AU2019373768A1 - Aerosolisable formulation - Google Patents

Aerosolisable formulation Download PDF

Info

Publication number
AU2019373768A1
AU2019373768A1 AU2019373768A AU2019373768A AU2019373768A1 AU 2019373768 A1 AU2019373768 A1 AU 2019373768A1 AU 2019373768 A AU2019373768 A AU 2019373768A AU 2019373768 A AU2019373768 A AU 2019373768A AU 2019373768 A1 AU2019373768 A1 AU 2019373768A1
Authority
AU
Australia
Prior art keywords
aerosolisable formulation
amount
nicotine
present
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2019373768A
Other versions
AU2019373768B2 (en
Inventor
Ross CABOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicoventures Trading Ltd
Original Assignee
Nicoventures Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Ltd filed Critical Nicoventures Trading Ltd
Publication of AU2019373768A1 publication Critical patent/AU2019373768A1/en
Application granted granted Critical
Publication of AU2019373768B2 publication Critical patent/AU2019373768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • A24B15/243Nicotine
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/05Devices without heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Abstract

There is provided an aerosolisable formulation comprising (i) water in an amount of at least 5 0 wt.% based on the aerosolisable formulation; and (ii) nicotine; wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.

Description

AEROSOLISABLE FORMULATION
FIELD OF THE INVENTION
The present disclosure relates to an aerosolisable formulation, a method of forming the same, a container containing the same, a device containing the same and processes and uses of the same.
BACKGROUND TO THE INVENTION
Electronic aerosol provision systems such as e-cigarettes generally contain a reservoir of liquid which is to be vaporised, typically containing nicotine. When a user inhales on the device, a heater is activated to vaporise a small amount of liquid, which is therefore inhaled by the user.
The use of e-cigarettes in the UK has grown rapidly, and it has been estimated that there are now over a million people using them in the UK.
One challenge faced in providing such systems is to provide from the aerosol provision device an aerosol to be inhaled which provides consumers with an acceptable experience. Some consumers may prefer an e-cigarette that generates an aerosol that closely 'mimics' smoke inhaled from a tobacco product such as a cigarette. Aerosols from e-cigarettes and smoke from tobacco products such as cigarettes provides to the user a complex chain of flavour in the mouth, nicotine absorption in the mouth and throat, followed by nicotine absorption in the lungs. These various aspects are described by users in terms of flavour, intensity/quality, impact, irritation/smoothness and nicotine reward. Nicotine contributes to a number of these factors, and is strongly associated with factors such as impact, irritation and smoothness; these are readily perceived by consumers, and e-cigarettes may offer too much or too little of these parameters for consumers, depending upon individual preferences. Nicotine reward is particularly complex as it results from both the amount of and speed with which nicotine is absorbed from the lining of the mouth, this is typically nicotine in the vapour phase, and from the amount and speed nicotine that is absorbed from the lungs, this is typically nicotine in the particulate phase of the aerosol which is inhaled. Each of these factors, and their balance, can strongly contribute to consumer acceptability of an e- cigarette. Providing means to optimise the overall vaping experience is therefore desirable to e-cigarette manufacturers. A further challenge facing such systems is the continued demand for harm reduction. Harm from cigarette and e-cigarette devices primarily comes from toxicants. Therefore, there is a desire to reduce or remove the components which may form toxicants.
SUMMARY OF THE INVENTION
In one aspect there is provided an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
In one aspect there is provided a process for forming an aerosol, the process comprising aerosolising an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
In one aspect there is provided a contained aerosolisable formulation comprising
(a) a container; and
(b) an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
In one aspect there is provided an electronic aerosol provision system comprising:
(a) an aerosoliser for aerosolising formulation for inhalation by a user of the electronic aerosol provision system;
(b) a power supply comprising a cell or battery for supplying power to the aerosoliser
(c) an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
DETAILED DESCRIPTION
As discussed herein is provided an aerosolisable formulation comprising (i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and (ii) nicotine; wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation. We have found that an advantageous system may be provided in which an aerosolisable formulation contains water in an amount of at least 50 wt.% based on the aerosolisable formulation and contains nicotine in an amount of no greater than 1wt.% based on the aerosolisable formulation. We have surprising found that in such a high water system, providing nicotine in a maximum amount of no greater than 1wt.% provides the optimum sensory perception for the user. In particular, control of nicotine to this maximum amount provides a nicotine‘hit’ and/or sensory perception preferred by users. This desirable nicotine ‘hit’ and/or flavour release is in contrast to ‘traditional’ e-liquids based on glycerol and propylene glycol which users sometimes do not use because of perceived differences in respect of nicotine‘hit’ and/or flavour release provided by tobacco based cigarettes.
We have also identified that water-based system may be provided in which aerosolised formulation is formed from an aerosolisable formulation at a low temperature. This is in contrast to‘traditional’ e-cigarettes which use a heater, typically applied to liquids based on glycerol and propylene glycol to form an aerosolised formulation. The provision of such a system and the avoidance of heating may address problems of the prior art relating to the formation of toxicants. More specifically, we have identified a water-based system which, by selection of a very high water content delivers desirable nicotine‘hit’ and/or flavour release but avoids the need to use the heaters associated with prior liquids based on glycerol and propylene glycol. In the present system, the number of components present may be reduced leading to less chance of forming breakdown products/toxicants. In particular, the use of water allows for the replacement of some or all of the glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof typically used in e-cigarettes.
For ease of reference, these and further aspects of the present invention are now discussed under appropriate section headings. However, the teachings under each section are not necessarily limited to each particular section.
