AU2019216698B2 - Stable and soluble antibodies inhibiting vegf - Google Patents

Stable and soluble antibodies inhibiting vegf Download PDF

Info

Publication number
AU2019216698B2
AU2019216698B2 AU2019216698A AU2019216698A AU2019216698B2 AU 2019216698 B2 AU2019216698 B2 AU 2019216698B2 AU 2019216698 A AU2019216698 A AU 2019216698A AU 2019216698 A AU2019216698 A AU 2019216698A AU 2019216698 B2 AU2019216698 B2 AU 2019216698B2
Authority
AU
Australia
Prior art keywords
ser
gly
thr
leu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
AU2019216698A
Other versions
AU2019216698A1 (en
Inventor
Leonardo Borras
Tea Gunde
David Urech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009264565A external-priority patent/AU2009264565C1/en
Priority claimed from AU2013202998A external-priority patent/AU2013202998B2/en
Application filed by Novartis AG filed Critical Novartis AG
Priority to AU2019216698A priority Critical patent/AU2019216698B2/en
Publication of AU2019216698A1 publication Critical patent/AU2019216698A1/en
Assigned to NOVARTIS AG reassignment NOVARTIS AG Request for Assignment Assignors: ESBATECH, AN ALCON BIOMEDICAL RESEARCH UNIT LLC
Application granted granted Critical
Publication of AU2019216698B2 publication Critical patent/AU2019216698B2/en
Priority to AU2021202343A priority patent/AU2021202343A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Abstract

The present invention relates to soluble and stable anti-VEGF immunobinders comprising CDRs from rabbit monoclonal antibodies. Said antibodies are designed for the diagnosis and/or treatment of VEGF-mediated disorders. The hybridomas, nucleic acids, vectors and host cells for expression of the recombinant antibodies of the invention, methods for isolating them and the use of said antibodies in medicine are also disclosed.

