configured as a cooling screw and then, in particular before entering the mill (10), to a rotary valve (9).
7. Method according to any one of the preceding claims, characterized in that the sewage sludge ash / gas stream mixture or sewage sludge ash
/ flue gas stream mixture is fed downstream of the reaction space (20) or the reaction chamber (20) to a centrifugal separator, in particular a cyclone (14), and in the centrifugal separator, in particular cyclone (14), the sewage sludge ash and the gas or flue gas stream are separated from one another.
8. Method according to claim 7, characterized in that the gas or flue gas stream is fed to the rotary kiln (3) downstream of the centrifugal separator, in particular the cyclone (14).
9. Method according to any one of the preceding claims, characterized in that the feeding of the sewage sludge ash into the gas or flue gas stream and the oxidation or post-combustion of the unburned carbon content contained in the sewage sludge ash are carried out continuously and without intermediate storage.
10. Method according to any one of the preceding claims, characterized in that the feeding of the gas or flue gas stream separated from the sewage sludge ash in the centrifugal separator, in particular cyclone (14), to the rotary kiln (3) is carried out continuously and without intermediate storage.
11. Device for carrying out the method according to any one of claims 1 to 10, characterized by a sewage sludge mono-incineration plant (1) comprising a rotary kiln (3) for sewage sludge incineration with connected sewage sludge feed (4) and a first sewage sludge ash discharge (5) with connected sewage sludge ash line (6) opening into a gas or flue gas line (7) in which a gas or flue gas stream branched off from a fired incineration chamber (11) of an incineration plant (2a) associated with the rotary kiln (3) or a power plant associated with the rotary kiln (3) is fed.
12. Device according to claim 11, characterized in that at least one oxygen supply device or oxygen introduction device (13) is arranged in the gas or flue gas line (7) upstream of the inlet of the sewage sludge ash line (6), by means of which oxygen can be supplied to the flue gas stream carried in the gas or flue gas line (7).
13. Device according to claim 11 or 12, characterized in that a reaction space (20) or a reaction chamber (20) is formed in the gas or flue gas line (7) downstream of the inlet of the sewage sludge ash line (6), in which, during operation of the sewage sludge mono-incineration plant (1) and the fired incineration chamber (11), the oxidation or post-combustion of the unburned carbon contained in the sewage sludge ash takes place, the flow cross-section of the gas or flue gas line (7) preferably being shaped as forming the reaction space (20) or the reaction chamber (20).
14. Device according to any one of claims 11 to 13, characterized in that a first cooling conveyor (8) configured as a cooling screw, a rotary valve (9) and a mill (10), which is preferably configured as a ball mill, are arranged in the sewage sludge ash line (6) before the latter opens into the gas or flue gas line (7) in the direction of flow of the sewage sludge ash, which are integrated into the sewage sludge ash line (6) and through which the sewage sludge ash can flow.
15. Device according to any one of claims 11 to 14, characterized in that a centrifugal separator, in particular cyclone (14), for separating the sewage sludge ash and gas or flue gas stream is arranged in the gas or flue gas line (7) in the direction of flow of the sewage sludge ash / gas stream or flue gas stream mixture downstream of the confluence of the sewage sludge ash line (6) and the reaction chamber (20) or reaction space (20).
16. Device according to claim 15, characterized in that the centrifugal separator, in particular cyclone (14), comprises an exhaust gas line (15) opening into the rotary kiln (3) and a sewage sludge ash discharge line (16) opening into a further cooling conveyor (17) configured as a cooling screw.
17. Device according to any one of claims 11 to 16, characterized in that the gas or flue gas line (7) comprises, in the direction of flow of the gas or flue gas stream upstream of the confluence with the sewage sludge ash line (6), at least one oxygen supply device or oxygen introduction device (13).
18. Device according to any one of claims 11 to 17, characterized in that the associated incineration plant (2a) is a waste incineration plant (2) or the associated power plant is a waste-fired power station.
19. Device according to any one of claims 13 to 18, characterized in that at least one flue gas introduction device (19) for supplying cold flue gas having a temperature of preferably 100°C to 250°C, in particular 1200 C to 200°C, opens into the reaction space (20) or the reaction chamber (20).
AU2019409440A 2018-12-20 2019-12-16 Method and device for the post-combustion of sewage sludge ash generated in a sewage sludge mono-incineration plant Abandoned AU2019409440A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102018133237.8 2018-12-20
DE102018133237 2018-12-20
DE102019107744.3 2019-03-26
DE102019107744.3A DE102019107744A1 (en) 2018-12-20 2019-03-26 Method and device for the post-combustion of sewage sludge ash obtained in a mono sewage sludge incineration plant
PCT/EP2019/085369 WO2020127066A1 (en) 2018-12-20 2019-12-16 Method and device for the post-combustion of sewage sludge ash generated in a sewage sludge mono-incineration plant