Water As discussed herein the aerosolisable formulation comprises water in an amount of at least 50 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 55 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 60 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 65 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 70 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 75 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 80 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 85 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 90 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 95 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of at least 99 wt.% based on the aerosolisable formulation.
In one aspect water is present in an amount of from 50 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 55 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 60 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 65 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 70 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 75 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 80 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 85 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 90 to 99 wt.% based on the aerosolisable formulation. In one aspect water is present in an amount of from 95 to 99 wt.% based on the aerosolisable formulation.
As discussed herein the use of water allows for the replacement of some or all of the glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof typically used in e- cigarettes. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 10 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 8 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 0.5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 0.2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 0.1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof in a combined amount of no greater than 0.01 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains no glycerol, propylene glycol, 1 ,3-propane diol and mixtures thereof.
In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 10 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 8 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 0.5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 0.2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 0.1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol, propylene glycol, and mixtures thereof in a combined amount of no greater than 0.01 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains no glycerol, propylene glycol, and mixtures thereof.
In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 10 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 8 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 0.5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 0.2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 0.1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains glycerol in an amount of no greater than 0.01 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains no glycerol.
In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 10 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 8 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 0.5 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 0.2 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 0.1 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains propylene glycol in an amount of no greater than 0.01 wt.% based on the aerosolisable formulation or based on the aerosolisable formulation. In one aspect the aerosolisable formulation contains no propylene glycol.
Nicotine
Nicotine formulations may be provided having desirable properties of flavour, impact, irritation, smoothness and/or nicotine reward for the user. In one aspect nicotine is present in an amount of no greater than 0.9wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.8wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.7wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.6wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.5wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.4wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.3wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.2wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.15wt.% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of no greater than 0.1wt.% based on the total weight of the aerosolisable formulation.
In one aspect nicotine is present in an amount of from 0.01 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.08 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.15 to 1 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.08 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.15 to 0.8 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.08 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.15 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.4 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 0.4 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 0.4 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.08 to 0.4 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 0.4 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.15 to 0.5 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.08 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.15 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.3 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.25 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.2 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.01 to 0.15 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.02 to 0.15 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.05 to 0.15 wt% based on the total weight of the aerosolisable formulation. In one aspect nicotine is present in an amount of from 0.1 to 0.15 wt% based on the total weight of the aerosolisable formulation.
As is understood by one skilled in the art, nicotine may exist in unprotonated form, monoprotonated form or diprotonated form. The structures of each of these forms are given below.
Unprotonated nicotine monoprotonated nicotine diprotonated nicotine
Reference in the specification to protonated form means both monoprotonated nicotine and diprotonated nicotine. Reference in the specification to amounts in the protonated form means the combined amount of monoprotonated nicotine and diprotonated nicotine. Furthermore, when reference is made to a fully protonated formulation it will be understood that at any one time there may be very minor amounts of unprotonated nicotine present, e.g. less than 1 % unprotonated.
In one aspect the formulation may comprise nicotine in protonated form. In one aspect the formulation may comprise nicotine in unprotonated form. In one aspect the formulation comprises nicotine in unprotonated form and nicotine in monoprotonated form. In one aspect the formulation comprises nicotine in unprotonated form and nicotine in diprotonated form. In one aspect the formulation comprises nicotine in unprotonated form, nicotine in monoprotonated form and nicotine in diprotonated form.
