AU2019100394A4 - Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer - Google Patents

Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer Download PDF

Info

Publication number
AU2019100394A4
AU2019100394A4 AU2019100394A AU2019100394A AU2019100394A4 AU 2019100394 A4 AU2019100394 A4 AU 2019100394A4 AU 2019100394 A AU2019100394 A AU 2019100394A AU 2019100394 A AU2019100394 A AU 2019100394A AU 2019100394 A4 AU2019100394 A4 AU 2019100394A4
Authority
AU
Australia
Prior art keywords
comprehensive
2dgc
olefin components
qms
orange juice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2019100394A
Inventor
Ying Chen
Shujing LI
Wei Liu
Jiebo Mi
Jing Xiao
Dunming Xu
Chuncai Yan
Can Zhang
Kongxiang Zhao
Liangjuan Zhao
Wenjie Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Animal Plant & Food Inspection Center Tianjin Customs District
Center For Disease Prevention And Control Of Chinese Pla
China National Center For Food Safety Risk Assessment
Technical Center For Safety Of Industrial Products tianjin Customs District
Chinese Academy of Inspection and Quarantine CAIQ
Tianjin Normal University
Original Assignee
Animal Plant & Food Inspection Center
Center For Disease Prevention And Control Of Chinese Pla
China Nat Center For Food Safety Risk Assessment
Technical Center For Safety Of Industrial Products Tianjin Customs District
Tianjin University
Chinese Academy of Inspection and Quarantine CAIQ
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Animal Plant & Food Inspection Center, Center For Disease Prevention And Control Of Chinese Pla, China Nat Center For Food Safety Risk Assessment, Technical Center For Safety Of Industrial Products Tianjin Customs District, Tianjin University, Chinese Academy of Inspection and Quarantine CAIQ, Tianjin Normal University filed Critical Animal Plant & Food Inspection Center
Priority to AU2019100394A priority Critical patent/AU2019100394A4/en
Application granted granted Critical
Publication of AU2019100394A4 publication Critical patent/AU2019100394A4/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages

Abstract

The present invention discloses a method for identifying and analyzing olefin components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS). The method comprises the steps: enriching olefin components in an orange juice sample through online-SPME; detecting through comprehensive 2DGC/qMS; conducting qualitative analysis on a determinand through a combination of a retention time index (LRI) and NIST spectral library; and accurately quantitatively analyzing chromatographic overlapping peaks by a nodal convolution technique for the components which cannot be separated by the comprehensive 2DGC. The comprehensive 2DGC adopts two chromatographic columns with different polarities for conducting orthogonal separation on the olefin components, and qMS is conducted under the effect of a modem for completing detection. Qualitative analysis is conducted through the combination of the LRI and the NIST spectral library, and the chromatographic overlapping peaks are accurately quantitatively analyzed by the nodal convolution technique. The method of the present invention has the characteristics of high throughput, high sensitivity and high accuracy, and solves the problems of difficult analysis and separation and difficult qualitative analysis for the olefin components in the orange juice.