Publications (1)

Publication Number Publication Date
AU2019409440A1 true AU2019409440A1 (en) 2021-08-12

Family

ID=70969874

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019409440A Abandoned AU2019409440A1 (en) 2018-12-20 2019-12-16 Method and device for the post-combustion of sewage sludge ash generated in a sewage sludge mono-incineration plant

Country Status (8)

Country Link
US (1) US20220074588A1 (en)
EP (1) EP3899370A1 (en)
JP (1) JP2022514925A (en)
KR (1) KR20210107746A (en)
AU (1) AU2019409440A1 (en)
CA (1) CA3124429A1 (en)
DE (1) DE102019107744A1 (en)
WO (1) WO2020127066A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571175A (en) * 1985-04-29 1986-02-18 Roan Industries, Inc. Process for a disposal of waste solutions
DE4121968A1 (en) * 1991-06-28 1993-01-14 Noell K & K Abfalltech METHOD FOR COMBINED CLEANING SLUDGE AND WASTE COMBUSTION
US5555821A (en) * 1994-12-02 1996-09-17 Martinez; Morris P. Apparatus and process for removing unburned carbon in fly ash
EP0908673B1 (en) * 1997-10-13 2002-05-15 Alstom Method for processing residues and/or ash from thermal treatment of refuse
DE19961384A1 (en) * 1999-12-20 2001-06-21 Abb Alstom Power Ch Ag Process for the thermal treatment of rust ash from waste incineration plants
WO2003025094A1 (en) * 2001-09-19 2003-03-27 Herhof Umwelttechnik Gmbh Method for reducing the organic material of a mineral waste fraction
DE102013103770A1 (en) * 2013-04-15 2014-10-16 Rwe Power Ag Process for obtaining phosphorus-containing compounds from sewage sludge

Also Published As

Publication number Publication date
JP2022514925A (en) 2022-02-16
EP3899370A1 (en) 2021-10-27
DE102019107744A1 (en) 2020-06-25
CA3124429A1 (en) 2020-06-25
KR20210107746A (en) 2021-09-01
US20220074588A1 (en) 2022-03-10
WO2020127066A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP1779036B1 (en) Integrated system for the extraction of heavy ash, conversion thereof into light ash and reduction of unburnt matter
CN112105880A (en) Production of oxy-fuel clinker with special oxygen addition
JP4081102B2 (en) Waste complex treatment facility
PL212933B1 (en) Steam-generating combustion system and method for emission control using oxygen enhancement
JP2010059940A (en) Integrated coal gasification combined cycle power-generating facility
JP2014506288A (en) Processing and equipment for concentrate particles containing valuable metals
JP5183372B2 (en) Oxyfuel combustion boiler system and combustion method
US20080163804A1 (en) Method of and arrangement for co-combustion of biomasses and/or organic wastes as secondary fuel in a coal dust firing system
US7972419B2 (en) Apparatus and method for reducing emissions resulting from raw meal grinding
CN106610230A (en) Sintering flue gas reduction and waste heat comprehensive utilization method and device
CN203744265U (en) Denitration system of incinerator
US20220074588A1 (en) Method and device for the post-combustion of sewage sludge ash produced in a sewage sludge mono-incineration plant
CN102325906B (en) Method and plant for production of substitute gas
CN111637465B (en) Treatment system and method for combustible industrial solid waste
CN109668157B (en) Waste gas catalytic incineration treatment system and regulation control method thereof
EP2808377A1 (en) Gasifying facility for lumpy fuels
US5018456A (en) System for disposing of sludge
CN115218197A (en) Flue gas recirculation air distribution method
CN213334398U (en) Hazardous waste pyrolysis incineration system
EP1955981A2 (en) Method of energy appreciation of the products from purification of stillage from ethanol production and the equipment for implementation of this method
CN113566230B (en) Method and system for realizing direct blending combustion gasification fine slag of pulverized coal boiler
EP0651853B1 (en) Method and device for the operation of a combined-process power station
RU2202739C2 (en) Method and system for pulverizing and burning solid fuel
CN114110608B (en) System and method for co-processing waste by utilizing industrial waste heat
US20230184430A1 (en) Method and apparatus for incinerating waste

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period