In one aspect at least 5wt% of the nicotine present in the formulation is in protonated form In one aspect at least 10wt% of the nicotine present n the formulation is in protonated form In one aspect at least 15wt% of the nicotine present n the formulation is in protonated form In one aspect at least 20wt% of the nicotine present n the formulation is in protonated form In one aspect at least 25wt% of the nicotine present n the formulation is in protonated form In one aspect at least 30wt% of the nicotine present n the formulation is in protonated form In one aspect at least 35wt% of the nicotine present n the formulation is in protonated form In one aspect at least 40wt% of the nicotine present n the formulation is in protonated form In one aspect at least 45wt% of the nicotine present n the formulation is in protonated form In one aspect at least 50wt% of the nicotine present n the formulation is in protonated form In one aspect at least 55wt% of the nicotine present n the formulation is in protonated form In one aspect at least 60wt% of the nicotine present n the formulation is in protonated form In one aspect at least 65wt% of the nicotine present n the formulation is in protonated form In one aspect at least 70wt% of the nicotine present n the formulation is in protonated form In one aspect at least 75wt% of the nicotine present n the formulation is in protonated form In one aspect at least 80wt% of the nicotine present n the formulation is in protonated form In one aspect at least 85wt% of the nicotine present n the formulation is in protonated form In one aspect at least 90wt% of the nicotine present n the formulation is in protonated form In one aspect at least 95wt% of the nicotine present n the formulation is in protonated form In one aspect at least 99wt% of the nicotine present n the formulation is in protonated form In one aspect at least 99.9wt% of the nicotine present in the formulation is in protonated form.
In one aspect from 50 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 55 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 60 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 65 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 70 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 75 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 80 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 85 to 95 wt% of the nicotine present in the formulation is in protonated form. In one aspect from 90 to 95 wt% of the nicotine present in the formulation is in protonated form. The relevant amounts of nicotine which are present in the formulation in protonated form are specified herein. These amounts may be readily calculated by one skilled in the art. Nicotine, 3-(1-methylpyrrolidin-2-yl) pyridine, is a diprotic base with pKa of 3.12 for the pyridine ring and 8.02 for the pyrrolidine ring It can exist in pH-dependent protonated (mono- and di-) and non-protonated (free base) forms which have different bioavailability.
The distribution of protonated and non-protonated nicotine will vary at various pH increments.
The fraction of non-protonated nicotine will be predominant at high pH levels whilst a decrease in the pH will see an increase of the fraction of protonated nicotine (mono- or di- depending on the pH). If the relative fraction of protonated nicotine and the total amount of nicotine in the sample are known, the absolute amount of protonated nicotine can be calculated.
The relative fraction of protonated nicotine in formulation can be calculated by using the Henderson-Hasselbalch equation, which describes the pH as a derivation of the acid dissociation constant equation, and it is extensively employed in chemical and biological systems. Consider the following equilibrium:
The Henderson-Hasselbalch equation for this equilibrium is: pH ~ pKa -f log
Where [B] is the amount of non-protonated nicotine (i.e. free base), [BH+] the amount of protonated nicotine (i.e. conjugate acid) and pKa is the reference pKa value for the pyrrolidine ring nitrogen of nicotine (pKa=8.02). The relative fraction of protonated nicotine can be derived from the alpha value of the non-protonated nicotine calculated from the Henderson-Hasselbalch equation as:
% protonated nicotine = 100
Determination of pKa values of nicotine formulations was carried out using the basic approach described in“Spectroscopic investigations into the acid-base properties of nicotine at different temperatures”, Peter M. Clayton, Carl A. Vas, Tam T. T. Bui, Alex F. Drake and Kevin McAdam, .Anal. Methods, 2013,5, 81-88.
Acid
In one aspect the aerosolisable formulation further comprises an acid. The acid may be any suitable acid. In one aspect the acid is an organic acid. In one aspect the acid is a carboxylic acid. In one aspect the acid is an organic carboxylic acid.
In one aspect the acid is selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof. In one aspect the acid is selected from the group consisting of citric acid, benzoic acid, levulinic acid, lactic acid, sorbic acid, and mixtures thereof. In one aspect the acid is selected from the group consisting of citric acid, benzoic acid, levulinic acid, and mixtures thereof. In one aspect the acid is at least citric acid. In one aspect the acid consists of citric acid.
In one aspect the acid is selected from acids having a pka of from 2 to 5. In one aspect the acid is a weak acid. In one aspect the acid is a weak organic acid.
The acid may be present in any suitable amount. In one aspect the acid is present in an amount of no greater than 6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 4 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 4 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 4 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 4 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 4 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 3 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 3 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 3 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 3 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 3 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.1 to 1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.1 to 0.6 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 0.5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 0.5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 0.5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 0.5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 0.5 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 0.2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 0.2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 0.2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 0.2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 0.2 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of no greater than 0.1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.01 to 0.1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.02 to 0.1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.05 to 0.1 wt% based on the aerosolisable formulation. In one aspect the acid is present in an amount of from 0.08 to 0.1 wt% based on the aerosolisable formulation.
