AU2019247693A1 - Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample - Google Patents

Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample Download PDF

Info

Publication number
AU2019247693A1
AU2019247693A1 AU2019247693A AU2019247693A AU2019247693A1 AU 2019247693 A1 AU2019247693 A1 AU 2019247693A1 AU 2019247693 A AU2019247693 A AU 2019247693A AU 2019247693 A AU2019247693 A AU 2019247693A AU 2019247693 A1 AU2019247693 A1 AU 2019247693A1
Authority
AU
Australia
Prior art keywords
sample
subject
analysis
genetic material
probiotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
AU2019247693A
Inventor
Suneer JAIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Genomics Inc
Original Assignee
Sun Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Genomics Inc filed Critical Sun Genomics Inc
Publication of AU2019247693A1 publication Critical patent/AU2019247693A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/125Specific component of sample, medium or buffer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/137Concentration of a component of medium
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Disclosed herein are methods of extracting genetic material from a diverse population of one or more types of microbes in a sample. Microbes can be prokaryotes or eukaryotes and may include bacteria, archaea, fungi, protozoa, helminths, parasites, viruses, phages, and others. Extraction may be from a single sample and subsequent identification may be through a molecular method such as qPCR, PCR, RFLP, SSCP, allele specific PCR, targeted sequencing, pull down sequencing, whole shotgun sequencing, or other methods. Also provided are methods that include extracting nucleic acid molecules from a variety of organisms such as fungi (

Description

UNIVERSAL METHOD FOR EXTRACTING NUCLEIC ACID MOLECULES FROM A DIVERSE POPULATION OF ONE OR MORE TYPES OF MICROBES IN A SAMPLE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35 U.S.C. §119(e) to U.S. Application Serial No. 62/651,620 filed April 2, 2018. The disclosure of the prior application is considered part of and is incorporated by reference in the disclosure of this application.
BACKGROUND OF THE INVENTION
FIELD OF INVENTION
[0002] The present invention relates generally to genomic analysis and more particularly to a method of extracting and analyzing nucleic acid molecules associated with food from a diverse population of microbes in a biological sample.
BACKGROUND INFORMATION
[0003] About 100 trillion microorganisms live in and on the human body vastly outnumbering the body’s approximately 10 trillion human cells. These normally harmless viruses, bacteria and fungi are referred to as commensal or mutualistic organisms.
Commensal and mutualistic organisms help keep our bodies healthy in many ways.
Together all of the microorganisms living in and on the body-commensal, mutualistic and pathogenic-are referred to as the microbiome and their equilibrium and associated metabolome is closely linked to an individual’s health status and vice-versa.
[0004] Advances in nucleic acid sequencing has created an opportunity to quickly and accurately identify and profile the microbiome inhabiting the gut and subcutaneous tissue. The optimal flora also interacts with the host immune system in a synergistic way further propagating its health benefits. The associated metabolome of individuals can also be profiled either by a mass-spectrometry based system or using genomics-based metabolome modeling and flux-balance analysis and used to make a healthy metabolome profile. All these methodologies can be used to dissect the complexity of microbial communities. SUMMARY OF THE INVENTION
[0005] The present invention is directed to a method of extracting nucleic acid molecules from a diverse population of microbes in a biological, environmental, dietary supplement, or other ecological microbial organism heterogeneous populations sample and use of nucleic acid or extracts through processing steps and analysis for the determination of probiotic customization to an individual. Processing steps specific to this invention include, RNA or DNA clean-up, fragmentation, separation, or digestion; library or nucleic acid preparation for downstream applications, such as PCR, qPCR, digital PCR, or sequencing; preprocessing for bioinformatic QC, filtering, alignment, or data segregation; metagenomics or human genomic bioinformatics pipeline for microbial species taxonomic assignment; and other organism alignment, identification, and variant interpretation.
[0006] The present invention also describes a universal method for using samples for DNA extraction and determination of food consumption based on food DNA sequence from a database of meats, plants, fruits, vegetables, and/or microbes contained with these organisms. Disclosed herein are methods of extracting genetic material from a diverse population of one or more types of cells or cell components in a sample and determining the consumed food and nutritional breakdown for the improvement of health and prevention of disease.
[0007] Accoridingly, in one aspect, the invention provides a method for preparing a sample for analysis. The method includes: a) mixing the sample with a first lysis solution comprising a detergent, e.g., SDS, and a chelator, e.g., EDTA; b) adding a second lysis solution having a lysozyme to the mixture of step a); and c) adding a third lysis solution comprising a chaotropic agent, e.g., urea, lithium acetate, guanidine hydrochloride, and the like, to the mixture of step b). Pre-processing steps may include physical lysis may be used to further optimize nucleic acid yield. Examples of mechanical lysis include sonication, bead mixing, and bead mill homogenization.
[0008] In a similar aspect, the method includes: a) mixing a sample, such as a stool sample, with a liquid nitrogen solution; b) adding a first lysis solution, the first lysis solution comprising a detergent and a chelator, e.g., SDS, and a chelator, e.g., EDTA; and c) adding a second lysis solution, the second lysis solution including a chaotropic agent, e.g., urea, lithium acetate, guanidine hydrochloride. Pre-processing steps may include physical lysis may be used to further optimize nucleic acid yield. Examples of mechanical lysis include soni cation, bead mixing, and bead mill homogenization.
[0009] In another aspect, the invention provides a method of determining food consumption of a subject. The method includes: a) extracting genetic material from a stool sample obtained from the subject, said genetic material extracted according to a method of the disclosure; and b) subjecting the genetic material extracted from the first sample to metagenomics analysis to determine the food consumption of the subject. In embodiments, the method further includes treating the subject with a probiotic or a food stuff based on the analysis of food consumption.
[0010] In another aspect, the invention provides a method of monitoring a probiotic treatment of a subject. The method includes: a) extracting genetic material from any microbes present in a first sample obtained from the subject, said genetic material extracted according to a method of the disclosure; b) subjecting the genetic material extracted from the first sample to metagenomics analysis; c) treating the subject with a probiotic and then extracting genetic material from any microbes present in a second sample obtained from the subject in the same manner as the extraction of genetic material from the first sample; d) performing metagenomics analysis on the extracted genetic material from the second sample; and e) comparing the results of the metagenomics analysis of the first sample with the metagenomics analysis of the second sample.
[0011] In yet another aspect, the invention provides a method comprising calculating a probiotic score from probiotic organisms detected in a gut with or without additional chemistry or genetic tests.
[0012] In still another aspect, the invention provides a method comprising calculating a score for a microbiome, the score being used to assess if the microbiome is in dysbiosis, neutral, or stable. [0013] The invention further provides a computing system comprising: a memory; and one or more processors coupled to the memory, the one or more processors configured to perform operations to perform a method of the present invention.
[0014] The invention also provides an automated platform for performing a method of the invention.
[0015] The invention provides an all-in-one method for extracting nucleic acids from a diverse flora of microbes from a biological, environmental, dietary supplement, or other ecological microbial organism heterogeneous populations sample.
[0016] In embodiments, the invention may be used in determining composition and relative abundance of microbes, via analyzing their respective nucleic acids, in probiotics and environmental samples. DNA is purified and used downstream for nucleic acid analysis (notably metagenomics analysis where genome of more than one
species/subspecies is identified).
[0017] Both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the invention as claimed. Any accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute part of this specification, illustrate several embodiments of the invention, and together with the description serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] Figure 1 is a schematic diagram illustrating the presence of high prevalence organisms of a microbiome signature of a human (high protein diet, >50 years old, supplement user).
[0019] Figure 2A is a schematic diagram illustrating the presence of high prevalence organisms (bacteria) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, vegetarian diet). [0020] Figure 2B is a schematic diagram illustrating the presence of high prevalence organisms (viruses and phages) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, vegetarian diet).
[0021] Figure 2C is a schematic diagram illustrating the presence of high prevalence organisms (archaea) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, vegetarian diet).
[0022] Figure 2D is a schematic diagram illustrating the presence of high prevalence organisms (fungi and other eukaryotes) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, vegetarian diet).
[0023] Figure 3 A is a schematic diagram illustrating the presence of high prevalence organisms (bacteria) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, non-vegetarian diet).
[0024] Figure 3B is a schematic diagram illustrating the presence of high prevalence organisms (viruses and phages) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, non-vegetarian diet).
[0025] Figure 3C is a schematic diagram illustrating the presence of high prevalence organisms (archaea) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, non-vegetarian diet).
[0026] Figure 3D is a schematic diagram illustrating the presence of high prevalence organisms (fungi and other eukaryotes) of a microbiome signature of a human (high carbohydrate diet, 18-50 years old, non-vegetarian diet).
[0027] Figure 4A is a schematic diagram illustrating the presence of high prevalence organisms (bacteria) of a microbiome signature of a human (high dairy protein diet, 0-2 years old, vegetarian non-nursing). [0028] Figure 4B is a schematic diagram illustrating the presence of high prevalence organisms (viruses and phages) of a microbiome signature of a human (high dairy protein diet, 0-2 years old, vegetarian non-nursing).
[0029] Figure 4C is a schematic diagram illustrating the presence of high prevalence organisms (archaea) of a microbiome signature of a human (high dairy protein diet, 0-2 years old, vegetarian non-nursing).
[0030] Figure 4D is a schematic diagram illustrating the presence of high prevalence organisms (fungi and other eukaryotes) of a microbiome signature of a human (high dairy protein diet, 0-2 years old, vegetarian non-nursing).
[0031] Figure 5 is a schematic diagram illustrating the presence lower prevalent organisms and identification of opportunistic pathogens of a microbiome signature of a human.
[0032] Figure 6 is a schematic diagram illustrating typical probiotics detected in a microbiome signature of a human.
[0033] Figure 7 is a schematic diagram illustrating typical probiotics detected in a microbiome signature of a human.
[0034] Figure 8 is a schematic graphical plat illustrating showing comparison of individual relative abundance to database average for normal population.
[0035] Figure 9 is a table setting forth organisms identified via the method of the invention from a dietary supplement mixed culture.
[0036] Figure 10 is a table setting forth the classification of unique species of various microbes stored in the database of the invention.
[0037] Figure 11 illustrates example demographic information from an individual in one embodiment of the invention. [0038] Figure 12 illustrates example organisms detected related to seafood in one embodiment of the invention.
[0039] Figure 13 illustrates example organisms detected related to mammalian meats in one embodiment of the invention.
[0040] Figure 14 illustrates example organisms detected related to grains in one embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0041] The present invention provides a universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample. The types of microbes include: gram-positive bacteria, gram-positive bacterial spores, gram negative bacteria, archaea, protozoa, helminths, algae, fungi, fungal spores, viruses, viroids, bacteriophages, and rotifers. In some embodiments, the diverse population is a plurality of different microbes of the same type, e.g., gram-positive bacteria. In some embodiments, the diverse population is a plurality of different types of microbes, e.g., bacteria (gram-positive bacteria, gram-positive bacterial spores and/or gram-negative), fungi, viruses, and bacteriophages.