Description

STABLE AND SOLUBLE ANTIBODIES INHIBITING VEGF The present application is a divisional application from Australian patent application number 2017204337, which is in turn a divisional application from Australian patent application number 2015203705, which is in turn a divisional application from Australian patent application number 2013202998, which in turn is a divisional from Australian patent application number 2009264565, the entire disclosures of which are incorporated herein by reference. Related Information The present application claims priority to US 61/133,212 filed on June 25, 2008, to US 61/075,697 of 25 June 2008, to US 61/155,041 of 24 February 2009, and to US 61/075,692 of 25 June 2008. The contents of any patents, patent applications, and references cited throughout this specification are hereby incorporated by reference in their entireties. Background of the Invention Angiogenesis is implicated in the pathogenesis of a variety of disorders including solid tumors, intraocular neovascular syndromes such as proliferative retinopathies or age related macular degeneration (AMD), rheumatoid arthritis, and psoriasis (Folkman et al. J. Biol. Chem. 267:10931-10934 (1992); Klagsbrun et al. Annu. Rev. Physiol. 53:217239 (1991); and Garner A, Vascular diseases. In: Pathobiology of ocular disease. A dynamic .0 approach. Garner A, Klintworth G K, Eds. 2nd Edition Marcel Dekker, NY, pp 1625-1710 (1994)). In solid tumors, angiogenesis and growth of new vasculture permits survival of the tumor, and a correlation has been demonstrated between the density of microvessels in tumor sections and patient survival in breast and other cancers (Weidner et al. N Engl J Med 324:1 6 (1991); Horak et al. Lancet 340:1120-1124 (1992); and Macchiarini et al. Lancet 340:145 146 (1992)). Vascular endothelial growth factor (VEGF) is a known regulator of angiogenesis and neovascularization, and has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders (Ferrara et al. Endocr. Rev. 18:4-25 (1997)). The VEGF mRNA is overexpressed in many human tumors, and the concentration of VEGF in eye fluids are highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies (Berkman et al., J Clin Invest 91:153-159 (1993); Brown et al. Human Pathol. 26:86-91 (1995); Brown et al. Cancer Res. 53:4727-4735 (1993); Mattem et al. Brit. J. Cancer. 73:931-934 (1996); and Dvorak et al. Am J. Pathol. 146:1029-1039 (1995); Aiello et al. N. Engl. J. Med. 331:1480-1487 (1994)). In addition, recent studies have shown the presence of localized VEGF in choroidal neovascular membranes in patients affected by AMD (Lopez et al. Invest. Ophtalmo. Vis. Sci. 37:855-868 (1996)). Anti-VEGF neutralizing antibodies can be used to suppress the growth of a variety of human tumor cell lines in nude mice and also inhibit intraocular angiogenesis in models of ischemic retinal disorders (Kim et al. Nature 362:841-844 (1993); Warren et al. J. Clin. Invest 95:1789-1797 (1995); Borgstrom et al. Cancer Res. 56:4032-4039 (1996); and Melnyk et al. Cancer Res. 56:921-924 (1996)) (Adamis et al. Arch. Opthalmol. 114:66-71 (1996)). Thus, there is a need for anti-VEGF monoclonal antibodies capable of being used for the treatment of solid tumors and various neovascular intraocular diseases. .0 Summary of the Invention The invention provides soluble and stable anti-VEGF immunobinders comprising CDRs from rabbit monoclonal antibodies. Said antibodies are designed for the diagnosis and/or treatment of VEGF-mediated disorders. The hybridomas, nucleic acids, vectors and .5 host cells for expression of the recombinant antibodies of the invention, methods for isolating them and the use of said antibodies in medicine are also disclosed. The invention further provides a humanized antibody or antigen-binding fragment thereof comprising a variable heavy chain (VH), and a variable light chain (VL), wherein: the VH comprises CDRH1, CDRH2 and CDRH3 sequences of SEQ ID NO: 8, SEQ ID NO: '0 20 and SEQ ID NO: 32, respectively, and the VL comprises CDRL1, CDRL2, and CDRL3 sequences of SEQ ID NO: 43, SEQ ID NO: 55 and SEQ ID NO: 66, wherein the antibody or antigen-binding fragment thereof binds human VEGF 16 5with an affinity (Kd) of5 1x10-9 M.
Brief Description of the Drawings Figure1 illustrates the binding kinetics of selected scFvs to hVEGF16 5 using Biacore (hVEGF 165). Fig. la shows the data obtained for 511 max: Ka (1/Ms): 6,59E+05; SE (ka): 1,1OE+03; kd(1/s):4,40E-05; SE(kd):6,30E-07; KD(M): 6,67E-11. Fig. lb shows the data obtained for 578max: Ka (1/Ms): 7,OOE+05; SE (ka): 1,40E+03; kd(l/s): 3,07E-04; SE(kd): 8,50E-07; KD(M): 4,39E-10. Figure2 illustrates the species specificity by showing binding kinetics of 578max to human, mouse and rat VEGF. Fig. 2a shows the data obtained for human VEGF 165: Ka (1/Ms): 7,OOE+05; SE (ka): 1,40E+03; kd(1/s): 3,07E-04; SE(kd): 8,50E-07; KD(M): 4,39E 10. Fig. 2b shows the data obtained for mouse VEGF164: Ka (1/Ms): 1,03E+06; SE (ka): 2,30E+03; kd(l/s): 4,40E-04; SE(kd): 9,40E-07; KD(M): 4,29E-10. Fig. 2c shows the data
2a
obtained for rat VEGF 164: Ka (1/Ms): 8,83E+05; SE (ka): 2,50E+03; kd(1/s): 5,28E-04; SE(kd): 1,20E-06; KD(M): 5,98E-10.
Figure 3 illustrates the binding kinetics of 578max toVEGF isoforms (hVEGF121 and hVEGFl 10). Fig. 3a shows the data obtained for human VEGF165: Ka (l/Ms): 7,OOE+05; SE (ka): 1,4E+03; kd(l/s): 3,07E-04; SE(kd): 8,50E-07; KD(M): 4,39E-10. Fig. 3b shows the data obtained for human VEGF121: Ka (1/Ms): 5,87E+05; SE (ka): 5 1,20E+03; kd(l/s): 5,58E-04; SE(kd): 9,60E-07; KD(M): 9,50E-I1. Fig. 3c shows the data obtained for human VEGF I 10: Ka (l /Ms): 5,23E+05; SE (ka): 1,30E+03; kd(l /s): 7,22E-04; SE(kd): 8,10E-07; KD(M): 1,38E-09. Figure 4 depicts the binding kinetics of 578max, 578minmax and 578wt to hVEGF165. Fig. 4a shows the data obtained for 578max: Ka (1/Ms):7,OOE+05; SE (ka): 1,40E+03; kd(1/s): 3,07E-04; SE(kd): 8,50E-07; KD(M): 4,39E-10. Fig. 4b shows the data obtained for 578minmax: Ka (1/Ms): 8,06E+05; SE (ka): 2,10E+03; kd(l/s): 5,04E 04; SE(kd): 1,1OE-06; KD(M): 6,25E-10. Fig. 4c shows the data obtained for 578wt-His: Ka (I/Ms): 8,45E+05; SE (ka): l,60E+03; kd(1/s): 1,69E-04; SE(kd): 7,60E-07; KD(M): 2,OOE-10. I5 Figure 5 illustrates thermal stability of 578max, 578minmax and 578minmax_DHP (unfolding measured by FT-IR). Fig. 5a: 578minmax (ESBA903): Tm = 71,1°C; Fig. 5b: 578minmaxDHP (#961): Tm=70,2°C; Fig. 5c: 578max (#821): Tm 70,4°C. Figure6 illustrates denaturation and precipitation of 578 derivatives after thermal stress (Fig 6a: 50°C, Fig 6b: 60°C, Fig 6c: 70°C) for 30 min. Figure 7 illustrates solubility of 578max, 578minmax and 578minmax DHP (determined by ammonium sulfate precipitation). Fig 7a: 578max (#821). The V50 was 27,24 % Fig. 7b: 578minmax (ESBA903). The V50 was 28,13. Fig.: 7c: 578minmaxDHP (#961). The V50was 32,36 %. Figure 8 illustrates VEGFR2 competition ELISA versus HUVEC assay as methods to measure potency. Fig. 8a: Comparison of Lucentis and 511max (#802) in VEGFR2 competition ELISA. R2 of Lucentis: 0,9417; R 2 of ESBA802: 0,9700. EC50 of Lucentis: 7,137 nM; EC50 of #802: 0,8221 nM. Fig 8b: Comparison of Lucentis and 578max (#821). in VEGFR2 competition ELISA. Fig 8c: Comparison of Lucentis, 511maxC-his and 534max in HUVEC assay. R2 of Lucentis 0,9399; R 2 of EP5l ImaxC his: 0,9313, R 2 of EP534max: 0,7391. EC50 of Lucentis: 0,08825 nM, EC50 of
511maxC-his: 0,7646 nM, EC50 of 534max: 63,49 nM. Fig. 8d: Comparison of Lucentis, 578min and 578max in HUVEC assay. R 2 of Lucentis: 0,9419, R 2 of EP578min: 0,8886, R 2 of EP578max: 0,9274. EC50 of Lucentis: 0,1529 nM, EC50 of 578min: 1,528 nM, EC50 of 578max: 0,1031 nM. Figure9 illustrates the effects of 578minmax on HUVEC proliferation induced by hVEGF165. The parameters of the assay were the following: hVEGF165 concentration: 0,08nM (3ng/ml); incubation with VEGF and test item: 96h. The EC50 was 0,08959 nM for Lucentis and 0,05516 nM for 578minmax, whereas the R 2 was 0,9066 for Lucentis and 0,9622 for 578minmax. Figure 10 illustrates the effects of 578minmax on HUVEC Proliferation induced by mouse VEGF164 and rat VEGF164. The parameters of the assay were the following: mouse VEGF164 concentration: 0,08nM-(3ng/ml); rat VEGF164 concentration: 0,3nM (11,3ng/ml). Both concentrations were selected at EC90 for VEGF induced HUVEC proliferation; incubation with VEGF and test item: 96h. Fig. 10a illustrates the data obtained for mouse VEGF. The EC50 was 0,1196 nM for V1253 and 0,06309 nM for 578minmax, whereas the R 2 was 0,02744 for Lucentis, 0,9348 for V1253 and 0,9767 for EP578minmax. Lucentis did not inhibit HUVEC proliferation induced by mouse VEGF. Fig. 1Ob illustrates the data obtained for rat VEGF. The EC50 was 1,597 nM for V1253 and 0,06974 nM for 578minmax, whereas the R 2 was 00,7664 for V1253 and 0,6635 for 578minmax. Figure 11 illustrates efficacy studies using Miles assay in nude guinea pigs (part 1). The dye almar blue I was administered intravenously to nude guinea pigs. One hour after dye injection, a premixture 2 of hVEGF (2,61nM) and Lucentis, ESBA903 or #802, respectively, was injected into the skin of the animal 3. One hour after injection of the solutions, the animals 3 were euthanized and the pelts were collected, cleaned and photographed digitally using incident and transmitted light. The area of Evans Blue dye that extravasated into the injection sites was evaluated using Image J and the dose-area retention was plotted. Figure 12 illustrates efficacy studies using Miles assay in nude guinea pigs (part II). Fig. 12a shows the results obtained for #803 (511max). The EC50 was 5,990nM and had a statistical spread between 2,060 and 17,41 nM whereas the R 2 was 0,5800. Fig. 12b shows the results obtained for ESBA903 (578minmax). The EC50 was 3,989 and had a statistical spread between 1,456 and 10,93 nM whereas the R 2 was 0,3920. Fig. 12c shows the area of dye leakage for Lucentis. The EC50 could not be calculated for Lucentis due to the poor fit of the curve. Figure 13 illustrates efficacy studies using modified miles assay in rats (premixed hVEGF 165 and 578minmax (ESBA903)). Fig. 13a illustrates the anti-permeability efficacy of Avastin upon VEGF induced retinal vascular leakage in rats - dose response. Avastin inhibits hVEGF-induced retinal vascular permeability. Premixed before injection. Approximately equimolar, 3fold, or 10 fold excess. *p<0,05 (VEGF s. BSA), ** p<0,05 (Avastin treated vs. VEGF). Fig 13b shows the anti-permeability efficacy of
ESBA903 upon VEGF induced retinal vascular leakage in rats. Dose response (pre mixed, ivt). Complete inhibition of hVEGF-induced-retinal vascular permeability by ESBA903. Premixed before injection. Approximately equimolar, 3fold, or 10 fold excess. *p<0,05 (VEGF s. BSA), ** p<0,05 (ESBA903 treated vs. VEGF).
Figure 14 illustrates efficacy studies using modified miles assay in rats (topical administration of 578minmax (ESBA903)). The anti-permeability efficacy of AL-51287 (ESBA903) upon VEGF induced retinal vascular leakage in rats was tested upon topical administration. Five days pretreatment, 4 drops/day with a 10 ng/ml ESBA903 formulation. *p<0,05 (VEGF s. BSA), ** p<0,05 (VEGF vs. AL-51287), ***p=0,060 (AL-51287 vs. AL-52667), ****(VEGF vs. AL-39324); p<0,05 (AL-39324 vs. vehicle ref ctrl). AL-51287: ESBA903; AL-52657: topical vehicle reference control; AL-39324: small molecule RTK inhibitor. Figure 15 illustrates the definition of CDRI of VH as used herein.
Detailed Description The invention provides soluble and stable anti-VEGF imunobinders comprising CDRs from rabbit monoclonal antibodies. Said imunobinders are designed for the diagnosis and/or treatment of VEGF-mediated disorders. The hybridomas, nucleic acids, vectors and host cells for expression of the recombinant antibodies of the invention, methods for isolating them and the use of said antibodies in medicine are also disclosed.
Definitions In order that the present invention may be more readily understood, certain terms will be defined as follows. Additional definitions are set forth throughout the detailed description. The term "VEGF" refers to the 165-amino acid vascular endothelial cell growth factor, and related 121-, 189-, and 206-amino acid vascular endothelial cell growth factors, as described by Leung et al., Science 246:1306 (1989), and Houck et al., Mol. Endocrin. 5:1806 (1991) together with the naturally occurring allelic and processed forms of those growth factors. The term "VEGF receptor" or "VEGFr" refers to a cellular receptor for VEGF, ordinarily a cell-surface receptor found on vascular endothelial cells, as well as variants thereof which retain the ability to bind hVEGF. One example of a VEGF receptor is the fms-like tyrosine kinase (fit), a transmembrane receptor in the tyrosine kinase family. DeVries et al., Science 255:989 (1992); Shibuya et al., Oncogene 5:519 (1990). The fit receptor comprises an extracellular domain, a transmembrane domain, and an intracellular domain with tyrosine kinase activity. The extracellular domain is involved in the binding of VEGF, whereas the intracellular domain is involved in signal transduction. Another example of a VEGF receptor is the fik-1 receptor (also referred to as KDR). Matthews et al., Proc. Nat. Acad. Sci. 88:9026 (1991); Terman et al., Oncogene 6:1677 (1991); Terman et al., Biochem. Biophys. Res. Commun. 187:1579 (1992). Binding of VEGF to the fit receptor results in the formation of at least two high molecular weight complexes, having an apparent molecular weight of 205,000 and 300,000 Daltons. The 300,000 Dalton complex is believed to be a dimer comprising two receptor molecules bound to a single molecule of VEGF. The term "rabbit" as used herein refers to an animal belonging to the family of the leporidae. The term "antibody" as used herein is a synonym for "immunoglobulin." Antibodies according to the present invention may be whole immunoglobulins or fragments thereof, comprising at least one variable domain of an immunoglobulin, such as single variable domains, Fv (Skerra A. and Pluckthun, A. (1988) Science 240:1038 41), scFv (Bird, R.E. et al. (1988) Science 242:423-26; Huston, J.S. et al. (1988) Proc.
Nat. Acad Sci. USA 85:5879-83), Fab, (Fab')2 or other fragments well known to a person skilled in the art. The term " CDR" refers to one of the six hypervariable regions within the variable domains of an antibody that mainly contribute to antigen binding. One of the most commonly used definitions for the six CDRs was provided byKabatE.A.etal.,(1991) Sequences of proteins of immunological interest. NIH Publication 91-3242). As used herein, Kabat's definition of CDRs only apply for CDRI, CDR2 and CDR3 of the light chain variable domain (CDR LI, CDR L2, CDR L3, or Ll, L2, L3), as well as for CDR2 and CDR3 of the heavy chain variable domain (CDR H2, CDR H3, or H2, H3). CDR Iof the heavy chain variable domain (CDR H Ior H1), however, as used herein is defined by the following residues (Kabat numbering): It starts with position 26 and ends prior to position 36. Thisis basically a fusion of CDR HI as differently defined by Kabat-and Chotia (see also Figure 15 for illustration). The term "antibody framework", or sometimes only "framework", as used herein refers to the part of the variable domain, either VL or VH, which serves as a scaffold for the antigen binding loops (CDRs) of this variable domain. In essence it is the variable domain without the CDRs. The term "single chain antibody", "single chain Fv" or "scFv" is intended to refer to a molecule comprising an antibody heavy chain variable domain (or region; VH) and an antibody light chain variable domain (or region; VL) connected by a linker. Such scFv molecules can have the general structures: NH 2-V-linker-VH-COOH or NH 2-VH-linker VL-COOH. As used herein, "identity" refers to the sequence matching between two polypeptides, molecules or between two nucleic acids. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit (for instance, if a position in each of the two DNA molecules is occupied by adenine, or a position in each of two polypeptides is occupied by a lysine), then the respective molecules are identical at that position. The "percentageidentity" between two sequences is a function of the number of matching positions shared by the two sequences divided by the number of positions compared x 100. For instance, if 6 of 10 of the positions in two sequences are matched, then the two sequences have 60% identity. By way of example, the DNA sequences CTGACT and CAGGTT share 50% identity (3 of the 6 total positions are matched). Generally, a comparison is made when two sequences are aligned to give maximum identity. Such alignment can be provided using, for instance, the method of Needleman et al. (1970) J. Mol. Biol. 48: 443-453, implemented conveniently by computer programs such as the Align program (DNAstar, Inc.). The percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller (Comput. AppL Biosci., 4:11-17 (1988)) which has been incorporated into the ALIGN program (version 2.0), using a PAM]20 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCGasoftware package (available at www.gcg.com), using either. a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. "Similar" sequences are those which, when aligned, share identical and similar amino acid residues, where similar residues are conservative substitutions for corresponding amino acid residues in an aligned reference sequence. In this regard, a "conservative substitution" of a residue in a reference sequence is a substitution by a residue that is physically or functionally similar to the corresponding reference residue, e.g., that has a similar size, shape, electric charge, chemical properties, including the ability to form covalent or hydrogen bonds, or the like. Thus, a "conservative substitution modified" sequence is one that differs from a reference sequence or a wild type sequence in that one or more conservative substitutions are present. The "percentage similarity" between two sequences is a function of the number of positions that contain matching residues or conservative substitutions shared by the two sequences divided by the number of positions compared x 100. For instance, if 6 of 10 of the positions in two sequences are matched and 2 of 10 positions contain conservative substitutions, then the two sequences have 80% positive similarity. As used herein, the term "conservative sequence modifications" is intended to refer to amino acid modifications that do not negatively affect or alter the binding characteristics of the antibody containing the amino acid sequence. Such conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. For example, modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thusra predicted nonessential amino acid residue in a human anti-VEGF antibody is preferably replaced with another amino acid residue from the same side chain family. Methods of identifying nucleotide and amino acid conservative substitutions which do not eliminate antigen binding are well-known in the art (see, e.g., Brummell et al., Biochem. 32:1180-1187 (1993); Kobayashi et al. Protein Eng. 12(10):879-884 (1999); and Burks et al. Proc. Nat. Acad. Sci. USA 94:412-417 (1997)) "Amino acid consensus sequence" as used herein refers to an amino acid sequence that can be generated using a matrix of at least two, and preferably more, aligned amino acid sequences, and allowing for gaps in the alignment, such that it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids. The amino acid sequence of a protein can be analyzed at various levels. For example, conservation or variability can be exhibited at the single residue level, multiple residue level, multiple residue with gaps etc. Residues can exhibit conservation of the identical residue or can be conserved at the class level. Examples of amino acid classes include polar but uncharged R groups (Serine, Threonine, Asparagine and Glutamine); positively charged R groups (Lysine, Arginine, and Histidine); negatively charged R groups (Glutamic acid and Aspartic acid); hydrophobic R groups (Alanine, Isoleucine, Leucine, Methionine, Phenylalanine, Tryptophan, Valine and Tyrosine); and special amino acids (Cysteine, Glycine and Proline). Other classes are known to one of skill in the art and may be defined using structural determinations or other data to assess substitutability. In that sense, a substitutable amino acid can refer to any amino acid which can be substituted and maintain functional conservation at that position. It will be recognized, however, that amino acids of the same class may vary in degree by their biophysical properties. For example, it will be recognized that certain hydrophobic R groups (e.g., Alanine, Serine, or Threonine) are more hydrophilic (i.e., of higher hydrophilicity or lower hydrophobicity) than other hydrophobic R groups (e.g., Valine or Leucine). Relative hydrophilicity or hydrophobicity-can be determined using art-recognized methods (see, e.g., Rose et al., Science, 229: 834-838 (1985) and Cornette et al., J. Mol. Biol., 195: 659-685 (1987)). As used herein, when one amino acid sequence (e.g., a first VH or VL sequence) is aligned with one or more additional amino acid sequences (e.g., one or more VH or VL sequences in a database), an amino acid position in one sequence (e.g., the first VH or V sequence) can be compared to a "corresponding position" in the one or more additional amino acid sequences. As used herein, the "corresponding position" represents the equivalent position in the sequence(s) being compared when the sequences are optimally aligned, i.e., when the sequences are aligned to achieve the highest percent identity or percent similarity. As used herein, the term "antibody database" refers to a collection of two or more antibody amino acid sequences (a "multiplicity" of sequences), and typically refers to a collection of tens, hundreds or even thousands of antibody amino acid sequences. An antibody database can store amino acid sequences of, for example, a collection of antibody VH regions, antibody VL regions or both, or can store a collection of scFv sequences comprised of VH and VL regions. Preferably, the database is stored in a searchable, fixed medium, such as on a computer within a searchable computer program. In one embodiment, the antibody database is a database comprising or consisting of germline antibody sequences. In another embodiment, the antibody database is a database comprising or consisting of mature (i.e., expressed) antibody sequences (e.g., a Kabat database of mature antibody sequences, e.g., a KBD database). In yet another embodiment, the antibody database comprises or consists of functionally selected sequences (e.g., sequences selected from a QC assay). The term "immunobinder" refers to a molecule that contains all or a part of the antigen binding site of an antibody, e.g., all or part of the heavy and/or light chain variable domain, such that the immunobinder specifically recognizes a target antigen. Non-limiting examples of immunobinders include full-length immunoglobulin molecules and scFvs, as well as antibody fragments, including but not limited to (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab') 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fab' fragment, which is essentially a Fab with-part of the hinge region (see, Fundamental Immunology (Paul ed., 3.sup.rd ed. 1993); (iv) a Fd fragment consisting of the VH and CHI domains; (v) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (vi) a single domain antibody such as a Dab fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH or VL domain, a Camelid (see Hamers-Casterman, et al., Nature 363:446-448 (1993), and Dumoulin, et al., Protein Science 11:500-515 (2002)) or a Shark antibody (e.g., shark Ig NARs Nanobodies@); and (vii) a nanobody, a heavy chain region containing the variable domain and two constant domains. As used herein, the term "functional property" is a property of a polypeptide (e.g., an immunobinder) for which an improvement (e.g., relative to a conventional polypeptide) is desirable and/or advantageous to one of skill in the art, e.g., in order to improve the manufacturing properties or therapeutic efficacy of the polypeptide. In one embodiment, the functional property is stability (e.g., thermal stability). In another embodiment, the functional property is solubility (e.g., under cellular conditions). In yet another embodiment, the functional property is non-aggregation. In still another embodiment, the functional property is protein expression (e.g., in a prokaryotic cell). In yet another embodiment the functional property is a refolding efficiency following an inclusion body solubilization in a corresponding purification process. In certain embodiments, antigen binding affinity is not a functional property desired for improvement. The term "epitope" or "antigenic determinant" refers to a site on an antigen (e.g., on VEGF) to which an immunoglobulin or antibody specifically binds. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 consecutive or non consecutive amino acids in a unique spatial conformation. See, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, G. E. Morris, Ed. (1996). The terms "specific binding," "selective binding," "selectively binds," and "specifically binds," refer to antibody binding to an epitope on a predetermined antigen. Typically, the antibody binds with an affinity (KD) of approximately less than 10-7 M, such as approximately less than 10 - M, 10-9 M or 1010 M or even lower. The term "KD "OY"Kdrefers to the dissociation equilibrium constant of
" particular antibody-antigen interaction. Typically, the antibodies of the invention bind to VEGF with a dissociation equilibrium constant (KD) of less than approximately 10~7 M, such as less than approximately 10- M, 10- M or 10-" M or even lower, for example, as determined using surface plasmon resonance (SPR) technology in a BIACORE instrument. The terms "neutralizes VEGF," "inhibits VEGF," and "blocks VEGF" are used interchangeably to refer to the ability of an antibody of the invention to prevent VEGF from interacting with one or more VEGF receptors such as VEGFR-1 and/or VEGFR-2, and, for example, triggering signal transduction. A "recombinant immunobinder" as used herein refers to an immunobinder being produced by expression from recombinant DNA. A "chimeric" immunobinder as used herein has a portion of the heavy and/or light chain identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies. Humanized antibody as used herein is a subset of chimeric antibodies.
"Humanized antibodies" as used herein are immunobinders that have been synthesized using recombinant DNA technology to circumvent immune response to foreign antigens. Humanization is a well-established technique for reducing the immunogenicity of monoclonal antibodies of xenogenic sources. This involves the choice of an acceptor framework, preferably a human acceptor framework, the extent of the CDRs from the donor immunobinder to be inserted into the acceptor framework and the substitution of residues from the donor framework into the acceptor framework. A general method for grafting CDRs into human acceptor frameworks has been disclosed by Winter in US Patent No. 5,225,539, which is hereby incorporated by reference in its entirety. US6,407,213 the teachings of which are incorporated by reference in its entirety, discloses a number of amino acid positions of the framework where a substitution from the donor immunobinder is preferred, The term "nucleic acid molecule," refers to DNA molecules and RNA molecules. A nucleic acid molecule may be single-stranded or double-stranded, but preferably is double-stranded DNA. A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. The term "vector," refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. The term "host cell" refers to a cell into which an expression vector has been introduced. Host cells can include bacterial, microbial, plant or animal cells. Bacteria, which are susceptible to transformation, include members of the enterobacteriaceae, such as strains of Escherichiacoli or Salmonella; Bacillaceae, such as Bacillus subtilis; Pneumococcus; Streptococcus, and Haemophilus influenzae. Suitable microbes include Saccharomycescerevisiae and Pichiapastoris. Suitable animal host cell lines include CHO (Chinese Hamster Ovary lines) and NSO cells. The terms "treat," "treating," and "treatment," refer to therapeutic or preventative measures described herein. The methods of "treatment" employ administration to a subject, in need of such treatment, an antibody of the present invention, for example, a subject having a VEGF-mediated disorder or a subject who ultimately may acquire such a disorder, in order to prevent, cure, delay, reduce the severity of, or ameliorate one or more symptoms of the disorder or recurring disorder, or in order to prolong the survival of a subject beyond that expected in the absence of such treatment. The term "VEGF-mediated disorder" refers to .any disorder, the onset, progression or the persistence of the symptoms or disease states of which requires the participation of VEGF. Exemplary VEGF-mediated disorders include, but are not limited to, age-related macular degeneration, neovascular glaucoma, diabetic retinopathy, retinopathy of prematurity, retrolental fibroplasia, breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, the comas, arrhenoblastomas, cervical carcinomas, endometrial carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendroglioma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), Meigs' syndrome, rheumatoid arthritis, psoriasis and atherosclerosis. The term "effective dose" or "effective dosage" refers to an amount sufficient to achieve or at least partially achieve the desired effect. The term "therapeutically effective dose" is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts effective for this use will depend upon the severity of the disorder being treated and the general state of the patient's own immune system. The term "subject" refers to any human or non-human animal. For example, the methods and compositions of the present invention can be used to treat a subject with a VEGF-mediated disorder. The term "Min-graft" or "min" as used herein refers to a humanized variable domain that was generated by grafting of rabbit CDRs from a rabbit variable domain into a naturally occurring human acceptor framework (FW 1.4, SEQ ID No. 172). No changes in the framework regions are made. The framework itself was preselected for desirable functional properties (solubility and stability). The term "Max-graft" or "max" as used herein refers to a humanized variable domain that was generated by grafting of rabbit CDRs from a rabbitvariable domain into the "rabbitized", human acceptor framework "RabTor" (rFW1.4, SEQ ID No. 173), or into a derivative thereof referred to as rFW 1.4(v2) (SEQ ID No. 174). The "RabTor" framework was prepared by incorporating conserved rabbit residues (otherwisewhich are rather variable in other species) at framework positions generally involved in rabbit variable domain structure and stability, with the aim to generate a universally applicable framework that accepts virtually any set of rabbit CDRs without the need to graft donor framework residues other than at positions that are different in their presumable progenitor sequence, e.g. that were altered during somatic hypermutation and thus, possibly contribute to antigen binding. The presumable progenitor sequence is defined to be the closest rabbit germline counterpart and in case the closest germline counterpart couldcan not be established, the rabbit subgroup consensus or the consensus of rabbit sequences with a high percentage of similarity. The term "Min-Max" or "minmax" as used herein refers to a humanized variable domain comprising of a "Min-graft" variable light chain combined with a "Max-graft" variable heavy chain. The term "Max-Min" or "maxmin" as used herein refers to a humanized variable domain comprising of a "Max-graft" variable light chain combined with a "Min-graft" variable heavy chain.
Different nomenclatures were used for the generated immunobinders. These are typically identified by a number (e.g. #578). In those cases where a prefix such as EP or Epi was used (e.g. EP 578 which is identical to Epi 578), the same immunobinder is thereby indicated. Occasionally, an immunobinder received a second designation which is identified by the prefix "ESBA". For example ESBA903 designates the same immunobinder as 578minmax or EP578minmax or Epi578minmax. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can .0 be used in the practice or testing of the present invention, suitable methods and materials are described below. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Various aspects of the invention are described in further detail in the following .5 subsections. It is understood that the various embodiments, preferences and ranges may be combined at will. Further, depending on the specific embodiment, selected definitions, embodiments or ranges may not apply. Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude .0 other additives, components, integers or steps. A reference herein to a patent document or other matter which is given as prior art is not to be taken as admission that the document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.
Anti- VEGFImmunobinders In one aspect, the present invention provides immunobinders that bind VEGF and thus are suitable to block the function of VEGF in vivo. The CDRs of these immunobinders are derived from rabbit anti-VEGF monoclonal antibodies which were obtained from rabbits that were immunized with human VEGF and/or a fragment thereof (SEQ ID No.1). To our knowledge, this is the first time that monoclonal anti-VEGF antibodies were obtained from rabbits and characterized in detail. Surprisingly, the affinities (Kd) were found to be extraordinarily high.
16a
In certain embodiments, the invention provides an immunobinder, which specifically binds VEGF, comprising at least one of a CDRH1, a CDRH2, a CDRH3, a CDRL1, a CDRL2, or a CDRL3 amino acid sequence. Exemplary CDR amino acid sequences for use in the immunobinders of the invention are set forth in SEQ ID Nos: 2-72 (Tables 1-6).
Table 1. CDR HIamino acid sequences of anti-VEGF immunobinders of the invention.
Sequence Identifier CDR-H1 SEQ ID No.
60-11-4 GFPFSSGYWVC 2
60-11-6 GFSFSSGYWIC 3
435 GFSLNTNYWMC
453 GFSFSRSYYIY 5
375 GFSFTTTDYMC 6
610 GIDFSGAYYMG
578 GFSLTDYYYMT 8
534 -GFSLSYYYMS
567 GFSLSDYYMC 10
509 GFSLSSYYMC 11
511 GFSLNTYYMN 12
509maxil GFSLSSYYMS 13
Consensus GFSLSSGYYMC 14
Table 2. CDR H2 amino acid sequences of antiVEGF immunobinders of the invention.
Sequence Identifier CDR-H2 SEQ ID No.
60 CIYAGSSGSTYYASWAKG 15
435 CMYTGSYNRAYYASWAKG 16
453 CIDAGSSGILVYANWAKG 17
375 CILAGDGSTYYANWAKG 18
610 YIDYDGDRYYASWAKG 19
578 FIDPDDDPYYATWAKG 20
534 IIGPGDYTDYASWAKG 21
567 CLDYFGSTDDASWAKG 22
509 CLDYVGDTDYASWAKG 23
511 IIAPDDTTYYASWAKS 24
509maxII ILDYVGDTDYASWAKG 25
Consensus CIDAGSDGDTYYASWAKG 26
Table 3. CDR H3 amino acid sequences of antiVEGF immunobinders of the invention.
Sequence Identifier CDR-H3 SEQ ID No.
60 GNNYYIYTDGGYAYAGLEL 27
435 GSNWYSDL 28
453 GDASYGVDSFMLPL 29
375 SDPASSWSFAL 30
610 SDYSSGWGTDI 31
578 GDHNSGWGLDI 32
534 GDDNSGWGEDI 33
567 TDDSRGWGLNI 34
509 TDDSRGWGLNI 35
511 SGDTTAWGADI 36
Consensus GDDSSGYTDGGYAYWGLDI 37
Table 4. CDR L amino acid sequences of anti-VEGF immunobinders of the invention.
Sequence Identifier CDR-L1 SEQ ID No.
60 QASQSISSYLS 38
435 QASQSIGSSLA 39
453 QSSQSVWNNNRLA 40
375 QASENINIWLS 41
610 QASQSISSWLS 42
578 QASEIIHSWLA
534 QASQSINIWLS 44
567 QADQSIYIWLS 45
509 QASQNIRIWLS 46
511 QASQSINIWCS 47
511max QASQSINIWLS 48
Consensus QASQSININNWLS 49
Table 5. CDR L2 amino acid sequences of anti-VEGF immunobinders of the invention.
Sequence Identifier CDR-L2 SEQ ID No.
60 KASTLAS 50
435 TAANLAS 51
453 YASTLAS 52
375 QASKLAS 53
610 QASTLAS 54
578 LASTLAS 55
534 KESTLAS 56
567 KASTLES 57
509 KASTLES 58
511 RASTLAS 59
Consensus KASTLAS 60
Table 6. CDR L3 amino acid sequences of anti-VEGF immunobinders of the invention.
Sequence Identifier CDR-L3 SEQ ID No.
60 QSNYGGSSSDYGNP 61
435 QNFATSDTVT 62
453 AGGYSSTSDNT 63
375 QNNYSYNRYGAP 64
610 QNNYGFRSYGGA 65
578 QNVYLASTNGAN 66
534 QNNYDSGNNGFP 67
567- - QNNAHYSTNGGT 68
509 QNNAHYSTNGGT 69
511 QANYAYSAGYGAA 70
Consensus QNNYHYSSSTNGGT 71
In one embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a consensus sequence of the group consisting of SEQ ID NO: 14, SEQ ID NO: 26, SEQ ID NO: 37, SEQ ID NO: 49, SEQ ID NO: 60 and SEQ ID NO: 71. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 14, SEQ ID NO: 26 and SEQ ID NO: 37 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 49, SEQ ID NO: 60 and SEQ ID NO: 71. Preferably, the CDR is selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 13, SEQ ID NO: 15 to SEQ ID NO: 25, SEQ ID NO: 27 to SEQ ID NO: 36, SEQ ID NO: 38 to SEQ ID NO: 48, SEQ ID NO: 50 to SEQ ID NO: 59 and SEQ ID NO: 61 to SEQ ID NO: 70. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID
NO: 15, SEQ ID NO: 27, SEQ ID NO: 38, SEQ ID NO: 50 and SEQ ID NO: 61. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 2, SEQ ID NO: 15 and SEQ ID NO: 27 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 38, SEQ ID NO: 50 and SEQ ID NO: 61. In another preferred embodiment, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 3, SEQ ID NO: 15 and SEQ ID NO: 27 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 38, SEQ ID NO: 50 and SEQ ID NO: 61. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 4, SEQ ID NO: 16, SEQ ID NO: 28, SEQ ID NO: 39, SEQID NO: 51, and SEQ ID NO: 62. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 4, SEQ ID NO: 16, SEQ ID NO: 28 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 39, SEQ ID NO: 51, and SEQ ID NO: 62. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 5, SEQ ID NO: 17, SEQ ID NO: 29, SEQ ID NO: 40, SEQ ID NO: 52 and SEQ ID NO: 63. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 5, SEQ ID NO: 17, SEQ ID NO: 29 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 40, SEQ ID NO: 52 and SEQ ID NO: 63. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 6, SEQ ID NO: 18, SEQ ID NO: 30, SEQ ID NO: 41, SEQ ID NO: 53 and SEQ ID NO: 64. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 6, SEQ ID NO: 18 and SEQ ID NO: 30 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 41, SEQ ID NO: 53 and SEQ ID NO: 64. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 7, SEQ ID NO: 19, SEQ ID NO: 31, SEQ ID NO: 42, SEQ ID NO: 54 and SEQ ID NO: 65. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 7, SEQ ID NO: 19 and SEQ ID NO: 31 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 42, SEQ ID NO: 54 and SEQ ID NO: 65. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 8, SEQ ID NO: 20, SEQ ID NO: 32, SEQ ID NO: 43, SEQ ID NO: 55 and SEQ ID NO: 66. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 8, SEQ ID NO: 20 and SEQ ID NO: 32 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 43, SEQ ID NO: 55 and SEQ ID NO: 66. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 9, SEQ ID NO: 21, SEQ ID NO: 33, SEQ ID NO: 44, SEQ ID NO: 56 and SEQ ID NO: 67. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 9, SEQ ID NO: 21 and SEQ ID NO: 33 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 44, SEQ ID NO: 56 and SEQ ID NO: 67. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 10, SEQ ID NO: 22, SEQ ID NO: 34, SEQ ID NO: 45, SEQ ID NO: 57 and SEQ ID NO: 68. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 10, SEQ ID NO: 22 and SEQ ID NO: 34 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 45, SEQ ID NO: 57 and SEQ ID NO: 68 In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 35, SEQ ID NO: 46, SEQ ID NO: 58 and SEQ ID NO: 69. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 11, SEQ ID NO: 23 and SEQ ID NO: 35 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 46, SEQ ID NO: 58 and SEQ ID NO: 69. Alternatively, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 13, SEQ ID NO: 25 and SEQ ID NO: 35 and/or the CDRs of the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 46, SEQ ID NO: 58 and SEQ ID NO: 69. In another embodiment, the invention provides an immunobinder comprising at least one CDR having at least 75% similarity, preferably at least 75% identity, more preferably at least 80%, 85%, 90% 95%, even more preferably 100% identity to a sequence of the group consisting of SEQ ID NO: 12, SEQ ID NO: 24, SEQ ID NO: 36, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 59, and SEQ ID NO: 70. Preferably, the VH of said immunobinder comprise the CDRs of the group consisting of SEQ ID NO: 12, SEQ ID NO: 24 and SEQ ID NO: 36. Additionally or alternatively, the VL of said immunobinder comprise CDRs of the group consisting of SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 59, and SEQ ID NO: 70, e.g. SEQ ID NO: 47, SEQ ID NO: 59, and SEQ ID NO: 70; or SEQ ID NO: 48, SEQ ID NO: 59, and SEQ ID NO: 70. In a much preferred embodiment, the immunobinder disclosed herein neutralizes human VEGF and is cross-reactive with rat/mouse VEGF or a portion thereof.
The immunobinder can comprise an antibody or any alternative binding scaffold capable of accommodating CDRs. The CDRs set forth in SEQ ID Nos: 2-72 can be grafted onto any suitable binding scaffold using any art recognized methods (see, e.g., Riechmann, L. et al. (1998) Nature 332:323-327; Jones, P. et al. (1986) Nature321:522 525; Queen, C. et al. (1989) Proc. Natl. Acad See. US.A. 86:10029-10033; U.S. Patent No. 5,225,539 to Winter, and U.S. Patent Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et al.). However, it is preferred that the immunobinders disclosed herein are humanized, and thus suitable for therapeutic applications. In the case of antibodies, the rabbit CDRs set forth in SEQ ID Nos: 2-72 may be grafted into the framework regions of any antibody from any species. However, it has previously been discovered that antibodies or antibody derivatives comprising the frameworks identified in the so called "quality control" screen (WOO148017) are characterised by a generally high stability and/or solubility and thus may also be useful in the context of extracellular applications such as neutralizing human VEGF. Moreover, it has further been discovered that one particular combination of these VL (variable light chain) and VH (variable heavy chain) soluble and stable frameworks is particularly suited 'to accommodating rabbit CDRs. Accordingly, in one embodiment, the CDRs set forth in SEQ ID Nos: 2-72 are grafted into the human antibody frameworks derived by "quality control" screening disclosed in EP1479694. The amino acid sequences of exemplary frameworks for use in the invention are set forth in SEQ ID Nos: 172 to 174. It was surprisingly found that upon grafting into said framework or its derivatives, loop conformation of a large variety of rabbit CDRs could be fully maintained, largely independent of the sequence of the donor framework. Moreover, said framework or its derivatves containing different rabbit CDRs are well expressed and produced contrary to the rabbit wild type single chains and still almost fully retain the affinity of the original donor rabbit antibodies. Thus, in a preferred embodiment, the CDRs and/or CDR motifs disclosed herein are present in a heavy chain variable region framework sequence having at least 80% sequence identity, more preferably at least 85%, 90% 95%, even more preferably 100% identity to the sequence of SEQ ID NO: 169. In a preferred embodiment, the heavy chain variable region framework sequence comprises SEQ ID NO: 170 or SEQ ID NO: 171. In a preferred embodiment, the CDRs and/or CDR motifs disclosed herein are present in a light chain variable region framework sequence having at least 85% sequence identity, more preferably at least 90%, 95%, even more preferably 100% identity to the sequence of SEQ ID NO: 167, more preferably comprising SEQ ID NO: 167 or SEQ ID NO: 168. In rabbit antibodies, CDRs can contain cysteine residues that become disulphide linked to cysteine residues in the antibody framework. Accordingly, it may be necessary, when grafting rabbit CDRs containing cysteine residues into non-rabbit framework regions to introduce cysteine residues in the non-rabbit framework by, for example, mutagenesis to facilitate the stabilization of rabbit CDR through a disulphide linkage. In other embodiments, the invention provides an immunobinder, which specifically binds VEGF, comprising at least one of a VL or a VH amino acid sequence.