In one aspect the acid has a solubility in water of at least 2g/L at 20 °C. In one aspect the acid has a solubility in water of at least 5g/L at 20 °C. In one aspect the acid has a solubility in water of at least 10g/L at 20 °C. In one aspect the acid has a solubility in water of at least 20g/L at 20 °C. In one aspect the acid has a solubility in water of at least 50g/L at 20 °C. In one aspect the acid has a solubility in water of at least 100g/L at 20 °C. In one aspect the acid has a solubility in water of at least 200g/L at 20 °C. In one aspect the acid has a solubility in water of at least 300g/L at 20 °C. In one aspect the acid has a solubility in water of at least 400g/L at 20 °C. In one aspect the acid has a solubility in water of at least 500g/L at 20 °C. In one aspect the acid has a solubility in water of at least 600g/L at 20 °C. In one aspect the acid has a solubility in water of at least 700g/L at 20 °C. In one aspect the acid has a solubility in water of at least 800g/L at 20 °C. In one aspect the acid has a solubility in water of at least 900g/L at 20 °C. In one aspect the acid has a solubility in water of at least 1000g/L at 20 °C. In one aspect the acid has a solubility in water of at least 1100g/L at 20°C.
The amount of acid and the solubility of the acid may be selected such that a given amount of the acid will dissolve in the water. In one aspect at 20 °C at least 20% of the acid dissolves in the water. In one aspect at 25 °C at least 20% of the acid dissolves in the water. In one aspect at 30 °C at least 20% of the acid dissolves in the water. In one aspect at 20 °C at least 35% of the acid dissolves in the water. In one aspect at 20 °C at least 40% of the acid dissolves in the water. In one aspect at 20 °C at least 45% of the acid dissolves in the water. In one aspect at 20 °C at least 50% of the acid dissolves in the water. In one aspect at 20 °C at least 55% of the acid dissolves in the water.
In the aspects of the invention that nicotine is present, the molar ratio of acid to nicotine may be selected as desired. In one aspect the molar ratio of acid to nicotine is from 5:1 to 1 :5. In one aspect the molar ratio of acid to nicotine is from 4:1 to 1 :4. In one aspect the molar ratio of acid to nicotine is from 3:1 to 1 :3. In one aspect the molar ratio of acid to nicotine is from 2:1 to 1 :2. In one aspect the molar ratio of acid to nicotine is from 1.5:1 to 1 :1.5. In one aspect the molar ratio of acid to nicotine is from 1.2:1 to 1 :1.2. In one aspect the molar ratio of acid to nicotine is from 5:1 to 1 :1. In one aspect the molar ratio of acid to nicotine is from 4:1 to 1 :1. In one aspect the molar ratio of acid to nicotine is from 3:1 to 1 :1. In one aspect the molar ratio of acid to nicotine is from 2:1 to 1 :1. In one aspect the molar ratio of acid to nicotine is from 1.5:1 to 1 :1. In one aspect the molar ratio of acid to nicotine is from 1.2:1 to 1 : 1.
In one aspect the total content of acid present in the formulation is no greater than 5 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no greater than 4 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no greater than 3 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no greater than 2 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no greater than 1 mole equivalents based on the nicotine.
In one aspect the total content of acid present in the formulation is no less than 0.01 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.05 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.1 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.2 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.3 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.4 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.5 mole equivalents based on the nicotine. In one aspect the total content of acid present in the formulation is no less than 0.7 mole equivalents based on the nicotine.
Flavour
As discussed herein, the aerosolisable formulation may comprise one or more flavours or flavouring components. As used herein, the terms "flavour" and "flavourant" refer to materials which, where local regulations permit, may be used to create a desired taste or aroma in a product for adult consumers. They may include extracts (e.g. liquorice, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, peach, apple, Drambuie, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha), flavour enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. They may be in any suitable form, for example, oil, liquid, or powder. The one or more flavours may be selected from the group consisting of (4-(para-)methoxyphenyl)-2-butanone, vanillin, y- undecalactone, menthone, 5-propenyl guaethol, menthol, para-mentha-8-thiol-3-one and mixtures thereof. In one aspect the flavour is at least menthol.
If present, the one or more flavours may be present in any suitable amount. In one aspect the one or more flavours are present in a total amount of no greater than 10 wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 7 wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 5 wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 4 wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 3 wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 2wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of no greater than 1wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 5wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 4wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 3wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 2wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 1wt.% based on the aerosolisable formulation. In one aspect the one or more flavours are present in a total amount of from 0.01 to 0.5wt.% based on the aerosolisable formulation.
Formulation
In one aspect, if the aerosolisable formulation contains one or more cyclodextrins, then the aerosolisable formulation contains no flavours that can be encapsulated by the one or more cyclodextrins. In one aspect, if the aerosolisable formulation contains one or more cyclodextrins, then the aerosolisable formulation contains no flavours.
As will be appreciated, one or more cyclodextrins may or may not be present in any suitable amount in the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 12 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 10 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 9 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 8 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 7 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 6 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 5 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 4 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 3 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 2 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 1 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 0.1 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 0.01 wt.% based on the aerosolisable formulation. In one aspect the one or more cyclodextrins are present in a total amount of no greater than 0.001 wt.% based on the aerosolisable formulation.
The one or more cyclodextrins may be selected from the group consisting of unsubstituted cyclodextrins, substituted cyclodextrins and mixtures thereof. In one aspect at least one cyclodextrin is an unsubstituted cyclodextrin. In one aspect the one or more cyclodextrins are selected from the group consisting of unsubstituted cyclodextrins. In one aspect at least one cyclodextrin is a substituted cyclodextrin. In one aspect the one or more cyclodextrins are selected from the group consisting of substituted cyclodextrins.
In one aspect the one or more cyclodextrins are selected from the group consisting of unsubstituted (a)-cyclodextrin, substituted (a)-cyclodextrin, unsubstituted ^)-cyclodextrin, substituted ^)-cyclodextrin, unsubstituted (y)-cyclodextrin, substituted (y)-cyclodextrin, and mixtures thereof. In one aspect the one or more cyclodextrins are selected from the group consisting of unsubstituted ^)-cyclodextrin, substituted ^)-cyclodextrin, and mixtures thereof.
In one aspect the one or more cyclodextrins are selected from the group consisting of unsubstituted (a)-cyclodextrin, unsubstituted ^)-cyclodextrin, unsubstituted (y)-cyclodextrin, and mixtures thereof. In one aspect the one or more cyclodextrins is selected from unsubstituted ^)-cyclodextrin.
In one aspect the one or more cyclodextrins are selected from the group consisting of substituted (a)-cyclodextrin, substituted ^)-cyclodextrin, substituted (y)-cyclodextrin, and mixtures thereof. In one aspect the one or more cyclodextrins is selected from substituted ^-cyclodextrins. Chemical substitutions at the 2-, 3-, and 6-hydroxyl sites are envisaged, and in particular substitution at the 2-position.
In one aspect the one or more cyclodextrins are selected from the group consisting of 2- hydroxy-propyl-a-cyclodextrin, 2-hydroxy-propyl^-cyclodextrin, 2-hydroxy-propyl-y- cyclodextrin and mixtures thereof. In one aspect the one or more cyclodextrins is at least 2- hydroxy-propyl-a-cyclodextrin. In one aspect the one or more cyclodextrins is at least 2- hydroxy-propyl^-cyclodextrin. In one aspect the one or more cyclodextrins is at least 2- hydroxy-propyl-y-cyclodextrin.
2-hydroxy-propyl derivatives of cyclodextrins, such as 2-hydroxy-propyl^-cyclodextrin have increased solubility in water when compared to base cyclodextrins such as b-cyclodextrin.
In further aspects, the aerosolisable formulation contains cyclodextrins in a total amount of no greater than 0.001 wt.% based on the aerosolisable formulation, such as cyclodextrins in a total amount of no greater than 1x1 O 4 wt.% based on the aerosolisable formulation, such as cyclodextrins in a total amount of no greater than 1x105 wt.% based on the aerosolisable formulation, such as cyclodextrins in a total amount of no greater than 1x106 wt.% based on the aerosolisable formulation. Thus in further aspects, the present invention provides (1) an aerosolisable formulation comprising
(1) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and (ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation; and
wherein cyclodextrins are present in a total amount of from 0 to 0.001 wt.% based on the aerosolisable formulation.
(2) a process for forming an aerosol, the process comprising aerosolising an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation; and
wherein cyclodextrins are present in a total amount of from 0 to 0.001 wt.% based on the aerosolisable formulation.
(3) a contained aerosolisable formulation comprising
(a) a container; and
(b) an aerosolisable formulation , comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation; and
wherein cyclodextrins are present in a total amount of from 0 to 0.001 wt.% based on the aerosolisable formulation.
(4) an electronic aerosol provision system comprising: (a) an aerosoliser for aerosolising formulation for inhalation by a user of the electronic aerosol provision system;
(b) a power supply comprising a cell or battery for supplying power to the aerosoliser
(c) an aerosolisable formulation , comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation; and
wherein cyclodextrins are present in a total amount of from 0 to 0.001 wt.% based on the aerosolisable formulation.
Process
As discussed herein, in one aspect there is provided a process for forming an aerosol, the process comprising aerosolising an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
In the process the aerosol may be formed by a process performed at a temperature below 60°C.ln the process the aerosol may be formed by a process performed at a temperature below 50°C. In the process the aerosol may be formed by a process performed at a temperature below 40°C. In the process the aerosol may be formed by a process performed at a temperature below 30°C. In the process the aerosol may be formed by a process performed at a temperature below 25°C. In the process the aerosol may be formed by a process which does not involve heating.
In the process the aerosol may be formed by applying ultrasonic energy to the aerosolisable formulation.
In one aspect the aerosol has a D50 of from 2 to 6pm. References in the present specification to particle size distribution, D50, D10 or D90 refer to values measured in accordance with British and European Pharmacopoeia, 2.9.31 Particle Size Analysis By Laser Light Diffraction (see BRITISH PHARMACOPOEIA COMMISSION. (2014), British Pharmacopoeia. London, England: Stationery Office and COUNCIL OF EUROPE. (2013). European Pharmacopoeia. Strasbourg, France: Council of Europe). The terms D50, Dv50 and Dx50 are interchangeable. The terms D10, Dv10 and Dx10 are interchangeable. The terms D90, Dv90 and Dx90 are interchangeable.
In one aspect the aerosol has a D50 of from 2.5 to 6pm. In one aspect the aerosol has a D50 of from 3 to 6pm. In one aspect the aerosol has a D50 of from 3.5 to 6pm. In one aspect the aerosol has a D50 of from 4 to 6pm. In one aspect the aerosol has a D50 of from 4.5 to 6pm. In one aspect the aerosol has a D50 of from 5 to 6pm. In one aspect the aerosol has a D50 of from 2.5 to 5.5pm. In one aspect the aerosol has a D50 of from 3 to 5.5pm. In one aspect the aerosol has a D50 of from 3.5 to 5.5pm. In one aspect the aerosol has a D50 of from 4 to 5.5pm. In one aspect the aerosol has a D50 of from 4.5 to 5.5pm. In one aspect the aerosol has a D50 of from 5 to 5.5pm.
In one aspect the aerosol has a D10 of at least 0.5pm. In one aspect the aerosol has a D10 of at least 1 pm. In one aspect the aerosol has a D10 of at least 2pm.
In one aspect the aerosol has a D90 of no greater than 15pm. In one aspect the aerosol has a D90 of no greater than 12pm. In one aspect the aerosol has a D90 of no greater than 10pm.
In one aspect D50 is measured after exclusion of particles having a particle size of less than 1 pm. In one aspect D10 is measured after exclusion of particles having a particle size of less than 1 pm. In one aspect D90 is measured after exclusion of particles having a particle size of less than 1 pm.