Description

MICRO-EXTRACTION AND COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY/QUADRUPOLE MASS SPECTROMETER
TECHNICAL FIELD [0001] The present invention belongs to the technical field of food safety, and relates to a method for detecting olefin components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS).
BACKGROUD OF THE PRESENT INVENTION [0002] Orange juice has rich nutrition and fragrant and pleasant taste, and is a globally popular beverage variety which is largely consumed. The consumption of orange juice, as a main orange juice beverage, ranks the top in the world. In recent years, the orange juice and its beverage industry has developed greatly with the improvement of human recognition. However, its quality adulteration, cheating, harmful substances that exceed the standard, and other phenomena still occur occasionally due to the lack of a corresponding quality control system.
[0003] At present, the monitoring of the national standards for the safety of the orange juice mainly includes basic physical and chemical indicators, such as GB/T 21731-2008 Orange Juice and Orange Juice Beverages which specifies soluble solids, sucrose, glucose, fructose, glucose/fructose and orange juice content ratio, and penicillin. Thus, the main focus is on the basic physical and chemical indicators, pesticide residues and microbial indicators. For example, “Fanta” orange and lemon juice beverages were found to contain excessive pesticides in 2009; General Administration of Quality Supervision randomly inspected 160 kinds of fruit and vegetable juice products in August of 2011, and about 2% of orange juice beverages was not qualified due to excessive bacterial colonies, moulds and yeasts; and at the
2019100394 11 Apr 2019 beginning of 2012, Coca-Cola's Brazilian orange juice contained a small amount of carbendazim pesticide, etc. However, there is no quality standard or testing standard system for the quality of the orange juice to deal with the adulteration and blending phenomena in the orange juice industry. In 2011, the plasticizer incident of Taiwan beverage also reflected the lack of Chinese quality monitoring system for the orange juice. Therefore, the study of aromatic components in the orange juice is the basis for establishing an orange juice quality standard, and is of great significance to monitor the quality of the orange juice. Olefin components in the orange juice are important parts of the aromatic components in the orange juice, and have important to the aroma of the orange juice.
[0004] The comprehensive 2DGC/qMS is a technique which achieves two-dimensional separation of olefin substances by combining two independent chromatographic columns having different separation mechanisms in series. A modulator is arranged between the two chromatographic columns, and the modulator plays the role of capturing and transmission. In GC X GC, the separation mechanisms of two columns are independent of each other. Each fraction separated by the first chromatographic column firstly enters the modulator and is focused, and then pulsed into the second chromatographic column for further separation and analysis. Each fraction needs to be eluted into the second chromatographic column at the same time to avoid co-elution with other fractions, which may affect the separation efficiency. [0005] The existing method for detecting olefin substances in the orange juice adopts the traditional one-dimensional gas chromatography-mass spectrometry. The separation capability of the one-dimensional gas chromatography is limited so that all components cannot be separated completely. A single analysis may only analyze dozens of compounds, but the comprehensive 2DGC/qMS can detect hundreds of compounds, with a peak capacity which is hundreds to thousands of times of the one-dimensional liquid chromatography-mass spectrometry. Two-dimensional orthogonal separation can well separate the components which cannot be separated in the one-dimensional gas chromatography, thereby greatly increasing separation efficiency.
SUMMARY OF PRESENT INVENTION [0006] In view of the problems in the prior art, the purpose of the present invention to design and provide a method for detecting olefin components in orange juice
2019100394 11 Apr 2019 through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS) having high throughput, high sensitivity and good separation effect. [0007] To solve the above technical problems, the present invention adopts the following technical solution: a method for detecting olefin components in orange juice through online-SPME and comprehensive 2DGC/qMS comprises the following steps:
[0008] 1) extracting and enriching olefin components in orange juice by online-SPME;
[0009] 2) conducting orthogonal separation by comprehensive 2DGC, and detecting by qMS;
[0010] 3) conducting qualitative analysis on the olefin components through a combination of a linear retention index (LRI) and NIST spectral library; and [0011] 4) judging the purity of a chromatographic peak by a nodal convolution technique, and accurately quantitatively analyzing chromatographic overlapping peaks by different selection ions.
[0012] Specifically, the method comprises the following steps:
[0013] 1) extracting and enriching olefin components in orange juice by online-SPME [0014] weighing 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding 2g of NaCl, and sealing with a lid; and absorbing and desorbing samples by automatic SPME and an automatic sampling mode;
[0015] conditions of online-SPME are: an extraction head is 85 pm Polyacrylate automatic extraction head; an incubation temperature of the samples is 45°C; incubation equilibrium is conducted for 10 min; the extraction head is inserted into the sample bottle at a depth of 12 mm; and extraction time is 20 min;
[0016] 2) detecting by comprehensive 2DGC/qMS [0017] detecting olefin components by comprehensive 2DGC/qMS: extracting and enriching the olefin components by the automatic SPME; feeding determinands absorbed to the extraction head into the comprehensive 2DGC/qMS at a sample inlet through thermal desorption; separating the determinands through one-dimensional chromatographic columns; heating and cooling the determinands through a modem and then feeding into two-dimensional gas chromatographic columns for separation;
2019100394 11 Apr 2019 and conducting comprehensive scanning and detecting by qMS;
[0018] 3) conducting qualitative analysis on the olefin components [0019] a) conducting data analysis through GC image version 2.3;
[0020] b) analyzing standard n-alkanes of C8-C20 in a gas sampling mode through comprehensive 2DGC/qMS to obtain the retention time of n-alkanes of C8-C20 in one and two dimensions; and artificially defining a LRI of n-alkanes of C8-C20, for example, defining the LRI of n-alkanes with an atomic number of 8 as 800, and so on (number of carbon atoms * 100);
[0021] c) calculating the LRI of a target compound according to the retention time of the olefin components;
[0022] d) comparing a mass spectrogram of the sample with the NIST spectral library when the sample ionizes at a voltage of 0.9kv of El ionization source; and automatically identifying the substance when the similarity is greater than a set value; and [0023] e) conducting qualitative analysis on the olefin components in combination with the LRI and NIST spectral library search results;
[0024] 4) quantitatively analyzing the olefin components [0025] a) directly recording a peak area for the olefin components with good separation degree; and [0026] b) determining the peak purity for the chromatographic overlapping peaks by the nodal convolution technique; and quantitatively analyzing the overlapping peaks by selection ions when judging that the peak is formed by overlapping of multiple components.
[0027] Sample pretreatment is conducted through online-SPME in the step 1). [0028] Detection is conducted through comprehensive 2DGC/qMS in the step 2). [0029] Qualitative analysis is conducted through a combination of the LRI and NIST spectral library in the step 3).
[0030] The chromatographic overlapping peaks are accurately quantitatively analyzed by the nodal convolution technique in the step 4).
[0031] Conditions of the comprehensive 2DGC in the step 4) are as follows:
[0032] the one-dimensional chromatographic columns are nonpolar columns DB-1 15m X 0.25mm X 0.1 qm;
[0033] two-dimensional chromatographic columns are polar columns BPX-50 15m
2019100394 11 Apr 2019
XO.lmmXO.l μηι;
[0034] carrier gas: He, at a flow rate of 1.0 ml/mL;
[0035] sample injection conditions: analysis temperature of a sample inlet is 250 °C; analysis time is 5 min; and temperature of the sample inlet is 250 °C;
[0036] heating procedure of a column oven: an initial temperature is 35 °C for 1 min; then the temperature is raised to 270 °C at a heating rate of 3 °C /min for 5 min;
[0037] setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and [0038] mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
[0039] The present invention has the advantages and positive effects as follows: [0040] (1) One-dimensional gas chromatographic columns can only have one polarity such as nonpolarity or polarity, while nonpolar and polar columns can be used as two-dimensional gas chromatographic columns. When multiple determinands pass through the one-dimensional non-polar columns, the determinands are first separated according to molecular size, and then separated again according to polarity when passing through the two-dimensional polar chromatographic columns. Therefore, GCXGC separation effect can be achieved so as to efficiently separate a complex matrix. Therefore, the method of the present invention is suitable for component analysis, and has absolute advantages for analyzing the olefin components in the orange juice.
[0041] (2) The qualitative analysis of an unknown substance is generally realized by means of a standard substance, and with the improvement of analysis capability of the instrument, can also be realized by means of high resolution mass spectrum. However, for component analysis, there are usually hundreds of components to be analyzed. The qualitative analysis mode of the standard substance and high resolution mass spectrum are time-consuming and expensive. Therefore, the present invention applies the LRI to the qualitative analysis of comprehensive 2DGC data: when the chromatographic columns and chromatographic conditions are the same,
2019100394 11 Apr 2019 the LRI of the substance is correlated with the number of C atoms. The present invention conducts the qualitative analysis through a combination of the LRI and
NIST spectral library.
[0042] (3) Due to the wide variety of separation substances, comprehensive 2DGC needs to be matched with mass spectrometry with high scanning speed. The qMS used in the present invention abandons the disadvantage of low scanning rate of the traditional qMS, has a scanning rate of 30000 Hz and can meet the need of comprehensive 2DGC for the scanning rate.
DESCRIPTION OF THE DRAWINGS [0043] FIG 1 is a diagram of comprehensive 2DGC/qMS of an olefin substance in an orange juice sample; and [0044] FIG 2 is a diagram of comprehensive 2DGC/qMS of n-alkane.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS [0045] The present invention is further described below in detail in combination with the drawings and specific embodiments.
[0046] 1. Instrument and reagent [0047] Instrument: Shimadzu Q2010 Ultra GC/GC/MS, equipped with AOC-5000 Plus automatic sampler [0048] acetonitrile, sodium chloride, analytically pure analytical reagent. Standard n-alkanes of C8-C20 (Sigma-Aldrich, ImL) [0049] 2. Sample treatment [0050] Weighing 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding 2g of NaCl, and sealing with a lid; and enriching and desorbing samples by automatic SPME and an automatic sampling mode. Conditions of online-SPME are: an extraction head is 85 pm Polyacrylate automatic extraction head; an incubation temperature of the samples is 45°C; incubation equilibrium is conducted for 10 min; the extraction head is inserted into the sample bottle at a depth of 12 mm; and extraction time is 20 min.
[0051] 3 Instrument conditions [0052] the one-dimensional chromatographic columns are nonpolar columns DB-1 15m X 0.25mm X 0.1 pm;
[0053] two-dimensional chromatographic columns are polar columns BPX-50 15m
2019100394 11 Apr 2019
XO.lmmXO.l μηι;
[0054] carrier gas: He, at a flow rate of 1.0 ml/mL;
[0055] sample injection conditions: analysis temperature of a sample inlet is 250 °C;
analysis time is 5 min; and temperature of the sample inlet is 250 °C;
[0056] heating procedure of a column oven: an initial temperature is 35 °C for 1 min; then the temperature is raised to 270 °C at a heating rate of 3 °C /min for 5 min;
[0057] setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and [0058] mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
[0059] Mass spectrometry conditions: ion source: El ionization source; temperature of 250 °C; transmission line temperature of 280°C; mass scanning range of 50-550amu; collection rate: 100 spectrograms per second; detector voltage of 1750V; ionization voltage of -70V. Data processing: Pegasus, spectral library search: NIST/PEST He [0060] 4 Result analysis [0061] (1) The retention times of the n-alkanes of C8-C20 under the above instrument analysis conditions are obtained, as shown in FIG. 2. In the figure, points are obtained two-dimensional chromatograms of the n-alkanes, which are C'sH C9H20, C10H22, C11H24, C12H26, C13H28, C14H30, C15H32, C16H34, C17H36, C18H38, C19H40 and C20H42 from left to right.
[0062] (2) The olefin components are absorbed through online-SPME; comprehensive 2DGC/qMS is conducted; and the olefin components in the freshly squeezed orange juice are detected. The LRIs of all detected olefin components are calculated by the retention index calculation method of GC image Version 2.3. The number of C atoms of the olefin component is preliminarily estimated based on the LRIs of the compounds according to the LRI values (as shown in Table 1).
[0063] (3) The NIST spectral library is used to perform spectral library search for olefin components which will be subjected to qualitative analysis; and fuzzy
2019100394 11 Apr 2019 qualitative analysis is performed on the detected components to obtain multiple possible structural formulas; and then final qualitative analysis is performed in combination with the number of C atoms.
[0064] (4) The peak purity is determined by the nodal convolution technique with respect to the components which cannot be separated by the comprehensive 2DGC; and the overlapping olefin components are accurately quantitatively analyzed by the selection ions.
[0065] By taking a target 1 in FIG. 1 as an example, the LRI calculated by one-dimensional retention time is 1588, so the number of C atoms of the compound is 15. Then, the top five choices after NIST spectral library search are a-Patchoulene (C15H24), Tricyclo[3.1.0.0(2,4)]hexane (Ci2H20),
2-[ 1 -(Adamantan-1 -ylamino)-2,2,2-trifluoro-ethylidene]-malononitrile (C15H16F3N3), 1,4-Methanophthalazine (CnHisN2) and 1,3-Cyclopentadiene (CnHis). The compound is finally determined to be α-Patchoulene in combination with the number of C atoms.
Table 1 LRI of Olefin Components in Orange Juice
NO Name LRI Molecular Formula CAS
1 D-sylvestrene 1039 C10H16 1461- 27-4
2 β-Pinene 985 C10H16 127-9 1-3
3 β-Gurjunene 1502 C15H24 17334 -55-3
4 Terpinolene 1082 C10H16 586-6 2-9
5 3-Carene 1054 C10H16 13466 -78-9
6 a-Pinene 935 C10H16 80-56 -8
7 (-)-a-Panasinsen 1529 C15H24 56633 -28-4
8 1 H-Cyclopenta[ 1,3 ] cyclopropa [l,2]benzene 1385 C15H24 17699 -14-8
9 Cyclohexene, 1,5,5-trimethyl-3 -methylene- 1014 C10H16 16609 -28-2
10 Benzene, 1 -methyl-4-( 1 -methylethenyl)- 1077 C10H12 1195- 32-0
11 Perillen 1106 C10H14O 539-5 2-6
2019100394 11 Apr 2019
12 .psi.-Limonene 1000 C10H16 499-9 7-8
13 2,6-Dimethyl-1,3,5,7-octatetr a ene, E,E- 998 C10H14 460-0 1-5
14 δ-Cadinene 1524 C15H24 483-7 6-1
15 Caryophyllene 1432 C15H24 87-44 -5
16 β-Phellandrene 970 C10H16 555-1 0-2
17 β-Selinene 1459 C15H24 17066 -67-0
18 a-Gurjunene 1482 C15H24 489-4 0-7
19 β-Thujene 927 C10H16 28634 -89-1
20 β-Elemen 1396 C15H24 515-1 3-9
21 Eremophilene 1512 C15H24 10219 -75-7
22 L-calamenene 1521 C15H22 483-7 7-2
23 Germacrene D 1521 C15H24 23986 -74-5
24 β-Pinene 975 C10H16 127-9 1-3
25 a-Cubebene 1356 C15H24 17699 -14-8
26 1,3 -Cyclohexadiene, 1,3,5,5-tetramethyl- 1119 C10H16 4724- 89-4
27 Bomylene 1222 C10H16 464-1 7-5
28 1,3 -Cyclohexadiene, 1,3,5,5-tetramethyl- 1132 C10H16 4724- 89-4
29 Styrene 877 C8H8 100-4 2-5
30 β-ylangene 1439 C15H24
31 a-Gurjunene 1441 489-40-7 489-4 0-7
32 Cyclooctene, 3-(1 -methylethenyl)- 1128 C11H18 61233 -78-1
33 Cyclohexene, 2-ethenyl-1,3,3-trimethyl- 1095 C11H18 5293- 90-3
34 (E)^-Famesene 1448 C15H24 18794 -84-8
35 Limonene oxide, trans- 1125 C10H16O 4959- 35-7
36 cis-2,6-Dimethyl-2,6-octadiene 998 C10H18 2492- 22-0
37 l,E-4,Z-8-Dodecatriene 1325 C12H20 83489 -22-9
38 Limonene oxide, cis- 1121 C10H16O 13837 -75-7
39 a-Calacorene 1540 C15H20 21391 -99-1
2019100394 11 Apr 2019
40 β-Gurjunene 1475 C15H24 17334 -55-3
41 psi.-Limonene 1049 C10H16 499-9 7-8
42 2,6-Dimethyl-1,3,5,7-octatetr a ene, E,E- 1119 C10H14 460-0 1-5
43 Limonene glycol 1313 C10H18O2 1946- 00-5
44 1,4-Cyclohexadiene, 1-methyl- 759 C7H10 4313- 57-9
45 Globulol 1663 C15H26O 51371 -47-2
46 Cyclooctene, 3-(1 -methylethenyl)- 1125 C11H18 61233 -78-1
47 β-Myrcene 910 C10H16 123-3 5-3
48 .(+)-Sativen 1409 C15H24 3650- 28-0
49 trans-α-Β ergamotene 1363 C15H24 13474 -59-4
50 Naphthalene, 1,6-dimethyl-4-( 1 -methylethyl) 1668 C15H18 483-7 8-3
51 Bicyclo[7.2.0]undec-4-ene, 4,11,1 l-trimethyl-8-methylene 1416 C15H24 13877 -93-5
52 4-Acetyl-1 -methylcyclohexene 1108 C9H14O 6090- 09-1
53 1H-Indene, 1-methylene- 1170 C10H8 2471- 84-3
54 Elixene 1344 C15H24 3242- 08-8
55 a-Methylstyrene 970 C9H10 98-83 -9
56 2,4-Dimethyl-1 -heptene 843 C9H18 19549 -87-2
57 1,2,4,4-Tetramethylcyclopente ne 838 C9H16 65378 -76-9
2019100394 11 Apr 2019
The claims defining the invention are as follows:

Claims (7)

  1. 2019100394 11 Apr 2019
    The claims defining the invention are as follows:
    1. A method for detecting olefin components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS), comprising the following steps:
    1) conducting orthogonal separation on samples by comprehensive 2DGC, and detecting by qMS;
  2. 2) conducting qualitative analysis on the olefin components through a combination of a retention time index (LRI) and NIST spectral library; and
  3. 3) judging the purity of a chromatographic peak by a nodal convolution technique, and accurately quantitatively analyzing chromatographic overlapping peaks by different selection ions.
    2. The method for detecting olefin components in orange juice through online-SPME and comprehensive 2DGC/qMS according to claim 1, wherein the method comprises the following steps:
    1) extracting and enriching olefin components in orange juice by online-SPME;
    weighing less than 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding excessive amount (about 2g) of NaCl, and sealing with a lid; and absorbing and desorbing samples by automatic SPME and an automatic sampling mode;
    2) detecting by comprehensive 2DGC/qMS detecting olefin components by comprehensive 2DGC/qMS: extracting and enriching the olefin components by the automatic SPME; feeding determinands absorbed to the extraction head into the comprehensive 2DGC/qMS at a sample inlet through thermal desorption; separating the determinands through one-dimensional chromatographic columns; then feeding the determinands into two-dimensional gas chromatographic columns after processed by a modem for separation; and conducting comprehensive scanning and detecting on the olefin components by qMS;
    3) conducting qualitative analysis on the olefin components through a combination of the LRI and NIST spectral library search results
    2019100394 11 Apr 2019
    a) conducting data analysis through GC image version 2.3;
    b) analyzing standard n-alkanes of C8-C20 in a gas sampling mode through comprehensive 2DGC/qMS to obtain the retention time of n-alkanes of C8-C20 in one and two dimensions; and artificially defining a LRI of n-alkanes of C8-C20, for example, defining the LRI of n-alkanes with an atomic number of 8 as 800, and so on (number of carbon atoms x 100);
    c) calculating the LRI of a target compound according to the retention time of the olefin components;
    d) comparing a mass spectrogram of the sample with the NIST spectral library when the sample ionizes at an El ionization source; and automatically identifying the substance when the similarity is greater than a set value; and
    e) conducting qualitative analysis on the olefin components in combination with the LRI and NIST spectral library search results;
  4. 4) quantitatively analyzing the olefin components
    a) directly recording a peak area for the olefin components with good separation degree; and
    b) determining the peak purity for the chromatographic overlapping peaks by the nodal convolution technique; and quantitatively analyzing the overlapping peaks by selection ions when judging that the peak is formed by overlapping of multiple components.
    3. The method for detecting olefin components in orange juice through online-SPME and comprehensive 2DGC/qMS according to claim 2, wherein conditions of the comprehensive 2DGC in the step 2) are as follows:
    1) the one-dimensional chromatographic columns are nonpolar columns DB-1 15mx0.25mmx0.1 pm;
    2) two-dimensional chromatographic columns are polar columns BPX-50 15mx0.1mmx0.1 pm;
    3) carrier gas: He, at a flow rate of 1.0 ml/mL;
    4) sample injection conditions: analysis temperature of a sample inlet is 250 °C;
    analysis time is 5 min; and temperature of the sample inlet is 250 °C;
  5. 5) heating procedure of a column oven: an initial temperature is 35 °C to 40 °C
    2019100394 11 Apr 2019 for 1 to 2 min; then the temperature is raised to 270 °C to 300 °C at a heating rate of 3 to 5 °C /min for 5 to 8 min;
  6. 6) setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and
  7. 7) mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 to 4 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
AU2019100394A 2019-04-11 2019-04-11 Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer Ceased AU2019100394A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019100394A AU2019100394A4 (en) 2019-04-11 2019-04-11 Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2019100394A AU2019100394A4 (en) 2019-04-11 2019-04-11 Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Publications (1)

Publication Number Publication Date
AU2019100394A4 true AU2019100394A4 (en) 2019-05-16

Family

ID=66443187

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019100394A Ceased AU2019100394A4 (en) 2019-04-11 2019-04-11 Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Country Status (1)

Country Link
AU (1) AU2019100394A4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049631A (en) * 2021-03-24 2021-06-29 海南红塔卷烟有限责任公司 Instillation micro-extraction method for quantitative analysis of thermogravimetric escaping substances

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049631A (en) * 2021-03-24 2021-06-29 海南红塔卷烟有限责任公司 Instillation micro-extraction method for quantitative analysis of thermogravimetric escaping substances
CN113049631B (en) * 2021-03-24 2022-10-04 海南红塔卷烟有限责任公司 Instillation micro-extraction method for quantitative analysis of thermogravimetric escaping substances

Similar Documents

Publication Publication Date Title
AU2019100393A4 (en) Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer
Arbulu et al. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines
Ng et al. Characterisation of commercial vodkas by solid‐phase microextraction and gas chromatography/mass spectrometry analysis
Stack et al. Liquid chromatographic determination of tenuazonic acid and alternariol methyl ether in tomatoes and tomato products
Ibe et al. Quantitative determination of amines in wine by liquid chromatography
CN1320355C (en) Method for analyzing fragrancer matter in apple wine
He et al. Monitoring of 49 pesticides and 17 mycotoxins in wine by QuEChERS and UHPLC–MS/MS analysis
Casilli et al. Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract
Bernhard et al. The volatile constituents of Schinus molle L
Di et al. Application of headspace solid‐phase microextraction (HS‐SPME) and comprehensive two‐dimensional gas chromatography (GC× GC) for the chemical profiling of volatile oils in complex herbal mixtures
Botezatu et al. Development of a rapid method for the quantitative analysis of four methoxypyrazines in white and red wine using multi-dimensional gas chromatography–mass spectrometry
CN111308004A (en) Identification method for differences of volatile flavor components of marinated food
Perestrelo et al. Potentialities of two solventless extraction approaches—Stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines
AU2019100394A4 (en) Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer
CN110596255A (en) Method for detecting volatile components of tomatoes and products thereof
CN103983712B (en) Apply the method for ketone component in online solid-phase microextraction and comprehensive two dimensional gas chromatography-level Four bar mass spectrography detection orange juice
CN113533549A (en) White spirit taste substance identification and analysis system
Chen et al. Strategies for the identification and sensory evaluation of volatile constituents in wine
CN103995078B (en) Apply the method for ester class component in online solid-phase microextraction and comprehensive two dimensional gas chromatography-level Four bar mass spectroscopy detection orange juice
CN113390980B (en) Evaluation method for flavor substance change in pancake processing
CN102706982A (en) Method for analyzing constituents of white spirit
KR20030085918A (en) Analytical method of Ginseng Radix, Ginseng Radix rubra or processed goods thereof
Gómez-Ariza et al. Determination of flavour and off-flavour compounds in orange juice by on-line coupling of a pervaporation unit to gas chromatography–mass spectrometry
CN107941979B (en) Method for detecting content of cholesterol oxide in aquatic product
CN114460189A (en) Method for screening difference markers of blueberry juice subjected to ultrahigh pressure treatment and blueberry juice subjected to heat treatment

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry