AU2019100393A4 - Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer - Google Patents

Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer Download PDF

Info

Publication number
AU2019100393A4
AU2019100393A4 AU2019100393A AU2019100393A AU2019100393A4 AU 2019100393 A4 AU2019100393 A4 AU 2019100393A4 AU 2019100393 A AU2019100393 A AU 2019100393A AU 2019100393 A AU2019100393 A AU 2019100393A AU 2019100393 A4 AU2019100393 A4 AU 2019100393A4
Authority
AU
Australia
Prior art keywords
comprehensive
2dgc
alcohol components
qms
orange juice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2019100393A
Inventor
Ying Chen
Shujing LI
Wei Liu
Jiebo Mi
Yang Song
Dunming Xu
Can Zhang
Jiukai Zhang
Kongxiang Zhao
Liangjuan Zhao
Wenjie Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Animal Plant & Food Inspection Center Tianjin Customs District
Center For Disease Prevention And Control Of Chinese Pla
China National Center For Food Safety Risk Assessment
Technical Center For Safety Of Industrial Products tianjin Customs District
Chinese Academy of Inspection and Quarantine CAIQ
Tianjin Normal University
Original Assignee
Animal Plant & Food Inspection Center
Center For Disease Prevention And Control Of Chinese Pla
China Nat Center For Food Safety Risk Assessment
Technical Center For Safety Of Industrial Products Tianjin Customs District
Tianjin University
Chinese Academy of Inspection and Quarantine CAIQ
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Animal Plant & Food Inspection Center, Center For Disease Prevention And Control Of Chinese Pla, China Nat Center For Food Safety Risk Assessment, Technical Center For Safety Of Industrial Products Tianjin Customs District, Tianjin University, Chinese Academy of Inspection and Quarantine CAIQ, Tianjin Normal University filed Critical Animal Plant & Food Inspection Center
Priority to AU2019100393A priority Critical patent/AU2019100393A4/en
Application granted granted Critical
Publication of AU2019100393A4 publication Critical patent/AU2019100393A4/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • G01N30/6039Construction of the column joining multiple columns in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8682Group type analysis, e.g. of components having structural properties in common
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/146Beverages containing alcohol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/4225Multipole linear ion traps, e.g. quadrupoles, hexapoles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/0075Separation due to differential desorption
    • G01N2030/008Thermal desorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Library & Information Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention discloses a method for identifying and analyzing alcohol components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS). The method comprises the steps: enriching alcohol components in an orange juice sample through online-SPME; detecting through comprehensive 2DGC/qMS; conducting qualitative analysis on a determinand through a combination of a retention time index (LRI) and NIST spectral library; and accurately quantitatively analyzing chromatographic overlapping peaks by a nodal convolution technique for the components which cannot be separated by the comprehensive 2DGC. The comprehensive 2DGC adopts two chromatographic columns with different polarities for conducting orthogonal separation on the alcohol components, and qMS is conducted under the effect of a modem for completing detection. Qualitative analysis is conducted through the combination of the LRI and the NIST spectral library, and the chromatographic overlapping peaks are accurately quantitatively analyzed by the nodal convolution technique. The method of the present invention has the characteristics of high throughput, high sensitivity and high accuracy, and solves the problems of difficult analysis and separation and difficult qualitative analysis for the alcohol components in the orange juice. FIG. 1 Diagram of Comprehensive 2DGC/qMS of Orange Juice Sample FIG. 2 Diagram of Comprehensive 2DGC/qMS of n-alkane