[0042] Because different types of microbes have different compositions and mechanisms to protect their own genetic material it is often difficult to extract the genetic material from one type of microbe without compromising the ability to also extract the genetic material of another type of microbe in the same biological sample. The present invention, however, allows the extraction of genetic material from different types of microbes in a sample without sacrificing the amount of genetic material that can be obtained from one type of microbe by extracting the genetic material of another type of microbe in the same sample. According to the present invention, the sample comprising the microbes may be a biological sample, environmental sample, an artificially created sample (e.g., a laboratory test or control sample, a sample of a probiotic composition or supplement, etc.), or the like. Examples of biological samples include tissue samples, blood samples, plasma samples, cerebrospinal fluid samples, urine samples, fecal samples, samples of material obtained from the digestive tract, biological secretions (e.g., semen, vaginal secretions, breast milk, tears, saliva, etc.), and the like. Solid samples may be liquefied or mixed with a solution, and then genetic material of the microbes present in the liquefied sample, mixture, or solution obtained from the mixture may be extracted in accordance with the present invention. The extracted genetic material may be subjected to further processing and analysis such as purification, amplification, and sequencing.
[0043] In some embodiments, the extracted genetic material is subjected to metagenomics analysis to, for example, identify the one or more types of microbes in the sample from which the genetic material was extracted. In additional embodiments, full whole genome shotgun sequencing can be performed on prepared extracted nucleic acid material from human fecal samples. Preparations include nucleic acid clean up reactions to remove organic solvents, impurities, salts, phenols, and other process inhibiting contaminants. Additional preparations include nucleic acid library prep from each sample where the gDNA is subject to modifications and/or amplifications to prep the sample for sequencing on a sequencing platform such as massively parallel sequencing by synthesis, nanopore, long read, and/or CMOS electronic, sequencing methods.
[0044] As disclosed herein, the inventive method allows the successful extraction of genetic material from one or more different types of microbes present in the same sample by subjecting the microbes to three different compositions in a particular order. The method according to the present invention comprises first lysing any gram-negative bacteria present in the sample, which is followed by digesting the polysaccharide component of the cell walls of any yeast and bacteria present in the sample, and then disrupting any cell walls that are intact after the second step with a chaotropic agent.
[0045] Briefly, in an embodiment, the first step comprises mixing the sample with a first lysis solution comprising a detergent (e.g., sodium dodecyl sulfate (SDS)) and a chelator (e.g., ethylenediaminetetraacetic acid (EDTA)) to lyse any gram-negative bacteria present in the sample. The first lysis solution may further include one or more buffers (e.g. , Tris), one or more mild detergents (e.g. , Triton™ X-100), and/or one or more proteases (e.g., proteinase K). [0046] After the first step, the sample is mixed with a second lysis solution comprising a lysozyme to digest the polysaccharide component of any yeast and bacterial cell walls present in the mixture. Because lysozyme may inhibit the activity of the first lysis solution, it is important that contact of the sample with the second lysis solution occurs after treating the sample with the first lysis solution.
[0047] After treatment with the second lysis solution, a third lysis solution comprising a chaotropic agent (e.g., urea, lithium acetate, guanidine hydrochloride, and the like) is added to the mixture to disrupt any cell walls that are not digested by the second lysis solution. The third lysis solution may include a detergent such as SDS.
[0048] In some embodiments, both the first lysis solution and the third lysis solution comprise SDS at a working concentration of between 1-10% w/v. In some embodiments, after treatment with the third lysis solution, the mixture is further treated with a fourth lysis solution comprising a chaotropic agent (e.g., urea, lithium acetate, guanidine hydrochloride, and the like) and Proteinase K. In some embodiments where the chaotropic agent of the third lysis solution is lithium acetate, the mixture is then subjected to heat shock treatment and may then be treated with the fourth lysis solution.
[0049] In certain aspects, the following disclosure describes a universal method for using stool samples for DNA extraction and determination of food consumption based on food DNA sequence from a database of meats, plants, fruits, vegetables, and/or microbes contained with these organisms. Disclosed herein are methods of extracting genetic material from a diverse population of one or more types of cells or cell components in a sample and determining the consumed food and nutritional breakdown for the
improvement of health and prevention of disease.
[0050] In some embodiments, biological secretions (e.g., semen, vaginal secretions, breast milk, tears, saliva, blood, urine, and the like) are obtained from the digestive tract, and the like. Solid samples may be liquefied or mixed with a solution, and then genetic material of any food item containing genetic material, such as plant based (seedlings, leaves, cotyledons, seeds, endosperm, tissue culture callus, roots, and the like), animal based, fungi based, or protista based foods in the liquefied sample, mixture, or solution obtained from the mixture may be extracted in accordance with the present invention or other standard nucleic acid extraction protocols known in the art. In some embodiments, the extracted genetic material may be subjected to further processing and analysis, such as purification, amplification, and sequencing. In some embodiments, the extracted genetic material is subjected to metagenomics analysis to, for example, identify the one or more types of organisms in the sample from which the genetic material was extracted.
[0051] In some embodiments the database that the metagenomic analysis will utilize has been customized for a specific purpose of identifying and taxonomically assigning, within the appropriate phylogeny, the nucleic acids with relative abundances of organisms or components of organisms ingested by humans or other animals. In some embodiments and additional data table or database may be used as a lookup of the relative abundances of organisms to determine macronutrient content of an organism’s gut sample as a representation of their diet. In some embodiments this macronutrient breakdown may include fats, carbohydrates, proteins, vitamins minerals, and subcomponents of any macronutrients.
[0052] As disclosed herein, the inventive method allows the successful extraction of genetic material from one or more different types of organisms, one or more of an organism’s cells, or cellular matrices or organelles present in the same sample by subjecting the sample to isolation, purification, or other methods for capturing nucleic acids. The method according to the present invention comprises lysing or disrupting any food cells in the sample, including but not limited to any cell walls and cell membranes, digesting the polysaccharide or lignin component of any cell walls or membranes of any fungi, plant, mammalian, or protista cells present in the sample, and disrupting any cell walls that are intact after the digestion step with a chaotropic agent.
[0053] The present invention includes a step to physically disrupt the cell wall or membranes of food cells by liquid nitrogen flash freezing and immediate mechanical disruption or grinding to break down cell walls and keep harmful cell enzyme inactivated prior to chemical lysis. The present invention includes a step comprising mixing the sample with a first lysis solution comprising a detergent ( e.g ., sodium dodecyl sulfate (SDS)) and a chelator (e.g., ethylenediaminetetraacetic acid (EDTA)) to lyse any animal cells present in the sample. The first lysis solution may further include one or more buffers (e.g., Tris), one or more mild detergents (e.g., Triton™ X-100,
Cetyltrimethylammonium bromide), and/or one or more proteases (e.g., proteinase K). In particular embodiments, the first lysis solution comprises SDS at a working concentration 1-10% w/v. The present invention includes a step comprising mixing the sample with a second lysis solution comprising a chaotropic agent (e.g., urea, lithium acetate, guanidine hydrochloride, and the like). The second lysis solution may include a detergent, such as SDS. In particular example embodiments, the first and second lysis solutions may be added in any particular order.
[0054] In some embodiments, the present invention may include a step comprising mixing the sample with a third lysis solution comprising a lysozyme to digest the polysaccharide component of any fungi or bacteria cell walls present in the mixture. In some embodiments, the mixture may be further treated with a fourth lysis solution comprising a chaotropic agent (e.g., urea, lithium acetate, guanidine hydrochloride, and the like) and Proteinase K. In some embodiments where the chaotropic agent of the fourth lysis solution is lithium acetate, the mixture may then be subjected to heat shock treatment and may then be treated with the fourth lysis solution. In particular example embodiments, the third and/or fourth solution may be added to the mixture at any point to disrupt any cell walls that are not digested by any previous lysis solution.
[0055] In some embodiments, if the sample has or is suspected of having bacterial and/or fungal spores, the sample may be subjected to a pretreatment step that induces germination of the cell walls of the spores before contact with the first lysis solution. The pretreatment step may comprise mixing the sample with a chemical such as a mild detergent, e.g., Tween-80, to induce germination or cultivating the sample under conditions (e.g., temperature) that induce germination. In some embodiments, where germination is induced with a chemical, the chemical is preferably one that does not inhibit, reduce, or modify the activity or effectiveness of the first, second, and third lysis solutions. [0056] In some embodiments, the method according to the present invention may further include one or more mechanical treatment steps that cause physical lysis by mechanical methods including sonication, bead mixing, bead mill homogenization, pressurization, microfluidization, and the like. In some embodiments, a mechanical treatment step is performed before subjecting the sample to the first lysis solution.
[0057] In embodiments, the method according to the present invention is capable of extracting nucleic acid molecules from a variety of microbes including yeast (i.e., Saccharomyces spp.), gram-negative bacteria (e.g., Acinetobacter spp.), gram-positive bacteria (e.g. , Bifidobacterium spp.), viruses (e.g., Sclerotinia spp.), spores (Bacillus spp.) Helminths (tapeworm Echinococcus spp.), Protozoa (Sarcodina - the ameba, e.g., Entamoeba) and phages (e.g., Lactobacillus phages).
[0058] In embodiments, the method according to the present invention is capable of extracting nucleic acid molecules from a variety of organisms including fungi (i.e., Saccharomyces spp.), animal cells (Bos taurus), plants (e.g., Hordeum vulgare).
[0059] The following examples are intended to illustrate but not to limit the invention.
EXTRACTION METHOD A
[0060] A range of lOmg to 5000mg of sample were added to a sterile 2 milliliters (mL) micro centrifuge tube. Bead beating may optionally be performed by adding 400 microliters (pL) of bead pure mixture and vortexing for about 30 seconds at 8000 rpm. If, however, high-molecular weight nucleic acids, e.g. , genomic DNA, are desired to be obtained, bead beating is preferably avoided.
First Lysis Solution Treatment Step
[0061] To lyse any gram-negative bacteria in the sample, the sample was subjected to a First Lysis Solution by adding about 400 pL of Digestion Buffer (1% w/v SDS, 25 mM Tris HC1, 2.5 mM EDTA, 1% Triton™ X-100, pH 8) and about 20 pL of Proteinase K to the sample and gently mixed. The mixture was then incubated for about 30 minutes at 55°C. Second Lysis Solution Treatment Step
[0062] To lyse any gram-positive bacteria in the sample, a Second Lysis Solution comprising a glucoside hydrolase (“lysozyme”) was added to the mixture obtained from the First Lysis Solution Treatment Step to give a final lysozyme concentration of 1 mg/mL and a pH of about 8.0. Suitable glucoside hydrolases may be obtained from a variety of sources including egg whites, tears, or mucus or saliva of various animals. The mixture was then incubated for a period of about 1 to 24 hours at 37°C.
Third Lysis Solution Treatment Step
[0063] To lyse any fungal and/or yeast cells present in the sample, a Third Lysis Solution comprising 1M lithium acetate in distilled sterile H20 and 5% w/v SDS was added to obtain about a 1:5 dilution of the mixture resulting from the Second Lysis Solution Treatment Step. The treated mixture was incubated for 15 minutes at 70°C followed by heat shock at 95 °C for one minute and then brought to room temperature by placing in a 22°C water bath.
[0064] As the Second and Third Lysis Solution Treatment Steps are sufficient to lyse the outer coats of bacteriophages and viruses, no additional step is needed for extracting the genetic material from bacteriophages and viruses that may be present in the sample.
EXTRACTION METHOD B
Pre-Lysis Treatment Step
[0065] 100-200 mg of sample were added to a sterile 2 milliliters (mL) micro centrifuge tube. Add 500mL of liquid nitrogen and allow sample to freeze for 30sec.
Then using a pellet pestle or saw-tooth generator probe, grind the sample thoroughly before continuing to the next step.
First Lysis Solution Treatment Step
[0066] To lyse any animal, fungi, and protista food cell membranes in the sample, the sample was subjected to a First Lysis Solution by adding about 400 pL of Digestion Buffer (1% w/v SDS, 25 mM Tris HC1, 2.5 mM EDTA, 1% Triton™ X-100, 1.2M NaCl pH 8) and about 20 pL of Proteinase K to the sample and gently mixed. The mixture was then incubated for about 30 minutes at 55°C. Second Lysis Solution Treatment Step
[0067] To lyse any fungal and/or yeast cells present in the sample, a second Lysis Solution comprising 1M lithium acetate in distilled sterile H20 and 5% w/v SDS was added to obtain about a 1:5 dilution of the mixture resulting from the first lysis solution treatment step. The treated mixture was incubated for 15 minutes at 70°C followed by heat shock at 95°C for one minute and then brought to room temperature by placing in a 22°C water bath.
NUCLEIC ACID PURIFICATION
[0068] In an embodiment, the genetic material extracted from the lysed microbes, i.e., the nucleic acid molecules present in the mixture after being subjected to the First, Second, and Third Lysis Solution Treatment Steps were then purified to DNA and RNA purification by splitting the mixture into two microcentifuge tubes. DNA was extracted from one tube by adding about 20 pL RNAse A and incubating for 5 minutes at room temperature. The mixture was run through a biopolymer tissue homogenizer column. If bead beating was previously performed, subjecting the mixture to the tissue homogenizer column is preferably avoided.
[0069] The eluate was then centrifuged at 1000 g for 5 minutes. The supernatant was treated with about 400 pL of DNA Lysis Solution (Guanidine HC1, Tris-EDTA, and 70% EtOH) and about 20 pL of Proteinase K, mixed, and then incubated at 55°C for 10 minutes. Then EtOH at -22°C was added and the mixture was mixed by inverting. The mixture may be subjected to one or more additional DNA extraction and purification methods known in the art.
[0070] RNA was extracted from the second microcentrifuge tube by running the mixture through a biopolymer tissue homogenizer column. Again, if bead beating was previously performed, subjecting the mixture to the tissue homogenizer column is preferably avoided. The eluate was then centrifuged at 1000 g for 5 minutes. The supernatant was treated with about 40 pL DNase I (1 U) in a solution of 25 mM MgCl2 and then incubated at 37° for about 15 minutes. Then the mixture was subjected to acid guanidinium thiocyanate-phenol-chloroform extraction. The mixture may be subjected to one or more additional RNA extraction and purification methods known in the art.
[0071] In an embodiment, the genetic material extracted from the lysed microbes, i.e., the nucleic acid molecules present in the mixture after being subjected to the First,
Second, and pre lysis Treatment Steps were then purified to DNA and RNA purification by splitting the mixture into two microcentifuge tubes. DNA was extracted from one tube by adding about 20 ?L RNAse A and incubating for 5 minutes at room temperature.
[0072] The eluent was then centrifuged at 1000 g for 5 minutes. The supernatant was treated with about 400 mL of DNA Lysis Solution (Guanidine HC1, Tris-EDTA, and 70% EtOH) and about 20 pL of Proteinase K, mixed, and then incubated at 55°C for 10 minutes. Then EtOH at -22°C was added and the mixture was mixed by inverting. The mixture may be subjected to one or more additional DNA extraction and purification methods known in the art.
[0073] RNA was extracted from the second microcentrifuge tube. The eluent was then centrifuged at 1000 g for 5 minutes. The supernatant was treated with about 40 pL DNase I (1 U) in a solution of 25 mM MgCl2 and then incubated at 37° for about 15 minutes. Then the mixture was subjected to acid guanidinium thiocyanate-phenol-chloroform extraction. The mixture may be subjected to one or more additional RNA extraction and purification methods known in the art.
[0074] In some embodiments, where the quantitative expression of RNA molecules is desired, the use of an RNA stabilization buffer and bead beating is preferred to ensure release and limited degradation of RNA nucleic acid molecules.
[0075] In some embodiments where extraction of high molecular weight nucleic acid molecules is desired, bead beating and tissue homogenization column are avoided and phenol-chloroform-alcohol extraction is performed instead of silica column based extraction. In some embodiments a magnetic bead based nucleic acid purification may be performed. To remove selective molecular weights of nucleic acids and purify the sample, an agarose gel based purification and enrichment may be performed. METAGENOMICS ANALYSIS
[0076] In an embodiment, the extracted and purified genetic material was prepared for sequencing using Illumina index adaptors and checked for sizing and quantity. Low cycle PCR was performed between 1-20 cycles for any input less then 50ng of DNA, otherwise PCR-Free methods of library prep can be utilized for 50ng of nucleic acid or greater. Gel purification was performed using the Qiagen Gel Purification Kit™ (Qiagen, Frederick, MD). Clean PCR products were quantified using the Qubit™ 2.0 Fluorometer (Life Technologies, Carlsbad, CA). Samples were combined in equimolar amounts. Library pools were size verified using the Fragment Analyzer™ CE (Advanced Analytical Technologies Inc., Ames IA) and quantified using the Qubit™ High Sensitivity dsDNA kit (Life Technologies, Carlsbad, CA). After dilution, a 1% to 10% spike of PhiX™ V3 library control (Illumina, San Diego CA), pools were denatured for 5 minutes in an equal volume of 0.1 N NaOH then further diluted in Illumina’s HT1 buffer. The denatured and PhiX™-spiked pool was loaded on an Illumina Next Generation™ Sequencer with Illumina sequencing primers and set for between 50 - 550 base, paired-end or single reads.
[0077] A range from 1000 or greater reads of sequencing for short insert methods can be used for this method. Large insert methods such as Pac Bio™, Nanopore™, or other next gene sequencing methods can use <1000 sequencing reads. Bioinformatics quality filtering was performed before taxonomy assignment. Quality trimming of raw sequencing files may include removal of sequencing adaptors or indexes; trimming 3’ or 5’ end of reads based on quality scores (Q20>), basepairs of end, or signal intensity;
removal of reads based on quality scores, GC content, or non-aligned basepairs; removal of overlapping reads at set number of base pairs. Alignment of processed sequencing files was done using a custom microbial genome database consisting of sequences from refseq™, Greengeens™, HMP™, NCBI™, PATRIC™, or other public/private data repositories or in-house data sets. This database may be used as full genome alignment scaffold, k-mer fragment alignment, or other schemes practiced in the art of metagenomics and bioinformatics. Based off the number of sequencing reads/fragments that match the database genomes we assign a taxonomic identity that is common or unique to the organism. This identifier can be a barcode, nucleotide sequence, or some other computational tag that will associate the matching sequencing read to an organism or strain within a taxonomic group. Some identifiers will be of higher order and would identify domain, kingdom, phylum, class, order, family, or genus of the organism.
[0078] The present invention is able to identify the organism at the lowest order of strain within a species.
[0079] In embodiments the invention includes identification and/or analysis of one or more bacteria contained within our database (Figure 10). Some selected examples are Bacillus clausii, Bifidobacterium animalis, Pediococcus acidilactici, Acinetobacter indicus, Lactobacillus salivarius, Acinetobacter, Bacillus amyloliquefaciens, Lactobacillus helveticus, Bacillus subtilis, Lactobacillus plantarum, Bifidobacterium longum subsp infantis, Enterococcus hirae, Lactobacillus delbrueckii subsp bulgaricus, Enterococcus, Lactobacillus rhamnosus, Lactococcus lactis, Pseudomonas stutzeri, Lactobacillus acidophilus, Klebsiella and Enterobacter cloacae strain.
[0080] In embodiments the invention includes identification and/or analysis of one or more yeast contained within our database (Figure 10). Some selected examples are Saccharomyces sp. Boulardii, Saccharomyces kudriavzevii, Saccharomyces pastorianus and Saccharomyces cerevisiae.
[0081] In embodiments the invention includes identification and/or analysis of one or more phage or viruses contained within our database (Figure 10). Some selected examples are Bacillus phage phi29, Enterobacteria phage HK022, Lactobacillus phage A2,
Escherichia phage HK639, Phage cdtl, Sclerotinia sclerotiorum partitivirus S segment 2, Burkholderia phage BcepMu, Lactococcus prophage bIL3l l, Enterococcus phage phiFL4A and Streptococcus phage SM1.
[0082] Future database improvements will increase or refine the organisms that can be detected by this method.
[0083] In an embodiment, the extracted and purified genetic material was prepared for sequencing using Illumina index adaptors and checked for sizing and quantity. Low cycle PCR may be performed or standard PCR-free methods. Gel purification was performed using the Qiagen Gel Purification Kit™ (Qiagen, Frederick, MD). Clean PCR products were quantified using the Qubit™ 2.0 Fluorometer (Life Technologies, Carlsbad, CA). Samples were combined in equimolar amounts. Library pools were size verified using the Fragment Analyzer™ CE (Advanced Analytical Technologies Inc., Ames IA) and quantified using the Qubit™ High Sensitivity dsDNA kit (Life Technologies, Carlsbad, CA). After dilution, a 10% spike of PhiX™ V3 library control (Illumina, San Diego CA), pools were denatured for 5 minutes in an equal volume of 0.1 N NaOH then further diluted in Illumina’ s HT1 buffer. The denatured and PhiX™-spiked pool was loaded on an Illumina™ Next Generation Sequencer with Illumina sequencing primers and set for 150 base, paired-end reads. Bioinformatics quality filtering was performed before taxonomy assignment.
[0084] Using Table 1, we determine that the individual has consumed the following:
Table 1
MONITORING MACRONUTRIENT INTAKE AND DIETARY GUIDANCE
[0085] In some embodiments, the present invention may be used to monitor food intake nutrition, quantity, and quality in subjects. For example, prior to treatment with a probiotic, a sample obtained from the digestive tract of a subject may be obtained and the genetic material of the food organisms therein extracted as disclosed herein and subjected to metagenomics analysis. A customized food specific database comprised of whole, partial, or incomplete reference genomes, RNA’s, or nucleic acid components or fragments will be utilized by bioinformatics tools to identify, quantify, and taxonomically assign the nucleic acid information from sequencing. The output of which is exemplified in Table 2 below and contains identification of the species of organisms or cells of organisms that were in the gut.
Table 2
[0086] Then during and/or after treatment with a given probiotic, a second sample may be obtained from the digestive tract of the subject and the genetic material of the microbes in the second sample extracted and subjected to metagenomics analysis, the results of which are compared to the results of the metagenomics analysis of the first sample. Then, based on the comparative results, the food organism results maybe compared to the microbiome organism results to understand the microbes associated with food and an overall food quality assessment. In some embodiments, this may provide information to the species of organism that an individual is ingesting through their food source and any genetic modifications, mutations, or irregularities to the species either by selection or direct modification.
[0087] In some embodiments, the second sample of microbiome analysis will enable detection of microbes common to the food organisms and provide information on the health of the food organism. In some embodiments, the human consumed food may be part of the common food source such as chickens, cows, pig, or even plants, and protista where the species will be identified and match to microbes that are specific to them. In particular example embodiments, a chicken species that may have a chicken sarcoma virus may be detected in the second gut microbiome sample analyzed. In some embodiments, the health of a food organism ingested can be determined by the presence or absence of microbes that negatively impact the health of the host organism. In particular example embodiments, a disease, such as Equid herpesvirus 2, which is a respiratory disease in horses, may be detected that may impact the health of a host organism.
[0088] In some embodiments, the present invention may be used to screen the gut microbiome of a given subject and then custom tailor a food or diet regime that would enable them to improve the quality of their health for aspects of nutritional balance, improved microbial gut profile, and absorption of nutrients.
MONITORING PROBIOTIC TREATMENT
[0089] In some embodiments, the present invention may be used to monitor probiotic treatment in subjects. For example, prior to treatment with a probiotic, a sample obtained from the digestive tract of a subject may be obtained and the genetic material of the microbes therein extracted as disclosed herein and subjected to metagenomics analysis. Then during and/or after treatment with a given probiotic, a second sample may be obtained from the digestive tract of the subject and the genetic material of the microbes in the second sample extracted as disclosed herein and subjected to metagenomics analysis, the results of which are compared to the results of the metagenomics analysis of the first sample. Then, based on the comparative results, the probiotic treatment of the subject may be modified to obtain a desired population of microbes in the gut of the subject. For example, a probiotic that comprises a microbe whose amount is desired to be increased in the gut of the subject may be administered to the subject.
[0090] In some embodiments, the fecal sample may be mixed or cultured for determination of metabolomic of microbial fecal community. Metabolomic profile can then be used to determine probiotic strains that would benefit the individual. Examples of metabolomic profiles include those affecting energy metabolism, nutrient utilization, insulin resistance, adiposity, dyslipidemia, inflammation, short-chain fatty acids, organic acids, cytokines, neurotransmitters chemicals or phenotype and may include other metabolomic markers.
MICROBIOME SCREENING AND PROBIOTIC SELECTION
[0091] The present invention has been successfully used to determine the microbe content of a variety of commercially available probiotics. Additionally, the methods of the present invention are used to determine the microbe content of various probiotics and the microbiome content in the gut of the subject. In one embodiment, based on the microbiome content in the gut of the subject and any desired changes thereto, one may select one or more probiotics that contain the microbes that are desired to be increased and/or maintained in the subject’s microbiome health. In one embodiment, based on the microbiome content in the gut of the subject and any desired changes thereto, one may select one or more probiotics that contain the microbes that are desired to be increased and/or maintained in the subject’s gut balance in relation to the macronutrient content they are getting from their food source as recorded by survey information from the individual directly or by the present invention of gut organism nucleic acid analysis.
[0092] Where the microbiome represents a full picture of their microbiota and the organisms contained in them from bacteria, fungi, viruses, phages, and parasites. For example, using the methods described herein, a subject’s gut microbiome is determined to contain 25% A and 75% B, Probiotic 1 is determined to contain 75% A and 25% B and Probiotic 2 is determined to contain 25% A and 75% B. If the subject’s gut microbiome is desired to be maintained, one would select Probiotic 2 for administering to the subject. However, if the amounts of A and B in the subject’s gut are desired to be 50/50, one may select both Probiotics 1 and 2 to be administered to the subject. Alternatively, one may select Probiotic 1 to be administered to the subject until the amounts of A and B in the subject’s gut reaches 50/50. In some embodiments, one may custom tailor a probiotic formulation, e.g., containing equal, varying, or diverse amounts of A and B or other probiotic strains, for administration to the subject. Calculation models utilizing relative abundance of the microbes present in an individual’s gut will help determine the type, dose, and cocktail of microbes to include in the probotic. For example, if it is determined that organism A is reduced or absent compared to the general population or previous microbiome analysis, then we would provide probiotic or prebiotics that would increase the concentration of organism A. This prebiotic or probiotic may be the exact organism A or another organism what would support the grown of organism A. The dose given would consider relative abundance of organisms in the individual, performance characteristics of the prebioti c/probiotic such as growth rate, compatibility, receptors or receptor density, genes, or expression patterns, or metabolomic products.
[0093] Custom tailored probiotics may not be in equal amounts but are formulated based on relative abundance detected from the individual gut/fecal sample. These formulations are geared to modulate the microbiome to a healthy status. The healthy status of a microbiome is determined by the use of existing aggregate private and public databases such as metaHIT™, Human Microbiome Project™, American Gut Project™, and the like. The healthy status may also be determined individually when a person has no known issues and is in good health, from a blood biomarker checkup perspective, and then has their full microbiome profile completed. After one or several microbiome signatures have been completed then the average of some/all of the microbes found can be understood for that individual and variances from that average can be accessed to determine if they are in dysbiosis. Microbiome profiles can be aggregated into groups that are then assigned a barcode for rapid bioinformatic assignment. Groups can be created by single or multiple phenotypic, diagnostic, or demographic information related to the individual from which the sample was collected from. A unique group can be determined from another group by using statistical models such as linear distance calculations, diversity values, classifiers such as C4.5 decision tree, or principal component analysis an comparing to an aggregate known population such as“normals” defined by the Human Microbiome Project or American Gut Project.
[0094] Thus, in some embodiments, the present invention may be used to screen the gut microbiome of a given subject and then custom tailor a probiotic regimen to the given subject based on the subject’s gut microbiome. TREATMENT OF DYSBIOSIS
[0095] In some embodiments, the present invention may be used to restore a subject’s gut flora and/or fauna to homeostasis after an event that has caused a shift in the subject’s microbiota from balanced microbiome to one that is causing or may be causing negative side effects, disorders, and/or disease. Health conditions can include but is not limited to various conditions, from acne and allergies, through gastrointestinal ailments, obesity and cancer. One example of such a dysbiosis is in the case of the onset of obesity. Several strains of microbes in the guts of subjects have been shown to be associated with obesity or weight management issues suffered by the subjects. See, e.g., Ley, et al. (2005) PNAS USA 102: 11070-11075. For example, in obese animal and human subjects, the ratio of Bacterides to Firmicutes phyla microbes plays an important role in metabolic
performance. See, e.g., Tumbaugh, et al. (2012) PLOS ONE 7:e4l079. Some gut microbes known to be associated with obesity and weight management issues include Bacteroides uniformis, Bacteroides pectinophilus, Roseburia inulinivorans,
Methanobrevibacter smithii, and Bifidobacterium animalis.
[0096] Thus, in some embodiments, a ratio of a first given microbe to a second given microbe in the gut of a subject is determined using the methods described herein and then if the ratio is undesired or abnormal, the subject is administered a treatment to modify the ratio to be a desired ratio. In some embodiments, the amount of a first given microbe in a gut of a subject relative to the total amount of all the microbes in the gut of the subject is determined using the methods described herein and then if the relative amount of the first given microbe is undesired or abnormal, the subject is administered a treatment to modify the amount to be a desired amount. Re-testing of their gut microbiome maybe used to determine well they are adhering to the macronutrient and food guidance. Such treatments include administering to the subject: a probiotic containing one or more microbes whose amounts are desired to be increased in the gut of the subject, an antimicrobial agent, e.g., an antibiotic, an antifungal, an antiviral, etc., to kill or slow the growth of a microbe or microbes whose amounts are desired to be decreased in the gut of the subject, a diet and/or a dietary supplement that supports the growth or maintenance of a healthy gut
microbiome, e.g., a prebiotic, magnesium, fish oil, L-glutamine, vitamin D, etc., and the like. For example, Million, et al. ((2005) Int. J. Obes. 36:817-825) indicate that the gut microbiota of obese subjects are enriched in Lactobacillus reuteri and depleted in
Bifidobacterium animalis and Methanobrevibacter smithii. Therefore, after determining the amounts of Lactobacillus reuteri, Bifidobacterium animalis, and Methanobrevibacter smithii in the gut of a subject using the methods described herein and finding that the amounts are typical or indicative of obesity-associated gut microbiota, the subject may be administered a probiotic containing Bifidobacterium animalis and Methanobrevibacter smithii and relatively little to no amount of Lactobacillus reuteri. In embodiments, the gut microbiota of obese subjects would benefit from foods with flavonoids, polyphenols, and short chain fatty acids.
SCORING OF YOUR MICROBIOME
[0097] Scoring of the microbiome signature overall uses a similar decision tree, algorithm, artificial intelligence, script, or logic tree as represented in Table 3. This system would enable a score that helps a user understand how healthy their gut microbiome is and if they need to take action on a few or many challenges found.
Challenges can include but not limited to, identification of known pathogenic organisms, count and identification of opportunistic pathogens, latent organisms known to cause pathogenic affects when given opportunity, lack of support for good microbial environment but their composition or lack of key strains, overall diversity and count of unique organisms found in top 10 and or organisms with greater than 0.1% prevalence.
[0098] Diversity cut offs were determined from an aggregate of sample analysis and a cutoff is determined at x relative abundance. For example, if x= 0.1% then 352 unique organisms make up the average healthy profile. Then apply standard deviations around this number and using a Gaussian distribution and percentile under the curve analysis we can score how close to the average diversity number from our database average. The lower your diversity number and further away from the average you are then the less that microbiome would score. The higher the number and the greater your diversity is the more that microbiome would score. This type of scoring categories along with probiotic score will determine a number and visual metered score for the custom to understand how healthy their microbiome is. An example of the graphic visualization is included below. Where low is equal to low microbiome quality and high is equal to high microbiome quality and score. Low - > 30 out of 100, Med > 65 out of 100, High = 65 or greater out of 100.
[0099] An example of a scoring and probiotic formula algorithm is included in Table 3 below. Table 3 can be represented as decision tree, algorithm, artificial intelligence, script, or logic tree. The function of such decision tree, algorithm, artificial intelligence, script, or logic tree would be output a score of wellness of the individual microbiome as related to probiotics detected and to provide formulation and dosing recommendations for probiotic usage.
[0100] An exemplary list of potential categories into which microbes may be grouped is set forth in Table 4 below.
Table 3
Example Decision Table for Probiotic Scoring and Formulation.
Includes the Utilization of a Probiotic Strain Database, Metagenomic Analysis Database, and Literature Curation Database
Table 4 3
O
Potential Categories from which to Create Groups O
n H in o o C/I
3
o
O
n
H
in o o
3
o
n
H
in o o
3
o
O
n
H
in
o o
[0101] All scientific and technical terms used in this application have meanings commonly used in the art unless otherwise specified.
[0102] As used herein, the term "subject" includes humans and non-human animals. The term "non-human animal" includes all vertebrates, e.g., mammals and non-mammals, such as non-human primates, horses, sheep, dogs, cows, pigs, chickens, and other veterinary subjects and test animals.
[0103] The use of the singular can include the plural unless specifically stated otherwise. As used in the specification and the appended claims, the singular forms“a”, “an”, and“the” can include plural referents unless the context clearly dictates otherwise. The use of“or” can mean“and/or” unless stated otherwise. As used herein,“and/or” means“and” or“or”. For example,“A and/or B” means“A, B, or both A and B” and“A, B, C, and/or D” means“A, B, C, D, or a combination thereof’ and said“combination thereof’ means any subset of A, B, C, and D, for example, a single member subset (e.g. , A or B or C or D), a two-member subset (e.g., A and B; A and C; etc.), or a three-member subset (e.g., A, B, and C; or A, B, and D; etc.), or all four members (e.g., A, B, C, and D).
[0104] As used herein, the terms“sample” and“biological sample” refer to any sample suitable for the methods provided by the present invention. A sample of cells can be any sample, including, for example, gut or fecal sample obtained by non-invasive or invasive techniques such as biopsy of a subject. In one embodiment, the term“sample” refers to any preparation derived from fecal matter or gut tissue of a subject. For example, a sample of cells obtained using the non-invasive method described herein can be used to isolate nucleic acid molecules or proteins for the methods of the present invention.
[0105] In embodiments, analysis can be of any nucleic acid, including DNA, RNA, cDNA, miRNA, mtDNA, single or double-stranded. This nucleic acid can be of any length, as short as oligos of about 5 bp to as long a megabase or even longer. As used herein, the term“nucleic acid molecule” means DNA, RNA, single-stranded, double- stranded or triple stranded and any chemical modifications thereof. Virtually any modification of the nucleic acid is contemplated. A“nucleic acid molecule” can be of almost any length, from 10, 20, 30, 40, 50, 60, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10,000, 15,000, 20,000, 30,000, 40,000, 50,000, 75,000, 100,000,
150,000, 200,000, 500,000, 1,000,000, 1,500,000, 2,000,000, 5,000,000 or even more bases in length, up to a full-length chromosomal DNA molecule. For methods that analyze expression of a gene, the nucleic acid isolated from a sample is typically RNA.
[0106] A single-stranded nucleic acid molecule is“complementary” to another single- stranded nucleic acid molecule when it can base-pair (hybridize) with all or a portion of the other nucleic acid molecule to form a double helix (double-stranded nucleic acid molecule), based on the ability of guanine (G) to base pair with cytosine (C) and adenine (A) to base pair with thymine (T) or uridine (U). For example, the nucleotide sequence 5’- TATAC-3’ is complementary to the nucleotide sequence 5’-GTATA-3\
[0107] As used herein“hybridization” refers to the process by which a nucleic acid strand joins with a complementary strand through base pairing. Hybridization reactions can be sensitive and selective so that a particular sequence of interest can be identified even in samples in which it is present at low concentrations. In an in vitro situation, suitably stringent conditions can be defined by, for example, the concentrations of salt or formamide in the prehybridization and hybridization solutions, or by the hybridization temperature, and are well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature. For example, hybridization under high stringency conditions could occur in about 50% formamide at about 37°C to 42°C. Hybridization could occur under reduced stringency conditions in about 35% to 25% formamide at about 30°C to 35°C. In particular, hybridization could occur under high stringency conditions at 42°C in 50% formamide, 5X SSPE, 0.3% SDS, and 200 mg/ml sheared and denatured salmon sperm DNA. Hybridization could occur under reduced stringency conditions as described above, but in 35% formamide at a reduced temperature of 35°C. The temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly. Variations on the above ranges and conditions are well known in the art.
[0108] As used herein, the term“microbiome” refers to microorganisms, including bacteria, viruses, and fungi, archaea, protozoa, amoeba, or helminths that inhabit the gut of the subject.
[0109] As used herein, the terms microbial, microbe, or microorganism refer to any microscopic organism including prokaryotes or eukaryotes, spores, bacterium, archeaebacterium, fungus, virus, or protist, unicellular or multicellular.
[0110] The present invention is described partly in terms of functional components and various processing steps. Such functional components and processing steps may be realized by any number of components, operations and techniques configured to perform the specified functions and achieve the various results. For example, the present invention may employ various biological samples, biomarkers, elements, materials, computers, data sources, storage systems and media, information gathering techniques and processes, data processing criteria, statistical analyses, regression analyses and the like, which may carry out a variety of functions. In addition, although the invention is described in the medical diagnosis context, the present invention may be practiced in conjunction with any number of applications, environments and data analyses; the systems described herein are merely exemplary applications for the invention.
[0111] Methods for data analysis according to various aspects of the present invention may be implemented in any suitable manner, for example using a computer program operating on the computer system. An exemplary analysis system, according to various aspects of the present invention, may be implemented in conjunction with a computer system, for example a conventional computer system comprising a processor and a random access memory, such as a remotely-accessible application server, network server, personal computer or workstation. The computer system also suitably includes additional memory devices or information storage systems, such as a mass storage system and a user interface, for example a conventional monitor, keyboard and tracking device. The computer system may, however, comprise any suitable computer system and associated equipment and may be configured in any suitable manner. In one embodiment, the computer system comprises a stand-alone system. In another embodiment, the computer system is part of a network of computers including a server and a database.
[0112] The software required for receiving, processing, and analyzing genetic information may be implemented in a single device or implemented in a plurality of devices. The software may be accessible via a network such that storage and processing of information takes place remotely with respect to users. The analysis system according to various aspects of the present invention and its various elements provide functions and operations to facilitate microbiome analysis, such as data gathering, processing, analysis, reporting and/or diagnosis. The present analysis system maintains information relating to microbiomes and samples and facilitates analysis and/or diagnosis. For example, in the present embodiment, the computer system executes the computer program, which may receive, store, search, analyze, and report information relating to the microbiome. The computer program may comprise multiple modules performing various functions or operations, such as a processing module for processing raw data and generating supplemental data and an analysis module for analyzing raw data and supplemental data to generate a models and/or predictions.
[0113] The analysis system may also provide various additional modules and/or individual functions. For example, the analysis system may also include a reporting function, for example to provide information relating to the processing and analysis functions. The analysis system may also provide various administrative and management functions, such as controlling access and performing other administrative functions.
[0114] To the extent necessary to understand or complete the disclosure of the present invention, all publications, patents, and patent applications mentioned herein are expressly incorporated by reference therein to the same extent as though each were individually so incorporated. [0115] Although the invention has been described with reference to the above example, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

Claims (35)

What is claimed is:
1. A method, comprising:
a) mixing a sample with a liquid nitrogen solution;
b) adding a first lysis solution, the first lysis solution comprising a detergent and a chelator; and
c) adding a second lysis solution, the second lysis solution comprising a chaotropic agent.
2. The method of claim 1, wherein the mixing the sample with a liquid nitrogen solution further comprises grinding the sample and the liquid nitrogen mixture.
3. The method of claim 1, wherein the first lysis solution further comprises one or more buffers, one or more mild detergents, and/or one or more proteases.
4. The method of claim 1, wherein the detergent of the first lysis solution comprises SDS.
5. The method of claim 4, wherein the SDS concentration is about 10%.
6. The method of claims 1, wherein the chaotropic agent comprises lithium acetate.
7. The method of claim 6, wherein the mixture of sample, liquid nitrogen, the first lysis solution and the second lysis solution is further subjected to a heat shock treatment.
8. The method of claim 1, wherein the sample is subjected to a pretreatment step before treatment with the first lysis solution, said pretreatment step induces germination of any bacterial spores and/or fungal spores present in the sample.
9. The method of claim 8, wherein the pretreatment step comprises mixing the sample with Tween-80.
10. The method of claim 1, further comprising a mechanical treatment step that causes physical lysis, said mechanical treatment step comprises soni cation, bead mixing, bead mill homogenization, pressurization, microfluidization, or combinations thereof.
11. The method of claim 1, further comprising subjecting any extracted genetic material metagenomics analysis.
12. The method of claim 1, wherein the sample is obtained from the gut of a subject.
13. The method of claim 11, wherein the metagenomics analysis identifies one or more foods that the subject has consumed.
14. The method of claim 11, wherein the metagenomics analysis identifies one or more macronutrients that the subject has consumed.
15. The method of claim 11, further comprising determining a probiotic treatment for the subject based on the metagenomics analysis.
16. The method of claim 11, further comprising determining a dietary guidance for the subject based on the metagenomics analysis.
17. A method of determining food consumption of a subject comprising:
a) extracting genetic material from a stool sample obtained from the subject, said genetic material extracted according to claim 1; and
b) subjecting the genetic material extracted from the first sample to metagenomics analysis to determine the food consumption of the subject.
18. The method of claim 17, further comprising treating the subject with a probiotic or a food stuff based on the analysis of food consumption.
19. The method of claim 17, wherein metagenomic analysis comprises use of a database having genomic data of organisms useful for identification of such organisms.
20. The method of claim 19, wherein the database may be processed as whole genomes, k-mers of various lengths that are common to a higher order and unique to a specific one, or other means of barcoding genomes to match them to sequencing results.
21. The method of claim 17, wherein metagenomic analysis comprises preprocessing of sequencing information selected from removing duplicates, removing adaptor sequencing, removing 5’ or 3’ sequencing to improve the quality of base calling, including only base calls of a particular quality (i.e., Q20 or greater), filtering human reads, creating paired reads or separating them, and limiting overlap of reads.
22. The method of claim 19, wherein metagenomic analysis comprises aligning sequencing information to the database by use of a software or system where the sequencing information may be broken into k-mers of particular length, used as full fragments, be scaffolded and aligned to a large reference genome, or other method to create a report of organisms identified, relative abundance of organism identified, genome size, total fragments aligned, unique fragments aligned at the strain, species, genus, family, order, class, phylum, kingdom, or domain.
23. The method of claim 17, wherein microbiome profiles enable identification of a disease, disorder, or specific signature indicating a dysbiosis where probiotic and/or dietary supplement treatment can be applied to modulate the microbiome to improve the underlying profile.
24. The method of claim 23, wherein a group is created based on demographic, phenotypic, or diagnostic information and a barcode assigned to that group of profiles.
25. The method of claim 24, wherein statistical analysis is used to determine how closely related the individual microbiome profile is to an known group in a database.
26. A method of monitoring a probiotic treatment of a subject which comprises:
a) extracting genetic material from any microbes present in a first sample obtained from the subject, said genetic material extracted according to claim 1 ;
b) subjecting the genetic material extracted from the first sample to metagenomics analysis;
c) treating the subj ect with a probiotic and then extracting genetic material from any microbes present in a second sample obtained from the subject in the same manner as the extraction of genetic material from the first sample; d) performing metagenomics analysis on the extracted genetic material from the second sample; and
e) comparing the results of the metagenomics analysis of the first sample with the metagenomics analysis of the second sample.
27. The method of claim 26, which further comprises modifying the probiotic treatment to obtain a desired microbe population within the subject.
28. The method of claim 26, further comprising analysis of metabolomic markers to determine appropriate probiotic treatment.
29. The method of claim 26, wherein probiotic treatment follows use of an antibiotic, chemotherapy, a pharmaceutical, environmental change, traveling, contaminate digestions, infarction of the intestines or gut, stress, or other effect which disruption of the microbial population can occur.
30. The method of claim 27, wherein modulation of the microbiome is to return an individual to a previous population of microbes of when the individual was known to be healthy.
31. The method of claim 27, wherein modulation of the microbiome by a probiotic and/or a prebiotic is to restore microbiome profile to a normal gut that has been defined either internally by a database or externally by a public database.
32. The method of claim 31, wherein normal is defined as similar to the microbiome profile of a fecal matter repository sample used in fecal matter transplants, but used as a probiotic/prebiotic to restore a dysbiosis.
33. A computing system comprising: a memory; and one or more processors coupled to the memory, the one or more processors configured to perform operations to perform the method of claim 17.
34. A computing system comprising: a memory; and one or more processors coupled to the memory, the one or more processors configured to perform operations to perform the method of claim 26.
35. An automated platform for performing the method of claim 1.
AU2019247693A 2018-04-02 2019-04-02 Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample Pending AU2019247693A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862651620P 2018-04-02 2018-04-02
US62/651,620 2018-04-02
PCT/US2019/025457 WO2019195342A1 (en) 2018-04-02 2019-04-02 Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample

Publications (1)

Publication Number Publication Date
AU2019247693A1 true AU2019247693A1 (en) 2020-11-19

Family

ID=68101118

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019247693A Pending AU2019247693A1 (en) 2018-04-02 2019-04-02 Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample

Country Status (9)

Country Link
JP (2) JP2021520191A (en)
KR (1) KR20200140303A (en)
CN (1) CN112204139A (en)
AU (1) AU2019247693A1 (en)
CA (1) CA3095745A1 (en)
GB (1) GB2587545B (en)
IL (1) IL277682A (en)
SG (1) SG11202009744WA (en)
WO (1) WO2019195342A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186185B (en) * 2020-01-14 2023-05-26 东北林业大学 Method for efficiently enriching host DNA from mammal feces

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU767983B2 (en) * 1999-04-09 2003-11-27 Esoterix Genetic Laboratories, Llc Methods for detecting nucleic acids indicative of cancer
KR20050103085A (en) * 2004-04-24 2005-10-27 한국생명공학연구원 Genomic microarray for detecting lactic acid bacteria and method for diagnosing lactic acid bacteria using it
WO2012043183A1 (en) * 2010-09-28 2012-04-05 オリンパス株式会社 Method for synthesizing target nucleic acid in feces
LU91864B1 (en) * 2011-09-02 2013-03-04 Univ Luxembourg Method and kit for the isolation of genomic DNA, RNA, proteins and metabolites from a single biological sample
US9145553B2 (en) * 2012-06-15 2015-09-29 Ut-Battelle, Llc Method for isolating nucleic acids
WO2014029791A1 (en) * 2012-08-21 2014-02-27 Qiagen Gmbh Method for isolating nucleic acids from a formaldehyde releaser stabilized sample
ITMI20131473A1 (en) * 2013-09-06 2015-03-07 Sofar Spa METHOD OF ASSESSING THE EFFECTS OF A COMPOSITION INCLUDING MICRO-ORGANISMS ON THE INTESTINAL MICROBIOTE
ES2870658T3 (en) * 2014-04-28 2021-10-27 Yeda Res & Dev Microbiome response to agents
EP3209803A4 (en) * 2014-10-21 2018-06-13 Ubiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics
CA3005985A1 (en) * 2015-09-09 2017-03-16 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics 0finfectious disease and other health conditions associated with antibiotic usage
KR20180096586A (en) * 2015-10-19 2018-08-29 더브테일 제노믹스 엘엘씨 Methods for Genome Assembly, Haplotype Paging and Target Independent Nucleic Acid Detection
US10428370B2 (en) * 2016-09-15 2019-10-01 Sun Genomics, Inc. Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample
AU2017328927B2 (en) * 2016-09-15 2024-03-07 Sun Genomics Inc. Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample

Also Published As

Publication number Publication date
JP2024063020A (en) 2024-05-10
KR20200140303A (en) 2020-12-15
GB2587545A (en) 2021-03-31
SG11202009744WA (en) 2020-10-29
CA3095745A1 (en) 2019-10-10
IL277682A (en) 2020-11-30
CN112204139A (en) 2021-01-08
WO2019195342A1 (en) 2019-10-10
GB2587545B (en) 2023-06-14
EP3775197A1 (en) 2021-02-17
GB202017361D0 (en) 2020-12-16
JP2021520191A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US10428370B2 (en) Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample
AU2017328927B2 (en) Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample
Ferrer et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure
WO2020087046A1 (en) Universal method for extracting nucleic acid molecules from a diverse population of microbes
Armstrong et al. Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome
JP2024063020A (en) A versatile method for extracting nucleic acid molecules from a diverse population of one or more types of microorganisms in a sample.
Amin et al. Metagenomic profiles of core and signature bacteria in the guts of white shrimp, Litopenaeus vannamei, with different growth rates
Hinsu et al. Functional gene profiling through metaRNAseq approach reveals diet-dependent variation in rumen microbiota of buffalo (Bubalus bubalis)
Lawrence et al. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry
Chelliah et al. A review on the application of bioinformatics tools in food microbiome studies
Klimina et al. Toxin-antitoxin systems: a tool for taxonomic analysis of human intestinal microbiota
Liu et al. Comparative genomic analysis revealed genetic divergence between Bifidobacterium catenulatum subspecies present in infant versus adult guts
US11959125B2 (en) Universal method for extracting nucleic acid molecules from a diverse population of one or more types of microbes in a sample
Zhang et al. Etiological characteristics of “tail blister disease” of Australian redclaw crayfish (Cherax quadricarinatus)
WO2022206895A1 (en) Use of microbiome for assessment and treatment of obesity and type 2 diabetes
Cerezer et al. Phylogenetic analysis of Stenotrophomonas spp. isolates contributes to the identification of nosocomial and community-acquired infections
Cheng et al. Microbial community analysis in crab ponds by denaturing gradient gel electrophoresis
Jiao et al. Transcriptome landscape of intracellular Brucella ovis surviving in RAW264. 7 macrophage immune system
Singh et al. Metagenomics in animal gastrointestinal ecosystem: a microbiological and biotechnological perspective
Waiho et al. A metagenomic comparison of clearwater, probiotic, and Rapid BFTTM on Pacific whiteleg shrimp, Litopenaeus vannamei cultures
Fehlner-Peach et al. Distinct polysaccharide growth profiles of human intestinal Prevotella copri isolates
Choudhary et al. RETRACTED ARTICLE: Ecological Significance of Microdiversity: Coexistence Among Casing Soil Bacterial Strains Through Allocation of Nutritional Resource
Chouhan et al. Metagenomic analysis of soybean endosphere microbiome to reveal signatures of microbes for health and disease
Wu et al. A compendium of ruminant gastrointestinal phage genomes revealed a higher proportion of lytic phages than in any other environments
KUSONMANO High-resolution study of fecal microbiome in Thai captive elephants towards nutrition management and welfare improvement