The formulation may be contained or delivered by any means. In one aspect the present invention provides a contained aerosolisable formulation comprising (a) one or more containers; and (b) an aerosolisable formulation as defined herein. The container may be any suitable container, for example to allow for the storage or delivery of the formulation. In one aspect the container is configured for engagement with an electronic aerosol provision system. The container may be configured to become fluidly in communication with an electronic aerosol provision system so that formulation may be delivered to the electronic aerosol provision system. As described above, the present disclosure relates to container which may be used in an electronic aerosol provision system, such as an e-cigarette. Throughout the following description the term“e-cigarette” is used; however, this term may be used interchangeably with electronic aerosol provision system. As discussed herein, the container of the present invention is typically provided for the delivery of aerosolisable formulation to or within an e-cigarette. The aerosolisable formulation may be held within an e-cigarette or may be sold as a separate container for subsequent use with or in an e-cigarette. As understood by one skilled in the art, e-cigarettes may contain a unit known as a detachable cartomiser which typically comprises a reservoir of aerosolisable formulation, a wick material and a heating element for vaporising the aerosolisable formulation. In some e-cigarettes, the cartomiser is part of a single-piece device and is not detachable. In one aspect the container is a cartomiser or is part of a cartomiser. In one aspect the container is not a cartomiser or part of a cartomiser and is a container, such as a tank, which may be used to deliver nicotine formulation to or within an e-cigarette.
In one aspect the container is part of an e-cigarette. Therefore in a further aspect the present invention provides an electronic aerosol provision system comprising: an aerosolisable formulation as defined herein; an aerosoliser for aerosolising formulation for inhalation by a user of the electronic aerosol provision system; and a power supply comprising a cell or battery for supplying power to the aerosoliser.
The process of the present invention may comprises additional steps either before the steps listed, after the steps listed or between one or more of the steps listed.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described in further detail by way of example only with reference to the accompanying figures in which:-
Figure 1 shows a graph illustrating variation of psKa2with nicotine concentration; and
Figure 2 shows the nicotine hit, irritation and impact rating of Mojito formulation.
The invention will now be described with reference to the following non-limiting example.
Examples
Example 1
A series of tests were conducted using commercially available vibrating mesh nebuliser devices. The“nicotine free” device was loaded with formulation containing 88.0% (w/w) water, 6.0% propylene glycol containing vanilla flavour, and 6.0 glycerol. A similar device was prepared wherein 1.2% w/w nicotine was added to the formulation, with the water content was commensurately reduced to 86.8% (w/w).
A similar device was prepared wherein 0.6% w/w nicotine was added to the formulation, with the water content was commensurately adjusted to 87.4% (w/w).
A similar device was prepared wherein 0.3% w/w nicotine was added to the formulation, with the water content was commensurately adjusted to 87.7% (w/w).
A similar device was prepared wherein 0.1% w/w nicotine was added to the formulation, with the water content was commensurately adjusted to 87.9% (w/w).
One each of these devices was presented to 8 panellists comprising e-cigarette users, and the panellists were asked to puff on the devices in a sequential monadic fashion for 5 puffs on each device. They were asked to identify the preferred nicotine strength from the four offered to them.
8 panellists preferred a nicotine strength below 1.2% (w/w), 7 people preferred a nicotine strength below 0.6% (w/w), and 5 people preferred a nicotine strength below 0.3% (w/w).
Example 2
Three flavoured formulations with different water ratios and nicotine content were assessed by up to 10 panellists, which are experienced vapers with different nicotine tolerances.
A series of tests were conducted using commercially available vibrating mesh nebuliser devices. The device was loaded with formulation containing 97.2% (w/w) water, 2.0% (w/w) propylene glycol containing amaretto flavour, and 0.8% (w/w) nicotine.
A similar device was prepared wherein 0.9% (w/w) nicotine was added to the formulation, with the water content was commensurately reduced to 97.1% (w/w).
A similar device was prepared wherein 1.1% (w/w) nicotine was added to the formulation, with the water content was commensurately reduced to 96.9% (w/w). The summary of tested formulations and their properties are presented in the table below. Panellists were asked to evaluate the formulations in a randomised manner. During the sensory evaluation the panellists ranked several sensory attributes such as throat irritation and chest impact from low (1) to high (9). The panellists were also asked to indicate the most favourite formulation among the tested.
4 out of 10 panellists preferred Amaretto with 0.8 % (w/w) nicotine strength, 3 out of 10 panellists preferred Amaretto with 0.9% (w/w) nicotine strength, 2 out of 10 panellists which were high nicotine users preferred Amaretto with 1.1 % (w/w) nicotine strength, and 1 out of 10 panellists did not like any of the formulations. Overall 7 out of 10 preferred Amaretto formulation with <1 % (w/w) nicotine.
Further formulations were prepared also containing ^)-cyclodextrin and were tested by 6 panellists in the same manner as the Amaretto formulation.
The device was loaded with formulation containing 73.4% (w/w) water, 10.0% (w/w) 2- hydroxy-propyl^-cyclodextrin, 13% (w/w) glycerol 2.0% (w/w) propylene glycol containing mojito flavour, 0.8% (w/w) nicotine and 0.8% (w/w) benzoic acid.
A similar device was prepared wherein 0.9% (w/w) nicotine was added to the formulation, with the water content was commensurately reduced to 73.2% (w/w).
A similar device was prepared wherein 1.1% (w/w) nicotine was added to the formulation, with the water content was commensurately reduced to 72.8% (w/w).
The summary of tested formulations and their properties are presented in the table below.
4 out of 6 panellists preferred Mojito with 0.8% (w/w) nicotine strength, 1 out of 6 panellists preferred Mojito with 1.1 % (w/w) nicotine strength and 1 out of 6 panellists did not like any of the formulations. Overall 4 out of 6 preferred Mojito formulation with <1 % nicotine.
Nicotine hit, irritation and impact were rated and are shown in Figure 2. As can be seen from Figure 2 Mojito with 1.1 (w/w) % nicotine formulation was rated the highest for nicotine hit, irritation and impact.
Various modifications and variations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry or related fields are intended to be within the scope of the following claims.

Claims (29)

1. An aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
2. An aerosolisable formulation according to claim 1 wherein water is present in an amount of at least 70 wt.% based on the aerosolisable formulation.
3. An aerosolisable formulation according to claim 1 or 2 wherein water is present in an amount of at least 80 wt.% based on the aerosolisable formulation.
4. An aerosolisable formulation according to any one of claims 1 to 3 wherein water is present in an amount of at least 90 wt.% based on the aerosolisable formulation.
5 An aerosolisable formulation according to any one of claims 1 to 4 wherein the nicotine is present in an amount of no greater than 0.6wt.% based on the aerosolisable formulation.
6 An aerosolisable formulation according to any one of claims 1 to 5 wherein the nicotine is present in an amount of no greater than 0.3wt.% based on the aerosolisable formulation.
7. An aerosolisable formulation according to claim 6 wherein nicotine is present in an amount of from 0.15 to 0.3wt.% based on the aerosolisable formulation.
8. An aerosolisable formulation according to any one of claims 1 to 7 wherein the aerosolisable formulation further comprises an acid
9. An aerosolisable formulation according to claim 8 wherein the acid is selected from the group consisting of acetic acid, lactic acid, formic acid, citric acid, benzoic acid, pyruvic acid, levulinic acid, succinic acid, tartaric acid, sorbic acid, propionic acid, phenylacetic acid, and mixtures thereof.
10. An aerosolisable formulation according to claim 8 or 9 wherein the acid is selected from the group consisting of citric acid, benzoic acid, levulinic acid, sorbic acid, lactic acid, and mixtures thereof.
11. An aerosolisable formulation according to any one of claims 8 to 10 wherein the acid is at least citric acid.
12. An aerosolisable formulation according to any one of claims 8 to 11 wherein the total content of acid present in the formulation is no greater than 1 mole equivalents based on the nicotine.
13 An aerosolisable formulation according to any one of claims 8 to 12 wherein the total content of acid present in the solution is no less than 0.1 mole equivalents based on the nicotine.
14. An aerosolisable formulation according to any one of claims 1 to 13 further comprising one or more flavours.
15. An aerosolisable formulation according to claim 14 wherein the one or more flavours are selected from the group consisting of (4-(para-)methoxyphenyl)-2-butanone, vanillin, y- undecalactone, menthone, 5-propenyl guaethol, menthol, para-mentha-8-thiol-3-one and mixtures thereof.
16. An aerosolisable formulation according to claim 15 wherein the flavour is at least menthol.
17. An aerosolisable formulation according to any one of claims 14 to 16 wherein the one or more flavours are present in a total amount of no greater than 2wt.% based on the aerosolisable formulation.
18. An aerosolisable formulation according to any one of claims 14 to 17 wherein the one or more flavours are present in a total amount of from 0.01 to 1wt.% based on the aerosolisable formulation.
19. An aerosolisable formulation according to any one of claims 1 to 18 wherein if the aerosolisable formulation contains one or more cyclodextrins, then the aerosolisable formulation contains no flavours that can be encapsulated by the one or more cyclodextrins.
20. An aerosolisable formulation according to any one of claims 1 to 19 wherein if the aerosolisable formulation contains one or more cyclodextrins, then the aerosolisable formulation contains no flavours.
21. A process for forming an aerosol, the process comprising aerosolising an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
22. A process according to claim 21 wherein the aerosolisable formulation is an aerosolisable formulation as defined in any one of claims 2 to 18.
23. A process according to claim 21 or 22 wherein the aerosol is formed by a process performed at a temperature below 50°C.
24. A process according to claim 21 , 22 or 23 wherein the aerosol is formed by applying ultrasonic energy to the aerosolisable formulation.
25. A contained aerosolisable formulation comprising
(a) a container; and
(b) an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
26. A contained aerosolisable formulation according to claim 25 wherein the aerosolisable formulation is an aerosolisable formulation as defined in any one of claims 2 to 20.
27. A contained aerosolisable formulation according to claim 25 or 26 wherein the container is configured for engagement with an electronic aerosol provision system.
28. An electronic aerosol provision system comprising: (a) an aerosoliser for aerosolising formulation for inhalation by a user of the electronic aerosol provision system;
(b) a power supply comprising a cell or battery for supplying power to the aerosoliser
(c) an aerosolisable formulation comprising
(i) water in an amount of at least 50 wt.% based on the aerosolisable formulation; and
(ii) nicotine;
wherein the nicotine is present in an amount of no greater than 1wt.% based on the aerosolisable formulation.
29. An electronic aerosol provision system according to claim 28 wherein the aerosolisable formulation is an aerosolisable formulation as defined in any one of claims 2 to 20.
AU2019373768A 2018-11-01 2019-10-31 Aerosolisable formulation Active AU2019373768B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1817859.0A GB201817859D0 (en) 2018-11-01 2018-11-01 Aerosolisable formulation
GB1817859.0 2018-11-01
PCT/GB2019/053095 WO2020089640A1 (en) 2018-11-01 2019-10-31 Aerosolisable formulation

Publications (2)

Publication Number Publication Date
AU2019373768A1 true AU2019373768A1 (en) 2021-05-27
AU2019373768B2 AU2019373768B2 (en) 2022-12-01

Family

ID=64655549

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019373768A Active AU2019373768B2 (en) 2018-11-01 2019-10-31 Aerosolisable formulation

Country Status (13)

Country Link
US (1) US20210386111A1 (en)
EP (1) EP3873248A1 (en)
JP (2) JP2022506068A (en)
KR (1) KR20210074308A (en)
CN (1) CN113163842A (en)
AU (1) AU2019373768B2 (en)
BR (1) BR112021008571A2 (en)
CA (1) CA3118060A1 (en)
GB (1) GB201817859D0 (en)
IL (1) IL282589A (en)
MX (1) MX2021005165A (en)
UA (1) UA127723C2 (en)
WO (1) WO2020089640A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201817865D0 (en) * 2018-11-01 2018-12-19 Nicoventures Trading Ltd Aerosolisable formulation
GB202013489D0 (en) 2020-08-27 2020-10-14 Nicoventures Holdings Ltd Consumable
US11771132B2 (en) 2020-08-27 2023-10-03 Rai Strategic Holdings, Inc. Atomization nozzle for aerosol delivery device
US11771136B2 (en) 2020-09-28 2023-10-03 Rai Strategic Holdings, Inc. Aerosol delivery device
IT202100005027A1 (en) * 2021-03-04 2022-09-04 Ape8 S R L INHALATION LIQUID COMPOSITION FOR ELECTRONIC CIGARETTES

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462094U (en) * 1990-10-09 1992-05-27
SE0201669D0 (en) * 2002-06-03 2002-06-03 Pharmacia Ab New formulation and use thereof
US7767698B2 (en) * 2002-06-03 2010-08-03 Mcneil Ab Formulation and use thereof
GB0700889D0 (en) * 2007-01-17 2007-02-21 British American Tobacco Co Tobacco, tobacco derivative and/or tobacco substitute products, preparation and uses thereof
GB0918129D0 (en) * 2009-10-16 2009-12-02 British American Tobacco Co Control of puff profile
KR20230013165A (en) * 2013-05-06 2023-01-26 쥴 랩스, 인크. Nicotine salt formulations for aerosol devices and methods thereof
RU2639111C1 (en) * 2014-02-26 2017-12-19 Джапан Тобакко Инк. Method for extracting flavour-imparting component and method for obtaining composition element of product preferred
TWI664918B (en) * 2014-05-21 2019-07-11 瑞士商菲利浦莫里斯製品股份有限公司 Inductively heatable tobacco product
GB201413835D0 (en) * 2014-08-05 2014-09-17 Nicoventures Holdings Ltd Electronic vapour provision system
GB2535427A (en) * 2014-11-07 2016-08-24 Nicoventures Holdings Ltd Solution
US20160198759A1 (en) * 2015-01-13 2016-07-14 Zip Llc E-cigarette or vaping fluid
US20160345621A1 (en) * 2015-06-01 2016-12-01 San Li Pre-vapor formulation of an electronic vaping device and/or methods of manufacturing the same
DE102015117811A1 (en) * 2015-10-20 2017-04-20 Chv Pharma Gmbh & Co. Kg Inhaler and active ingredient-containing preparation for an inhaler
US20170172204A1 (en) * 2015-12-18 2017-06-22 Altria Client Services Llc Strength enhancers and method of achieving strength enhancement in an electronic vapor device
US20170325494A1 (en) * 2016-05-16 2017-11-16 Lunatech, Llc Liquid composition containing nicotine from non-tobacco source for use with electronic vaporizing devices
US20180199618A1 (en) * 2016-09-27 2018-07-19 Bond Street Manufacturing Llc Vaporizable Tobacco Wax Compositions and Container thereof
GB2569940B (en) * 2017-11-01 2022-10-19 Nicoventures Trading Ltd Aerosolisable formulation
EP3574902A1 (en) * 2018-06-01 2019-12-04 Yatzz Limited Nicotine formulation and mode of delivery
GB201817865D0 (en) * 2018-11-01 2018-12-19 Nicoventures Trading Ltd Aerosolisable formulation

Also Published As

Publication number Publication date
WO2020089640A1 (en) 2020-05-07
IL282589A (en) 2021-06-30
JP2023101020A (en) 2023-07-19
CN113163842A (en) 2021-07-23
BR112021008571A2 (en) 2021-08-03
MX2021005165A (en) 2021-07-15
UA127723C2 (en) 2023-12-13
GB201817859D0 (en) 2018-12-19
KR20210074308A (en) 2021-06-21
AU2019373768B2 (en) 2022-12-01
CA3118060A1 (en) 2020-05-07
JP2022506068A (en) 2022-01-17
EP3873248A1 (en) 2021-09-08
US20210386111A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
AU2019371079B2 (en) Aerosolisable formulation
AU2019373768B2 (en) Aerosolisable formulation
AU2019371078B2 (en) Aerosolisable formulation
AU2019370809B2 (en) Aerosolisable formulation
AU2019370808B2 (en) Aerosolisable formulation
AU2019372222B2 (en) Aerosolisable formulation

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)