Description

METHOD FOR DETECTING ALCOHOL COMPONENTS IN
ORANGE JUICE THROUGH ONLINE-SOLID-PHASE
MICRO-EXTRACTION AND COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY/QUADRUPOLE MASS SPECTROMETER
TECHNICAL FIELD [0001] The present invention belongs to the technical field of food safety, and relates to a method for detecting alcohol components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS).
BACKGROUD OF THE PRESENT INVENTION [0002] Orange juice has rich nutrition and fragrant and pleasant taste, and is a globally popular beverage variety which is largely consumed. The consumption of orange juice, as a main orange juice beverage, ranks the top in the world. In recent years, the orange juice and its beverage industry has developed greatly with the improvement of human recognition. However, its quality adulteration, cheating, harmful substances that exceed the standard, and other phenomena still occur occasionally due to the lack of a corresponding quality control system.
[0003] At present, the monitoring of the national standards for the safety of the orange juice mainly includes basic physical and chemical indicators, such as GB/T 21731-2008 Orange Juice and Orange Juice Beverages which specifies soluble solids, sucrose, glucose, fructose, glucose/fructose and orange juice content ratio, and penicillin. Thus, the main focus is on the basic physical and chemical indicators, pesticide residues and microbial indicators. For example, “Fanta” orange and lemon juice beverages were found to contain excessive pesticides in 2009; General Administration of Quality Supervision randomly inspected 160 kinds of fruit and vegetable juice products in August of 2011, and about 2% of orange juice beverages was not qualified due to excessive bacterial colonies, moulds and yeasts; and at the
2019100393 11 Apr 2019 beginning of 2012, Coca-Cola's Brazilian orange juice contained a small amount of carbendazim pesticide, etc. However, there is no quality standard or testing standard system for the quality of the orange juice to deal with the adulteration and blending phenomena in the orange juice industry. In 2011, the plasticizer incident of Taiwan beverage also reflected the lack of Chinese quality monitoring system for the orange juice. Therefore, the study of aromatic components in the orange juice is the basis for establishing an orange juice quality standard, and is of great significance to monitor the quality of the orange juice. Alcohol components in the orange juice are important parts of the aromatic components in the orange juice, and have important to the aroma of the orange juice.
[0004] The comprehensive 2DGC/qMS is a technique which achieves two-dimensional separation of alcohol substances by combining two independent chromatographic columns having different separation mechanisms in series. A modulator is arranged between the two chromatographic columns, and the modulator plays the role of capturing and transmission. In GC X GC, the separation mechanisms of two columns are independent of each other. Each fraction separated by the first chromatographic column firstly enters the modulator and is focused, and then pulsed into the second chromatographic column for further separation and analysis. Each fraction needs to be eluted into the second chromatographic column at the same time to avoid co-elution with other fractions, which may affect the separation efficiency. [0005] The existing method for detecting alcohol substances in the orange juice adopts the traditional one-dimensional gas chromatography-mass spectrometry. The separation capability of the one-dimensional gas chromatography is limited so that all components cannot be separated completely. A single analysis may only analyze dozens of compounds, but the comprehensive 2DGC/qMS can detect hundreds of compounds, with a peak capacity which is hundreds to thousands of times of the one-dimensional liquid chromatography-mass spectrometry. Two-dimensional orthogonal separation can well separate the components which cannot be separated in the one-dimensional gas chromatography, thereby greatly increasing separation efficiency.