Exemplary VH or VL amino acid sequences for use in the immunobinders of the invention are set forth in SEQ ID Nos: 72-106 and 107-166, respectively.
In a preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 130 and SEQ ID NO: 131 (VH 60-11-4, VH 60-11-6, VH 60-11-4min, VH 60-11-6min, VH 60-1l-4max and VH 60-11-6max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 72, SEQ ID NO:82 and SEQ ID NO: 93 (VL 60, VL 60min, VL 60max, respectively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 109, SEQ ID NO: 120 and SEQ ID NO: 132 (VH 435, VH 435min and VH 435max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 73, SEQ ID NO: 83 and SEQ ID NO:94 (VL 435, VL 435min and VL 435max, respectively). Preferably, said immunobinder has at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to SEQ ID NO: 175 (435max).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 110, SEQIDNO: 121 and SEQIDNO: 133 (VH453, VH453min and VH453max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 74, SEQ ID NO:84 and SEQ ID NO: 95(VL 453, VL 453min and VL 453max, respectively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 111, SEQ ID NO: 122 and SEQ ID NO: 134 (VH 375, VH 375min and VH 375max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 75, SEQ ID NO: 85 and SEQ ID NO:96 (VL 375, VL 375min and VL 375max, respectively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 112, SEQ ID NO: 123 and 135 (VH 610, VH 61Omin and VH 61Omax, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 76, SEQ ID NO: 86 and SEQ ID NO: 97 (VL 610, VL 610min and VL 61Omax, respectively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 113, SEQ ID NO: 124, SEQ ID NO: 129, SEQ ID NO: 136, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID
NO:154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO:157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 161, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 164, SEQ ID NO: 165 and SEQ ID NO: 166 (VH 578 and variants thereof); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most 5 preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 77, SEQ ID NO: 87, SEQ ID NO: 92, SEQ ID NO: 98, SEQ ID NO: 103, SEQ ID NO: 104 and SEQ ID NO: 105 (VL 578 and variants thereof). Preferably, said immunobinder has at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to SEQ ID NO: 178 (578min), SEQ ID NO: 179 (578max) or SEQ ID NO: 180 (578minmax).
In another preferred embodiment, the inventiontprovides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 114, SEQ ID NO: 125 and SEQ ID NO: 137 (VH 534, VH 534min and VH 534max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 78, SEQ ID NO: 88 and SEQ ID NO: 99 (VL 534, VL 534min and VL 534max, respectively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 115, SEQ ID NO: 126, SEQ ID NO:138 and SEQ ID NO: 143 (VH 567, VH 567min and VH 567max, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to-a sequence selected from the group consisting of SEQ ID NO:. 79, SEQ ID NO:89 and SEQ ID NO: 100 (VL 567, VL 567min and VL 567max, respectively).
Preferably, said immunobinder has at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to SEQ ID NO: 177 (567min).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 116, SEQ ID NO: 127, SEQ ID NO:139 and SEQ ID NO: 140 (VH 509, VH 509min, VH 509max and VH 509maxlI, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 80, SEQ ID NO: 90 and SEQ ID NO: 101 (VL 509, VL 509min and VL 509max,
respegtively).
In another preferred embodiment, the invention provides an immunobinder comprising a VH having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 117, SEQ ID NO: 128, SEQ ID NO: 141 and SEQ ID NO: 145 (VH 511, VH 511min, VH 51 ]max and VH 51l maxDHP, respectively); and/or a VL having at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to a sequence selected from the group consisting of SEQ ID NO: 81, SEQ ID NO: 91, SEQ ID NO: 102 and SEQ ID NO: 106 (VL 511, VL 511min, VL 511 max and VL 51l minC41L, respectively). Preferably, said immunobinder has at least 80%, more preferably at least 85%, 90%, 95%, most preferably 100% identity to SEQ ID NO: 176 (51 Imax).
In certain embodiments, the invention further provides an immunobinder, which specifically binds VEGF, comprising an amino acid sequence with substantial similarity to an amino acid sequence set forth in SEQ ID Nos: 2-166 and in SEQ ID Nos: 175-180, and wherein the immunobinder essentially retains or improves the desired functional properties of the anti-VEGF immunobinder of the invention. Preferred percentage similarities include, but are not limited to, at least 50%, 60%, 70%, 75%, 80%, 85%, 90% or 95% identity. In certain embodiments, the invention further provides an immunobinder, which specifically binds VEGF, comprising an amino acid sequence with substantial identity to an amino acid sequence set forth in SEQ ID Nos: 2-166 and in SEQ ID Nos. 175-180, and wherein the immunobinder retains or improves the desired functional properties of the anti-VEGF immunobinder of the invention. Preferred percentage identities include, but are not limited to, at least 50%, 60%, 70%, 75%, 80%, 85%, 90% or 95% identity. In certain embodiments, the invention further provides an immunobinder, which specifically binds VEGF, comprising an amino acid sequence with conservative substitutions relative to an amino acid sequence set forth in SEQ ID Nos: 2-166 and in SEQ ID Nos.-1-75-:180, and wherein the immunobinder retains or improves-the-desired functional properties of the anti-VEGF immunobinder of the invention. In some embodiments, the invention provides immunobinders that bind specifically to human VEGF and cross react with VEGF molecules of other species, for example, mouse VEGF, rat VEGF, rabbit VEGF or guinea pig VEGF. In a particular embodiment the anti-VEGF immunobinder can bind specifically to human and rat/mouse VEGF. In some embodiments, the invention provides immunobinders that bind specifically to human VEGF and do not cross react with VEGF molecules of other species, for example, mouse VEGF, rat VEGF, rabbit VEGF or guinea pig VEGF. In some embodiments, the invention provides immunobinders that bind specifically to human VEGF and wherein the immunobinders are affinity matured.
In one embodiment, antibodies and antibody fragments of the present invention are single chain antibodies (scFv) or Fab fragments. In the case of scFv antibodies, a selected VL domain can be linked to a selected VH domain in either orientation by a - flexible linker. A suitable state of the art linker consists of repeated GGGGS amino acid sequences or variants thereof. In a preferred embodiment of the present invention a (GGGGS) 4 linker of the amino acid sequence set forth in SEQ ID NO: 181, but variants
of 1-3 repeats are also possible (Holliger et al. (1993), Proc. Nat]. Acad. Sci. USA
90:6444-6448). Other linkers that can be used for the present invention are described by Alfthan et al. (1995), Protein Eng. 8:725-73 1, Choi et al. (2001), Eur. J. Immunol. 31:94 106, Hu et al. (1996), Cancer Res. 56:3055-3061, Kipriyanov et al. (1999), J. Mol. Biol. 293:41-56 and Roovers et al. (2001), Cancer Immunol. Immunother. 50:51-59. The arrangement can be either VL-linker-VH or VH-linker-VL, with the former orientation being the preferred one. However, single VH or VL domain antibodies are also contemplated. In the case of Fab fragments, selected light chain variable domains VL are fused to the constant region of a human Ig kappa chain, while the suitable heavy chain variable domains VH are fused to the first (N-terminal) constant domain CHI of a human IgG. At the C-terminus of the constant domain or at other sites of the variable or constant domain, an inter-chain disulfide bridge may be formed. Alternatively, the two chains may also be linked by a flexible linker resulting in a single chain Fab antibody. The antibodies or antibody derivatives of the present invention can have affinities to human VEGF with dissociation constants Kd in a range of 10 4 M to 10-5M. In a preferred embodiment of the present invention the Kd is <1 nM. The affinity of an
antibody for an antigen can be determined experimentally using a suitable method (Berzofsky et al. "Antibody-Antigen Interactions", in FundamentalImmunology, Paul, W.E., Ed, Raven Press: New York, NY (1992); Kuby, J. Immunology, W.H. Freeman and Company: New York, NY ) and methods described therein. The company Epitomics sells an anti-VEGF antibody which is a rabbit monoclonal antibody (VEGF (C-term) Rabbit Antibody, Cat.no. 1909-1). Said antibody is directed against residues on the C-terminus of human VEGF and therefore not able to neutralize VEGF. Hence, said antibody is not suitable for therapeutic applications. Moreover, said monoclonal IgG is not a humanized antibody but is a natural rabbit full length immunoglobulin. In addition, it was shown that this antibody does not recognize the native form of VEGF.
Immunobinders that bind the same epitopes on VEGF In another aspect, the invention provides antibodies that bind to an epitope on VEGF recognized by an antibody comprising any one of the amino acid sequences set forth in SEQ ID No 2-211. Such antibodies can be identified based upon their ability to cross-compete with an antibody comprising any one or more of the amino acid sequences set forth in SEQ ID No 2-211 in standard VEGF-binding assays including, but not limited, to ELISA. The ability of a test antibody to inhibit the binding to human VEGF of an antibody comprising any one or more of the amino acid sequences'set forth in SEQ ID No 2-211 demonstrates that the test antibody can cross-compete thus interact with an overlapping epitope on human VEGF as an antibody comprising any one or more of the amino acid sequences set forth in SEQ ID No 2-211. Additionaly or alternatively, such antibodies can be also identified using standard epitope mapping techniques to determine if they bind to the same peptide immunogens. Structural modelling techniques may also be employed to further define the precise molecular determinants to the antibody/VEGF interaction, including, but not limited to, NMR , X-ray crystallography, computer-based modeling, or protein tomography (Banyay et al., 2004 ASSAY and Drug Development Technologies (2), 5, Page 516-567). Indeed, the crystal structure of VEGF has been solved and the surface amino acid residues involved in VEGFr binding are known (Fuh, et al., 2006, J. Biol. Chem., 281, 6625-6631). Accordingly, given the amino acid sequence of the peptide immunogen and the structural knowledge of VEGF available in the art, it is well within the skill in art to identify antibodies that bind to an epitope on VEGF recognized by the antibodies comprising any one or more of the amino acid sequences set forth in SEQ ID No 2-211. In some embodiments, antibodies that bind to an epitope on VEGF recognized by an antibody comprising any one or more of the amino acid sequences set forth in SEQ ID No 2-211 bind to VEGF with an affinity of at least 10 7 M-', for example, at least 107 M-1, at least 108 M-', at least 10 9 M-, at least 1010 M-1, at least 10' M-', at least 102 M-1 or at least 10" M-. In some embodiments, antibodies that bind to an epitope on VEGF recognized by an antibody comprising any one one or more of the amino acid sequences set forth in SEQ ID No 2-211 bind specifically to human VEGF and do not cross react with VEGF molecules of other species, for example, mouse VEGF, rat VGEF, rabbit VEGF, or guinea pig VEGF. In some embodiments, antibodies that bind to an epitope on VEGF recognized by an antibody comprising any one or more of the amino acid sequences set forth in SEQ ID
No 2-211 cross react with VEGF molecules of other species, for example, mouse VEGF, rat VEGF, or rabbit VEGF.
Optimized Variants The antibodies of the invention may be further optimized for enhanced functional properties, e.g., for enhanced solubility and/or stability. In certain embodiments, the antibodies of the invention are optimized according to the "functional consensus" methodology disclosed in PCT Application Serial No. PCT/EP2008/001958, entitled "Sequence Based Engineering and Optimization of Single Chain Antibodies", filed on March 12, 2008, which is incorporated herein by reference. For example, the VEGF immunobinders of the invention can be compared with a database of functionally-selected scFvs to identify amino acid.residue positions that are either more or less tolerant of variability than the corresponding position(s) in the VEGF immunobinder, thereby indicating that such identified residue position(s) may be suitable for engineering to improve functionality such as stability and/or solubility. Exemplary framework positions for substitution are described in PCT Application No. PCT/CH2008/000285, entitled "Methods of Modifying Antibodies, and Modified Antibodies with Improved Functional Properties", filed on June 25, 2008, and PCT Application No. PCT/CH2008/000284, entitled "Sequence Based Engineering and Optimization of Single Chain Antibodies", filed on June 25, 2008. For example, one or more of the following substitutions may be introduced at an amino acid position (AHo numbering is referenced for each of the amino acid position listed below) in the heavy chain variable region of an immunobinder of the invention: (a) Q or E at amino acid position 1; (b) Q or E at amino acid position 6; (c) T, S or A at amino acid position 7, more preferably T or A, even more preferably T; (d) A, T, P, V or D, more preferably T, P, V or D, at amino acid position 10, (e) L or V, more preferably L, at amino acid position 12,
(f) V, R, Q, M or K, more preferably V, R, Q or M at amino acid position 13; (g) R, M, E, Q or K, more preferably R, M, E or Q, even more preferably R or E, at amino acid position 14; (h) L or V, more preferably L, at amino acid position 19; (i) R, T, K or N, more preferably R, T or N, even more preferably N, at amino acid position 20; () 1, F, L or V, more preferably I, F or L, even more preferably I or L, at amino acid position 21; (k) R or K, more preferably K, at amino acid position 45; (1) T, P, V, A or R, more preferably T, P, V or R, even more preferably R, at-amino acid position 47; (m) K, Q, H or E, more preferably K, H or E, even more preferably K, at amino acid position 50; (n) M or I, more preferably I, at amino acid position 55; (o) K or R, more preferably K, at amino acid position 77; (p) A, V, L or I, more preferably A, L orI, even more preferably A, at amino acid position 78; (q) E, R, T or A, more preferably E, T or A, even more preferably E, at amino acid position 82; (r) T, S, I or L, more preferably T, S or L, even more preferably T, at amino acid position 86; (s) D, S, N or G, more preferably D, N or G, even more preferably N, at amino acid position 87; (t) A, V, L or F, more preferably A, V or F, even more preferably V, at amino acid position 89; (u) F, S, H, D or Y, more preferably F, S, H or D, at amino acid position 90; (v) D, Q or E, more preferably D or Q, even more preferably D, at amino acid position 92;
(w) G, N, T or S, more preferably G, N or T, even more preferably G, at amino acid position 95; (x) T, A, P, F or S, more preferably T, A, P or F, even more preferably F, at amino acid position 98; (y) R, Q, V, I, M, F, or L, more preferably R, Q, 1, M, F or L, even more preferably Y, even more preferably L, at amino acid position 103; and (z) N, S or A, more preferably N or S, even more preferably N, at amino acid position 107. Additionally or alternatively, one or more of the following substitutions can be introduced into the light chain variable region of an immunobinder of the invention: (aa) Q, D, L, E, S, orI, more preferably L, E, S orI, even more preferably L or E, at amino acid-position 1; (bb) S, A, Y, I, P or T, more preferably A, Y, I, P or T, even more preferably P or T at amino acid position 2; (cc) Q, V, T or I, more preferably V, T or I, even more preferably V or T, at amino acid position 3; (dd) V, L, I or M, more preferably V or L, at amino acid position 4; (ee) S, E or P, more preferably S or E, even more preferably S, at amino acid position 7; (ff) T or I, more preferably I, at amino acid position 10; (gg) A or V, more preferably A, at amino acid position 11; (hh) S or Y, more preferably Y, at amino acid position 12; (ii) T, S or A, more preferably T or S, even more preferably T, at amino acid position 14; (j) S or R, more preferably S, at amino acid position 18; (kk) T or R, more preferably R, at amino acid position 20; (11) R or Q, more preferably Q, at amino acid position 24; (mm) H or Q, more preferably H, at amino acid position 46; (nn) K, R or I, more preferably R orI, even more preferably R, at amino acid position 47;
(oo) R, Q, K, E, T, or M, more preferably Q, K, E, T or M, at amino acid position 50; (pp) K, T, S, N, Q or P, more preferably T, S, N, Q or P, at amino acid position 53; (qq) I or M, more preferably M, at amino acid position 56; (rr) H, S, F or Y, more preferably H, S or F, at amino acid position 57; (ss) I, V or T, more preferably V or T, R, even more preferably T, at amino acid position 74; (tt) R, Q or K, more preferably R or Q, even more preferably R, at amino acid position 82; (uu) L or F, more preferably F, at amino acid position 91; (vv)G, D, T or A, more preferably G, D or T, even more preferably T, at amino acid position 92; (xx) S or N, more preferably N, at amino acid position 94; (yy) F, Y or S, more preferably Y or S, even more preferably S, at amino acid position 101; and (zz) D, F, H, E, L, A, T, V, S, G orI, more preferably H, E, L, A, T,V, S, G or I, even more preferably A or V, at amino acid position 103. The AHo numbering system is described further in Honegger, A. and Pluckthun, A. (2001) J. Mol. Biol. 309:657-670). Alternatively, the Kabat numbering system as described further in Kabat et al. (Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) may be used. Conversion tables for the two different numbering systems used to identify amino acid residue positions in antibody heavy and light chain variable regions are provided in A. Honegger, J.Mol.Biol. 309 (2001) 657 670. In other embodiments, the immunobinders of the invention comprise one or more of the solubility and/or stability enhancing mutations described in U.S. Provisional Application Serial No. 61/075,692, entitled "Solubility Optimization of Immunobinders," filed on June 25, 2008. In certain preferred embodiments, the immunobinder comprises a solubility enhancing mutation at an amino acid position selected from the group of heavy chain amino acid positions consisting of 12, 103 and 144 (AHo Numbering convention). In one preferred embodiment, the immunobinder comprises one or more substitutions selected from the group consisting of: (a) Serine (S) at heavy chain amino acid position 12; (b) Serine (S) or Threonine (T) at heavy chain amino acid position 103; and (c) Serine (S) or Threonine (T) at heavy chain amino acid position 144. In another embodiment, the immunobinder comprises the following substitutions: (a) Serine (S) at heavy chain amino acid position 12; (b) Serine (S) or Threonine (T) at heavy chain amino acid position 103; and (c) Serine (S) or Threonine (T) at heavy chain amino acid position 144.
Hybridomas ExpressingRabbit Anti-VEGF Antibodies In another aspect, the invention provides a hybridoma expressing a monoclonal antibody comprising any one or more-ofthe amino acid sequences set forth in SEQ ID Nos 72-81 and SEQ ID Nos 107-117. Methods for generating hybridomas from Rabbit B-cells are well known in the art and are disclosed, for example, in U.S. patent application 2005/0033031.
Production ofAnti-VEGFImmunobinders The antibodies or antibody derivatives of the present invention may be generated using routine techniques in the field of recombinant genetics. Knowing the sequences of the polypeptides, the cDNAs encoding them can be generated by gene synthesis (www.genscript.com). These cDNAs can be cloned into suitable vector plasmids. Once the DNA encoding a VL and/or a VH domain are obtained, site directed mutagenesis, for example by PCR using mutagenic primers, can be performed to obtain various derivatives. The best "starting" sequence can be chosen depending on the number of alterations desired in the VL and/or VH sequences. Methods for incorporating or grafting CDRs into framework regions include those set forth in, e.g., Riechmann, L. et al. (1998) Nature 332:323-327; Jones, P. et al. (1986) Nature 321:522-525; Queen, C. et al. (1989) Proc. Natl. Acad. See. U.S.A. 86:10029 10033; U.S. Patent No. 5,225,539 to Winter, and U.S. Patent Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et al, as well as those disclosed in U.S. Provisional
Application Serial No. 61/075,697, entitled "Humanization of Rabbit Antibodies Using Universal Antibody Frameworks," filed on June 25, 2008. Standard cloning and mutagenesis techniques well known to the person skilled in the art can be used to attach linkers, shuffle domains or construct fusions for the production of Fab fragments. Basic protocols disclosing the general methods of this invention are described in Molecular Cloning, A LaboratoryManual(Sambrook
& Russell, 3 rd ed. 200 1) and in CurrentProtocolsin MolecularBiology (Ausubel et al., 1999). The DNA sequence harboring a gene encoding a scFv polypeptide, or in the case of Fab fragments, encoding either two separate genes or a bi-cistronic operon comprising the two genes for the VL-CK and the VH-CH I fusions are cloned in a suitable expression vector, preferably one with-aninducible promoter. Care must be taken that in front oft each gene an appropriate ribosome binding site is present that ensures translation. It is to be understood that the antibodies of the present invention comprise the disclosed sequences rather than they consist of them. For example, cloning strategies may require that a construct is made from which an antibody with one or a few additional residues at the N-terminal end are present. Specifically, the methionine derived from the start codon may be present in the final protein in cases where it has not been cleaved posttranslationally. Most of the constructs for scFv antibodies give rise to an additional alanine at the N-terminal end. In a preferred embodiment of the present invention, an expression vector for periplasmic expression in E. coli is chosen (Krebber, 1997). Said vector comprises a promoter in front of a cleavable signal sequence. The coding sequence for the antibody peptide is then fused in frame to the cleavable signal sequence. This allows the targeting of the expressed polypeptide to the bacterial periplasm where the signal sequence is cleaved. The antibody is then folded. In the case of the Fab fragments, both the VL-Cc and the VH-CH Ifusions peptides must be linked to an export signal. The covalent S-S bond is formed at the C-terminal cysteines after the peptides have reached the periplasm. If cytoplasmic expression of antibodies is preferred, said antibodies usually can be obtained at high yields from inclusion bodies, which can be easily separated from other cellular fragments and protein. In this case the inclusion bodies are solubilized in a denaturing agent such as, e.g,. guanidine hydrochloride (GndHCl) and then refolded by renaturation procedures well known to those skilled in the art. Plasmids expressing the scFv or Fab polypeptides are introduced into a suitable host, preferably a bacterial, yeast or mammalian cell, most preferably a suitable E. coli strain as for example JM83 for periplasmic expression or BL21 for expression in inclusion bodies. The polypeptide can be harvested either from the periplasm or form inclusion bodies and purified using standard techniques such as ion exchange chromatography, reversed phase chromatography, affinity chromatography and/or gel filtration known to the person skilled in the art. The antibodies or antibody derivatives of the present invention can be characterized with respect to yield, solubility and stability in vitro. Binding capacities towards VEGF, preferably towards humanVEGF, can be tested in vitro by ELISA or surface plasmon resonance (BIACore), using recombinant human VEGF as described in W09729131, the latter method also allowing to determine the k rate constant, which should preferably be less than 10-3s-'. Kd values of -10 nM are preferred. Aside from antibodies with strong binding affinity for human VEGF, it is also desirable to select anti-VEGF antibodies which have other beneficial properties from a therapeutic perspective. For example, the antibody may be one which inhibits HUVEC cell growth in response to VEGF (see Example 3). In one embodiment, the antibody may be able to inhibit HUVEC cell proliferation in response to a near maximally effective concentration of VEGF (0.08 nM). Preferably, the antibody has an effective dose 50 (ED50) value of no more than about 5 nM, preferably no more than about 1 nM, preferably no more than about I nM, preferably no more than about 0.5 nM and most preferably no more than about 0.06 nM, for inhibiting VEGF-induced proliferation of endothelial cells in this "endothelial cell growth assay", i.e., at these concentrations the antibody is able to inhibit VEGF-induced endothelial cell growth in vitro by, e.g., 50% or more.
Bispecific Molecules In another aspect, the present invention features bispecific molecules comprising an anti-VEGF antibody, or a fragment thereof, of the invention. An antibody of the invention, or antigen-binding portions thereof, can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., another antibody or ligand for a receptor) to generate a bispecific molecule that binds to at least two different binding sites or target molecules. The antibody of the invention may be derivatized or linked to more than one other functional molecule to generate multispecific molecules that bind to more than two different binding sites and/or target molecules; such multispecific molecules are also intended to be encompassed by the term "bispecific molecule" as used herein. To create a bispecific molecule of the invention, an antibody of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other binding molecules, such as another antibody, antibody fragment, tumor specific or pathogen specific antigens, peptide or binding mimetic, such that a bispecific molecule results. Accordingly, the present invention includes bispecific molecules comprising at least one first binding molecule having specificity for VEGF and a second binding molecule having specificity for one or more additional target epitope. In one embodiment, the bispecific molecules of the invention comprise a binding specificity at least one antibody, or an antibody fragment thereof, including, e.g., an Fab, Fab', F(ab') 2 , Fv, or a single chain Fv. The antibody may also be a light chain or heavy chain dimer, or any minimal fragment thereof such as a Fv or a single chain construct as described in Ladner et al. U.S. Patent No. 4,946,778, the contents of which is expressly incorporated by reference. While human monoclonal antibodies are preferred, other antibodies which can be employed in the bispecific molecules of the invention are murine, chimeric and humanized monoclonal antibodies. The bispecific molecules of the present invention can be prepared by conjugating the constituent binding specificities using methods known in the art. For example, each binding specificity of the bispecific molecule can be generated separately and then conjugated to one another. When the binding specificities are proteins or peptides, a variety of coupling or cross-linking agents can be used for covalent conjugation. Examples of cross-linking agents include protein A, carbodiimide, N-succinimidyl-S acetyl-thioacetate (SATA), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), o- phenylenedimaleimide (oPDM), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-l-carboxylate (sulfo-SMCC) (see e.g., Karpovsky et al. (1984) J. Exp. Med..160:1686; Liu, MA et al. (1985) Proc. Natl. Acad Sci. USA 82:8648). Other methods include those described in Paulus (1985) Behring Ins. Mitt. No. 78, 118-132; Brennan et al. (1985) Science 229:81-83), and Glennie et al. (1987) J. Immunol. 139: 2367-2375). Preferred conjugating agents are SATA and sulfo-SMCC, both available from Pierce Chemical Co. (Rockford, IL). When the binding specificities are antibodies, they can be conjugated via sulfhydryl bonding, for example, via the C-terminus hinge regions of the two heavy chains or other sites, whether naturally occurring or introduced artificially. In a particularly preferred embodiment, the hinge region is modified to contain an odd numbertof sulfhydryl residues, preferably one, prior to conjugation - Alternatively, both binding specificities can be encoded in the same vector and expressed and assembled in the same host cell. This method is particularly useful where the bispecific molecule is a mAb x mAb, mAb x Fab, Fab x F(ab') 2 or ligand x
Fab fusion protein. A bispecific molecule of the invention can be a single chain molecule comprising one single chain antibody and a binding determinant, or a single chain bispecific molecule comprising two binding determinants. Bispecific molecules may comprise at least two single chain molecules. Further, a bispecfic molecule may be a scFv that specifically binds to first target, wherein theVH and VL of said scFv are linked with a flexible linker comprising a domain providing specific binding to a second target. Suitable linkers are described in U.S. Provisional Application No. 60/937,820. Methods for preparing bispecific molecules are described for example in U.S. Patent Number 5,260,203; U.S. Patent Number 5,455,030; U.S. Patent Number 4,881,175; U.S. Patent Number 5,132,405; U.S. Patent Number 5,091,513; U.S. Patent Number 5,476,786; U.S. Patent Number 5,013,653; U.S. Patent Number 5,258,498; and U.S. Patent Number 5,482,858. Binding of the bispecific molecules to their specific targets can be confirmed by, for example, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), FACS analysis, bioassay (e.g., growth inhibition), or by immunoblot assay. Each of these assays generally detects the presence of protein-antibody complexes of particular interest by employing a labeled reagent (e.g., an antibody) specific for the complex of interest. For example, the VEGF-antibody complexes can be detected using e.g., an enzyme-linked antibody or antibody fragment which recognizes and specifically binds to the antibody-VEGF complexes. Alternatively, the complexes can be detected using any of a variety of other immunoassays. For example, the antibody can be radioactively labeled and used in a radioimmunoassay (RIA) (see, for example, Weintraub, B., PrinciplesofRadioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by such means as the use of a y counter or a scintillation counter or by autoradiography.
Immunoconjugates In another aspect, the present invention features an anti-VEGF antibody, or a fragment thereof, conjugated to a therapeutic moiety, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin. Such conjugates are referred to herein as "immunoconjugates". Immunoconjugates that include one or more cytotoxins are referred to as "immunotoxins." A cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents also include, for example, antimetabolites (e.g., methotrexate, 6 mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).
Other preferred examples of therapeutic cytotoxins that can be conjugated to an antibody of the invention include duocarmycins, calicheamicins, maytansines and auristatins, and derivatives thereof. An example of a calicheamicin antibody conjugate is commercially available (Mylotarg TM; Wyeth-Ayerst). Cytotoxins can be conjugated to antibodies of the invention using linker technology available in the art. Examples of linker types that have been used to conjugate a cytotoxin to an antibody include, but are not limited to, hydrazones, thioethers, esters, disulfides and peptide-containing linkers. A linker can be chosen that is, for example, susceptible to cleavage by low pH within the lysosomal compartment or susceptible to cleavage by proteases, such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D). For further discussion of-types.of cytotoxins, linkers and methods for conjugating therapeutic agents to antibodies, see also Saito, G. et al. (2003) Adv. Drug Deliv. Rev. 55:199-215; Trail, P.A. et al. (2003) Cancer Immunol. Immunother. 52:328-337; Payne, G. (2003) CancerCell 3:207-212; Allen, T.M. (2002) Nat. Rev. Cancer 2:750-763; Pastan, I. and Kreitman, R. J. (2002) Curr. Opin. Investig. Drugs 3:1089-1091; Senter, P.D. and Springer, C.J. (2001) Adv. Drug Deliv. Rev. 53:247-264. Antibodies of the present invention also can be conjugated to a radioactive isotope to generate cytotoxic radiopharmaceuticals, also referred to as radioimmunoconjugates. Examples of radioactive isotopes that can be conjugated to antibodies for being used diagnostically or therapeutically include, but are not limited to, iodine, indium"', yttrium 90 and lutetium 7 7. Methods for preparing radioimmunconjugates are established in the art. Examples of radioimmunoconjugates are commercially available, including ZevalinTM (IDEC Pharmaceuticals) and BexxarTM (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention. The antibody conjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-y; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-I"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Anon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in MonoclonalAntibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243 56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in ControlledDrugDelivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: BiologicalAnd ClinicalApplications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For CancerDetection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).
Uses ofAnti-VEGF antibodies For therapeutic applications, the anti-VEGF antibodies of the invention are administered to a mammal, preferably a human, in a pharmaceutically acceptable dosage form such as those discussed herein, including those that may be administered to a human intravenously, as a bolus or by continuous infusion over a period of time, by topical, intraocular, intramuscular, intraperitoneal, intra-cerebrospinal, subcutaneous, intra articular, intrasynovial, intrathecal, oral, or inhalation routes. The antibodies also are suitably administered by intra tumoral, peritumoral, intralesional, or perilesional routes, to exert local as well as systemic therapeutic effects. The intraperitoneal route is expected to be particularly useful, for example, in the treatment of ovarian tumors. For the prevention or treatment of disease, the appropriate dosage of antibody will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The antibody is suitably administered to the patient at one time or over a series of treatments. The anti-VEGF antibodies are useful in the treatment of VEGF-mediated diseases as described herein. For example, age-related macular degeneration (AMD) is a leading cause of severe visual loss in the elderly population. The exudative form of AMD is characterized by choroidal neovascularization and retinal pigment epithelial cell detachment. Because choroidal neovascularization is associated with a dramatic worsening in prognosis, the VEGF antibodies of the present invention are especially useful in reducing the severity of AMD. The progress of this therapy is easily monitored by conventional techniques including opthalmoscopy, ocular fundus microscopy, and _!.ocular computer tomography. All FDA approved doses and regimes suitable for use with Lucentis are considered. Other doses and regimes are described in U.S. Provisional Application Serial No. 61/075,641, entitled "Improved Immunobinder Formulations And Methods For Adminstration", filed June 25, 2008, and U.S. Provisional Application No. 61/058,504, which are expressly incorporated herein. According to another embodiment of the invention, the effectiveness of the antibody in preventing or treating disease may be improved by administering the antibody serially or in combination with another agent that is effective for those purposes, such as tumor necrosis factor (TNF), an antibody capable of inhibiting or neutralizing the angiogenic activity of acidic or basic fibroblast growth factor (FGF) or hepatocyte growth factor (HGF), an antibody capable of inhibiting or neutralizing the coagulant activities of tissue factor, protein C, or protein S (see Esmon et al., PCT Patent Publication No. WO 91/01753, published 21 Feb. 1991), an antibody capable of binding to HER2 receptor (see Hudziak et al., PCT Patent Publication No. WO 89/06692, published 27 Jul. 1989), or one or more conventional therapeutic agents such as, for example, alkylating agents, photocoagulants (such as verteporfin), folic acid antagonists, anti-metabolites of nucleic acid metabolism, antibiotics, pyrimidine analogs, 5-fluorouracil, cisplatin, purine nucleosides, amines, amino acids, triazol nucleosides, or corticosteroids. Such other agents may be present in the composition being administered or may be administered separately. Also, the antibody is suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances. The antibodies of the invention may be used as affinity purification agents. In this process, the antibodies are immobilized on a solid phase such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the VEGF protein (or fragment thereof) to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the VEGF protein, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the VEGF protein from the antibody. Anti-VEGF antibodies may also be usefullin. diagnostic assays for VEGF protein, e.g., detecting its expression in specific cells, tissues, or serum. Such diagnostic methods may be useful in cancer diagnosis. For diagnostic applications, the antibody typically will be labeled with a detectable moiety. Numerous labels are available which can be generally grouped into the following categories: (a) Radioisotopes, such as '" In, 99 Tc, 14 C, 131 , 1 , 3H, 32 P or 35 S. The antibody can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-Interscience, New York, N.Y., Pubs. (1991), for example, and radioactivity can be measured using scintillation counting. (b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the antibody using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescence can be quantified using a fluorimeter. (c) Various enzyme-substrate labels are available and U.S. Pat. No. 4,275,149 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate which can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, .beta. galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for.conjugating enzymes to antibodies are described in O'Sullivanet al., Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (ed J. Langone & H. Van Vunakis), Academic press, New York, 73:147-166 (198 1). Examples of enzyme-substrate combinations include, for example: (i) Horseradish peroxidase (HRPO) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3',5,5'-tetramethyl benzidine hydrochloride (TMB)); (ii) alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and (iii).beta.-D-galactosidase (.beta.-D-Gal) with a chromogenic substrate (e.g., P nitrophenyl-.beta.-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-.beta. D-galactosidase. In another embodiment of the invention, the anti-VEGF antibody need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the VEGF antibody. The antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp.147-158 (CRC Press, Inc. 1987).
Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount
of VEGF protein in the test sample is inversely proportional to the amount of standard
that becomes bound to the antibodies. To facilitate determining the amount of standard
that becomes bound, the antibodies generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may
conveniently be separated from the standard and analyte which remain unbound. Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., U.S. Pat. No. 4,376;410:The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.
For immunohistochemistry, the tumor sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example. The antibodies may also be used for in vivo diagnostic assays. Generally, the antibody is labeled with a radio nuclide (such as "1 In, 99 Tc, 1 C, 131 3 H, 32 P or 35 S) so that the tumor can be localized using immunoscintiography.
The antibody of the present invention can be provided in a kit, a packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the antibody is labeled with an enzyme, the kit will include substrates and cofactors required by the enzyme (e.g., a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g., a block buffer or lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients which on dissolution will provide a reagent solution having the appropriate concentration.
Pharmaceutical Preparations In one aspect the invention provides pharmaceutical formulations comprising anti-VEGF antibodies for the treatment of VEGF-mediated diseases. The term "pharmaceutical formulation" refers to preparations which are in such form as to permit the biological actvity of the antibody or antibody derivative to be unequivocally effective, and which contain no additional components which are toxic to the subjects to which the formulation would be administered. "Pharmaceutically acceptable" excipients (vehicles, additives) are those which can reasonably be administered to a subject mammal to provide an effective dose of the active ingredient employed. A "stable" formulation is one in which the antibody or antibody derivative therein essentially retains its physical stability and/or chemical stability and/or biological activity upon storage. Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993), for example. Stability can be measured at a selected temperature for a selected time period. Preferably, the formulation is stable at room temperature (about 300 C)or at 40° C for at least I week and/or stable at about 2-8° C for at least 3 months to 2 years. Furthermore, the formulation is preferably stable following freezing (to, e.g., -700 C) and thawing of the formulation. An antibody or antibody derivative "retains its physical stability" in a pharmaceutical formulation if it meets the defined release specifications for aggregation, degradation, precipitation and/or denaturation upon visual examination of color and/or clarity, or as measured by UV light scattering or by size exclusion chromatography, or other suitable art recognized methods. An antibody or antibody derivative "retains its chemical stability" in a pharmaceutical formulation, if the chemical stability at a given time is such that the protein is considered to still retain its biological activity as defined below. Chemical stability can be assessed by detecting and quantifying chemically altered forms of the protein. Chemical alteration may involve size modification (e.g. clipping) which can be evaluated using size exclusion chromatography, SDS-PAGE and/or matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS), for example. Other types of chemical alteration include charge alteration (e.g. occurring as a result of deamidation) which can be evaluated by ion-exchange chromatography, for example. An antibody or antibody derivative "retains its biological activity" in a pharmaceutical formulation, if the biological activity of the antibody at a given time is within about 10% (within the errors of the assay) of the biological activity exhibited at the time the pharmaceutical formulation was prepared as determined in an antigen binding assay, for example. Other "biological activity" assays for antibodies are elaborated herein below. By "isotonic" is meant-that-the formulation of interest has essentially the same: osmotic pressure as human blood. Isotonic formulations will generally have an osmotic pressure from about 250 to 350 mOsm. Isotonicity can be measured using a vapor pressure or ice-freezing type osmometer, for example. A "polyol" is a substance with multiple hydroxyl groups, and includes sugars (reducing and non-reducing sugars), sugar alcohols and sugar acids. Preferred polyols herein have a molecular weight which is less than about 600 kD (e.g. in the range from about 120 to about 400 kD). A "reducing sugar" is one which contains a hemiacetal group that can reduce metal ions or react covalently with lysine and other amino groups in proteins and a "non-reducing sugar" is one which does not have these properties of a reducing sugar. Examples of reducing sugars are fructose, mannose, maltose, lactose, arabinose, xylose, ribose, rhamnose, galactose and glucose. Non-reducing sugars include sucrose, trehalose, sorbose, melezitose and raffinose. Mannitol, xylitol, erythritol, threitol, sorbitol and glycerol are examples of sugar alcohols. As to sugar acids, these include L-gluconate and metallic salts thereof. Where it is desired that the formulation is freeze-thaw stable, the polyol is preferably one which does not crystallize at freezing temperatures (e.g. -20 C) such that it destabilizes the antibody in the formulation. Non reducing sugars such as sucrose and trehalose are the preferred polyols herein, with trehalose being preferred over sucrose, because of the superior solution stability of trehalose.
As used herein, "buffer" refers to a buffered solution that resists changes in pH by the action of its acid-base conjugate components. The buffer of this invention has a pH in the range from about 4.5 to about 8.0; preferably from about 5.5 to about 7. Examples of buffers that will control the pH in this range include acetate (e.g. sodium acetate), succinate (such as sodium succinate), gluconate, histidine, citrate and other organic acid buffers. Where a freeze-thaw stable formulation is desired, the buffer is preferably not phosphate. In a pharmacological sense, in the context of the present invention, a "therapeutically effective amount" of an antibody or antibody derivative refers to an amount effective in the prevention or treatment of a disorder for the treatment of which the antibody or antibody derivative is effective. A "disease/disorder" is any condition that would benefit from treatment with the antibody-or antibody derivative. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question. A "preservative" is a compound which can be included in the formulation to essentially reduce bacterial action therein, thus facilitating the production of a multi-use formulation, for example. Examples of potential preservatives include octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride (a mixture of alkylbenzyldimethylammonium chlorides in which the alkyl groups are long-chain compounds), and benzethonium chloride. Other types of preservatives include aromatic alcohols such as phenol, butyl and benzyl alcohol, alkyl parabens such as methyl or propyl paraben, catechol, resorcinol, cyclohexanol, 3 pentanol, and m-cresol. The most preferred preservative herein is benzyl alcohol. The present invention also provides pharmaceutical compositions comprising one or more antibodies or antibody derivative compounds, together with at least one physiologically acceptable carrier or excipient. Pharmaceutical compositions may comprise, for example, one or more of water, buffers (e.g., neutral buffered saline or phosphate buffered saline), ethanol, mineral oil, vegetable oil, dimethylsulfoxide, carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, adjuvants, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione and/or preservatives. As noted above, other active ingredients may (but need not) be included in the pharmaceutical compositions provided herein. A carrier is a substance that may be associated with an antibody or antibody derivative prior to administration to a patient, often for the purpose of controlling stability 5 or bioavailability of the compound. Carriers for use within such formulations are generally biocompatible, and may also be biodegradable. Carriers include, for example, monovalent or multivalent molecules such as serum albumin (e.g., human or bovine), egg albumin, peptides, polylysine and polysaccharides such as aminodextran and polyamidoamines. Carriers also include solid support materials such as beads and 10 microparticles comprising, for example, polylactate polyglycolate, poly(lactide-co glycolide), polyacrylate, latex, starch, cellulose or dextran. A carrier may bear the -,.,__,cmpounds in a variety of ways, including covalent bonding (either directly or via a linker group), noncovalent interaction or admixture. Pharmaceutical compositions may be formulated for any appropriate manner of administration, including, for example, topical, intraocular, oral, nasal, rectal or parenteral administration. In certain embodiments, compositions in a form suitable for topical use, for example, as eye drops, are preferred. Other forms include, for example, pills, tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs. Within yet other embodiments, compositions provided herein may be formulated as a lyophilizate. The term parenteral as used herein includes subcutaneous, intradermal, intravascular (e.g., intravenous), intramuscular, spinal, intracranial, intrathecal and intraperitoneal injection, as well as any similar injection or infusion technique. The pharmaceutical composition may be prepared as a sterile injectible aqueous or oleaginous suspension in which the modulator, depending on the vehicle and concentration used, is either suspended or dissolved in the vehicle. Such a composition may be formulated according to the known art using suitable dispersing, wetting agents and/or suspending agents such as those mentioned above. Among the acceptable vehicles and solvents that may be employed are water, 1,3-butanediol, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils may be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may be used in the preparation of injectible compositions, and adjuvants such as local anesthetics, preservatives and/or buffering agents can be dissolved in the vehicle. Pharmaceutical compositions may be formulated as sustained release formulations (i.e., a formulation such as a capsule that effects a slow release of modulator following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal, or subcutaneous implantation, or by implantation at the desired target site. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of modulator release. The amount of an antibody or antibody derivative contained within a sustained release formulation depends upon, for example, the site~ofimplantation, the rate and expected duration of release andethe nature of the disease/disorder to be treated or prevented. Antibody or antibody derivatives provided herein are generally administered in an amount that achieves a concentration in a body fluid (e.g., blood, plasma, serum, CSF, synovial fluid, lymph, cellular interstitial fluid, tears or urine) that is sufficient to detectably bind to VEGF and prevent or inhibit VEGF-mediated diseases/disorders. A dose is considered to be effective if it results in a discernible patient benefit as described herein. Preferred systemic doses range from about 0.1 mg to about 140 mg per kilogram of body weight per day (about 0.5 mg to about 7 g per patient per day), with oral doses generally being about 5-20 fold higher than intravenous doses. The amount of antibody or antibody derivative that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about I mg to about 500 mg of an active ingredient.
Pharmaceutical compositions may be packaged for treating conditions responsive to an antibody or antibody derivative directed to VEGF. Packaged pharmaceutical compositions may include a container holding a effective amount of at least one antibody or antibody derivative as described herein and instructions (e.g., labeling) indicating that the contained composition is to be used for treating a disease/disorder responsive to one antibody or antibody derivative following administration in the patient.
The antibodies or antibody derivatives of the present invention can also be chemically modified. Preferred modifying groups are polymers, for example an optionally substituted straight or branched chain polyalkene, polyalkenylene, or polyoxyalkylene polymer or a branched or unbranched polysaccharide. Such effector group may increase the half-live of the antibody in vivo. Particular examples of synthetic polymers include optionally substituted straight or branched chain poly(ethyleneglycol) (PEG), poly(propyleneglycol), poly(vinylalcohol) or derivatives thereof. Particular naturally occurring polymers include lactose, amylose, dextran, glycogen or derivatives thereof. The size of the polymer may be varied as desired, but will generally be in an average molecular weight range from 50ODa to 50000Da. For local application where the antibody is designed to penetrate tissue, a preferred molecular weight of the polymer is around 500ODa. Thepolymer molecule can be attached to the antibody, in particular-tos the C-terminal end of the Fab fragment heavy chain via a covalently linked hinge peptide as described in W00194585. Regarding the attachment of PEG moieties, reference is made to "Poly(ethyleneglycol) Chemistry, Biotechnological and Biomedical Applications", 1992, J. Milton Harris (ed), Plenum Press, New York and "Bioconjugation Protein Coupling Techniques for the Biomedical Sciences", 1998, M. Aslam and A. Dent, Grove Publishers, New York. After preparation of the antibody or antibody derivative of interest as described above, the pharmaceutical formulation comprising it is prepared. The antibody to be formulated has not been subjected to prior lyophilization and the formulation of interest herein is an aqueous formulation. Preferably the antibody or antibody derivative in the formulation is an antibody fragment, such as an scFv. The therapeutically effective amount of antibody present in the formulation is determined by taking into account the desired dose volumes and mode(s) of administration, for example. From about 0.1 mg/ml to about 50 mg/ml, preferably from about 0.5 mg/ml to about 40 mg/ml and most preferably from about 10 mg/ml to about 20 mg/ml is an exemplary antibody concentration in the formulation. An aqueous formulation is prepared comprising the antibody or antibody derivative in a pH-buffered solution The buffer of this invention has a pH in the range from about 4.5 to about 8.0, preferably from about 5.5 to about 7. Examples of buffers that will control the pH within this range include acetate (e.g. sodium acetate), succinate (such as sodium succinate), gluconate, histidine, citrate and other organic acid buffers. The buffer concentration can be from about I mM to about 50 mM, preferably from about 5 mM to about 30 mM, depending, for example, on the buffer and the desired isotonicity of the formulation. A polyol, which acts as a tonicifier and may stabilize the antibody, is included in the formulation. In preferred embodiments, the formulation does not contain a tonicifying amount of a salt such as sodium chloride, as this may cause the antibody or antibody derivative to precipitate and/or may result in oxidation at low pH. In preferred embodiments, the polyol is a non-reducing sugar, such as sucrose or trehalose. The polyol is added to the formulation in an amount which may vary with respect to the desired isotonicity of the formulation. Preferably-the aqueous formulation is isotonic, in which case suitable concentrations of the polyol in the formulation are in the range from about 1% to about 15% w/v, preferably in the range from about 2% to about 10% why, for example. However, hypertonic or hypotonic formulations may also be suitable. The amount of polyol added may also alter with respect to the molecular weight of the polyol. For example, a lower amount of a monosaccharide (e.g. mannitol) may be added, compared to a disaccharide (such as trehalose). A surfactant is also added to the antibody or antibody derivative formulation. Exemplary surfactants include nonionic surfactants such as polysorbates (e.g. polysorbates 20, 80 etc) or poloxamers (e.g. poloxamer 188). The amount of surfactant added is such that it reduces aggregation of the formulated antibody/antibody derivative and/or minimizes the formation of particulates in the formulation and/or reduces adsorption. For example, the surfactant may be present in the formulation in an amount from about 0.001% to about 0.5%, preferably from about 0.005% to about 0.2% and most preferably from about 0.01% to about 0.1%. In one embodiment, the formulation contains the above-identified agents (i.e. antibody or antibody derivative, buffer, polyol and surfactant) and is essentially free of one or more preservatives, such as benzy alcohol, phenol, m-cresol, chlorobutanol and benzethonium Cl. In another embodiment, a preservative may be included in the formulation, particularly where the formulation is a multidose formulation. The concentration of preservative may be in the range from about 0.1% to about 2%, most preferably from about 0.5% to about 1%. One or more other pharmaceutically acceptable carriers, excipients or stabilizers such as those described in Remington's Pharmaceutical Sciences 21st edition, Osol, A. Ed. (2006) may be included in the formulation provided that they do not adversely affect the desired characteristics of the formulation. Acceptable carriers, excipients or stabilizers are non-toxic to recipients at the dosages and concentrations employed and include: additional buffering agents, co-solvents, antioxidants including ascorbic acid and methionine, chelating agents such as EDTA, metal complexes (e.g. Zn-protein complexes), biodegradable polymers such as polyesters, and/or salt-forming counterions such as sodium. The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, priortoor:* following, preparation of the formulation. The formulation is administered to a mammal in need of treatment with the antibody, preferably a human, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. In preferred embodiments, the formulation is administered to the mammal by topical application of eye drops to the ocular surface. For such purposes, the formulation may applied using an eye drop applicator, for example. The appropriate dosage ("therapeutically effective amount") of the antibody will depend, for example, on the condition to be treated, the severity and course of the condition, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, the type of antibody used, and the discretion of the attending physician. The antibody or antibody derivative is suitably administered to the patent at one time or over a series of treatments and may be administered to the patent at any time from diagnosis onwards. The antibody or antibody derivative may be administered as the sole treatment or in conjunction with other drugs or therapies useful in treating the condition in question.
As a general proposition, the therapeutically effective amount of the antibody or antibody derivative administered will be in the range of about 0.1 to about 50 mg/kg of patent body weight whether by one or more administrations, with the typical range of antibody used being about 0.3 to about 20 mg/kg, more preferably about 0.3 to about 15 5 mg/kg, administered daily, for example. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques. FDA approved doeses and regimes suitable for use with Lucentis are considered. Other doses and regimes are described in U.S. Provisional Application Serial No. 61/075,641, entitled "Improved Immunobinder Formulations And Methods For Adminstration", filed June 25, 2008, which is expressly incorporated herein.
Articles of Manufacture In another embodiment of the invention, an article of manufacture is provided comprising a container which holds the aqueous pharmaceutical formulation of the present invention and optionally provides instructions for its use. Suitable containers include, for example, bottles, vials, eye drop applicators and syringes. The container may be formed from a variety of materials such as glass or plastic. An exemplary container is a 3-20 cc single use glass or plastic vial. Alternatively, for a multidose formulation, the container may be 3-100 cc glass vial. The container holds the formulation and the label on, or associated with, the container may indicate directions for use. The article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
Exemplification The present disclosure is further illustrated by the following examples, which should not be construed as further limiting. The contents of all figures and all references, patents and published patent applications cited throughout this application are expressly incorporated herein by reference in their entireties.
Throughout the examples, the following materials and methods were used unless otherwise stated.
GeneralMaterialsandMethods In general, the practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, recombinant DNA technology, immunology (especially, e.g., antibody technology), and standard techniques of polypeptide preparation. See, e.g., Sambrook, Fritsch and Maniatis, Molecular Cloning: Cold Spring Harbor Laboratory Press (1989); Antibody Engineering Protocols (Methods in Molecular Biology), 510, Paul, S., Humana Pr (1996); Antibody Engineering: A Practical Approach (Practical Approach Series, 169), McCafferty, Ed., Irl Pr (1996); Antibodies: A Laboratory Manual, Harlow et al., C.S.H.L. Press, Pub. (1999); and Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons (1992).
Thermostability measurements Attenuated total reflectance Fourier transform IR (FTIR-ATR) spectra were obtained for various single chains and derivative molecules using the FT-IR Bio-ATR cell in a Tensor Bruker. The molecules were concentrated up to 3mg/ml and dialyzed overnight at 4C against PBS, pH 6.5 and the buffer flow through was collected as blank. The denaturation profiles were obtained by thermo challenging the molecules with a broad range of temperatures in 5°C steps (25 to 95°C). All spectra manipulations were performed using OPUS software. The main buffer and transient atmospheric (CO 2 and H 20) background were substracted from the protein spectrum. The resulting protein spectrum was then baseline corrected and the protein amide I spectra was determined from the width of the widest resolvable peak in the expected region. Second derivative spectra were obtained for the amide I band spectra using a third degree polynomial function with a smoothing function. Changes in protein structure were estimated by amide I second derivative analysis using a linear calibration curve for the initial curve-fit calculations assuming 0% denaturation for the 3 lower measurements and 100% denaturation for the 3 higher measurements. The denaturation profiles were used to approximate midpoints of the thermal unfolding transitions (TM) for every variant applying the Boltzmann sigmoidal model.
Solubility measurements Relative solubility of various scFv molecules was measured after enhancing protein aggregation and precipitation in presence of ammonium sulfate. Ammonium 5 sulfate was added to the protein in aqueous solutions to yield increments of 5% of saturation in the final mixture salt-protein. The precipitation in the dynamic range was determined empirically and the saturation intervals reduced in this range to 2.5% intervals saturation in the final mixture. After ammonium sulfate addition, samples were gently mixed and centrifuged 30 minutes at 6000rpm. The remaining protein in supernatants was recovered for each ammonium sulfate percentage of saturation. Solubility curves were determined by measuring the protein concentration in the supernatant by UV-VIS measurements using NanoDropTM1000 Spectrophotometer. Measurements of remaining soluble protein in supernatants were normalized and used to estimate midpoints of relative solubility for every variant applying the Boltzmann sigmoidal model.
Short Term Stability test The scFv molecules were examined after two weeks incubation at 40°C for the presence of soluble aggregates and degradation products. Proteins with a concentration of 10 mg/ml were dialyzed overnight at 4C against PBS with a broad range of pHs (3.5, 4.5, 5.5, 6.5, 7.0, 7.5 and 8.5). Control molecules with the same concentration in standard buffer PBS (pH 6.5) were stored at -80°C during the 2 weeks period. Determination of degradation bands by SDS-PAGE was done at t-0 and t=14d time points and soluble aggregates were assessed in the SEC-HPLC. Determination of remaining activity after 2 weeks at 40°C was done using Biacore.
EXAMPLE IMUNIZATION STRATEGY FOR GENERATING ANTI-VEGF ANTIBODIES. In this example, an immunization strategy is described which used a novel antigenic VEGF-derived peptide, to generate antibodies capable of recognizing human, mouse and rabbit VEGFA.
From alanine-scanning mutagenesis studies performed at Genentech the residues of VEGFA that are crucial for high affinity interaction with VEGFr are known (Fuh, G. et al, (2006) J. Biol. Chem. 281, 6625-6631). Although the receptor-binding site probably represents a conformational epitope, most of the crucial residues lie on an alpha helix, on the first 10 amino acids of mature VEGFA. Rabbit VEGFA contains three amino acids changes in this alpha helix, when compared to the human sequence; in contrast, mouse VEGFA is identical to human in this region. Thus, for the generation of mouse-human cross-reactive antibodies, rabbit presents a suitable species for immunization. In addition, rabbit immunization can lead to Abs with higher affinity than mouse immunization. As outlined above, interaction with residues on the N-terminal alpha helix of VEGFAsseems to be most crucial for binding to VEGFR1. Therefore;this1 amino acid long stretch can be used as an epitope for immunization. Alternatively, full length VEGFA can be injected, however, other peptide stretches on VEGFA are more immunogenic, thus lowering the chance to raise neutralizing antibodies. This hypothesis is supported by the fact that two different peptides, both lying close to the C-terminus of VEGFA are potentially immunogenic as predicted by the method of Johnson and Wolf. This method predicts only minor immunogenic potential for the N-terminal alpha helix. Therefore, immunization with the peptide constituting the alpha helix only, can be more straightforward than immunization with full-length VEGFA. The probability to elicit a strong immune response can be further increased by fusion or chemical coupling of the peptide to Keyhole Limpet Hemocyanin (KLH). Four immunization strategies were performed as follows A. Pre-Immunization of rabbits with full-length human VEGFA16 5 to enhance the probability to obtain conformational binders. Second boost with peptide from aa stretch 16-KFMDVYQRSYCHP-28 (underline: receptor interaction; double underline, divergent in rabbit, Cys is involved in disulfide bond according to crystal structure). The Cys contained in the peptided sequence could be used for coupling to KLH and would therefore not be exposed as free Cys. The final peptide would look as follows: KFMDVYQRSY-Cys-KLH.
B. Pre-Immunization of mice with full-length VEGFA16 5 to enhance the probability to obtain conformational binders. Second boost with peptide from aa stretch 16 KFMDVYQRSYCHP -28 ( Cys is involved in disulfide bond according to crystalstructure). The Cys contained in the peptided sequence can be used for coupling to KLH and would therefore not be exposed as free Cys. The final peptide would look as follows: KFMDVYQRSY-Cys-KLH. C. Pre-immunization of rabbits/mice with peptide from aa stretch 16 KFMDvYQRSYCHP -28 (final peptide: KFMDVYQRSY-Cys-KLH). Second boost with full-length VEGFA 1 6 5to enhance the probability to obtain conformational binders. D. Immunization with full length VEGFA16 5 in rabbits.
EXAMPLE 2 CDR Grafting and Functional Humanization of monoclonal rabbit anti-VEGF antibodies. Grafting ofRabbit CDRs Unlike traditional humanization methods which employ the human antibody acceptor framework that shares the greatest sequence homology with the non-human donor antibody, the rabbit CDRs were grafted into either framework FW1.4 (SEQ ID No. 172) to generate a Min-graft or into the "rabbitized" framework rFW1.4 (SEQ ID No. 173) or its variant rFW 1.4(v2) (SEQ ID No. 174) to generate a Max-graft. Both frameworks were selected primarily for desirable functional properties (solubility and stability), structural suitability to accommodate a large variety of rabbit CDRs and reasonable homology to the rabbit variable domain consensus sequence. Framework rFW1.4 is a derivative of FW 1.4 that was further engineered with the aim to serve as universal acceptor framework for virtually any set of rabbit CDRs. Although the stable and soluble framework sequence FW1.4 exhibits high homology to rabbit antibodies, it is not the most homologous sequence available. Identification of residues potentially involved in binding For each rabbit variable domain sequence, the nearest rabbit germline counterpart was identified. If the closest germline could not be established, the sequence was compared against the subgroup consensus or the consensus of rabbit sequences with a high percentage of similarity. Rare framework residues were considered as possible result of somatic hypermutation and therefore playing a role in antigen binding. Consequently, such residues were considered for grafting onto the acceptor framework rFW1.4 or rFW1.4(v2) to generate Max-grafts. Particularly, residues potentially implicated in direct antigen contact or influencing disposition of VL and VH were grafted. Further residues described to influence CDR structure were substituted if required. No framework substitutions were made when CDRs were grafted onto FW1.4 (Min-grafts). For example to generate 578minmax residue VH 94 (H94) of rFW.4 was mutated to corresponding residue in the donor sequence. The rabbit antibody 578 contains Gly at H94 whereas both, the most homologous germline and the rabbit consensus contain Arg at position H94. Gly has an exceptional flexibility (positive phi angles) that is not found for other amino acids. This suggests a role inmainchain torsion angle and a possible strong influence of the loop conformation with implications on activity. Further examples of framework positions that were grafted to obtain the Max-grafts as disclosed herein can be identified by making a sequence alignment of the framework regions of rFW1.4, rFW 1.4(v2) and the scFv sequences of interest provided herein. Webtools as known in the art may for example be used for said purpose (e.g. ClustalW as available on June 23, 2009 at http://www.ebi.ac.uk/Tools/clustalw2/index.html or MultiAlin as avialable on June 23, 2009 at http://bioinfo.genotoul.fr/multalin). All framework positions at which rFW1.4 and rFW1.4(v2) contain the same residue and at which the scFv of interest reveals a different residue, are framework positions that were grafted to obtain the Max grafts. Domain shuffling Variable light chains of Min-grafts were combined with variable heavy chain Max-grafts to identify optimal combinations in terms of biophysical properties (solubility and stability) and activity. Cloning andexpression of scFvs The scFvs described and characterized herein were produced as follows. The humanized VL sequences (SEQ ID NOs:82-106) were connected to humanized VH sequences (SEQ ID NOs:118-166) via the linker of SEQ ID NO:181 to yield an scFv of the following orientation: N11 2 -VL-linker-VH-COOH. In many cases DNA sequences encoding for the various scFvs were de novo synthesized at the service provider Entelechon GmbH (www.entelechon.com). The resulting DNA inserts were cloned into the bacterial expression vector pGMP002 via NcoI and HindIl restriction sites introduced at the 5' and 3' end of the scFv DNA sequence, respectively. Between the DNA sequence of theVL domain and the VH domain, a BamHI restriction site is located. In some cases the scFv encoding DNA was not de novo synthesized, but the scFv expressing constructs were cloned by domain shuffling. Accordingly, the VL domains were excised and introduced into the new constructs via Ncol and BamHI restriction sites, the VH domains via BamHI and HindIII restriction sites. In other cases, point mutations were introduced into the VH and/or VL domain using state of the art assembling PCR methods. The cloning of GMP002 is described in Example I of W02008006235. The production of the scFvs was-done analogue as for ESBA 105 as described in Examplel of W02008006235.
EXAMPLE BIACORE BINDING ANALYSIS OF ANTI-VEGF SCFVS In this example, the Biacore-binding ability of scFvs was tested and the binding affinity was measured using the exemplary surface plasmon resonance method with BlAcore T-T100. The VEGF proteins, tested for binding by these scFv candidates, in this example and later examples include purified Escherichiacoli-expressed recombinant human VEGF 16 5 (PeproTech EC Ltd.), recombinant human VEGF12 (PeproTech EC Ltd.), recombinant human VEGF oo (ESBATech AG), recombinant murine VEGF1 64 (PeproTech EC Ltd.), recombinant rat VEGF 164(Biovision), recombinant rabbit VEGFo 1 0 (ESBATech AG), and recombinant human PLGF (PeproTech EC Ltd.). For the surface plasmon resonance experiment, carboxymethylated dextran biosensor chips (CM4, GE Healthcare) were activated with N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide according to the supplier's instructions. Each of the 6 different VEGF forms, as exemplified above, was coupled to I of the 4 different flow cells on a CM4 sensor chip using a standard amine-coupling procedure. The range of responses obtained with these immobilized VEGF molecules after coupling and blocking were -250-500 response units (RU) for hVEGF16 5 ,-200 RU for hVEGFOo, hVEGF 12 1, murine VEGFIs4, rat VEGFIs4 and rabbit VEGF 1o and -400 RU for PLGF. The 4th flow cell of each chip was treated similarly except no proteins were immobilized prior to blocking, and the flow cell was used as in-line reference. Various concentrations of anti-VEGF scFvs (e.g., 90 nM, 30 nM, 10 nM, 3.33 nM, 1.11 nM, 0.37 nM, 0.12 nM and 0.04 nM) in HBS-EP buffer (0.01 M HEPES, pH 7.4 or 5, 0.15 M NaCl, 3 mM EDTA, 0.005% surfactant P20) were injected into the flow cells at a flow rate of 30 pl/min for 5 min. Dissociation of the anti-VEGF scFv from the VEGF on the CM4 chip was allowed to proceed for 10 min at 25 °C. Sensorgrams were generated for each anti VEGF scFv sample after in-line reference cell correction followed by buffer sample subtraction. The apparent dissociation rate constant (kd), the apparent association rate 6oitantn(ka) and the apparent dissociation equilibrium constant(K) were calculated using one-to-one Langmuir binding model with BAcore T100 evaluation Software version 1.1. As one exemplary result, some lead anti-VEGF scFv candidates are listed in Table 7 showing their binding affinity to hVEGF1 6 5 . Their potency as VEGF inhibitors, which is measured using VEGFR competition ELISA and/or HUVEC assay and described in latter examples, is also shown in Table 7. The kinetics curves of some exemplary lead candidates, e.g., 511 max and 578max, for their binding to hVEGF16 5 are illustrated in Figure 1. Their affinity constants (k, ka and KD) were also determined. Some lead candidates also display species specificity in their binding to various VEGF proteins of different sources. For example, some affinity data measured at pH5 using mouse and rat VEGFIs4 as binding partner are shown in Tables 8 a and b. An exemplary lead scFv candidate, 578minmax, has a KD of 5.76E-10 M and 7.48E-10 M in its binding to mouse and rat VEGF164, respectively at a pH of 5 (Tables 8 a and b) and 2,73E-11 and 2,19E-1 I at a pH of 7,4 (data not shown). This species specificity is further illustrated in Figure 4 in the kinetics curves and affinity data for the binding between 578minmax and human, mouse or rat VEGF proteins. Besides the species specificity in their binding to VEGFs from different organisms, many lead scFv candidates also display differentiated binding affinities towards various VEGF isoforms. For example, the affinity data measured at pH 5,0 for some scFv candidates binding to human VEGFs 65 , VEGF 2 and VEGF1 0are compared in Table 9. In the same experiments, PIGF protein was also used as a negative control without binding capacity to those scFv candidates. Also, the differentiated kinetics curves and affinity data for the binding between 578Max and VEGF isoforms, as an example, are illustrated in Figure 3. The present invention also discloses derivatives originating from the lead anti VEGF scFv candidates, which are mentioned above. Some lead derivatives of candidate 578 and 511, as listed in Table 10, are exemplified for their affinity and potency (measured at pH 5,0). In this experiment, Biacore measurement was used for the affinity of these derivatives towards hVEGF 165, while hVEGFR2 competition ELISA and/or HUVEC assay were used to define their potency to inhibit VEGFs (Table 10). Three derivatives, 578max, 57.8minmax and 578 wt-His, are further exemplified intheir:kinetics curves and affinity data for binding to hVEGF165 in Figure 4. For derivatives of lead candidates, their biophysical characterizations were determined and exemplified in Figures 5-7 and table 11. These characteristics include, as exemplified in table 11, Tm determined by FTIR, the percentage of P-sheet or protein loss after incubation at 60°C for 30 min, solubility determined by ammonium sulfate precipitation, refolding yield during the production process and expression levels in E. coli. Three derivatives, 578max, 578minmax and 578minmaxDHP, were characterized for their thermal stability in their unfolding curves against different temperatures measured by FT-IR (Figure 5).
Z Z
tn*f
UU :2n
r- u~-
m 0n
c0 z
o- C0. = --M ' - M MW)V)knkn o n n noWoV -oo \,OOOOOOOOO 't
C)~- .DC
L. o 0 r- 00 W) V-- 1 z1 r - m
VI kr) I I-0
CD ~~ ~ C)C iC C 0C)c
-0C-+ UN W) s0 - 0 I V
w), n ---
C.)
OO n''
-~.~ on - -0
71 C )r- 0C
O-i On
m 00 ~ 00 0 0: H~ ~~C w-~~r-~o 06 . 2 el
CD "o -:) m kn~ ~~- r1r-mr 0 "4~ QC kl 6r (c=1 kfi 0~00)00\-D >0 C\ C' C: C) C
U.) z 0\ -c1 00~- r -~o 0 )
M~4 M na) I z
cN knV)V)"t00w0 u
C.) C) C)CbC c C ) = 4.-_ 0) C
as C) Wq. 'r c)i 0 'o
0 00
Q) Z0 k V) 000r-NCi c a.. 0000~000000000 PLO En z ri~ '.'-o
.00
a\ '0~-- r- - 0 I I I I 0 1 ~ 00E E EZ -2C)00 C) 00 00 00 -0H r -- r -0 Cc n k kn kn n H k kn kn )
09- 09--
m~ 0-- 0n r
CC -. AN UN. m 0 qr -0 0 -N PCCC 00 " 0 -- 00 c4 -i 06 e- r;
E
Ulu r'J'. 00- ~1-/ NE
VI- kn c'J- kn r- C:) 0 0 0 C) 0D C Cl k/ \O: Cl! 00
00 C > lqlo 0~ C 0 m WI) I'l If~ "It 000C 0 000 "a LLL C:) L ID
C>0 r> C- C1 ~ ~C )C
_2 rf) 10 00 knCN - C a)4 rl : r :
000 U
00 0o 00 00 ~00 00 0 0 6' 000 000000
00 00 00 00~ - ONN x -- 1 -N r N--NN00 oo 'C-o .
0 tn kn V) F-kn ) kn E kn W) t V-
C C
0C~ Df .- O .. .. O ... O .. .. ..O
00 0 0 00 00 0 0 0 + + C r_ CC : a
++C0 0 00 0 oso
-c
"00 C? C
• • "t C4 wl # t n rn m mm ~ ON 0 oNo 0-o - - 0
.ON 00 -- - 0 ,
000 r Iq0
00 00r (N
C C' .9 C . .9; .6 . ON X C', 00 00f 8n r-- Em q Wa, ,n ,) k ,,), ,-, ,
- C: '-I C) ) d ) en r-O
tn kn~ ~ 0 n tnE0 - E3'tn tn nk
-0- 00 0 -
M~c '110 C 0 C) r- 0t 00 0000->00 00 4 ~ O C0'r ~ z z
tn~\,o V) V) fkIf tO kn k nt
++++++ +
+ 00 0- 0\ 00 In- \I 0
00 r! a) - 0
00D -0 ~ Z ZZ Z- z z z -n >
*0
o 6 z %6ZZ 00 r- Z Z
00 c 3 00 00 ON ONz '-0 0 - C'1O 00 0) 0: cc 00 00 (ON CN ON Ch C-, (7N -ON
~ ON
a) 0000 00000000 000 0' 0f0 >-N N-N >-- MN-- 0-0N0
C) OC = -OC\
-- -0 - 00
LIL) 1-c0~oo Cl 0 Clorkl
m0V0 0000O0 I In CI C n z
r.O-C) k
0 00 00 C\ O
00 00
00 0 0 -e0r ) O knk ooVon n -)k
-oo
6...' C0 C)t 00 00 00 -- 0
r-
00 a' 0
00 0> 00~
0-0 2 fl~0 ci0 00 00 00
a)x >
CItj -- -
0.d
car r - 000 tl -r -r - 0 0 t,0 -0 -t -n kn V nV W nW ) )P nF- n )i
C2 + + + ++±+ +
+ + + +++ + +
+ z1 4z r
00 rz0
CD0
o o
L.0.
00 00 00
cc
rj, LL- 0W W m w m00 00 000or-C 0
kn - -n C.- 00000 V)00 000 0 0000 -r r -r-r 00r-00 kn V) W)V)knrntnknV)kn V
Eo oo~E
>- >
Eoo' ,E E E E t 00 "t00 00 00 00 a - - - - r 00 00 - r-- r- r- >, 1r-
Some derivatives, as listed in Figure 6, were compared for their denaturation and precipitation after thermal stress (e.g., under 50°C, 60°C, or 70°C) for 30 minutes. 578max, 578minmax and 578minmaxDHP were further exemplified for their solubility, which was determined by ammonium sulfate precipitation. As in Figure 7, the percentage of soluble proteins of these derivatives under various concentrations of ammonium sulfate were compared.
Table 12a: anti-VEGF binders after incubation for 30 min at 50°C Sample name Beta sheet % Nanodrop (mg/ml) 950 100,8 81,2 978 100,9 85,1 980 99,9 - 100,3 991 99,4 99,2 802 100,4 96,7 821 100,6 93,5 903 99,5 99,4 961 98,7 101,7 997 99,9 76,39
Table 12a anti-VEGF binders after incubation for 30 min at 60°C Sample name Beta sheet % Nanodrop (mg/ml) 950 45,9 2 978 102,3 52 980 100,8 61 991 99,9 80 802 101,5 96 821 101,9 84 903 100,5 89 961 100,1 85 997 49,1 2
Table 12a anti-VEGF binders after incubation for 30 min at 700 C Sample name Beta sheet % Nanodrop (mg/ml) 950 43,1 1,0 978 13,4 2,7 980 4,5 0,2 991 21,5 1,4 802 100,4 80,8 821 58,4 3,3 903 81,9 0,7 961 46,3 1,1 997 0,0 0,3
EXAMPLE 4 VEGF RECEPTOR BLOCKING ASSAYS For anti-VEGF scFv candidates or their derivatives disclosed in the present invention, their potency as VEGF inhibitors was also measured besides their binding affinity to VEGFs in Example 3. The methods to measure their potency include, for example, the VEGFR competition ELISA, as exemplified in this example, and HUVEC assays (Figure 8). The VEGFR competition ELISA assays include, for example, VEGFR2 Receptor blocking assays and VEGFRI Receptor blocking assays. For VEGFR2 Receptor blocking assay, human VEGF165was coated on a 96-well Maxisorp ELISA plate (Nunc) at 0.05 pg/ml in PBS and blocked using PBS with 0.1% BSA and 0.2% Tween 20 (PBST). 500 ng/ml recombinant human VEGFR2/Fc chimera (R&D Systems Inc.), consisting of amino acid residues 1-764 of the extracellular domain of human VEGFR2 fused to a 6x histidine tagged Fc of human IgG1 , was first incubated with 3-fold serially diluted anti-VEGF scFvs in PBST. After 30-60 min of incubation at room temperature, the mixtures were transferred to the human VEGF 165 immobilized plate and incubated for 90 min. Binding of the VEGFR2/Fc chimera to the immobilized VEGFs 6 5 was detected
with goat (Fab 2) anti-human IgG Fcy coupled to horseradish peroxidase (Jackson
ImmunoResearch) followed by substrate (BM Blue POD substrate, Roche Diagnostics). Optical density at 450 nm (OD 450 nm) was measured using a Sunrise microplate reader (Tecan). Data were analyzed using a 4-parameter logistic curve fit, and EC50 values were calculated from the dose-response curves of the scFvs. The exemplary potency of lead candidates or their derivatives, measured by VEGFR2 Receptor blocking assay, is listed in Table 7 and 9. For VEGFRI Receptor blocking assay, human VEGF165 was coated on a 96-well Maxisorp ELISA plate (Nunc) at 0.0125 pg/ml in PBS and blocked using PBS with 0.4% BSA and 0.1% Tween 20. 100 ng/ml of recombinant human VEGFRI/Fc chimera (R&D Systems Inc.), consisting of amino acid residues 1-687 of the extracellular domain of human VEGFR Ifused to a 6x histidine tagged Fc of human IgG1 , was first incubated with 3-fold serially diluted anti-VEGF scFvs in PBST After30-60 min of incubation at
room temperature, the mixtures were transferred to the human VEGF65 immobilized plate and incubated for 90 min. Binding of the VEGFRI/Fc chimera to the immobilized VEGF 16 5was detected with goat (Fab 2) anti-human IgG Fcy coupled to horseradish peroxidase (Jackson ImmunoResearch) followed by substrate (BM Blue POD substrate, Roche Diagnostics). Optical density at 450 nm (OD 450 nm) was measured using a Sunrise microplate reader (Tecan). Data were analyzed as above, and EC5 0 values were calculated from the dose-response curves of the scFvs. The exemplary potency of lead candidates, measured by VEGFR1 Receptor blocking assay, is listed in Table 7.
EXAMPLE 5 HUVEC ASSAY OF VEGF INHIBITION This example exemplifies HUVEC assays as another method to measure the potency of the disclosed anti-VEGF scFv candidates, or their derivatives, as VEGF inhibitors. Human umbilical vein endothelial cells (HUVECs) (Promocell), pooled from several donors, were used at passage 2 to passage 14. Cells were seeded at 1000 cells/well in 50 pl complete endothelial cell growth medium (ECGM) (Promocell), that contained 0.4% ECGS/H, 2% Fetal Calf Serum, 0.1 ng/ml Epidermal Growth Factor, 1 gg/ml Hydrocortison, I ng/ml basic Fibroblast Factor and 1% penicillin/streptomycin
(Gibco). 7 to 8 h later, 50 l starving medium (ECGM without supplements containing 0.5% heat inactivated FCS and 1% penicillin/streptomycin) was added to the cells and the cells were starved for 15 to 16 hours. 3 fold Serial dilutions of anti-VEGF scFvs (0.023 150 nM) and one of the following -recombinant human VEGF1 65 (0.08 nM), recombinant 5 mouse VEGF164 (0.08 nM), or recombinant rat VEGFI4 (0.3 nM)-were prepared in starving medium and preincubated for 30-60 min at room temperature. The different concentrations of VEGFs were used to compensate for their different relative biological activities. Concentrations that stimulate submaximal VEGF induced proliferation (EC 0) 9 were used. 100 pl of the mixtures were added to the 96-well tissue-culture plates containing the HUVEC suspension and incubated for 4 days in a 37 °C/5% CO 2 humified incubator. Proliferation of HUVECs was assessed by measuring absorbance at 450 nm (620 nm used"as-reference wavelength) after addition of 20 pl/wellWSTIl cell proliferation reagent (Roche) using a Sunrise microplate reader (Tecan). Data were analyzed using a 4-parameter logistic curve-fit, and the concentration of anti-VEGF scFvs required to inhibit HUVEC proliferation by 50% (EC5 0 ) was derived from inhibition curves. The exemplary potency of lead candidates or their derivatives, measured by HUVEC assays, is listed in Table 7. Further, the inhibition of hVEGF 165-induced HUVEC proliferation by one derivative of lead candidates, 578minmax, is exemplified in Figure 9. EC50 of 578minmax for inhibition of hVEGF16 5 -induced cell-proliferation is determined to be 0.06 nM (Figure 9). The potency of 578minmax as a VEGF inhibitor is about 1.6 times better compared to Lucentis. The inhibition of mouse or rat VEGF 164 induced HUVEC proliferation by 578minmax is also exemplified in Figure 10. EC50 of 578minmax for inhibition of mouse and rat VEGF164 induced cell-proliferation is 0.06 nM and 0.07 nM, respectively (Figure 10). Thus, mouse and rat VEGF are equipotent to human VEGF for being inhibited by the exemplary derivative (578minmax). Also in this experiment, Lucentis does not inhibit proliferation induced by rodent VEGF.
EXAMPLE 6 EFFECTS OF ANTI-VEGF SCFVS ON HVEGF 165 INDUCED VASCULAR PERMEABILITY IN HAIRLESS GUINEA PIGS
In this example, the effect of anti-VEGF scFvs on human VEGF165 induced vascular permeability was assessed in guinea pigs using the Miles assay. Thirty application sites per animal were marked on the dorsum of hairless male guinea pigs using a permanent marker. On the treatment day each animal was administered intravenously with I ml of a 1% Evans blue dye solution under general anesthesia. One hour after dye injection, 0.1 ml of test solution containing 2.61 nM recombinant human VEGF165 (PeproTech EC Ltd.) and various concentrations of anti-VEGF scFvs (0 nM, 0.085 nM, 0.256 nM, 0.767 nM, 2.3 nM, 6.9 nM, 20.7 nM, 62.1 nM; n = 7 animals per test item) was injected in triplicate into the marks on the dorsum (3 injections per concentration of test item). Injections of PBS served as a negative control in all animals. As an additional control, 6.9 nM Lucentis (Novartis) was injected in all animals. One hour afterinjection of the test solutions, the animals were euthanized, and the pelts were collected, cleaned, and photographed digitally using incident and transmitted light. The area of Evans Blue dye that extravasated into the injection sites was evaluated using ImageJ. For each animal, anti-VEGF scFv concentration versus area of dye leakage was analyzed using a 4-parameter logistic curve fit. The concentration of anti-VEGF scFvs required to inhibit vascular leakage by 50% (ECsa) was derived from inhibition curves. The experiment protocol is exemplified in Figure 11. Also, the efficacy of scFv candidates, ESBA903 (578minmax) and 802 (511max), in inhibiting the hVEGF was illustrated in Figure 11, represented by different sizes of areas containing the Evans Blue dye leaked from vascular system into skin. The efficacy data for 903 and 802 are shown in Figure 12. At 6.9 nM, 903 and 802 showed stronger inhibition of VEGF induced vascular leakage into the skin compared to Lucentis in all animals tested (Figure 12).
EXAMPLE 7 EFFECTS OF TOPICAL ANTI-VEGF SCFVS TREATMENT ON HVEGF1 6S INDUCED RETINAL VASCULAR LEAKAGE IN RATS In this example, topical efficacy of 578minmax is demonstarted using a modified Miles assay. These modifications include, for example, premixed study with intravitreal injections and topical application of scFvs.
Premixed different concentrations of anti-VEGF scFv (10, 3, and I fold molar excess over VEGF) and VEGF (500 ng) were applied via a single intravitreal injection. Avastin (Roche) (10, 3, and 1 fold molar excess over VEGF) was used as a positive control. Vehicle for 578minmax (Citrate Buffer, 20 mM Na-Citrate, 125 mM NaCl, pH 7) was used as negative control. As illustrated in Figure 13, premixing with hVEGF 165 faciliated 578minmax (ESBA903) to completely inhibit hVEGF-induced retinal vascular permeability. In this experiment, the inhibitory effect of 578minmax (ESBA903) was more significant compared to Avastin. For topical application, five days before VEGF stimulation, adult Sprague Dawley rats received 578minmax (1%= 10 mg/ml) via bilateral topical dosing qid (4 drops/day) till perfusion day (Day 6). Vehicle for 578minmax (topical dosing) and Alcon RTKi (10 mg/kg/d, oral gavage) were-used as negative and positive controls. On Day 5, rats are anesthetized and their pupils are dilated. All animals receive intravitreal injections of 500 ng hrVEGF (10 p) in both eyes. Following 24 hours post injection of VEGF, intravenous infusion of 3% Evans blue dye is performed on all animals during general anesthesia. After the dye has circulated for 90 minutes, the rats are euthanized. Blood samples are taken, then the rats are perfused with sterile saline solution, then both eyes of each rat are immediately enucleated and the retinas harvested using a surgical microscope. For both retina and plasma samples, 60 pL of supernatant is used to measure the Evans blue dye absorbance (ABS) with a spectrophotometer at 620/740 nm. The blood-retinal barrier breakdown and subsequent retinal vascular permeability as measured by dye absorbance are calculated as means ±s.e.m. of net ABS/wet weight/plasma ABS. One way ANOVA is used to determine an overall difference between treatment means, where P 5 0.05 is considered significant. As exemplified in Figure 14, the topical administration (5 days of pretreatment, 4 drops per day) of 578minmax (903) significantly inhibited hVEGF-induced retinal vascular permeability. This is the first demonstration of a topically effective antibody useful for the treatment of'intraocular disease.
EQUIVALENTS Numerous modifications and alternative embodiments of the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of the structure may vary substantially without departing from the spirit of the invention, and exclusive use of all modifications that come within the scope of the appended claims is reserved. It is intended that the present invention be limited only to the extent required by the appended claims and the applicable rules of law. All literature and similar material cited in this application, including, patents, patent applications, articles, books, treatises, dissertations, web pages, figures and/or appendices, regardless of the format of such literature-and similar materials, are expressly incorporated by reference in their entirety. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this specification, including defined terms, term usage, described techniques, or the like, this specification controls. The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described in any way. While the present inventions have been described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments or examples. On the contrary, the present inventions encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art. The claims should not be read as limited to the described order or elements unless stated to that effect. It should be understood that various changes in form and detail may be made without departing from the scope of the appended claims. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed.
SEQUENCE LISTING
SEQ ID NO:1 Peptide Immunogen KFMDVYQRSYC
VL sequences: SEQ ID NO. 72: 60 EVVMAQTPASVEAAVGGTVTIKCQASQSISSYLSWYQQKPGQPPKLLYKASTLASGVPSRFKGSRS GTEYTLTISDLECADAATYYCQSNYGGSSSDYGNPFGGGTEAVVK
SEQ ID NO. 73: 435 AFELTQTPSSVEAAVGGTVTIKCQASQSIGSSLAWYQQKPGQRPKLLIYTAANLASGVPSRFRGSRSG AAFTLTISDLECADAATYYCQNFATSDTVTFGGGTEVVVT
SEQ O.74: 453 AVVLTQTPSPVSAAVGGTVSISCQSSQSVWNNNRLAWFQQKSGQPPKLLYYASTLASGVPSRFKG SGSGTEFTLTISDVQCDDAATYYCAGGYSSTSDNTFGGGTEVVVK
SEQ ID NO. 75: 375 DIVMTQTPASVEATVGGTITINCQASENINIWLSWYQQKPGQPPKLLYQASKLASGVPSRFKGSGS GTQFTLTISDLECADAATYYCQNNYSYNRYGAPFGGGTEVVVK
SEQ ID NO. 76: 610 DVVMTQTPASVSEPVGGTVTIKCQASQSISSWLSWYQQKPGQPPKLLYQASTLASGVPPRSSGSG SGTEYTLTISDLECADAATYFCQNNYGFRSYGGAFGGGTEVVVK
SEQ ID NO.77: 578 DVVMTQTPSSVSAAVGDTVTINCQASEIIHSWLAWYQQKPGQPPKLLYLASTLASGVPSRFKGSGS GTQFTLTISDLECADAAIYYCQNVYLASTNGANFGGGTEVVVK
SEQ ID NO. 78: 534 DVVMTQTPSSVSAAVGDTVTIKCQASQSINIWLSWYQQKSGQPPKLLVYKESTLASGVPSRFRGSG SGTQFTLTISDLECADAATYYCQNNYDSGNNGFPFGGGTEVVVK
SEQ ID NO. 79: 567 DVVMTQTPSSVSAAVGDTVTINCQADQSIYIWLSWYQQKPGQPPKLLYKASTLESGVPSRFKGSGS GTQFTLTISDLECADAATYYCQNNAHYSTNGGTFGGGTEVVVK
SEQ ID NO. 80: 509 DVVMTQTPSSVSAAVGDTVTIKCQASQNIRIWLSWYQQKPGQPPKLLYKASTLESGVPSRFKGSGS GTEFTLTISDLECADAATYYCQNNAHYSTNGGTFGGGTEVVVK
SEQ ID NO. 81: 511 EVVMTQTPASVEAAVGGTVTIKCQASQSINIWCSWYQQKPGHPPKLLIYRASTLASGVSSRFKGSGS GTEFTLTISDLECADAATYYCQANYAYSAGYGAAFGGGTEVVVK
SEQ ID NO. 82: 60min EIVMTQSPSTLSASVGDRVIITCQASQSISSYLSWYQQKPGKAPKLLYKASTLASGVPSRFSGSGSG~A EFTLTISSLQPDDFATYYCQSNYGGSSSDYGNPFGQGTKLTVLG
SEQ ID NO. 83: 435min EIVMTQSPSTLSASVGDRVIITCQASQSIGSSLAWYQQKPGKAPKLLIYTAANLASGVPSRFSGSGSG A EFTLTISSLQPDDFATYYCQNFATSDTVTFGQGTKLTVLG
SEQ ID NO. 84: 453min EIVMTQSPSTLSASVGDRVIITCQSSQSVWNNNRLAWYQQKPGKAPKLLYYASTLASGVPSRFSGS GSGAEFTLTISSLQPDDFATYYCAGGYSSTSDNTFGQGTKLTVLG
SEQ ID NO. 85: 3n5mn EIVMTQSPSTLSASVGDRVIITCQASENINIWLSWYQQKPGKAPKLLIYQASKLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQNNYSYNRYGAPFGQGTKLTVLG
SEQ ID NO. 86: 610min EIVMTQSPSTLSASVGDRVIITCQASQSISSWLSWYQQKPGKAPKLLYQASTLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQNNYGFRSYGGAFGQGTKLTVLG
SEQ ID NO. 87: 578min EIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLYLASTLASGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLG
SEQ ID NO. 88:534min EIVMTQSPSTLSASVGDRVIITCQASQSINIWLSWYQQKPGKAPKLLYKESTLASGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNNYDSGNNGFPFGQGTKLTVLG
SEQ ID NO. 89: 567min EIVMTQSPSTLSASVGDRVIITCQADQSIYIWLSWYQQKPGKAPKLLYKASTLESGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNNAHYSTNGGTFGQGTKLTVLG
SEQ ID NO. 90: 509min EIVMTQSPSTLSASVGDRVIITCQASQNIRIWLSWYQQKPGKAPKLLYKASTLESGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQNNAHYSTNGGTFGQGTKLTVLG
SEQ ID NO. 91: 511min EIVMTQSPSTLSASVGDRVIITCQASQSINIWCSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQANYAYSAGYGAAFGQGTKLTVLG
SEQ ID NO. 92:578min Pref subst EIVLTQSPSSLSASVGDRVTITCQASEIIHSWLAWYQQRPGKAPKLLISLASTLASGVPSRFSGSGSGT DFTFTISSLQPEDFAVYYCQNVYLASTNGANFGQGTKVEIKR
SEQ ID NO. 93: 60max EIVMTQSPSTLSASVGDRVIITCQASQSISSYLSWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGT EFTLTISSLQPDDFATYYCQSNYGGSSSDYGNPFGQGTKLTVLG
SEQ ID NO. 94: 435max EIVMTQSPSTLSASVGDRVIIKCQASQSIGSSLAWYQQKPGKAPKLLIYTAANLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQNFATSDTVTFGQGTKLTVLG
SEQ ID NO. 95: 453max EIVMTQSPSTLSASVGDRVIITCQSSQSVWNNNRLAWYQQKPGKAPKLLYYASTLASGVPSRFSGS GSGTEFTLTISSLQPDDFATYYCAGGYSSTSDNTFGQGTKLTVLG
SEQ ID NO. 96: 375max EIVMTQSPSTLSASVGDRVIITCQASENINIWLSWYQQKPGKAPKLLIYQASKLASGVPSRFSGSGSG TQFTLTISSLQPDDFATYYCQNNYSYNRYGAPFGQGTKLTVLG
SEQ ID NO. 97: 610max EIVMTQSPSTLSASVGDRVIITCQASQSISSWLSWYQQKPGKAPKLLIYQASTLASGVPSRFSGSGSG TEFTLTISSLQPDDFATYYCQNNYGFRSYGGAFGQGTKLTVLG
SEQ ID NO. 98: 578max EIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLIYLASTLASGVPSRFSGSGSGT QFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLG
SEQ ID NO. 99: 534max EIVMTQSPSTLSASVGDRVIITCQASQSINIWLSWYQQKPGKAPKLLIYKESTLASGVPSRFSGSGSGT EFTLTISSLQPDDFATYYCQNNYDSGNNGFPFGQGTKLTVLG
SEQ ID NO. 100: 567max EIVMTQSPSTLSASVGDRVIITCQADQSIYIWLSWYQQKPGKAPKLLIYKASTLESGVPSRFSGSGSGT QFTLTISSLQPDDFATYYCQNNAHYSTNGGTFGQGTKLTVLG
SEQ ID NO. 101: 509max EIVMTQSPSTLSASVGDRVIITCQASQNIRIWLSWYQQKPGKAPKLLIYKASTLESGVPSRFSGSGSGT EFTLTISSLQPDDFATYYCQNNAHYSTNGGTFGQGTKLTVLG
SEQ ID NO. 102: 511max EIVMTQSPSTLSASVGDRVIITCQASQSINIWLSWYQQKPGKAPKLLYRASTLASGVPSRFSGSGSGT EFTLTISSLQPDDFATYYCQANYAYSAGYGAAFGQGTKLTVLG
SEQ ID NO. 103: 578maxPref subst EIVMTQSPSSLSASVGDRVTITCQASEIIHSWLAWYQQRPGKAPKLLISLASTLASGVPSRFSGSGSGT QFTFTISSLQPEDFAVYYCQNVYLASTNGANFGQGTKVEIKR
SEQ ID NO. 104: 578min VL: E1D DIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLIYLASTLASGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLG
SEQ ID NO. 105: 578min VL: 12V EVVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLIYLASTLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLG
SEQ ID NO. 106: 511min VL: C41L EIVMTQSPSTLSASVGDRVIITCQASQSINIWLSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSG AEFTLTISSLQPDDFATYYCQANYAYSAGYGAAFGQGTKLTVLG
VH sequences: SEQ ID NO. 107: 60-11-4 QSLEESGGDLVKPGASLTLTCTASGFPFSSGYWVCWVRQA PGKGLEWIACYAGSSGSTYYASWAK GRFTISKTSSTTVTLQMTSLTAADTATYFCARGNNYYIYTDGGYAYAGLELWGPGILVTVSS
SEQ ID NO. 108: 60-11-6 QSLEESGGDLVKPGASLTLTCTASGFSFSSGYWICWVRQAPGKGLEWIACYAGSSGSTYYASWAKG RFTISKTSSTTVTLQMTSLTAADTATYFCARGNNYYIYTDGGYAYAGLELWGPGILVTVSS
SEQ ID NO. 109:435 QSLEESGGDLVQPGASLTLTCKVSGFSLNTNYWMCWVRQAPGKGLEWIGCMYTGSYNRAYYASW AKGRFTSSKTSSTTVTLEMTSLTAADTATYFCAKGSNWYSDLWGPGTLVTVSS
SEQ ID NO. 110: 453 QERLVESGGGLVQPEGSLTLTCKASGFSFSRSYYIYWVRQAPGKGLEWIACIDAGSSGILVYANWAK GRFTISKTSSTTVTLQMTSLTAADTATYFCARGDASYGVDSFMLPLWGPGTLVTVSS
SEQ ID NO. 111: 375 QSLEESGGGLVQPEGSLTLTCKASGFSFTTTDYMCWVRQAPGKGLEWIGCILAGDGSTYYANWAK GRFTGSKTSSTTVDLKMTGLTAADTATYFCARSDPASSWSFALWGPGTLVTVSS
SEQ ID NO. 112: 610 QSLEESGGRLVTPGTPLTLTCTASGIDFSGAYYMGWVRQAPGKGLEWIGYDYDGDRYYASWAKG RFTISKTSTTVDLKITSPTTEDTATYFCA RSDYSSGWGTDIWGPGTLVTVSL
SEQ ID NO. 113: 578
QSVEESGGRLVTPGTPLTLTCTASGFSLTDYYYMTWVRLAPGKGLEYIGFIDPDDDPYYATWAKGRF TISRTSTTVNLKMTSPTTEDTATYFCAGGDHNSGWGLDIWGPGTLVTVSL
SEQ ID NO. 114: 534 QSLEESGGRLVTPGTPLTLTCTASGFSLSYYYMSWVRQAPGKGLEWIGIIGPGDYTDYASWAKGRFT ISKTSTTVDLKITSPTTEDTATYFCGRGDDNSGWGEDIWGPGTLVTVSL
SEQ ID NO. 115: 567 QSVEESGGRLVTPGAPLTLTCSVSGFSLSDYYMCWVRQAPGKGLQWIGCLDYFGSTDDASWAKGR FTISKTSTAVDLKITSPTTEDTATYFCARTDDSRGWGLNIWGPGTLVTVSL
SEQ ID NO. 116: 509 QSLEESGGRLVTPGTPLTLTCTASGFSLSSYYMCWVRQAPGKGLEWIGCLDYVGDTDYASWAKGRF TISKASTTVDLKITSLTTEDTATYFCA RTDDSRGWGLNIWGPGTLVTVSL
SEQ ID NO. 117: 511 QSVEESGGRLVTPGTPLTLTCTVSGFSLNTYYMNWVRdAPGKGLEWIGIIAPDDTTYYASWAKSRST ITRDTNENTVTLKMTSLTTEDTATYFCARSGDTTAWGADIWGPGTLVTVSL
SEQ ID NO. 118: 60-11-4min EVQLVESGGGLVQPGGSLRLSCAASGFPFSSGYWVCWVRQAPGKGLEWVSCYAGSSGSTYYASW AKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGNNYYIYTDGGYAYAGLELWGQGTLVTVSS
SEQ ID NO. 119: 60-11-6min EVQLVESGGGLVQPGGSLRLSCAASGFSFSSGYWICWVRQAPGKGLEWVSCYAGSSGSTYYASW AKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGNNYYIYTDGGYAYAGLELWGQGTLVTVSS
SEQ ID NO. 120: 435min EVQLVESGGGLVQPGGSLRLSCAASGFSLNTNYWMCWVRQAPGKGLEWVSCMYTGSYNRAYYA SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGSNWYSDLWGQGTLVTVSS
SEQ ID NO. 121: 453min EVQLVESGGGLVQPGGSLRLSCAASGFSFSRSYYIYWVRQA PGKGLEWVSCIDAGSSGILVYANWA KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDASYGVDSFMLPLWGQGTLVTVSS
SEQ ID NO. 122: 375min EVQLVESGGGLVQPGGSLRLSCAASGFSFTTTDYMCWVRQAPGKGLEWVSCLAGDGSTYYANW AKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSDPASSWSFALWGQGTLVTVSS
SEQ ID NO. 123: 610min EVQLVESGGGLVQPGGSLRLSCAASGIDFSGAYYMGWVRQAPGKGLEWVSYDYDGDRYYASWA KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSDYSSGWGTDIWGQGTLVTVSS
SEQ ID NO. 124: 578min
EVQLVESGGGLVQPGGSLRLSCAASGFSLTDYYYMTWVRQAPGKGLEWVSFIDPDDDPYYATWAK GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 125:534min EVQLVESGGGLVQPGGSLRLSCAASGFSLSYYYMSWVRQAPGKGLEWVSIIGPGDYTDYASWAKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDDNSGWGEDIWGQGTLVTVSS
SEQ ID NO. 126: 567min EVQLVESGGGLVQPGGSLRLSCAASGFSLSDYYMCWVRQAPGKGLEWVSCLDYFGSTDDASWAK GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 127: 509min EVQLVESGGGLVQPGGSLRLSCAASGFSLSSYYMCWVRQAPGKGLEWVSCLDYVGDTDYASWAK GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 128:511min EVQLVESGGGLVQPGGSLRLSCAASGFSLNTYYMNWVRQAPGKGLEWVSIIAPDDTTYYASWAKS RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSGDTTAWGADIWGQGTLVTVSS
SEQ ID NO. 129: 578minPref subst substQVQLVQTGGGLVQPGGSLRLSCAASGFSLTDYYYMTWVRQAPGKGLEWVSFIDPDDDPYY ATWAKGRFTISRDNSKNTVYLQMNSLRAEDTALYYCAKGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 130: 60-11-4max EVQLVESGGGLVQPGGSLRLSCTASGFPFSSGYWVCWVRQAPGKGLEWVGCIYAGSSGSTYYASW AKGRFTISKDTSKNTVYLQMNSLRAEDTAVYYCARGNNYYIYTDGGYAYAGLELWGQGTLVTVSS
SEQ ID NO. 131: 60-11-6max EVQLVESGGGLVQPGGSLRLSCTASGFSFSSGYWICWVRQAPGKGLEWVGCYAGSSGSTYYASW AKGRFTISKDTSKNTVYLQMNSLRAEDTAVYYCARGNNYYIYTDGGYAYAGLELWGQGTLVTVSS
SEQ ID NO. 132: 435max EVQLVESGGGLVQPGGSLRLSCKVSGFSLNTNYWMCWVRQAPGKGLEWVGCMYTGSYNRAYYA SWAKGRFTSSKDTSKNTVYLQMNSLRAEDTAVYYCAKGSNWYSDLWGQGTLVTVSS
SEQ ID NO. 133: 453max EVQLVESGGGLVQPGGSLRLSCKASGFSFSRSYYIYWVRQAPGKGLEWVGCIDAGSSGILVYANWA KGRFTISKDTSKNTVYLQMNSLRAEDTAVYYCARGDASYGVDSFMLPLWGQGTLVTVSS
SEQ ID NO. 134: 375max EVQLVESGGGLVQPGGSLRLSCKASGFSFTTTDYMCWVRQAPGKGLEWVGCILAGDGSTYYANW AKGRFTGSKDTSKNTVYLQMNSLRAEDTAVYYCARSDPASSWSFALWGQGTLVTVSS
SEQ ID NO. 135: 610max
EVQLVESGGGLVQPGGSLRLSCTASGIDFSGAYYMGWVRQAPGKGLEWVGYIDYDGDRYYASWA KG RFTISKDTSKNTVYLQMNSLRAEDTAVYYCARSDYSSGWGTDIWGQGTLVTVSS
SEQ ID NO. 136: 578max 5 EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 137: 534max EVQLVESGGGLVQPGGSLRLSCTASGFSLSYYYMSWVRQAPGKGLEWVGIIGPGDYTDYASWAKG 10 RFTISKDTSKNTVYLQMNSLRAEDTAVYYCARGDDNSGWGEDIWGQGTLVTVSS
SEQ ID NO. 138: 567max EVQLVESGGGLVQPGGSLRLSCSVSGFSLSDYYMCWVRQAPGKGLEWVGCLDYFGSTDDASWAK GRFTISKDTSKNTVYLQMNSLRAEDTAVYYCARTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 139: 509max EVQLVESGGGLVQPGGSLRLSCTASGFSLSSYYMCWVRQAPGKGLEWVGCLDYVGDTDYASWAK GRFTISKDASKNTVYLQMNSLRAEDTAVYYCARTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 140: 509maxl EVQLVESGGGLVQPGGSLRLSCTASGFSLSSYYMSWVRQAPGKGLEWVGILDYVGDTDYASWAKG RFTISKDASKNTVYLQMNSLRAEDTAVYYCARTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 141: 511max EVQLVESGGGLVQPGGSLRLSCTVSGFSLNTYYMNWVRQAPGKGLEWVGIIAPDDTTYYASWAKS RSTISRDTSKNTVYLQMNSLRAEDTAVYYCARSGDTTAWGADIWGQGTLVTVSS
SEQ ID NO. 142: 578maxPref subst substQVQLVQTGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYY ATWAKGRFTISRDTSKNTVYLQMNSLRAEDTALYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 143: 567minDHP EVQLVESGGGSVQPGGSLRLSCAASGFSLSDYYMCWVRQAPGKGLEWVSCLDYFGSTDDASWAK GRFTISRDNSKNTLYLQMNSLRAEDTATYYCAKTDDSRGWGLNIWGQGTTVTVSS
SEQ ID NO. 144:578maxDHP EVQLVESGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTVYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 145: 511maxDHP EVQLVESGGGSVQPGGSLRLSCTVSGFSLNTYYMNWVRQAPGKGLEWVGIIAPDDTTYYASWAKS RSTISRDTSKNTVYLQMNSLRAEDTATYYCARSGDTTAWGADIWGQGTTVTVSS
SEQ ID NO. 146: 578maxPref substDHP
QVQLVQTGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTVYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 147: 578max VH: El VQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWAK GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 148: 578max VH: V2Q EQQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 149: 578max VH: Q46L EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRLAPGKGLEWVGFIDPDDDPYYATWAK GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 150: 578max VH: W54Y EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEYVGFIDPDDDPYYATWAK GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 151: 578max VH: V551 EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWIGFIDPDDDPYYATWAK GRFTISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 152: 578max VH: D83A EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRATSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 153: 578max VH: N87A EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKATVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 154: 578max VH: Y105F EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTVYLQMNSLRAEDTAVYFCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 155: 578max VH: D83_ EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 156: 578max VH: N87 EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 157: 578max VH: T84N
EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 158: 578max VH: V89L 5 EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTLYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 159: 578max VH: V89A EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA 10 KGRFTISRDTSKNTAYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 160:578maxDHP VH: T84N EVQLVESGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTVYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 161: 578maxDHP VH: V89L EVQLVESGGGSVdPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPUDDPYYATWA KGRFTISRDTSKNTLYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 162: 578maxDHP VH: V89A EVQLVESGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDTSKNTAYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 163: 578max VH:T84N, V89A EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTAYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 164:578max VH:T84N, V89L EVQLVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 165: 578maxDHP VH: T84N, V89A EVQLVESGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTAYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
SEQ ID NO. 166: 578maxDHP VH: T84N, V89L EVQLVESGGGSVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWA KGRFTISRDNSKNTLYLQMNSLRAEDTATYYCAGGDHNSGWGLDIWGQGTTVTVSS
framework sequences (X residues are CDR insertion sites and may be any naturally occurring amino acid. At least 3 and up to 50 amino acids can be present):
SEQ ID NO. 167: Variable light chain FW1.4 and rFW1.4
EIVMTQSPSTLSASVGDRVIlTC(X)n=3- 50 WYQQKPGKAPKLLY(X)n=3- s 5 GVPSRFSGSGSGAEFTLTISSLQPDDFATYYC(X)n=3- 5 o FGQGTKLT VLG
SEQ ID NO. 168: Variable light chain rFW1.4 variant 2 (v2) EIVMTQSPSTLSASVGDRVIITC(X)n=3-so WYQQKPGKAPKLLY(X)n=3-. 5 GVPSRFSGSGSGAEFTLISSLQPDDFATYYC(X)n= 3- 50 FGQGTKLT VLG
SEQ ID NO. 169: Variable heavy chain FW1.4 EVQLVESGGGLVQPGGSLRLSCAAS(X)n=3-so WVRQAPGKGLEWVS (X)n=3- 50 RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK(X)n=3- 5 WGQGTL VTVSS
SEQ ID NO. 170: Variable heavy chain rFW1.4 EVQLVESGGGLVQPGGSLRLSCTAS(X)n=3-so WVRQAPGKGLEWVG(X)n=3- 50 RFTISRDTSKNTVYLQMNSLRAEDTAVYYCAR(X)n=3- 50 WGQGTLV TVS
SEQ ID NO. 171: Variable heavy chain rFW1.4 variant 2 (v2) EVQLVESGGGLVQPGGSLRLSCTVS(X)n=3- 5 WVRQAPGKGLEWVG(X)n=3- 50 RFTISKDTSKNTVYLQMNSLRAEDTAVYYCAR(X)n=3- 50 WGQGTLVTVSS
ScFv framework sequences:
SEQ ID NO. 172: FW1.4 EIVMTQSPSTLSASVGDRVIITC(X)n=3- 50 WYQQKPGKAPKLLIY(X)n=3- 50 GVPSRFSGSGSGAEFTLTISSLQPDDFATYYC(X)n=3- 5s FGQGTKLTVLG GGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAAS(X)n=3- o 5 WVRQAPGKGLEWVS(X)n=3-so RFTISRDNSKNTLYLQMNSLRAEDTA VYYCAK(X)n=3- 50 WGQGTLVTVSS
SEQ ID NO. 173: rFW1.4 EIVMTQSPSTLSASVGDRVIITC(X)n=3- 5 WYQQKPGKAPKLLlY(X)n=3- 50 GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC(X)n=3- 50 FGQGTKLTVLG GGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCTAS(X)n=3-so WVRQAPGKGLEWVG(X)n=3-50 RFTSRDTSKNTVYLQMNS LRAEDTAVYYCAR(X)n=3- s 5 WGQGTLVTVSS
SEQ ID NO. 174: rFW1.4 variant 2 (v2) EIVMTQSPSTLSASVGDRVIITC(X)n=3- 50 WYQQKPGKAPKLLIY(X)n=3- 50 GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC(X)n=3- 5 FGQGTKLTVLG GGGGSGGGGSGGGGSGGGGS EVQLVESGGGLVQPGGSLRLSCTVS(X)n=3- s 5 WVRQAPGKGLEWVG(X)n=3- 5s RFTISKDTSKNTVYLQMNSLR AEDTAVYYCAR(X)n=3- 50 WGQGTLVTVSS
ScFv anti-VEGF sequences:
SEQ ID NO. 175: 435_max EIVMTQSPSTLSASVGDRVIITCQASQSIGSSLAWYQQKPGKAPKLLIYTAANLASGVPSRFSGSRSG A EFTLTISSLQPDDFATYYCQNFATSDTVTFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQL VESGGGLVQPGGSLRLSCKASGFSLNTNYWMCWVRQAPGKGLEWVGCMYTGSYNRAYYASWA KGRFTSSKDTSKNTVYLQMNSLRAEDTAVYYCAKGSNWYSDLWGQGTLVTVSS
SEQ ID NO. 176: 511_max EIVMTQSPSTLSASVGDRVIITCQASQSINIWLSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGT EFTLTISSLQPDDFATYYCQANYAYSAGYGAAFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEV QLVESGGGLVQPGGSLRLSCTVSGFSLNTYYMNWVRQAPGKGLEWVGIIAPDDTTYYASWAKSRS TISRDTSKNTVYLQMNSLRAEDTAVYYCARSGDTTAWGADIWGQGTLVTVSS
SEQ ID NO. 177: 567_min EIVMTQSPSTLSASVGDRVIITCQADQSIYIWLSNYQQKPGKAPKLLIYKASTLESGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNNAHYSTNGGTFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQ LVESGGGLVQPGGSLRLSCAASGFSLSDYYMCWVRQAPGKGLEWVSCLDYFGSTDDASWAKGRFT ISRDNSKNTLYLQMNSLRAEDTAVYYCAKTDDSRGWGLNIWGQGTLVTVSS
SEQ ID NO. 178: 578min EIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLIYLASTLASGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQ LVESGGGLVQPGGSLRLSCAASGFSLTDYYYMTWVRQAPGKGLEWVSFIDPDDDPYYATWAKGRF TISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 179:578max EIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLYLASTLASGVPSRFSGSGSGT QFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQ LVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWAKGRF TISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID NO. 180: 578minmax (ESBA903) EIVMTQSPSTLSASVGDRVIITCQASEIIHSWLAWYQQKPGKAPKLLYLASTLASGVPSRFSGSGSGA EFTLTISSLQPDDFATYYCQNVYLASTNGANFGQGTKLTVLGGGGGSGGGGSGGGGSGGGGSEVQ LVESGGGLVQPGGSLRLSCTASGFSLTDYYYMTWVRQAPGKGLEWVGFIDPDDDPYYATWAKGRF TISRDTSKNTVYLQMNSLRAEDTAVYYCAGGDHNSGWGLDIWGQGTLVTVSS
SEQ ID No. 181 linker GGGGSGGGGSGGGGSGGGGS
3793_SequenceListing _ST25 16 Aug 2019
SEQUENCE LISTING <110> ESBATEch AG <120> Stable and soluble antibodies inhibiting VEGF
<130> VEGF binders <140> Us61/133,212 <141> 2008-06-25 <160> 180 2019216698
<170> PatentIn version 3.5
<210> 1 <211> 11 <212> PRT <213> Homo sapiens <400> 1
Lys Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys 1 5 10
<210> 2 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 2 Gly Phe Pro Phe Ser Ser Gly Tyr Trp Val Cys 1 5 10
<210> 3 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 3 Gly Phe Ser Phe Ser Ser Gly Tyr Trp Ile Cys 1 5 10
<210> 4 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 4 Gly Phe Ser Leu Asn Thr Asn Tyr Trp Met Cys 1 5 10
Page 1
3793_SequenceListing _ST25 16 Aug 2019
<210> 5 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 5
Gly Phe Ser Phe Ser Arg Ser Tyr Tyr Ile Tyr 1 5 10 2019216698
<210> 6 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 6 Gly Phe Ser Phe Thr Thr Thr Asp Tyr Met Cys 1 5 10
<210> 7 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 7
Gly Ile Asp Phe Ser Gly Ala Tyr Tyr Met Gly 1 5 10
<210> 8 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 8 Gly Phe Ser Leu Thr Asp Tyr Tyr Tyr Met Thr 1 5 10
<210> 9 <211> 10 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 9 Gly Phe Ser Leu Ser Tyr Tyr Tyr Met Ser 1 5 10 Page 2
3793_SequenceListing _ST25 16 Aug 2019
<210> 10 <211> 10 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 10 Gly Phe Ser Leu Ser Asp Tyr Tyr Met Cys 2019216698
1 5 10
<210> 11 <211> 10 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 11
Gly Phe Ser Leu Ser Ser Tyr Tyr Met Cys 1 5 10
<210> 12 <211> 10 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 12
Gly Phe Ser Leu Asn Thr Tyr Tyr Met Asn 1 5 10
<210> 13 <211> 10 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 13 Gly Phe Ser Leu Ser Ser Tyr Tyr Met Ser 1 5 10
<210> 14 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 14
Page 3
3793_SequenceListing _ST25 16 Aug 2019
Gly Phe Ser Leu Ser Ser Gly Tyr Tyr Met Cys 1 5 10
<210> 15 <211> 18 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 15 2019216698
Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser Trp Ala 1 5 10 15
Lys Gly
<210> 16 <211> 18 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 16 Cys Met Tyr Thr Gly Ser Tyr Asn Arg Ala Tyr Tyr Ala Ser Trp Ala 1 5 10 15
Lys Gly
<210> 17 <211> 18 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 17 Cys Ile Asp Ala Gly Ser Ser Gly Ile Leu Val Tyr Ala Asn Trp Ala 1 5 10 15
Lys Gly
<210> 18 <211> 17 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 18
Page 4
3793_SequenceListing _ST25 16 Aug 2019
Cys Ile Leu Ala Gly Asp Gly Ser Thr Tyr Tyr Ala Asn Trp Ala Lys 1 5 10 15
Gly
<210> 19 <211> 16 <212> PRT <213> Unknown 2019216698
<220> <223> CDR stemming from rabbit antibody
<400> 19 Tyr Ile Asp Tyr Asp Gly Asp Arg Tyr Tyr Ala Ser Trp Ala Lys Gly 1 5 10 15
<210> 20 <211> 16 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 20 Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala Lys Gly 1 5 10 15
<210> 21 <211> 16 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 21 Ile Ile Gly Pro Gly Asp Tyr Thr Asp Tyr Ala Ser Trp Ala Lys Gly 1 5 10 15
<210> 22 <211> 16 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 22 Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser Trp Ala Lys Gly 1 5 10 15
<210> 23 <211> 16 <212> PRT <213> artifical sequence Page 5
3793_SequenceListing _ST25 16 Aug 2019
<400> 23
Cys Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys Gly 1 5 10 15
<210> 24 <211> 16 <212> PRT <213> Unknown <220> 2019216698
<223> CDR stemming from rabbit antibody
<400> 24 Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala Ser Trp Ala Lys Ser 1 5 10 15
<210> 25 <211> 16 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 25 Ile Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys Gly 1 5 10 15
<210> 26 <211> 18 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 26
Cys Ile Asp Ala Gly Ser Asp Gly Asp Thr Tyr Tyr Ala Ser Trp Ala 1 5 10 15
Lys Gly
<210> 27 <211> 19 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 27 Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr Ala Tyr Ala Gly 1 5 10 15
Leu Glu Leu Page 6
3793_SequenceListing _ST25 16 Aug 2019
<210> 28 <211> 8 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 28 2019216698
Gly Ser Asn Trp Tyr Ser Asp Leu 1 5
<210> 29 <211> 14 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 29
Gly Asp Ala Ser Tyr Gly Val Asp Ser Phe Met Leu Pro Leu 1 5 10
<210> 30 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 30
Ser Asp Pro Ala Ser Ser Trp Ser Phe Ala Leu 1 5 10
<210> 31 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 31 Ser Asp Tyr Ser Ser Gly Trp Gly Thr Asp Ile 1 5 10
<210> 32 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 32 Page 7
3793_SequenceListing _ST25 16 Aug 2019
Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile 1 5 10
<210> 33 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody 2019216698
<400> 33
Gly Asp Asp Asn Ser Gly Trp Gly Glu Asp Ile 1 5 10
<210> 34 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 34
Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile 1 5 10
<210> 35 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 35 Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile 1 5 10
<210> 36 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 36 Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile 1 5 10
<210> 37 <211> 19 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody Page 8
3793_SequenceListing _ST25 16 Aug 2019
<400> 37
Gly Asp Asp Ser Ser Gly Tyr Thr Asp Gly Gly Tyr Ala Tyr Trp Gly 1 5 10 15
Leu Asp Ile
<210> 38 <211> 11 2019216698
<212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 38
Gln Ala Ser Gln Ser Ile Ser Ser Tyr Leu Ser 1 5 10
<210> 39 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 39
Gln Ala Ser Gln Ser Ile Gly Ser Ser Leu Ala 1 5 10
<210> 40 <211> 13 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 40 Gln Ser Ser Gln Ser Val Trp Asn Asn Asn Arg Leu Ala 1 5 10
<210> 41 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 41 Gln Ala Ser Glu Asn Ile Asn Ile Trp Leu Ser 1 5 10
<210> 42 Page 9
3793_SequenceListing _ST25 16 Aug 2019
<211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 42
Gln Ala Ser Gln Ser Ile Ser Ser Trp Leu Ser 1 5 10 2019216698
<210> 43 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 43 Gln Ala Ser Glu Ile Ile His Ser Trp Leu Ala 1 5 10
<210> 44 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 44 Gln Ala Ser Gln Ser Ile Asn Ile Trp Leu Ser 1 5 10
<210> 45 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 45 Gln Ala Asp Gln Ser Ile Tyr Ile Trp Leu Ser 1 5 10
<210> 46 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 46 Gln Ala Ser Gln Asn Ile Arg Ile Trp Leu Ser 1 5 10
Page 10
3793_SequenceListing _ST25 16 Aug 2019
<210> 47 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 47 Gln Ala Ser Gln Ser Ile Asn Ile Trp Cys Ser 1 5 10 2019216698
<210> 48 <211> 11 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 48 Gln Ala Ser Gln Ser Ile Asn Ile Trp Leu Ser 1 5 10
<210> 49 <211> 13 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 49
Gln Ala Ser Gln Ser Ile Asn Ile Asn Asn Trp Leu Ser 1 5 10
<210> 50 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 50 Lys Ala Ser Thr Leu Ala Ser 1 5
<210> 51 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 51 Thr Ala Ala Asn Leu Ala Ser Page 11
3793_SequenceListing _ST25 16 Aug 2019
1 5
<210> 52 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 52 2019216698
Tyr Ala Ser Thr Leu Ala Ser 1 5
<210> 53 <211> 7 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 53
Gln Ala Ser Lys Leu Ala Ser 1 5
<210> 54 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 54
Gln Ala Ser Thr Leu Ala Ser 1 5
<210> 55 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 55 Leu Ala Ser Thr Leu Ala Ser 1 5
<210> 56 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 56 Page 12
3793_SequenceListing _ST25 16 Aug 2019
Lys Glu Ser Thr Leu Ala Ser 1 5
<210> 57 <211> 7 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody 2019216698
<400> 57
Lys Ala Ser Thr Leu Glu Ser 1 5
<210> 58 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody
<400> 58
Lys Ala Ser Thr Leu Glu Ser 1 5
<210> 59 <211> 7 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 59 Arg Ala Ser Thr Leu Ala Ser 1 5
<210> 60 <211> 7 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 60 Lys Ala Ser Thr Leu Ala Ser 1 5
<210> 61 <211> 14 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody Page 13
3793_SequenceListing _ST25 16 Aug 2019
<400> 61
Gln Ser Asn Tyr Gly Gly Ser Ser Ser Asp Tyr Gly Asn Pro 1 5 10
<210> 62 <211> 10 <212> PRT <213> Unknown <220> 2019216698
<223> CDR stemming from rabbit antibody
<400> 62 Gln Asn Phe Ala Thr Ser Asp Thr Val Thr 1 5 10
<210> 63 <211> 11 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody
<400> 63 Ala Gly Gly Tyr Ser Ser Thr Ser Asp Asn Thr 1 5 10
<210> 64 <211> 12 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 64
Gln Asn Asn Tyr Ser Tyr Asn Arg Tyr Gly Ala Pro 1 5 10
<210> 65 <211> 12 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 65 Gln Asn Asn Tyr Gly Phe Arg Ser Tyr Gly Gly Ala 1 5 10
<210> 66 <211> 12 <212> PRT <213> Unknown
Page 14
3793_SequenceListing _ST25 16 Aug 2019
<220> <223> CDR stemming from rabbit antibody
<400> 66 Gln Asn Val Tyr Leu Ala Ser Thr Asn Gly Ala Asn 1 5 10
<210> 67 <211> 12 <212> PRT <213> Unknown 2019216698
<220> <223> CDR stemming from rabbit antibody <400> 67 Gln Asn Asn Tyr Asp Ser Gly Asn Asn Gly Phe Pro 1 5 10
<210> 68 <211> 12 <212> PRT <213> Unknown
<220> <223> CDR stemming from rabbit antibody <400> 68
Gln Asn Asn Ala His Tyr Ser Thr Asn Gly Gly Thr 1 5 10
<210> 69 <211> 12 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 69 Gln Asn Asn Ala His Tyr Ser Thr Asn Gly Gly Thr 1 5 10
<210> 70 <211> 13 <212> PRT <213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 70 Gln Ala Asn Tyr Ala Tyr Ser Ala Gly Tyr Gly Ala Ala 1 5 10
<210> 71 <211> 14 <212> PRT Page 15
3793_SequenceListing _ST25 16 Aug 2019
<213> Unknown <220> <223> CDR stemming from rabbit antibody <400> 71 Gln Asn Asn Tyr His Tyr Ser Ser Ser Thr Asn Gly Gly Thr 1 5 10
<210> 72 <211> 112 2019216698
<212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence <400> 72 Glu Val Val Met Ala Gln Thr Pro Ala Ser Val Glu Ala Ala Val Gly 1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly 50 55 60
Ser Arg Ser Gly Thr Glu Tyr Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Asn Tyr Gly Gly Ser Ser 85 90 95
Ser Asp Tyr Gly Asn Pro Phe Gly Gly Gly Thr Glu Ala Val Val Lys 100 105 110
<210> 73 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 73 Ala Phe Glu Leu Thr Gln Thr Pro Ser Ser Val Glu Ala Ala Val Gly 1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Gly Ser Ser 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile Page 16
3793_SequenceListing _ST25 16 Aug 2019
35 40 45
Tyr Thr Ala Ala Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Arg Gly 50 55 60
Ser Arg Ser Gly Ala Ala Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Asn Phe Ala Thr Ser Asp Thr 85 90 95 2019216698
Val Thr Phe Gly Gly Gly Thr Glu Val Val Val Thr 100 105
<210> 74 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
<400> 74
Ala Val Val Leu Thr Gln Thr Pro Ser Pro Val Ser Ala Ala Val Gly 1 5 10 15
Gly Thr Val Ser Ile Ser Cys Gln Ser Ser Gln Ser Val Trp Asn Asn 20 25 30
Asn Arg Leu Ala Trp Phe Gln Gln Lys Ser Gly Gln Pro Pro Lys Leu 35 40 45
Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe 50 55 60
Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asp Val 65 70 75 80
Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Ala Gly Gly Tyr Ser Ser 85 90 95
Thr Ser Asp Asn Thr Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 75 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 75 Asp Ile Val Met Thr Gln Thr Pro Ala Ser Val Glu Ala Thr Val Gly Page 17
3793_SequenceListing _ST25 16 Aug 2019
1 5 10 15
Gly Thr Ile Thr Ile Asn Cys Gln Ala Ser Glu Asn Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly 50 55 60 2019216698
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Ser Tyr Asn Arg 85 90 95
Tyr Gly Ala Pro Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 76 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
<400> 76 Asp Val Val Met Thr Gln Thr Pro Ala Ser Val Ser Glu Pro Val Gly 1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Thr Leu Ala Ser Gly Val Pro Pro Arg Ser Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Phe Cys Gln Asn Asn Tyr Gly Phe Arg Ser 85 90 95
Tyr Gly Gly Ala Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 77 <211> 110 <212> PRT Page 18
3793_SequenceListing _ST25 16 Aug 2019
<213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 77 Asp Val Val Met Thr Gln Thr Pro Ser Ser Val Ser Ala Ala Val Gly 1 5 10 15
Asp Thr Val Thr Ile Asn Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30 2019216698
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Ile Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 78 <211> 110 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence <400> 78
Asp Val Val Met Thr Gln Thr Pro Ser Ser Val Ser Ala Ala Val Gly 1 5 10 15
Asp Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Ser Gly Gln Pro Pro Lys Leu Leu Val 35 40 45
Tyr Lys Glu Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Arg Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Asp Ser Gly Asn 85 90 95
Page 19
3793_SequenceListing _ST25 16 Aug 2019
Asn Gly Phe Pro Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 79 <211> 110 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence 2019216698
<400> 79
Asp Val Val Met Thr Gln Thr Pro Ser Ser Val Ser Ala Ala Val Gly 1 5 10 15
Asp Thr Val Thr Ile Asn Cys Gln Ala Asp Gln Ser Ile Tyr Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Lys Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 80 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 80 Asp Val Val Met Thr Gln Thr Pro Ser Ser Val Ser Ala Ala Val Gly 1 5 10 15
Asp Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Asn Ile Arg Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Lys Gly 50 55 60
Page 20
3793_SequenceListing _ST25 16 Aug 2019
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110 2019216698
<210> 81 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 81 Glu Val Val Met Thr Gln Thr Pro Ala Ser Val Glu Ala Ala Val Gly 1 5 10 15
Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Cys Ser Trp Tyr Gln Gln Lys Pro Gly His Pro Pro Lys Leu Leu Ile 35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Ser Ser Arg Phe Lys Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys 65 70 75 80
Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ala Asn Tyr Ala Tyr Ser Ala 85 90 95
Gly Tyr Gly Ala Ala Phe Gly Gly Gly Thr Glu Val Val Val Lys 100 105 110
<210> 82 <211> 113 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 82 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30
Page 21
3793_SequenceListing _ST25 16 Aug 2019
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 2019216698
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ser Asn Tyr Gly Gly Ser Ser 85 90 95
Ser Asp Tyr Gly Asn Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu 100 105 110
Gly
<210> 83 <211> 109 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence
<400> 83
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Gly Ser Ser 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Thr Ala Ala Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Phe Ala Thr Ser Asp Thr 85 90 95
Val Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105
<210> 84 <211> 112 <212> PRT <213> Artificial Sequence
Page 22
3793_SequenceListing _ST25 16 Aug 2019
<220> <223> recombinant scFv - VL sequence
<400> 84 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ser Ser Gln Ser Val Trp Asn Asn 20 25 30 2019216698
Asn Arg Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 35 40 45
Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe 50 55 60
Ser Gly Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu 65 70 75 80
Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Ala Gly Gly Tyr Ser Ser 85 90 95
Thr Ser Asp Asn Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 85 <211> 111 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence
<400> 85 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Asn Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Ser Tyr Asn Arg 85 90 95
Tyr Gly Ala Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Page 23
3793_SequenceListing _ST25 16 Aug 2019
100 105 110
<210> 86 <211> 111 <212> PRT <213> artifical sequence <400> 86
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15 2019216698
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Gly Phe Arg Ser 85 90 95
Tyr Gly Gly Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 87 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
<400> 87 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Page 24
3793_SequenceListing _ST25 16 Aug 2019
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 88 <211> 111 <212> PRT <213> Artificial Sequence 2019216698
<220> <223> recombinant scFv - VL sequence
<400> 88 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Glu Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Asp Ser Gly Asn 85 90 95
Asn Gly Phe Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 89 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 89 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Asp Gln Ser Ile Tyr Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Page 25
3793_SequenceListing _ST25 16 Aug 2019
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 2019216698
100 105 110
<210> 90 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 90
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Asn Ile Arg Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 91 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 91 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Page 26
3793_SequenceListing _ST25 16 Aug 2019
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Cys Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 2019216698
65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ala Asn Tyr Ala Tyr Ser Ala 85 90 95
Gly Tyr Gly Ala Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 92 <211> 111 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence <400> 92
Glu Ile Val Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Ser Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 110
<210> 93 <211> 113 <212> PRT <213> Artificial Sequence <220> Page 27
3793_SequenceListing _ST25 16 Aug 2019
<223> recombinant scFv - VL sequence <400> 93 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser Tyr 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 2019216698
35 40 45
Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ser Asn Tyr Gly Gly Ser Ser 85 90 95
Ser Asp Tyr Gly Asn Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu 100 105 110
Gly
<210> 94 <211> 109 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence
<400> 94
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Lys Cys Gln Ala Ser Gln Ser Ile Gly Ser Ser 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Thr Ala Ala Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Phe Ala Thr Ser Asp Thr 85 90 95 Page 28
3793_SequenceListing _ST25 16 Aug 2019
Val Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105
<210> 95 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence 2019216698
<400> 95
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ser Ser Gln Ser Val Trp Asn Asn 20 25 30
Asn Arg Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 35 40 45
Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe 50 55 60
Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu 65 70 75 80
Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Ala Gly Gly Tyr Ser Ser 85 90 95
Thr Ser Asp Asn Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 96 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 96 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Asn Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Page 29
3793_SequenceListing _ST25 16 Aug 2019
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Ser Tyr Asn Arg 85 90 95
Tyr Gly Ala Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110 2019216698
<210> 97 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
<400> 97 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Gln Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Gly Phe Arg Ser 85 90 95
Tyr Gly Gly Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 98 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 98 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30 Page 30
3793_SequenceListing _ST25 16 Aug 2019
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 2019216698
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 99 <211> 111 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence
<400> 99 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Glu Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Tyr Asp Ser Gly Asn 85 90 95
Asn Gly Phe Pro Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 100 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
Page 31
3793_SequenceListing _ST25 16 Aug 2019
<400> 100 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Asp Gln Ser Ile Tyr Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 2019216698
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 101 <211> 111 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VL sequence
<400> 101
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Asn Ile Arg Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95
Asn Gly Gly Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
Page 32
3793_SequenceListing _ST25 16 Aug 2019
<210> 102 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 102
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15 2019216698
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ala Asn Tyr Ala Tyr Ser Ala 85 90 95
Gly Tyr Gly Ala Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 103 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence
<400> 103 Glu Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Ser Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Phe Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Page 33
3793_SequenceListing _ST25 16 Aug 2019
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100 105 110
<210> 104 <211> 111 <212> PRT <213> Artificial Sequence 2019216698
<220> <223> recombinant scFv - VL sequence
<400> 104 Asp Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 105 <211> 111 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 105 Glu Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Page 34
3793_SequenceListing _ST25 16 Aug 2019
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 2019216698
100 105 110
<210> 106 <211> 112 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL sequence <400> 106
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ala Asn Tyr Ala Tyr Ser Ala 85 90 95
Gly Tyr Gly Ala Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
<210> 107 <211> 128 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 107 Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Ala Ser 1 5 10 15
Page 35
3793_SequenceListing _ST25 16 Aug 2019
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Pro Phe Ser Ser Gly Tyr 20 25 30
Trp Val Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Ala Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser Trp 50 55 60
Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val Thr 2019216698
65 70 75 80
Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys 85 90 95
Ala Arg Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr Ala Tyr 100 105 110
Ala Gly Leu Glu Leu Trp Gly Pro Gly Ile Leu Val Thr Val Ser Ser 115 120 125
<210> 108 <211> 128 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 108
Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Ala Ser 1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Phe Ser Ser Gly Tyr 20 25 30
Trp Ile Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Ala Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser Trp 50 55 60
Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val Thr 65 70 75 80
Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys 85 90 95
Ala Arg Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr Ala Tyr 100 105 110
Ala Gly Leu Glu Leu Trp Gly Pro Gly Ile Leu Val Thr Val Ser Ser 115 120 125 Page 36
3793_SequenceListing _ST25 16 Aug 2019
<210> 109 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 109 Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Gln Pro Gly Ala Ser 2019216698
1 5 10 15
Leu Thr Leu Thr Cys Lys Val Ser Gly Phe Ser Leu Asn Thr Asn Tyr 20 25 30
Trp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Cys Met Tyr Thr Gly Ser Tyr Asn Arg Ala Tyr Tyr Ala Ser Trp 50 55 60
Ala Lys Gly Arg Phe Thr Ser Ser Lys Thr Ser Ser Thr Thr Val Thr 65 70 75 80
Leu Glu Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys 85 90 95
Ala Lys Gly Ser Asn Trp Tyr Ser Asp Leu Trp Gly Pro Gly Thr Leu 100 105 110
Val Thr Val Ser Ser 115
<210> 110 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 110 Gln Glu Arg Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Glu Gly 1 5 10 15
Ser Leu Thr Leu Thr Cys Lys Ala Ser Gly Phe Ser Phe Ser Arg Ser 20 25 30
Tyr Tyr Ile Tyr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Ile Ala Cys Ile Asp Ala Gly Ser Ser Gly Ile Leu Val Tyr Ala Asn 50 55 60 Page 37
3793_SequenceListing _ST25 16 Aug 2019
Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val 65 70 75 80
Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe 85 90 95
Cys Ala Arg Gly Asp Ala Ser Tyr Gly Val Asp Ser Phe Met Leu Pro 100 105 110 2019216698
Leu Trp Gly Pro Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 111 <211> 119 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 111
Gln Ser Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Glu Gly Ser 1 5 10 15
Leu Thr Leu Thr Cys Lys Ala Ser Gly Phe Ser Phe Thr Thr Thr Asp 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Cys Ile Leu Ala Gly Asp Gly Ser Thr Tyr Tyr Ala Asn Trp Ala 50 55 60
Lys Gly Arg Phe Thr Gly Ser Lys Thr Ser Ser Thr Thr Val Asp Leu 65 70 75 80
Lys Met Thr Gly Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 85 90 95
Arg Ser Asp Pro Ala Ser Ser Trp Ser Phe Ala Leu Trp Gly Pro Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 112 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
Page 38
3793_SequenceListing _ST25 16 Aug 2019
<400> 112 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Ile Asp Phe Ser Gly Ala Tyr 20 25 30
Tyr Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45 2019216698
Gly Tyr Ile Asp Tyr Asp Gly Asp Arg Tyr Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile 65 70 75 80
Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Ser 85 90 95
Asp Tyr Ser Ser Gly Trp Gly Thr Asp Ile Trp Gly Pro Gly Thr Leu 100 105 110
Val Thr Val Ser Leu 115
<210> 113 <211> 117 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 113
Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr Tyr 20 25 30
Tyr Met Thr Trp Val Arg Leu Ala Pro Gly Lys Gly Leu Glu Tyr Ile 35 40 45
Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Asn Leu Lys Met 65 70 75 80
Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Gly Gly 85 90 95
Page 39
3793_SequenceListing _ST25 16 Aug 2019
Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Pro Gly Thr Leu 100 105 110
Val Thr Val Ser Leu 115
<210> 114 <211> 116 <212> PRT <213> Artificial Sequence 2019216698
<220> <223> recombinant scFv - VH sequence
<400> 114 Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Tyr Tyr Tyr 20 25 30
Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45
Ile Ile Gly Pro Gly Asp Tyr Thr Asp Tyr Ala Ser Trp Ala Lys Gly 50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Ile Thr 65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Gly Arg Gly Asp 85 90 95
Asp Asn Ser Gly Trp Gly Glu Asp Ile Trp Gly Pro Gly Thr Leu Val 100 105 110
Thr Val Ser Leu 115
<210> 115 <211> 116 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 115 Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Ala Pro 1 5 10 15
Leu Thr Leu Thr Cys Ser Val Ser Gly Phe Ser Leu Ser Asp Tyr Tyr 20 25 30
Page 40
3793_SequenceListing _ST25 16 Aug 2019
Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Gln Trp Ile Gly 35 40 45
Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser Trp Ala Lys Gly 50 55 60
Arg Phe Thr Ile Ser Lys Thr Ser Thr Ala Val Asp Leu Lys Ile Thr 65 70 75 80
Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Thr Asp 2019216698
85 90 95
Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Pro Gly Thr Leu Val 100 105 110
Thr Val Ser Leu 115
<210> 116 <211> 116 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 116
Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15
Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr Tyr 20 25 30
Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45
Cys Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys Gly 50 55 60
Arg Phe Thr Ile Ser Lys Ala Ser Thr Thr Val Asp Leu Lys Ile Thr 65 70 75 80
Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg Thr Asp 85 90 95
Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Pro Gly Thr Leu Val 100 105 110
Thr Val Ser Leu 115
<210> 117 <211> 118 Page 41
3793_SequenceListing _ST25 16 Aug 2019
<212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 117 Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro 1 5 10 15
Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn Thr Tyr Tyr 2019216698
20 25 30
Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45
Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala Ser Trp Ala Lys Ser 50 55 60
Arg Ser Thr Ile Thr Arg Asp Thr Asn Glu Asn Thr Val Thr Leu Lys 65 70 75 80
Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg 85 90 95
Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile Trp Gly Pro Gly Thr 100 105 110
Leu Val Thr Val Ser Leu 115
<210> 118 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 118
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Phe Ser Ser Gly 20 25 30
Tyr Trp Val Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 65 70 75 80 Page 42
3793_SequenceListing _ST25 16 Aug 2019
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Lys Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr 100 105 110
Ala Tyr Ala Gly Leu Glu Leu Trp Gly Gln Gly Thr Leu Val Thr Val 115 120 125 2019216698
Ser Ser 130
<210> 119 <211> 130 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 119
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Gly 20 25 30
Tyr Trp Ile Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Lys Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr 100 105 110
Ala Tyr Ala Gly Leu Glu Leu Trp Gly Gln Gly Thr Leu Val Thr Val 115 120 125
Ser Ser 130
<210> 120 <211> 119 <212> PRT <213> Artificial Sequence Page 43
3793_SequenceListing _ST25 16 Aug 2019
<220> <223> recombinant scFv - VH sequence <400> 120
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Asn Thr Asn 20 25 30 2019216698
Tyr Trp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Cys Met Tyr Thr Gly Ser Tyr Asn Arg Ala Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 65 70 75 80
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Lys Gly Ser Asn Trp Tyr Ser Asp Leu Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 121 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 121 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Arg Ser 20 25 30
Tyr Tyr Ile Tyr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Cys Ile Asp Ala Gly Ser Ser Gly Ile Leu Val Tyr Ala Asn 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 65 70 75 80
Page 44
3793_SequenceListing _ST25 16 Aug 2019
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Lys Gly Asp Ala Ser Tyr Gly Val Asp Ser Phe Met Leu 100 105 110
Pro Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125
<210> 122 2019216698
<211> 121 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 122
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Thr Thr Thr 20 25 30
Asp Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Cys Ile Leu Ala Gly Asp Gly Ser Thr Tyr Tyr Ala Asn Trp 50 55 60
Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu 65 70 75 80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95
Cys Ala Lys Ser Asp Pro Ala Ser Ser Trp Ser Phe Ala Leu Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 123 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 123 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Page 45
3793_SequenceListing _ST25 16 Aug 2019
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ile Asp Phe Ser Gly Ala 20 25 30
Tyr Tyr Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Tyr Ile Asp Tyr Asp Gly Asp Arg Tyr Tyr Ala Ser Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 2019216698
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Ser Asp Tyr Ser Ser Gly Trp Gly Thr Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 124 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 124
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 Page 46
3793_SequenceListing _ST25 16 Aug 2019
<210> 125 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 125 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 2019216698
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Tyr Tyr 20 25 30
Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Ile Ile Gly Pro Gly Asp Tyr Thr Asp Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Lys Gly Asp Asp Asn Ser Gly Trp Gly Glu Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 126 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 126 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asp Tyr 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser Trp Ala Lys 50 55 60 Page 47
3793_SequenceListing _ST25 16 Aug 2019
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Lys Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110 2019216698
Thr Leu Val Thr Val Ser Ser 115
<210> 127 <211> 119 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 127
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Ser Tyr 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Cys Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Lys Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 128 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
Page 48
3793_SequenceListing _ST25 16 Aug 2019
<400> 128 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 2019216698
Ser Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala Ser Trp Ala Lys 50 55 60
Ser Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Lys Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 129 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 129
Gln Val Gln Leu Val Gln Thr Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Ser Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95
Page 49
3793_SequenceListing _ST25 16 Aug 2019
Ala Lys Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 130 <211> 130 <212> PRT <213> Artificial Sequence 2019216698
<220> <223> recombinant scFv - VH sequence
<400> 130 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Pro Phe Ser Ser Gly 20 25 30
Tyr Trp Val Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr 65 70 75 80
Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Arg Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr 100 105 110
Ala Tyr Ala Gly Leu Glu Leu Trp Gly Gln Gly Thr Leu Val Thr Val 115 120 125
Ser Ser 130
<210> 131 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 131 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Page 50
3793_SequenceListing _ST25 16 Aug 2019
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Phe Ser Ser Gly 20 25 30
Tyr Trp Ile Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Cys Ile Tyr Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr 2019216698
65 70 75 80
Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Arg Gly Asn Asn Tyr Tyr Ile Tyr Thr Asp Gly Gly Tyr 100 105 110
Ala Tyr Ala Gly Leu Glu Leu Trp Gly Gln Gly Thr Leu Val Thr Val 115 120 125
Ser Ser 130
<210> 132 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 132 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Lys Val Ser Gly Phe Ser Leu Asn Thr Asn 20 25 30
Tyr Trp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Cys Met Tyr Thr Gly Ser Tyr Asn Arg Ala Tyr Tyr Ala Ser 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ser Ser Lys Asp Thr Ser Lys Asn Thr 65 70 75 80
Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Lys Gly Ser Asn Trp Tyr Ser Asp Leu Trp Gly Gln Gly 100 105 110 Page 51
3793_SequenceListing _ST25 16 Aug 2019
Thr Leu Val Thr Val Ser Ser 115
<210> 133 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence 2019216698
<400> 133
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Ser Phe Ser Arg Ser 20 25 30
Tyr Tyr Ile Tyr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Cys Ile Asp Ala Gly Ser Ser Gly Ile Leu Val Tyr Ala Asn 50 55 60
Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr 65 70 75 80
Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85 90 95
Tyr Cys Ala Arg Gly Asp Ala Ser Tyr Gly Val Asp Ser Phe Met Leu 100 105 110
Pro Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125
<210> 134 <211> 121 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 134 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Ser Phe Thr Thr Thr 20 25 30
Asp Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45 Page 52
3793_SequenceListing _ST25 16 Aug 2019
Val Gly Cys Ile Leu Ala Gly Asp Gly Ser Thr Tyr Tyr Ala Asn Trp 50 55 60
Ala Lys Gly Arg Phe Thr Gly Ser Lys Asp Thr Ser Lys Asn Thr Val 65 70 75 80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95 2019216698
Cys Ala Arg Ser Asp Pro Ala Ser Ser Trp Ser Phe Ala Leu Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 135 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 135 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Ile Asp Phe Ser Gly Ala 20 25 30
Tyr Tyr Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Tyr Ile Asp Tyr Asp Gly Asp Arg Tyr Tyr Ala Ser Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Ser Asp Tyr Ser Ser Gly Trp Gly Thr Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 136 <211> 120 <212> PRT <213> Artificial Sequence Page 53
3793_SequenceListing _ST25 16 Aug 2019
<220> <223> recombinant scFv - VH sequence <400> 136
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30 2019216698
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 137 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 137 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Ser Tyr Tyr 20 25 30
Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Ile Ile Gly Pro Gly Asp Tyr Thr Asp Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Page 54
3793_SequenceListing _ST25 16 Aug 2019
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Gly Asp Asp Asn Ser Gly Trp Gly Glu Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 138 2019216698
<211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 138
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ser Val Ser Gly Phe Ser Leu Ser Asp Tyr 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 139 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 139 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Page 55
3793_SequenceListing _ST25 16 Aug 2019
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Cys Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Lys Asp Ala Ser Lys Asn Thr Val Tyr Leu 2019216698
65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 140 <211> 119 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 140
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Ser Ser Tyr 20 25 30
Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Ile Leu Asp Tyr Val Gly Asp Thr Asp Tyr Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Lys Asp Ala Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115 Page 56
3793_SequenceListing _ST25 16 Aug 2019
<210> 141 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 141 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 2019216698
1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Val Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala Ser Trp Ala Lys 50 55 60
Ser Arg Ser Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 142 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 142 Gln Val Gln Leu Val Gln Thr Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60 Page 57
3793_SequenceListing _ST25 16 Aug 2019
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110 2019216698
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 143 <211> 119 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 143
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asp Tyr 20 25 30
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys Ala 85 90 95
Lys Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp Gly Gln Gly 100 105 110
Thr Thr Val Thr Val Ser Ser 115
<210> 144 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
Page 58
3793_SequenceListing _ST25 16 Aug 2019
<400> 144 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45 2019216698
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 145 <211> 119 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 145
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Val Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30
Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala Ser Trp Ala Lys 50 55 60
Ser Arg Ser Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys Ala 85 90 95
Page 59
3793_SequenceListing _ST25 16 Aug 2019
Arg Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile Trp Gly Gln Gly 100 105 110
Thr Thr Val Thr Val Ser Ser 115
<210> 146 <211> 120 <212> PRT <213> Artificial Sequence 2019216698
<220> <223> recombinant scFv - VH sequence
<400> 146 Gln Val Gln Leu Val Gln Thr Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 147 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 147 Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 1 5 10 15
Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr Tyr 20 25 30
Page 60
3793_SequenceListing _ST25 16 Aug 2019
Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala Lys 50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 2019216698
85 90 95
Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 148 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 148
Glu Gln Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 149 <211> 120 Page 61
3793_SequenceListing _ST25 16 Aug 2019
<212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 149 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 2019216698
20 25 30
Tyr Tyr Met Thr Trp Val Arg Leu Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 150 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 150
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80 Page 62
3793_SequenceListing _ST25 16 Aug 2019
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120 2019216698
<210> 151 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 151 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Ile Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 152 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 152 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Page 63
3793_SequenceListing _ST25 16 Aug 2019
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60 2019216698
Lys Gly Arg Phe Thr Ile Ser Arg Ala Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 153 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 153
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Ala Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Page 64
3793_SequenceListing _ST25 16 Aug 2019
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 154 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence <400> 154 2019216698
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 155 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 155 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Page 65
3793_SequenceListing _ST25 16 Aug 2019
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Thr Ser Lys Asn Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln Gly 2019216698
100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 156 <211> 119 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 156
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Thr Val Tyr Leu 65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser 115
<210> 157 <211> 120 <212> PRT <213> Artificial Sequence <220> Page 66
3793_SequenceListing _ST25 16 Aug 2019
<223> recombinant scFv - VH sequence <400> 157 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 2019216698
35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 158 <211> 120 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH sequence
<400> 158
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Page 67
3793_SequenceListing _ST25 16 Aug 2019
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 159 <211> 120 <212> PRT 2019216698
<213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 159 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 160 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 160 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30 Page 68
3793_SequenceListing _ST25 16 Aug 2019
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Tyr 65 70 75 80 2019216698
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 161 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 161 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
Page 69
3793_SequenceListing _ST25 16 Aug 2019
<210> 162 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 162
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15 2019216698
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Ala Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 163 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 163 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Page 70
3793_SequenceListing _ST25 16 Aug 2019
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Ala Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 2019216698
115 120
<210> 164 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 164
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Leu Val Thr Val Ser Ser 115 120
<210> 165 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence <400> 165
Page 71
3793_SequenceListing _ST25 16 Aug 2019
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 2019216698
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Ala Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 166 <211> 120 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH sequence
<400> 166 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu Thr Asp Tyr 20 25 30
Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35 40 45
Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala Thr Trp Ala 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95
Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile Trp Gly Gln 100 105 110 Page 72
3793_SequenceListing _ST25 16 Aug 2019
Gly Thr Thr Val Thr Val Ser Ser 115 120
<210> 167 <211> 381 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL acceptor sequence 2019216698
<220> <221> CDR <222> (24)..(123) <223> At least 3 and up to 50 amino acids can be present <220> <221> CDR <222> (139)..(238) <223> At least 3 and up to 50 amino acids can be present <220> <221> CDR <222> (271)..(370) <223> At least 3 and up to 50 amino acids can be present
<400> 167 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Gln Gln Lys 115 120 125
Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140
Page 73
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 2019216698
195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Val 225 230 235 240
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr 245 250 255
Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Xaa Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Xaa Xaa Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 370 375 380
<210> 168 <211> 381 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VL acceptor sequence
Page 74
3793_SequenceListing _ST25 16 Aug 2019
<220> <221> CDR <222> (24)..(123) <223> At least 3 and up to 50 amino acids can be present
<220> <221> CDR <222> (139)..(238) <223> At least 3 and up to 50 amino acids can be present <220> <221> CDR 2019216698
<222> (271)..(370) <223> At least 3 and up to 50 amino acids can be present
<400> 168 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Gln Gln Lys 115 120 125
Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205 Page 75
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Val 225 230 235 240
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr 245 250 255 2019216698
Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Xaa Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Xaa Xaa Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 370 375 380
<210> 169 <211> 382 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH acceptor sequence
<220> <221> CDR <222> (26)..(125) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (140)..(239) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (272)..(371) Page 76
3793_SequenceListing _ST25 16 Aug 2019
<223> At least 3 and up to 50 amino acids can be present. <400> 169 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 2019216698
35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val Arg 115 120 125
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg 225 230 235 240
Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 245 250 255
Page 77
3793_SequenceListing _ST25 16 Aug 2019
Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 2019216698
305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 370 375 380
<210> 170 <211> 381 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - VH acceptor sequence
<220> <221> CDR <222> (26)..(125) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (140)..(239) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (272)..(371) <223> At least 3 and up to 50 amino acids can be present. <400> 170 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Ala Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45 Page 78
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val Arg 115 120 125
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg 225 230 235 240
Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr Leu Gln Met 245 250 255
Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320 Page 79
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365 2019216698
Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser 370 375 380
<210> 171 <211> 382 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - VH acceptor sequence
<220> <221> CDR <222> (26)..(125) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (140)..(239) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (272)..(371) <223> At least 3 and up to 50 amino acids can be present. <400> 171
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Thr Val Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Page 80
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val Arg 115 120 125
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 2019216698
145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg 225 230 235 240
Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr Val Tyr Leu Gln Met 245 250 255
Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Page 81
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 370 375 380
<210> 172 <211> 783 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv - acceptor sequence 2019216698
<220> <221> CDR <222> (24)..(123) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (139)..(238) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (271)..(370) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (427)..(526) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (541)..(640) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (673)..(772) <223> At least 3 and up to 50 amino acids can be present. <400> 172 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Page 82
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Gln Gln Lys 115 120 125
Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Val 225 230 235 240
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr 245 250 255
Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Xaa Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Page 83
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly 370 375 380
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 385 390 395 400
Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 405 410 415 2019216698
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Xaa Xaa Xaa Xaa Xaa Xaa 420 425 430
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 435 440 445
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 450 455 460
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 465 470 475 480
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 485 490 495
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 500 505 510
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val 515 520 525
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Xaa Xaa Xaa Xaa 530 535 540
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 545 550 555 560
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 565 570 575
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 580 585 590
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 595 600 605
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 610 615 620
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 625 630 635 640
Page 84
3793_SequenceListing _ST25 16 Aug 2019
Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln 645 650 655
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys 660 665 670
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 675 680 685 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 690 695 700
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 705 710 715 720
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 725 730 735
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 740 745 750
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 755 760 765
Xaa Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 770 775 780
<210> 173 <211> 783 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - acceptor sequence
<220> <221> CDR <222> (24)..(123) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (139)..(238) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (271)..(370) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (427)..(526) <223> At least 3 and up to 50 amino acids can be present. <220> <221> CDR Page 85
3793_SequenceListing _ST25 16 Aug 2019
<222> (541)..(640) <223> At least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (673)..(772) <223> At least 3 and up to 50 amino acids can be present. <400> 173
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15 2019216698
Asp Arg Val Ile Ile Thr Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Gln Gln Lys 115 120 125
Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Val 225 230 235 240 Page 86
3793_SequenceListing _ST25 16 Aug 2019
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 245 250 255
Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Xaa Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Xaa Xaa Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly 370 375 380
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 385 390 395 400
Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 405 410 415
Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Xaa Xaa Xaa Xaa Xaa Xaa 420 425 430
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 435 440 445
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 450 455 460
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 465 470 475 480
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 485 490 495
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 500 505 510 Page 87
3793_SequenceListing _ST25 16 Aug 2019
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val 515 520 525
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Xaa Xaa Xaa Xaa 530 535 540
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 545 550 555 560 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 565 570 575
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 580 585 590
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 595 600 605
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 610 615 620
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 625 630 635 640
Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn Thr Val Tyr Leu Gln 645 650 655
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg 660 665 670
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 675 680 685
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 690 695 700
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 705 710 715 720
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 725 730 735
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 740 745 750
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 755 760 765
Xaa Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 770 775 780 Page 88
3793_SequenceListing _ST25 16 Aug 2019
<210> 174 <211> 783 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv - acceptor sequence
<220> <221> CDR 2019216698
<222> (24)..(123) <223> Al least 3 and up to 50 amino acids can be present.
<220> <221> CDR <222> (139)..(238) <223> Al least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (271)..(370) <223> Al least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (427)..(526) <223> Al least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (541)..(640) <223> Al least 3 and up to 50 amino acids can be present. <220> <221> CDR <222> (673)..(772) <223> Al least 3 and up to 50 amino acids can be present.
<400> 174 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 35 40 45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 65 70 75 80
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Page 89
3793_SequenceListing _ST25 16 Aug 2019
100 105 110
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Gln Gln Lys 115 120 125
Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Val 225 230 235 240
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 245 250 255
Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Xaa Xaa 260 265 270
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 290 295 300
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315 320
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 325 330 335
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 340 345 350
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 355 360 365
Xaa Xaa Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly Page 90
3793_SequenceListing _ST25 16 Aug 2019
370 375 380
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 385 390 395 400
Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 405 410 415
Gly Ser Leu Arg Leu Ser Cys Thr Val Ser Xaa Xaa Xaa Xaa Xaa Xaa 420 425 430 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 435 440 445
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 450 455 460
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 465 470 475 480
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 485 490 495
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 500 505 510
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Trp Val 515 520 525
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Xaa Xaa Xaa Xaa 530 535 540
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 545 550 555 560
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 565 570 575
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 580 585 590
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 595 600 605
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 610 615 620
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 625 630 635 640
Arg Phe Thr Ile Ser Lys Asp Thr Ser Lys Asn Thr Val Tyr Leu Gln Page 91
3793_SequenceListing _ST25 16 Aug 2019
645 650 655
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg 660 665 670
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 675 680 685
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 690 695 700 2019216698
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 705 710 715 720
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 725 730 735
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 740 745 750
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 755 760 765
Xaa Xaa Xaa Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 770 775 780
<210> 175 <211> 248 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv <400> 175
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Gly Ser Ser 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Thr Ala Ala Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Arg Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Phe Ala Thr Ser Asp Thr 85 90 95
Page 92
3793_SequenceListing _ST25 16 Aug 2019
Val Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly 100 105 110
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125
Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly 130 135 140 2019216698
Gly Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Ser Leu Asn Thr 145 150 155 160
Asn Tyr Trp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 165 170 175
Trp Val Gly Cys Met Tyr Thr Gly Ser Tyr Asn Arg Ala Tyr Tyr Ala 180 185 190
Ser Trp Ala Lys Gly Arg Phe Thr Ser Ser Lys Asp Thr Ser Lys Asn 195 200 205
Thr Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215 220
Tyr Tyr Cys Ala Lys Gly Ser Asn Trp Tyr Ser Asp Leu Trp Gly Gln 225 230 235 240
Gly Thr Leu Val Thr Val Ser Ser 245
<210> 176 <211> 251 <212> PRT <213> Artificial Sequence
<220> <223> recombinant scFv <400> 176 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Page 93
3793_SequenceListing _ST25 16 Aug 2019
65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Ala Asn Tyr Ala Tyr Ser Ala 85 90 95
Gly Tyr Gly Ala Ala Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly 100 105 110
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 115 120 125 2019216698
Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val 130 135 140
Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr Val Ser Gly Phe Ser 145 150 155 160
Leu Asn Thr Tyr Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly 165 170 175
Leu Glu Trp Val Gly Ile Ile Ala Pro Asp Asp Thr Thr Tyr Tyr Ala 180 185 190
Ser Trp Ala Lys Ser Arg Ser Thr Ile Ser Arg Asp Thr Ser Lys Asn 195 200 205
Thr Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215 220
Tyr Tyr Cys Ala Arg Ser Gly Asp Thr Thr Ala Trp Gly Ala Asp Ile 225 230 235 240
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 245 250
<210> 177 <211> 250 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv <400> 177 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Asp Gln Ser Ile Tyr Ile Trp 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Page 94
3793_SequenceListing _ST25 16 Aug 2019
Tyr Lys Ala Ser Thr Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Asn Ala His Tyr Ser Thr 85 90 95 2019216698
Asn Gly Gly Thr Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly 100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125
Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 130 135 140
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu 145 150 155 160
Ser Asp Tyr Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 165 170 175
Glu Trp Val Ser Cys Leu Asp Tyr Phe Gly Ser Thr Asp Asp Ala Ser 180 185 190
Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr 195 200 205
Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 210 215 220
Tyr Cys Ala Lys Thr Asp Asp Ser Arg Gly Trp Gly Leu Asn Ile Trp 225 230 235 240
Gly Gln Gly Thr Leu Val Thr Val Ser Ser 245 250
<210> 178 <211> 251 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv <400> 178 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp Page 95
3793_SequenceListing _ST25 16 Aug 2019
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 2019216698
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly 100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125
Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 130 135 140
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu 145 150 155 160
Thr Asp Tyr Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly 165 170 175
Leu Glu Trp Val Ser Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala 180 185 190
Thr Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 195 200 205
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215 220
Tyr Tyr Cys Ala Lys Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile 225 230 235 240
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 245 250
<210> 179 <211> 251 <212> PRT <213> Artificial Sequence <220> <223> recombinant scFv <400> 179 Page 96
3793_SequenceListing _ST25 16 Aug 2019
Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 2019216698
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly 100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125
Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 130 135 140
Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu 145 150 155 160
Thr Asp Tyr Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly 165 170 175
Leu Glu Trp Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala 180 185 190
Thr Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn 195 200 205
Thr Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215 220
Tyr Tyr Cys Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile 225 230 235 240
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 245 250
<210> 180 <211> 251 <212> PRT Page 97
3793_SequenceListing _ST25 16 Aug 2019
<213> Artificial Sequence <220> <223> recombinant scFv <400> 180 Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly 1 5 10 15
Asp Arg Val Ile Ile Thr Cys Gln Ala Ser Glu Ile Ile His Ser Trp 20 25 30 2019216698
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45
Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Ala Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Asn Val Tyr Leu Ala Ser Thr 85 90 95
Asn Gly Ala Asn Phe Gly Gln Gly Thr Lys Leu Thr Val Leu Gly Gly 100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125
Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 130 135 140
Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu 145 150 155 160
Thr Asp Tyr Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly 165 170 175
Leu Glu Trp Val Gly Phe Ile Asp Pro Asp Asp Asp Pro Tyr Tyr Ala 180 185 190
Thr Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ser Lys Asn 195 200 205
Thr Val Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215 220
Tyr Tyr Cys Ala Gly Gly Asp His Asn Ser Gly Trp Gly Leu Asp Ile 225 230 235 240
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Page 98
3793_SequenceListing _ST25 16 Aug 2019
245 250 2019216698
Page 99

Claims (14)

The claims defining the invention are as follows:
1. A humanized antibody or antigen-binding fragment thereof comprising a variable heavy chain (VH), and a variable light chain (VL), wherein: the VH comprises CDRH1, CDRH2 and CDRH3 sequences of SEQ ID NO: 8, SEQ ID NO: 20 and SEQ ID NO: 32, respectively, and the VL comprises CDRL1, CDRL2, and CDRL3 sequences of SEQ ID NO: 43, SEQ ID NO: 55 and SEQ ID NO: 66, wherein the antibody or antigen-binding fragment thereof binds human VEGF 16 5with an affinity (Kd) of5 1x10-9 M.
2. The humanized antibody or antigen-binding fragment thereof of claim 1, wherein the fragment is an scFv, a Fab fragment, a Fab' fragment, or a F(ab')2 fragment.
3. A composition comprising the humanized antibody or antigen-binding fragment of claim 1, and a pharmaceutically acceptable carrier.
4. The composition of claim 3, formulated for topical, intraocular, oral, nasal, rectal or parental administration.
5. The humanized antibody or antigen-binding fragment of claim 1 comprising a heavy chain variable region variable region framework sequence having at least 95% sequence identity to the sequence of SEQ ID NO: 164.
6. The humanized antibody or antigen-binding fragment of claim 5, wherein the heavy chain variable region framework comprises a sequence having 100% identity to SEQ ID NO: 164.
7. The humanized antibody or antigen-binding fragment of claim 1, comprising a light chain variable region framework sequence having at least 95% sequence identity to the sequence of SEQ ID NO: 87.
8. The humanized antibody or antigen-binding fragment of claim 7, wherein the light chain variable region framework comprises a sequence having 100% identity to SEQ ID NO: 87.
9. The humanized antibody or antigen-binding fragment of claim 1, wherein the antibody or antigen-binding fragment comprises a variable heavy chain comprises the sequence of SEQ ID NO: 164 and wherein the antibody or antigen-binding fragment comprises a variable light chain comprising the sequence of SEQ ID NO: 87.
10. The humanized antibody or antigen-binding fragment of claim 9, further comprising a linker sequence having the sequence of SEQ ID NO: 181 linking the heavy chain variable region and the light chain variable region.
11. The antigen-binding fragment of claim 10, which is a single-chain antibody (scFv).
12. The antigen-binding fragment of claim 11, comprising an N-terminal methionine derived from a start codon present in an expression vector that expresses the antigen binding fragment.
13. The humanized antibody or antigen-binding fragment of any one of claims 5-12, wherein the antibody or antigen-binding fragment thereof binds human VEGF165 with an affinity (Ka) of<1x10-10 M.
14. A composition comprising the humanized antibody or antigen-binding fragment of any one of claims 1-13, and a pharmaceutically acceptable carrier.
AU2019216698A 2008-06-25 2019-08-16 Stable and soluble antibodies inhibiting vegf Active 2034-06-25 AU2019216698B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019216698A AU2019216698B2 (en) 2008-06-25 2019-08-16 Stable and soluble antibodies inhibiting vegf
AU2021202343A AU2021202343A1 (en) 2008-06-25 2021-04-19 Stable and soluble antibodies inhibiting vegf

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US61/075,697 2008-06-25
US61/075,692 2008-06-25
US61/133,212 2008-06-25
US61/155,041 2009-02-24
AU2009264565A AU2009264565C1 (en) 2008-06-25 2009-06-25 Stable and soluble antibodies inhibiting VEGF
AU2013202998A AU2013202998B2 (en) 2008-06-25 2013-04-08 Stable and soluble antibodies inhibiting vegf
AU2015203705A AU2015203705B2 (en) 2008-06-25 2015-07-01 Stable and soluble antibodies inhibiting vegf
AU2017204337A AU2017204337B2 (en) 2008-06-25 2017-06-27 Stable and soluble antibodies inhibiting vegf
AU2019216698A AU2019216698B2 (en) 2008-06-25 2019-08-16 Stable and soluble antibodies inhibiting vegf

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2017204337A Division AU2017204337B2 (en) 2008-06-25 2017-06-27 Stable and soluble antibodies inhibiting vegf

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021202343A Division AU2021202343A1 (en) 2008-06-25 2021-04-19 Stable and soluble antibodies inhibiting vegf

Publications (2)

Publication Number Publication Date
AU2019216698A1 AU2019216698A1 (en) 2019-09-05
AU2019216698B2 true AU2019216698B2 (en) 2021-02-11

Family

ID=53675039

Family Applications (4)

Application Number Title Priority Date Filing Date
AU2015203705A Active AU2015203705B2 (en) 2008-06-25 2015-07-01 Stable and soluble antibodies inhibiting vegf
AU2017204337A Active AU2017204337B2 (en) 2008-06-25 2017-06-27 Stable and soluble antibodies inhibiting vegf
AU2019216698A Active 2034-06-25 AU2019216698B2 (en) 2008-06-25 2019-08-16 Stable and soluble antibodies inhibiting vegf
AU2021202343A Pending AU2021202343A1 (en) 2008-06-25 2021-04-19 Stable and soluble antibodies inhibiting vegf

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2015203705A Active AU2015203705B2 (en) 2008-06-25 2015-07-01 Stable and soluble antibodies inhibiting vegf
AU2017204337A Active AU2017204337B2 (en) 2008-06-25 2017-06-27 Stable and soluble antibodies inhibiting vegf

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2021202343A Pending AU2021202343A1 (en) 2008-06-25 2021-04-19 Stable and soluble antibodies inhibiting vegf

Country Status (1)

Country Link
AU (4) AU2015203705B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016740A2 (en) * 2002-08-15 2004-02-26 Epitomics, Inc. Humanized rabbit antibodies
US20050033031A1 (en) * 2003-08-07 2005-02-10 Couto Fernando Jose Rebelo Do Methods for humanizing rabbit monoclonal antibodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016740A2 (en) * 2002-08-15 2004-02-26 Epitomics, Inc. Humanized rabbit antibodies
US20050033031A1 (en) * 2003-08-07 2005-02-10 Couto Fernando Jose Rebelo Do Methods for humanizing rabbit monoclonal antibodies

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUH, G. et al. "Structure-Function Studies of Two Synthetic Anti-vascular Endothelial Growth Factor Fabs and Comparison with the AvastinTM Fab." The Journal of Biological Chemistry, (10 March 2006). vol. 281, no. 10, pages. 6625-6631. *
LIANG, W-C. et al"Cross-species Vascular Endothelial Growth Factor (VEGF)-blocking Antibodies Completely Inhibit the Growth of Human Tumor Xenografts and Measure the Contribution of Stromal VEGF." J Biol Chem Jan 2006. 281:(2)951–961. *
RAN, S. & MOUTA-BELLUM, C. "Generation of new rabbit monoclonal antibody RAM-1 against human VEGF-C"Proc Amer Assoc Cancer Res, (20 April 2005) vol.46, page 911. *

Also Published As

Publication number Publication date
AU2021202343A1 (en) 2021-05-13
AU2019216698A1 (en) 2019-09-05
AU2017204337B2 (en) 2019-05-16
AU2015203705A1 (en) 2015-07-23
AU2017204337A1 (en) 2017-07-13
AU2015203705B2 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US20200172608A1 (en) Stable and soluble antibodies inhibiting vegf
RU2588467C2 (en) Stable and soluble antibodies inhibiting vegf
AU2019216698B2 (en) Stable and soluble antibodies inhibiting vegf
AU2013202998B2 (en) Stable and soluble antibodies inhibiting vegf

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: NOVARTIS AG

Free format text: FORMER APPLICANT(S): ESBATECH, AN ALCON BIOMEDICAL RESEARCH UNIT LLC

FGA Letters patent sealed or granted (standard patent)
NC Extension of term for standard patent requested (sect. 70)

Free format text: PRODUCT NAME: BEOVU BROLUCIZUMAB (RBE) 120 MG/ML SOLUTION FOR INJECTION IN PRE-FILLED SYRINGE

Filing date: 20090625

NDA Extension of term for standard patent accepted (sect.70)

Free format text: PRODUCT NAME: BEOVU BROLUCIZUMAB (RBE)

Filing date: 20200116

NDB Extension of term for standard patent granted (sect.76)

Free format text: PRODUCT NAME: BEOVU BROLUCIZUMAB (RBE)

Filing date: 20200116

Extension date: 20340625