SUMMARY OF PRESENT INVENTION [0006] In view of the problems in the prior art, the purpose of the present invention to design and provide a method for detecting alcohol components in orange juice
2019100393 11 Apr 2019 through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS) having high throughput, high sensitivity and good separation effect. [0007] To solve the above technical problems, the present invention adopts the following technical solution: a method for detecting alcohol components in orange juice through online-SPME and comprehensive 2DGC/qMS comprises the following steps:
[0008] 1) extracting and enriching alcohol components in orange juice by online-SPME;
[0009] 2) conducting orthogonal separation by comprehensive 2DGC, and detecting by qMS;
[0010] 3) conducting qualitative analysis on the alcohol components through a combination of a linear retention index (LRI) and NIST spectral library; and [0011] 4) judging the purity of a chromatographic peak by a nodal convolution technique, and accurately quantitatively analyzing chromatographic overlapping peaks by different selection ions.
[0012] Specifically, the method comprises the following steps:
[0013] 1) extracting and enriching alcohol components in orange juice by online-SPME [0014] weighing 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding 2g of NaCl, and sealing with a lid; and absorbing and desorbing samples by automatic SPME and an automatic sampling mode;
[0015] conditions of online-SPME are: an extraction head is 85 pm Polyacrylate automatic extraction head; an incubation temperature of the samples is 45°C; incubation equilibrium is conducted for 10 min; the extraction head is inserted into the sample bottle at a depth of 12 mm; and extraction time is 20 min;
[0016] 2) detecting by comprehensive 2DGC/qMS [0017] detecting alcohol components by comprehensive 2DGC/qMS: extracting and enriching the alcohol components by the automatic SPME; feeding determinands absorbed to the extraction head into the comprehensive 2DGC/qMS at a sample inlet through thermal desorption; separating the determinands through one-dimensional chromatographic columns; heating and cooling the determinands through a modem and then feeding into two-dimensional gas chromatographic columns for separation;
2019100393 11 Apr 2019 and conducting comprehensive scanning and detecting by qMS;
[0018] 3) conducting qualitative analysis on the alcohol components [0019] a) conducting data analysis through GC image version 2.3;
[0020] b) analyzing standard n-alkanes of C8-C20 in a gas sampling mode through comprehensive 2DGC/qMS to obtain the retention time of n-alkanes of C8-C20 in one and two dimensions; and artificially defining a LRI of n-alkanes of C8-C20, for example, defining the LRI of n-alkanes with an atomic number of 8 as 800, and so on (number of carbon atoms * 100);
[0021] c) calculating the LRI of a target compound according to the retention time of the alcohol components;
[0022] d) comparing a mass spectrogram of the sample with the NIST spectral library when the sample ionizes at a voltage of 0.9kv of El ionization source; and automatically identifying the substance when the similarity is greater than a set value; and [0023] e) conducting qualitative analysis on the alcohol components in combination with the LRI and NIST spectral library search results;
[0024] 4) quantitatively analyzing the alcohol components [0025] a) directly recording a peak area for the alcohol components with good separation degree; and [0026] b) determining the peak purity for the chromatographic overlapping peaks by the nodal convolution technique; and quantitatively analyzing the overlapping peaks by selection ions when judging that the peak is formed by overlapping of multiple components.
[0027] Sample pretreatment is conducted through online-SPME in the step 1). [0028] Detection is conducted through comprehensive 2DGC/qMS in the step 2). [0029] Qualitative analysis is conducted through a combination of the LRI and NIST spectral library in the step 3).
[0030] The chromatographic overlapping peaks are accurately quantitatively analyzed by the nodal convolution technique in the step 4).
[0031] Conditions of the comprehensive 2DGC in the step 4) are as follows:
[0032] the one-dimensional chromatographic columns are nonpolar columns DB-1 15m X 0.25mm X 0.1 pm;
[0033] two-dimensional chromatographic columns are polar columns BPX-50 15m
2019100393 11 Apr 2019
XO.lmmXO.l μηι;
[0034] carrier gas: He, at a flow rate of 1.0 ml/mL;
[0035] sample injection conditions: analysis temperature of a sample inlet is 250 °C; analysis time is 5 min; and temperature of the sample inlet is 250 °C;
[0036] heating procedure of a column oven: an initial temperature is 35 °C for 1 min; then the temperature is raised to 270 °C at a heating rate of 3 °C /min for 5 min;
[0037] setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and [0038] mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
[0039] The present invention has the advantages and positive effects as follows: [0040] (1) One-dimensional gas chromatographic columns can only have one polarity such as nonpolarity or polarity, while nonpolar and polar columns can be used as two-dimensional gas chromatographic columns. When multiple determinands pass through the one-dimensional non-polar columns, the determinands are first separated according to molecular size, and then separated again according to polarity when passing through the two-dimensional polar chromatographic columns. Therefore, GCXGC separation effect can be achieved so as to efficiently separate a complex matrix. Therefore, the method of the present invention is suitable for component analysis, and has absolute advantages for analyzing the alcohol components in the orange juice.
[0041] (2) The qualitative analysis of an unknown substance is generally realized by means of a standard substance, and with the improvement of analysis capability of the instrument, can also be realized by means of high resolution mass spectrum. However, for component analysis, there are usually hundreds of components to be analyzed. The qualitative analysis mode of the standard substance and high resolution mass spectrum are time-consuming and expensive. Therefore, the present invention applies the LRI to the qualitative analysis of comprehensive 2DGC data: when the chromatographic columns and chromatographic conditions are the same,
2019100393 11 Apr 2019 the LRI of the substance is correlated with the number of C atoms. The present invention conducts the qualitative analysis through a combination of the LRI and
NIST spectral library.
[0042] (3) Due to the wide variety of separation substances, comprehensive 2DGC needs to be matched with mass spectrometry with high scanning speed. The qMS used in the present invention abandons the disadvantage of low scanning rate of the traditional qMS, has a scanning rate of 30000 Hz and can meet the need of comprehensive 2DGC for the scanning rate.
DESCRIPTION OF THE DRAWINGS [0043] FIG 1 is a diagram of comprehensive 2DGC/qMS of an alcohol substance in an orange juice sample; and [0044] FIG 2 is a diagram of comprehensive 2DGC/qMS of n-alkane.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS [0045] The present invention is further described below in detail in combination with the drawings and specific embodiments.
[0046] 1. Instrument and reagent [0047] Instrument: Shimadzu Q2010 Ultra GC/GC/MS, equipped with AOC-5000 Plus automatic sampler [0048] acetonitrile, sodium chloride, analytically pure analytical reagent. Standard n-alkanes of C8-C20 (Sigma-Aldrich, ImL) [0049] 2. Sample treatment [0050] Weighing 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding 2g of NaCl, and sealing with a lid; and enriching and desorbing samples by automatic SPME and an automatic sampling mode. Conditions of online-SPME are: an extraction head is 85 pm Polyacrylate automatic extraction head; an incubation temperature of the samples is 45°C; incubation equilibrium is conducted for 10 min; the extraction head is inserted into the sample bottle at a depth of 12 mm; and extraction time is 20 min.
[0051] 3 Instrument conditions [0052] the one-dimensional chromatographic columns are nonpolar columns DB-1 15m X 0.25mm X 0.1 pm;
[0053] two-dimensional chromatographic columns are polar columns BPX-50 15m
2019100393 11 Apr 2019
XO.lmmXO.l μηι;
[0054] carrier gas: He, at a flow rate of 1.0 ml/mL;
[0055] sample injection conditions: analysis temperature of a sample inlet is 250 °C;
analysis time is 5 min; and temperature of the sample inlet is 250 °C;
[0056] heating procedure of a column oven: an initial temperature is 35 °C for 1 min; then the temperature is raised to 270 °C at a heating rate of 3 °C /min for 5 min;
[0057] setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and [0058] mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
[0059] Mass spectrometry conditions: ion source: El ionization source; temperature of 250 °C; transmission line temperature of 280 °C; mass scanning range of 50-550amu; collection rate: 100 spectrograms per second; detector voltage of 1750V; ionization voltage of -70V. Data processing: Pegasus, spectral library search: NIST/PEST He [0060] 4 Result analysis [0061] (1) The retention times of the n-alkanes of C8-C20 under the above instrument analysis conditions are obtained, as shown in FIG. 2. In the figure, points are obtained two-dimensional chromatograms of the n-alkanes, which are C'sH C9H20, C10H22, C11H24, C12H26, C13H28, C14H30, C15H32, C16H34, C17H36, C18H38, C19H40 and C20H42 from left to right.
[0062] (2) The alcohol components are absorbed through online-SPME; comprehensive 2DGC/qMS is conducted; and the alcohol components in the freshly squeezed orange juice are detected. The LRIs of all detected alcohol components are calculated by the retention index calculation method of GC image Version 2.3. The number of C atoms of the alcohol component is preliminarily estimated based on the LRIs of the compounds according to the LRI values (as shown in Table 1).
[0063] (3) The NIST spectral library is used to perform spectral library search for alcohol components which will be subjected to qualitative analysis; and fuzzy
2019100393 11 Apr 2019 qualitative analysis is performed on the detected components to obtain multiple possible structural formulas; and then final qualitative analysis is performed in combination with the number of C atoms.
[0064] (4) The peak purity is determined by the nodal convolution technique with respect to the components which cannot be separated by the comprehensive 2DGC; and the overlapping alcohol components are accurately quantitatively analyzed by the selection ions.
[0065] By taking a target 1 in FIG. 1 as an example, the LRI calculated by one-dimensional retention time is 1152, so the number of C atoms of the compound is 10. Then, the top five choices after NIST spectral library search are 1-Decanol (C10H22O), Nonyl chloroformate (C10H19CIO2), Octylcyclopropane (CnH22), Nonylcyclopropane (C12H24) and C10H20 (CsHsO). The compound is finally determined to be 1-decanol in combination with the number of C atoms.
Table 1 LRI of Alcohol Components in Orange Juice
NO. Name LRI Molecuclar Formula CAS
1 β-Linalool 1084 C10H18O 78-70-6
2 Terpinen-4-ol 1168 C10H18O 562-74-3
3 1-Octanol 1053 C8H18O 111-87-5
4 L-a-Terpineol 1177 C10H18O 10482-56-1
5 Ethanol NaN C2H6O 64-17-5
6 cis-Geraniol 1212 C10H18O 106-25-2
7 Geraniol 1234 C10H18O 106-24-1
8 trans-Carveol 1200 C10H16O 1197-07-5
9 Citronellol 1210 C10H20O 106-22-9
10 1-Nonanol 1153 C9H20O 143-08-8
11 1-Hexanol 854 C6H14O 111-27-3
12 1-Decanol 1256 C10H22O 112-30-1
13 Bicyclo[3.3.0]octan-3-one, 6-hydroxy-6-methyl- 1218 C9H14O2
14 Carbitol 977 C6H14O3 111-90-0
15 1,4-Butanediol 963 C4H10O2 110-63-4
16 cis-Carveol 1212 C10H16O 1197-06-4
17 1-Nonanol 1162 C9H20O 143-08-8
18 1-Butanol, 4-butoxy- 1113 C8H18O2 4161-24-4
19 a-acorenol 1655 C15H26O 28400-11-5
2019100393 11 Apr 2019
20 cis-Verbenol 1149 C10H16O 1845-30-3
21 Perillic alcohol 1280 C10H16O 536-59-4
22 1 -Cyclohexene-1 -methanol, 4-(1 -methylethenyl)- 1290 C10H16O 536-59-4
23 Cyclohexanol, 3,3,5-trimethyl-, cis- 1084 C9H18O 933-48-2
24 β-Linalool 1072 C10H18O 78-70-6
25 Ethanol, 2-phenoxy- 1187 C8H10O2 122-99-6
26 Bicyclo[3.1,0]hexan-2-ol, 2-methyl-5 -(1 -methylethyl), (1α,2β,5α)- 1058 C10H18O 15537-55-0
27 3 -Cyclohexene-1 -ethanol, β,4-άίηιεΐ1ψ1- 1280 C10H18O 18479-68-0
28 β-Terpineol 1149 C10H18O 138-87-4
29 1-Butanol, 4-(hexyloxy)- 1425 C10H22O2 4541-13-3
30 a-Cadinol 1640 C15H26O 481-34-5
31 (S)-(+)-6-M ethyl-1 -octanol 1126 C9H20O 110453-78- 6
2019100393 11 Apr 2019
The claims defining the invention are as follows:

Claims (7)

1. A method for detecting alcohol components in orange juice through online-solid-phase micro-extraction (online-SPME) and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer (comprehensive 2DGC/qMS), comprising the following steps:
1) conducting orthogonal separation on samples by comprehensive 2DGC, and detecting by qMS;
2) conducting qualitative analysis on the alcohol components through a combination of a retention time index (LRI) and NIST spectral library; and
3) judging the purity of a chromatographic peak by a nodal convolution technique, and accurately quantitatively analyzing chromatographic overlapping peaks by different selection ions.
2. The method for detecting alcohol components in orange juice through online-SPME and comprehensive 2DGC/qMS according to claim 1, wherein the method comprises the following steps:
1) extracting and enriching alcohol components in orange juice by online-SPME;
weighing less than 5g of freshly squeezed orange juice into 10 mL of headspace sample bottle, adding excessive amount (about 2g) of NaCl, and sealing with a lid; and absorbing and desorbing samples by automatic SPME and an automatic sampling mode;
2) detecting by comprehensive 2DGC/qMS detecting alcohol components by comprehensive 2DGC/qMS: extracting and enriching the alcohol components by the automatic SPME; feeding determinands absorbed to the extraction head into the comprehensive 2DGC/qMS at a sample inlet through thermal desorption; separating the determinands through one-dimensional chromatographic columns; then feeding the determinands into two-dimensional gas chromatographic columns after processed by a modem for separation; and conducting comprehensive scanning and detecting on the alcohol components by qMS;
3) conducting qualitative analysis on the alcohol components through a io
2019100393 11 Apr 2019 combination of the LRI and NIST spectral library search results
a) conducting data analysis through GC image version 2.3;
b) analyzing standard n-alkanes of C8-C20 in a gas sampling mode through comprehensive 2DGC/qMS to obtain the retention time of n-alkanes of C8-C20 in one and two dimensions; and artificially defining a LRI of n-alkanes of C8-C20, for example, defining the LRI of n-alkanes with an atomic number of 8 as 800, and so on (number of carbon atoms x 100);
c) calculating the LRI of a target compound according to the retention time of the alcohol components;
d) comparing a mass spectrogram of the sample with the NIST spectral library when the sample ionizes at an El ionization source; and automatically identifying the substance when the similarity is greater than a set value; and
e) conducting qualitative analysis on the alcohol components in combination with the LRI and NIST spectral library search results;
4) quantitatively analyzing the alcohol components
a) directly recording a peak area for the alcohol components with good separation degree; and
b) determining the peak purity for the chromatographic overlapping peaks by the nodal convolution technique; and quantitatively analyzing the overlapping peaks by selection ions when judging that the peak is formed by overlapping of multiple components.
3. The method for detecting alcohol components in orange juice through online-SPME and comprehensive 2DGC/qMS according to claim 2, wherein conditions of the comprehensive 2DGC in the step 2) are as follows:
1) the one-dimensional chromatographic columns are nonpolar columns DB-1 15mx0.25mmx0.1 pm;
2) two-dimensional chromatographic columns are polar columns BPX-50 15mxO.lmmxO.l pm;
3) carrier gas: He, at a flow rate of 1.0 ml/mL;
4) sample injection conditions: analysis temperature of a sample inlet is 250 °C;
analysis time is 5 min; and temperature of the sample inlet is 250 °C;
2019100393 11 Apr 2019
5) heating procedure of a column oven: an initial temperature is 35 °C to 40 °C for 1 to 2 min; then the temperature is raised to 270 °C to 300 °C at a heating rate of 3 to 5 °C /min for 5 to 8 min;
6) setting of the modem: a modulation period is 6s; a cold jet flow is 10 mL/min; hot jet temperature is 325 °C; and hot jet duration is 350ms; and
7) mass spectrometry conditions: a mass spectrometry detector is a qMS; the temperature of an ion source is 230 °C; interface temperature is 280 °C; solvent delay is 3 to 4 min; and a full scanning mode is adopted, with a scanning range of 30 m/z to 300 m/z and a scanning frequency of 20000 Hz.
AU2019100393A 2019-04-11 2019-04-11 Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer Ceased AU2019100393A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019100393A AU2019100393A4 (en) 2019-04-11 2019-04-11 Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2019100393A AU2019100393A4 (en) 2019-04-11 2019-04-11 Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Publications (1)

Publication Number Publication Date
AU2019100393A4 true AU2019100393A4 (en) 2019-05-16

Family

ID=66443200

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2019100393A Ceased AU2019100393A4 (en) 2019-04-11 2019-04-11 Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer

Country Status (1)

Country Link
AU (1) AU2019100393A4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333309A (en) * 2019-07-24 2019-10-15 清华大学 A kind of particulate matter organic component on-line measurement system and method based on Two way chromatograms
CN111812242A (en) * 2020-07-17 2020-10-23 青岛海关技术中心 Method for simultaneously detecting multiple toxic and harmful substances in consumer product
CN115047127A (en) * 2022-04-25 2022-09-13 中国检验检疫科学研究院 Method for identifying NFC and FC orange juice by utilizing volatile metabonomics technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333309A (en) * 2019-07-24 2019-10-15 清华大学 A kind of particulate matter organic component on-line measurement system and method based on Two way chromatograms
CN111812242A (en) * 2020-07-17 2020-10-23 青岛海关技术中心 Method for simultaneously detecting multiple toxic and harmful substances in consumer product
CN111812242B (en) * 2020-07-17 2022-07-05 青岛海关技术中心 Method for simultaneously detecting multiple toxic and harmful substances in consumer product
CN115047127A (en) * 2022-04-25 2022-09-13 中国检验检疫科学研究院 Method for identifying NFC and FC orange juice by utilizing volatile metabonomics technology
CN115047127B (en) * 2022-04-25 2024-03-08 中国检验检疫科学研究院 Method for identifying NFC and FC orange juice by utilizing volatile metabonomics technology

Similar Documents

Publication Publication Date Title
AU2019100393A4 (en) Method for detecting alcohol components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer
Arbulu et al. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines
Rubiolo et al. Essential oils and volatiles: sample preparation and analysis. A review.
Gomis et al. Determination of monosaccharides in cider by reversed-phase liquid chromatography
Kataoka et al. Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry
He et al. Monitoring of 49 pesticides and 17 mycotoxins in wine by QuEChERS and UHPLC–MS/MS analysis
CN104849390B (en) A kind of method of applying component in the qualitative white wine of comprehensive two dimensional gas chromatography-flight time mass spectrum coupling
Stack et al. Liquid chromatographic determination of tenuazonic acid and alternariol methyl ether in tomatoes and tomato products
Ibe et al. Quantitative determination of amines in wine by liquid chromatography
Perestrelo et al. Potentialities of two solventless extraction approaches—Stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines
Botezatu et al. Development of a rapid method for the quantitative analysis of four methoxypyrazines in white and red wine using multi-dimensional gas chromatography–mass spectrometry
Casilli et al. Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract
CN103983712B (en) Apply the method for ketone component in online solid-phase microextraction and comprehensive two dimensional gas chromatography-level Four bar mass spectrography detection orange juice
Vaclavik et al. GC–TOF-MS and DART–TOF-MS: Challenges in the analysis of soft drinks
CN103995078B (en) Apply the method for ester class component in online solid-phase microextraction and comprehensive two dimensional gas chromatography-level Four bar mass spectroscopy detection orange juice
AU2019100394A4 (en) Method for detecting olefin components in orange juice through online-solid-phase micro-extraction and comprehensive two-dimensional gas chromatography/quadrupole mass spectrometer
CN102706982A (en) Method for analyzing constituents of white spirit
CN113533549B (en) White spirit taste material identification analysis system
CN103743849A (en) Ion chromatography-high resolution mass spectrum hyphenation method for screening and authenticating multiple organic acids in dairy products synchronously and rapidly
CN107941979B (en) Method for detecting content of cholesterol oxide in aquatic product
CN114062568A (en) Method for identifying variety of cherry by GC-IMS technology
Marais et al. Differentiation between wines originating from different red wine cultivars and wine regions by the application of stepwise discriminant analysis to gas chromatographic data
Sgorbini et al. “Truly Natural”: Fully Automated Stir-Bar Sorptive Extraction with Enantioselective GC–MS Quantitation of Chiral Markers of Peach Aroma
CN104034836A (en) Method for detecting olefin components in orange juice by applying on-line solid-phase microextraction method and comprehensive two-dimensional gas chromatography-quadrupole mass spectrography
Thomas et al. Evaluation of QuECheRS, cartridge SPE cleanup, and gas chromatography time-of-flight mass spectrometry for the analysis of pesticides in dietary supplements

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry