AU2018447034A1 - Ultra high selective hydrogenation catalyst and preparation thereof - Google Patents

Ultra high selective hydrogenation catalyst and preparation thereof Download PDF

Info

Publication number
AU2018447034A1
AU2018447034A1 AU2018447034A AU2018447034A AU2018447034A1 AU 2018447034 A1 AU2018447034 A1 AU 2018447034A1 AU 2018447034 A AU2018447034 A AU 2018447034A AU 2018447034 A AU2018447034 A AU 2018447034A AU 2018447034 A1 AU2018447034 A1 AU 2018447034A1
Authority
AU
Australia
Prior art keywords
catalyst
solution
mixture
carrier
auxiliary agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2018447034A
Other versions
AU2018447034B2 (en
Inventor
Changjun CHEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pujing Chemical Industry Co Ltd
Original Assignee
Pujing Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pujing Chemical Industry Co Ltd filed Critical Pujing Chemical Industry Co Ltd
Publication of AU2018447034A1 publication Critical patent/AU2018447034A1/en
Application granted granted Critical
Publication of AU2018447034B2 publication Critical patent/AU2018447034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/615
    • B01J35/617
    • B01J35/633
    • B01J35/635
    • B01J35/638
    • B01J35/643
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

A highly selective hydrogenation catalyst for hydrogenating an oxalate to ethylene glycol is disclosed. The catalyst comprises an active component, an auxiliary agent and a carrier. The active component comprises copper or an oxide thereof. The auxiliary agent is a metal selected from the group consisting of Ni, B, Bi, Fe, Ce, Mo, Sn, Co, La, Y, Nd, V and W, an oxide thereof, or a combination thereof. The carrier is selected from the group consisting of silicon, aluminum, zirconium and titanium oxide. Also disclosed is a process for preparing the catalyst.

Description

ULTRA HIGH SELECTIVE HYDROGENATION CATALYST AND PREPARATION THEREOF FIELD OF THE INVENTION
The present invention relates to a catalyst highly selective for hydrogenation of oxalate to ethylene glycol and preparation thereof.
BACKGROUND OF THE INVENTION
Ethylene glycol is an important organic chemical raw material widely used in the synthesis of polyester, polyester resin, moisture absorbent, plasticizer and surfactant. In recent years, as Chinese ethylene glycol consumption continues to rise, domestic production capacity is insufficient, and the relationship between supply and demand is tight.
With the increasing shortage of petroleum resources, the traditional chemical industry based on petroleum resources should adjust its raw material route and product structure to diversification of raw materials and products. In view that the traditional route for the production of ethylene glycol by reacting ethylene oxide with water is overly dependent on petroleum resources, the one-carbon route for the production of ethylene glycol by using an oxalate and syngas has attracted increasing attention. In particular, the development of catalysts for the synthesis of ethylene glycol by hydrogenation of an oxalate is the key to the realization of this route.
Increasing number of catalysts and their preparation methods involving the hydrogenation of an oxalate to ethylene glycol has been reported in recent years. The early patents were granted mainly in Japan. Earlier domestic research institutes in this field include Fujian Institute of Material Structure, Tianjin University, East China University of Science and Technology, and Sinopec. For example, Chinese Patent No. CN101474562B to China Petroleum & Chemical Corporation reports a preparation method for highly active catalyst precursor for ethylene glycol production by hydrogenation of an oxalate. Chinese Patent No. CN102463122B to Chinese Academy of Sciences Fujian Institute of Material Structures reports a preparation method for a Cu-Ag/SiO2 catalyst for hydrogenation of an oxalate. Chinese Patent No. CN 101879448B to Tianjin University discloses a catalyst with a honeycomb carrier for hydrogenation of an oxalate to ethylene glycol and a preparation method thereof.
Although there has been some progress in developing catalysts for hydrogenation of an oxalate to ethylene glycol, the selectivity of the catalysts for ethylene glycol is not ideal.  There remains a need for catalysts that are highly active and highly selective for ethylene glycol.
SUMMARY OF THE INVENTION
The present invention provides a highly selective catalyst for hydrogenation of an oxalate to ethylene and preparation thereof.
A highly selective hydrogenation catalyst for hydrogenating an oxalate to ethylene glycol is provided. The catalyst comprises an active component, an auxiliary agent and a carrier. The active component comprises copper or an oxide thereof. The auxiliary agent is a metal selected from the group consisting of Ni, B, Bi, Fe, Ce, Mo, Sn, Co, La, Y, Nd, V and W, an oxide thereof, or a combination thereof. The carrier is selected from the group consisting of silicon, aluminum, zirconium, titanium and an oxide thereof.
The catalyst may have a selectivity of at least 91%for ethylene glycol at a weight space velocity of oxalate 5-20 h -1. The catalyst may have a specific surface area of 250-900 m 2/g. The catalyst may have a pore volume of 0.4-1.3 cm 3/g. The catalyst may have an average pore diameter is 3-25 nm.
The active component may be a copper oxide, and the catalyst may comprise 10-50 or 20-40 wt%of the copper oxide. The catalyst may comprise 1-15 or 2-10 wt%of the auxiliary agent. The catalyst may comprise 50-90 or 50-80 wt%of the carrier.
For each catalyst of this invention, a process for preparing the catalyst is provided. The process comprises: mixing a carrier precursor solution with a modifier solution to form a first mixture; adding an active metal precursor solution and an auxiliary agent precursor solution to the first mixture to form a second mixture; adding a precipitating agent solution to the second mixture to form a third mixture; stirring vigorously and aging the third mixture, whereby precipitates are formed; isolating the precipitates; and washing, drying and baking the isolated precipitates. As a result, a catalyst is formed for catalyzing hydrogenation of an oxalate to ethylene glycol.
The process may further comprise activating the catalyst.
The process may further comprise stirring the first mixture for 0.5-5h.
The third mixture may be aged at 60-100 ℃ for 4-24h.
The active metal precursor solution may comprise Cu (NO 32, CuCl2, Cu (CH 3COO)  2, or a combination thereof, and has a pH of 1.0-7.0.
The auxiliary agent precursor solution may comprise Ni (NO 32, HBO 3, BiNO 3, Fe (NO 33, Ce (NO)  3, Na 2MoO 4, (NH 46Mo 7O 24, SnCl 4, Co (NO 32, La (NO 33, Y (NO 33, Nd (NO 33, NH 4VO 3, (NH 46H 2W 12O 40, or a combination thereof, and has a pH of 1.0-7.0.
The carrier precursor solution may comprise Na 2SiO 3, tetraethyl orthosilicate, silica sol, Al (NO 33, aluminum sol, ZrOCl 2, Zr (NO 34, butyl titanate, TiCl 4 or a combination thereof, and has a pH of 1.0-7.0.
The precipitating agent solution may comprise urea, ammonia water, sodium carbonate, potassium carbonate, ammonium carbonate, ethylenediamine or a combination thereof.
The modifier solution may comprise starch, polyvinylpyrrolidone, polyethylene glycol, polyacrylamide, methyltrimethoxysilane, vinyltriethoxysilane, cetyltrimethylammonium bromide, polyoxyethylene methacrylate, or a combination thereof.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a catalyst for hydrogenation of an oxalate to ethylene glycol and preparation thereof. The catalyst comprises an active component, an auxiliary agent and a carrier. The invention was made based on the inventors’surprising discoveries that selection of a suitable auxiliary agent to promote the interaction between copper as an active component and the carrier and the use of a modifier to improve the structure of the catalyst contribute to the high activity of the catalyst in catalyzing hydrogenation of an oxalate to ethylene glycol and the high selectivity of the catalyst for ethylene glycol.
A catalyst is provided for a hydrogenation reaction, for example, an ester hydrogenation reaction of an oxalate to ethylene glycol. The catalyst comprises an active component, an auxiliary agent and a carrier. The oxalate may be dimethyl oxalate or diethyl oxalate.
The term “active component” used herein refers to a substance in the catalyst that catalyzes hydrogenation of an oxalate to ethylene glycol. The active component may be copper or an oxide thereof. The active component may account for about 10-50 or 20-40 wt%of the catalyst.
The term “active metal precursor” used herein refers to a substance in an active metal precursor solution used to provide the active component in the catalyst. The active metal precursor may be a soluble salt of the active metal copper, for example, Cu (NO 32, CuCl 2, or Cu (CH 3COO)  2. An active metal precursor solution may be an aqueous solution comprising the active metal precursor at a concentration in the range of, for example, 5-30  wt%, based on the total weight of the solution. The active metal precursor solution may have a pH in the range of about 1.0-7.0.
The term “auxiliary agent” used herein refers to a substance in the catalyst that promote the interaction between an active component and a carrier in a catalyst. The auxiliary agent may be a metal selected from the group consisting of Ni, B, Bi, Fe, Ce, Mo, Sn, Co, La, Y, Nd, V and W, an oxide thereof, and a combination thereof. The auxiliary agent may account for about 1-15 or 2-10 wt%of the catalyst.
The term “auxiliary agent precursor” used herein refers to a substance in an auxiliary agent precursor solution used to provide the auxiliary agent in the catalyst. The auxiliary agent precursor may be a soluble salt or other soluble substance of the auxiliary metal, for example, Ni (NO 32, HBO 3, BiNO 3, Fe (NO 33, Ce (NO)  3, Na 2MoO 4, (NH 46Mo 7O 24, SnCl 4, Co (NO 32, La (NO 33, Y (NO 33, Nd (NO 33, NH 4VO 3 and (NH 46H 2W 12O 40. An auxiliary agent precursor solution may be an aqueous solution comprising the auxiliary agent precursor at a concentration in the range of, for example, 2-20 wt%, based on the total weight of the solution. The pH of the auxiliary agent precursor solution may be in the range of about 1.0-7.0.
The term “carrier” used herein refers to a substance in the catalyst that provides support for the active component and the auxiliary agent. The carrier is Si, Al, Zr, Ti, an oxide thereof, or a combination thereof. The carrier accounts for about 50-90 or 50-80 wt%of the catalyst.
The term “carrier precursor” used herein refers to a substance in the carrier precursor solution used to provide a carrier in the catalyst. The carrier precursor may be a soluble salt or other soluble substance of the carrier, for example, Na 2SiO 3, tetraethyl orthosilicate, silica sol, Al (NO 33, aluminum sol, ZrOCl 2, Zr (NO 34, butyl titanate or TiCl 4. A carrier precursor solution may be an aqueous solution comprising the carrier precursor at a concentration in the range of, for example, 20-60 wt%, based on the total weight of the solution. The carrier precursor solution may have a PH in the range of about 1.0-7.0.
The term “precipitating agent” used herein refers to an agent that reacts with a precursor of the combination of the active metal, the auxiliary agent and the carrier to form precipitates. The precipitating agent may be a soluble carbonate, a soluble hydroxide, or a substance that hydrolyzes to generate hydroxide, carbonate or bicarbonate under certain conditions. Examples of the precipitating agents include urea, ammonia water, sodium carbonate, potassium carbonate, ammonium carbonate, ethylenediamine, and a combination thereof. A precipitating agent solution may be an aqueous solution comprising  the precipitating agent at a concentration in the range of, for example, 10-50 wt%, based on the total weight of the solution. The precipitating agent solution may have a pH in the range of about 6.0-11.0.
The term “modifier” used herein refers to a substance that modifies the structure of the carrier precursor by, for example, changing a surface group and/or adjusting pores to form the carrier in the catalyst. The modifier may be selected from the group consisting of water-soluble polymers, silane coupling agents and surfactants. Examples of the modifiers include starch, polyvinylpyrrolidone, polyethylene glycol, polyacrylamide, methyltrimethoxysilane, vinyltriethoxysilane, cetyltrimethylammonium bromide, polyoxyethylene methacrylate, and a combination thereof. A modifier solution may be an aqueous solution comprising the modifier at a concentration in the range of, for example, 0.1-5.0 wt%, based on the total weight of the solution. The modifier solution may have a PH in the range of about 3.0-8.0.
A process for preparing the catalyst of the present invention is provided. The process comprises mixing a carrier precursor solution with a modifier solution to form a first mixture; adding an active metal precursor solution and an auxiliary agent precursor solution to the first mixture to form a second mixture; adding a precipitating agent solution to the second mixture to form a third mixture; stirring vigorously and aging, for example, by heating, the third mixture to form precipitates; isolating the precipitates from the third mixture; and washing, drying and baking the isolated precipitates to obtain a catalyst for catalyzing hydrogenation of an oxalate to ethylene glycol.
In one embodiment, a carrier precursor solution is mixed with a modifier solution for about 0.5-5.0 hours (h) to form a first mixture. An active metal precursor solution and an auxiliary agent precursor solution are added to the first mixture to form a second mixture. A precipitating agent solution is added slowly to the second mixture to form a third mixture. The third mixture is stirred vigorously and aged at 60-100 ℃ for 4-24 h to form precipitates. The precipitates are then isolated from the third mixture by filtering. The isolated precipitates are washed, dried at 60-120 ℃ for 6-24 h, and baked at 300-600 ℃ for 2-8 h. As a result, a catalyst for catalyzing hydrogenation of an oxalate to ethylene glycol is obtained.
The catalyst must be activated before use in a hydrogenation reaction. The catalyst may be activated by hydrogen under normal atmospheric pressure and an activation temperature. The activation temperature may be raised from room temperature to 300 ℃at 1 ℃ per min and then be maintained for 6-12h.
A method for hydrogenate an oxalate to ethylene glycol is further provided. The method comprises a hydrogenation reaction of an ester with hydrogen at a reaction temperature and under a reaction pressure. The reaction temperature may be in the range of about 150-250 ℃. The reaction pressure may be in the range of about 1.5-3.5 MPa. In the hydrogenation reaction, the hydrogen and the ester may have a molar ratio in the range from about 30: 1 to 150: 1. The oxalate may be introduced into the reaction at a flow rate of 0.5-20 h -1.
According to the present invention, selection of a suitable auxiliary agent promotes the interaction between the active component copper and the carrier, and thus improves the stability of the catalyst and avoids sintering of the catalyst during long-term use. The auxiliary agent may neutralize surface acidity or alkalinity of the carrier and effectively avoid the occurrence of side reactions.
During the preparation of the catalyst, the modifier is introduced to graft the carrier so that a surface group of the catalyst carrier is changed, thereby affecting the agglomeration behavior of the carrier during precipitation and adjusting the microstructure of the carrier. During the baking step, the modifier decomposes and generates many pores. As a result, the catalyst generates many micropores, improving the pore size and specific surface area, and further improving the activity and selectivity of the catalyst. The average pore size of the catalyst may be in the range of about 3-25 nm. The average pore volume of the catalyst may be in the range of about 0.4-1.3 cm 3/g. The specific surface area of the catalyst may be in the range of about 250-900 m 2/g.
Compared with the existing copper-based catalyst, the catalyst of the present invention has a significant improvement in the conversion rate and selectivity of the catalyst in hydrogenation of oxalate to ethylene glycol. In addition, the reaction temperature may be lower during the hydrogenation reaction, the hydrogen to ester ratio may be lower, the liquid hourly space velocity is larger, and the purity of the ethylene glycol produced according to this invention may be higher.
The term “conversion rate” used herein refers to the percentage of an oxalate that is converted to one or more desirable or undesirable products. The conversion rate of the catalyst according to this invention may 98-100 %at a weight space velocity of oxalate 5-20 h -1. The conversion rate may be improved by at least about 1 %using the catalyst of the present invention as compared with that using a catalyst prepared by the same process except without a modifier and/or an auxiliary agent.
The term “selectivity” used herein refers to the percentage of an oxalate that is converted to one or more desirable products relative to the portion of the oxalate that is converted to one or more desirable or undesirable products. The selectivity of the catalyst according to this invention may in the range of about 91-99.5 %at a weight space velocity of oxalate 5-20 h -1. The selectivity for ethylene glycol may be improved by at least about 5 %using the catalyst of the present invention as compared with that using a catalyst prepared by the same process except without a modifier, an auxiliary agent or a combination thereof.
The term “weight space velocity” used herein refers to the weight of oxalate treated per unit mass of a catalyst per unit time.
The technical solution of the present invention will be described below by way of specific embodiments. It is to be understood that the examples are not intended to limit the scope of the invention, and the description of the method steps is merely a convenient means of identifying the method steps, and not limiting the method steps. While the order of the arrangement or the scope of the invention as described in the specific embodiments is limited, relevant changes or adjustments of the embodiments are deemed to be within the scope of the invention.
The term “about” as used herein when referring to a measurable value such as an amount, a percentage, and the like, is meant to encompass variations of ±20%or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1%from the specified value, as such variations are appropriate.
Example 1. Preparation of hydrogenation catalyst 1
Ultra-high selectivity hydrogenation catalyst 1 was prepared according to a preparation method comprising the following steps:
1) dissolving 22.76g of copper nitrate trihydrate and 11.68g of nickel nitrate hexahydrate in deionized water, and adjusting the pH to 3.0 to obtain solution a;
2) adding 65g of 30wt%silica sol, and adjusting the pH to 5.0 to obtain solution b;
3) dissolving 39.8g of urea in deionized water to obtain solution c;
4) dissolving 0.6g of polyethylene glycol 10000 in deionized water to obtain solution d;
5) adding solution d slowly to solution b and stirring for 1 h to obtain solution e;
6) adding slowly solution a to solution e, adding solution c slowly, stirring vigorously at 90 ℃ for 16 h, filtering to obtain a filter cake; and
7) drying the filter cake at 110 ℃ for 12 h and then calcining at 480 ℃ for 4 h to obtain a catalyst.
The composition hydrogenation catalyst 1 by X-ray fluorescence (XRF) was 25%CuO-10%NiO-65%SiO 2.
Example 2. Preparation of hydrogenation catalyst 2
Hydrogenation catalyst 2 was prepared according to a preparation method comprising the following steps:
1) dissolving 18.21g of copper nitrate trihydrate and 6.81g of cerium nitrate hexahydrate in deionized water, and adjusting the pH to 2.0, to obtain solution a;
2) dissolving 71g of 30wt%silica sol, and adjusting the pH to 6.0 to obtain solution b;
3) dissolving 28.45g of sodium carbonate in deionized water to obtain solution c;
4) dissolving 0.5g polyvinylpyrrolidone 40000 in deionized water to obtain solution d; and
5) , 6) and 7) Same as those in Example 1.
The composition of hydrogenation catalyst 2 by XRF was 20%CuO-9%CeO 2-71%SiO 2.
Example 3. Preparation of hydrogenation catalyst 3
Hydrogenation catalyst 3 was prepared according to a preparation method comprising the following steps:
1) dissolving 45.53g of copper nitrate trihydrate and 0.37g of ammonium molybdate tetrahydrate in deionized water, and adjusting the pH to 2.0, to obtain solution a;
2) dissolving 19.22g of aluminum chloride in deionized water, and adjusting the pH to be 4.0, to obtain solution b;
3) dissolving 44.81g of urea in water to obtain a solution c;
4) dissolving 1.2g of starch it in deionized water to get solution d; and
5) , 6) and 7) Same as those in Example 1.
The composition of hydrogenation catalyst 3 by XRF was 50%CuO-1%MoO 3-49%Al 2O 3.
Example 4. Preparation of hydrogenation catalyst 4
Hydrogenation catalyst 4 was prepared according to a preparation method comprising the following steps:
1) dissolving 25.50g of copper nitrate trihydrate and 13.64g of ferric nitrate nonahydrate in deionized water, and adjusting the pH to 1.0, to obtain solution a;
2) dissolving 65.92g of zirconium nitrate pentahydrate in deionized water and adjusting the pH to be 1.0 to obtain solution b;
3) dissolving 67.78g of urea in water to obtain solution c;
4) dissolving 1.8g of polyvinylpyrrolidone 10000 in deionized water to obtain solution d; and
5) , 6) and 7) Same as those in Example 1.
The composition of hydrogenation catalyst 4 was 28%CuO-9%Fe 2O 3-63%ZrO 2.
Example 5. Preparation of hydrogenation catalyst 5
Hydrogenation catalyst 5 was prepared according to a preparation method comprising the following steps:
1) dissolving 38.24g of copper nitrate trihydrate and 3.75g of lanthanum nitrate pentahydrate in deionized water, and adjusting the pH to 1.0 to obtain a solution a;
2) dissolving 4.41g of zirconium nitrate pentahydrate in deionized water and adjusting the pH to be 1.0, to obtain solution b;
3) dissolving 67.02g urea in water, to obtain solution c;
4) dissolving 2.5g of polyacrylamide in deionized water to obtain solution d; and
5) , 6) and 7) Same as those in Example 1.
The composition of hydrogenation catalyst 5 by XRF test was 42%CuO-6%Bi 2O 3-52%ZrO 2.
Example 6. Preparation of hydrogenation catalyst 6
Hydrogenation catalyst 6 was prepared according to a preparation method comprising the following steps:
1) dissolving 27.32g of copper nitrate trihydrate and 3.03g of cerium nitrate hexahydrate in deionized water, and adjusting the pH to 1.0, to obtain solution a;
2) dissolving 7.67 g of tetrabutyl titanate in ethanol to obtain solution b;
3) dissolving 25 wt%of silica sol in deionized water, and adjusting pH = 4.0 to obtain solution c;
4) dissolving 31g of 25wt%ammonia in water to obtain solution d;
5) dissolving 1.0g of methyltrimethoxysilane in deionized water to obtain solution e;
6) adding slowly solution e to c, and stirring for 5h to obtain solution f;
7) mixing solutions a, b, and f, and then adding solution d slowly dropwise, stirring vigorously, aged at 70 ℃ for 24 h, and filtered to obtain a filter cake;
8) drying filter cake at 120 ℃ for 12 h and calcining at 500 ℃ for 3 h to obtain catalyst 6.
The composition of hydrogenation catalyst 6 by XRF was 30%CuO-4%CeO2-50%SiO2/6%TiO2.
Example 7. Preparation of hydrogenation catalyst 7
Hydrogenation catalyst 7 was prepared according to a preparation method comprising the following steps:
1) dissolving 36.42g copper nitrate trihydrate and 7.58g iron nitrate nonahydrate in deionized water, adjust the pH to 2.0, to obtain a solution a;
2) dissolving 5.23g of zirconium nitrate pentahydrate dissolved in deionized water to obtain solution b;
3) dissolving 25g of silica sol 60g in deionized water, and adjusting pH to be 5.0, to obtain a solution c;
4) dissolving 18.63g of urea to obtain solution d;
5) dissolving 2.0 g of polyacrylamide in deionized water to obtain solution e;
6) mixing solutions e to c and stir for 1 h to obtain solution f;
7) mixing solutions a, b, and f, and then adding solution d slowly dropwise, stirring vigorously, aged at 70 ℃ for 18 h, and filtered to obtain a filter cake;
8) drying the filter cake at 120 ℃ for 12 h and calcining at 400 ℃ for 5 h to obtain catalyst 7.
The composition of hydrogenation catalyst 7 by XRF test was 40%CuO-5%Fe 2O 3-50%SiO 2/5ZrO 2.
Example 8. Preparation of hydrogenation catalyst 8
Hydrogenation catalyst 8 was prepared according to a preparation method comprising the following steps:
1) dissolving 29.14g of copper nitrate trihydrate and 3.73g of boric acid in deionized water, and adjusting the pH to 3.0 to obtain solution a;
2) dissolving 13.24g of aluminum nitrate nonahydrate in deionized water to obtain solution b;
3) dissolving 30g of 30wt%silica sol in deionized water, and adjusting the pH to be 3.0 to obtain solution c;
4) dissolving 32.18g of 25wt%ammonia in water to obtain solution d;
5) dissolving 1.5g of polyoxyethylene methacrylate in deionized water to obtain solution e;
6) adding solution e slowly to solution c and stirring for 1 h to obtain solution f;
7) mixing solutions a, b and f, then adding solution d slowly dropwise, stirring vigorously, aging at 70 ℃ for 18 h, and filtering to obtain a filter cake; and
8) drying the filter cake at 120 ℃ for 12 h, and calcining at 400 ℃ for 5 h to obtain catalyst 8.
The composition of hydrogenation catalyst 8 by XRF test was 32%CuO-7%B 2O 3-55%SiO 2/6Al 2O 3.
Example 9. Preparation of comparative hydrogenation catalyst 1
Comparative hydrogenation catalyst 1 was prepared according to the method described in Example 1 except that step 4 was removed. The composition of comparative hydrogenation catalyst 1 remains to be 25%CuO-10%NiO-65%SiO 2.
Example 10. Preparation of comparative hydrogenation catalyst 2
Comparative hydrogenation catalyst 1 was prepared according to the method described in Example 1 except that nickel nitrate hexahydrate was removed from step 1.
Example 11. Preparation of comparative hydrogenation catalyst 3
Comparative hydrogenation catalyst 1 was prepared according to the method described in Example 1 except that nickel nitrate hexahydrate was removed from step 1 and that step 4 was removed.
Example 12. Evaluation of catalyst activity
Each catalyst prepared in Examples 1-11 were crushed to 40-60 mesh particles after tableting, and placed into a fixed window reactor having an inner diameter of 8 mm. Electric heating was used. The catalyst was reduced by hydrogen under normal atmospheric pressure before the reaction, and the hydrogen flow rate was 100 ml/min. The reduction temperature increased to 300 ℃ from a normal temperature at a rate of 2 ℃ /min. Then the temperature was maintained for 12 h before the temperature was lowered to the reaction temperature, and the feed evaluation started.
The catalyst performance was evaluated by using dimethyl oxalate as a raw material and methanol as a solvent. The EBT test results of each catalyst are shown in Table 1. The reaction results for the preparation of ethylene glycol using each catalyst are shown in Table 2.
Table 1. BET Test Results
Table 2. Reaction Results
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims without departing from the invention.

Claims (20)

  1. A highly selective hydrogenation catalyst for hydrogenating an oxalate to ethylene glycol, comprising an active component, an auxiliary agent and a carrier, wherein the active component comprises copper or an oxide thereof, wherein the auxiliary agent is a metal selected from the group consisting of Ni, B, Bi, Fe, Ce, Mo, Sn, Co, La, Y, Nd, V and W, an oxide thereof, and a combination thereof, and wherein the carrier is selected from the group consisting of silicon, aluminum, zirconium, titanium and an oxide thereof.
  2. The catalyst of claim 1, wherein the catalyst has a selectivity of at least 91 %for ethylene glycol at a weight space velocity of oxalate 5-20 h -1.
  3. The catalyst of claim 1, wherein the catalyst has a specific surface area of 250-900 m 2/g.
  4. The catalyst of claim 1, wherein the catalyst has a pore volume of 0.4-1.3 cm 3/g.
  5. The catalyst of claim 1, wherein the catalyst has an average pore diameter is 3-25 nm.
  6. The catalyst of claim 1, wherein the active component is copper oxide, wherein the catalyst comprises 10-50 wt%of the copper oxide.
  7. The catalyst of claim 1, wherein the active component is copper oxide and comprises 20-40 wt%of the copper oxide.
  8. The catalyst of claim 1, wherein the catalyst comprises 1-15 wt%of the auxiliary agent.
  9. The catalyst of claim 1, wherein the catalyst comprises 2-10 wt%of the auxiliary agent.
  10. The catalyst of claim 1, wherein the catalyst comprises 50-90 wt%of the carrier.
  11. The catalyst of claim 1, wherein the catalyst comprises 50-80 wt%of the carrier.
  12. A process for preparing the catalyst of claim 1, comprising:
    (a) mixing a carrier precursor solution with a modifier solution to form a first mixture;
    (b) adding an active metal precursor solution and an auxiliary agent precursor solution to the first mixture to form a second mixture;
    (c) adding a precipitating agent solution to the second mixture to form a third mixture;
    (d) stirring vigorously and aging the third mixture, whereby precipitates are formed;
    (e) isolating the precipitates; and
    (f) washing, drying and baking the isolated precipitates, whereby a catalyst is formed for catalyzing hydrogenation of an oxalate to ethylene glycol.
  13. The process of claim 12, further comprising stirring the first mixture for 0.5-5h.
  14. The process of claim 12, wherein the third mixture is aged at 60-100 ℃ for 4-24h.
  15. The process of claim 12, wherein the active metal precursor solution comprises Cu (NO 32, CuCl2, Cu (CH 3COO)  2, or a combination thereof, and wherein the active metal precursor solution has a pH of 1.0-7.0.
  16. The process of claim 12, wherein the auxiliary agent precursor solution comprises Ni (NO 32, HBO 3, BiNO 3, Fe (NO 33, Ce (NO)  3, Na 2MoO 4, (NH 46Mo 7O 24, SnCl 4, Co (NO 32, La (NO 33, Y (NO 33, Nd (NO 33, NH 4VO 3, (NH 46H 2W 12O 40, or a combination thereof and has a pH of 1.0-7.0.
  17. The process of claim 12, wherein the carrier precursor solution comprises Na 2SiO 3, tetraethyl orthosilicate, silica sol, Al (NO 33, aluminum sol, ZrOCl 2, Zr (NO 34, butyl titanate, TiCl 4 or a combination thereof and has a pH of 1.0-7.0.
  18. The process of claim 12, wherein the precipitating agent solution comprises urea, ammonia water, sodium carbonate, potassium carbonate, ammonium carbonate, ethylenediamine or a combination thereof.
  19. The process of claim 12, wherein the modifier solution comprises starch, polyvinylpyrrolidone, polyethylene glycol, polyacrylamide, methyltrimethoxysilane, vinyltriethoxysilane, cetyltrimethylammonium bromide, polyoxyethylene methacrylate, or a combination thereof.
  20. The process of claim 12, further comprising activating the catalyst.
AU2018447034A 2018-10-22 2018-10-22 Ultra high selective hydrogenation catalyst and preparation thereof Active AU2018447034B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111132 WO2020082195A1 (en) 2018-10-22 2018-10-22 Ultra high selective hydrogenation catalyst and preparation thereof

Publications (2)

Publication Number Publication Date
AU2018447034A1 true AU2018447034A1 (en) 2021-04-01
AU2018447034B2 AU2018447034B2 (en) 2023-07-27

Family

ID=69171526

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2018447034A Active AU2018447034B2 (en) 2018-10-22 2018-10-22 Ultra high selective hydrogenation catalyst and preparation thereof

Country Status (3)

Country Link
AU (1) AU2018447034B2 (en)
RU (1) RU2710892C1 (en)
WO (1) WO2020082195A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569876A (en) * 2020-04-29 2020-08-25 厦门大学 Hydrogenation catalyst, preparation method and application thereof
CN113289632B (en) * 2021-06-02 2022-11-15 浙江师范大学 Catalyst for preparing ethanol by dimethyl oxalate hydrogenation and preparation method and application thereof
CN116351432A (en) * 2023-04-04 2023-06-30 西安凯立新材料股份有限公司 Catalyst for preparing succinic anhydride by maleic anhydride hydrogenation and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101879448B (en) * 2010-06-24 2012-05-23 天津大学 Ordered structure catalyst for hydrogenation of oxalic ester for preparing ethylene glycol and preparation method thereof
CN102649073A (en) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 Preparation method of fluid catalyst for production of ethanediol by oxalate through hydrogenation
CN102218320B (en) * 2011-04-15 2013-04-17 上海浦景化工技术有限公司 Catalyst for hydrogenation, preparation method and application thereof
CN102764656B (en) * 2012-08-06 2015-05-20 久泰能源科技有限公司 High-efficiency hydrogenation catalyst and method for preparing same
CN103816915B (en) * 2014-02-25 2016-04-13 神华集团有限责任公司 Catalyst for preparing ethylene glycol monomethyl ether by hydrogenation of dimethyl oxalate and methanol and process thereof
CN104785261B (en) * 2015-03-19 2017-01-11 河南能源化工集团研究院有限公司 Oxalate hydrogenation catalyst synthesized by mixed silicon source method and preparation method thereof
WO2018102676A1 (en) * 2016-12-02 2018-06-07 Basf Corporation Copper catalysts for the preparation of ethylene glycol
CN107694572A (en) * 2017-09-19 2018-02-16 河南能源化工集团研究院有限公司 A kind of preparation method of hydrogenation of oxalate for preparing ethylene glycol catalyst
CN108479798B (en) * 2018-04-18 2020-11-10 北京天正久兴科技有限公司 Catalyst for preparing ethylene glycol by dimethyl oxalate hydrogenation and preparation method thereof

Also Published As

Publication number Publication date
RU2710892C1 (en) 2020-01-14
AU2018447034B2 (en) 2023-07-27
WO2020082195A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7019813B2 (en) Catalyst for producing α-phenylethanol by hydrogenation of acetophenone, its production method and application
AU2018447034B2 (en) Ultra high selective hydrogenation catalyst and preparation thereof
CN106946894A (en) Application of the Pd radicel duplex metal catalyst in HBIW catalytic hydrogenolytic cleavages
JP2014517765A (en) Composite support catalyst for synthesizing ethylene glycol by hydrogenation of alkyl oxalate and method for producing the same
CN101983765B (en) Catalyst for preparing methyl alcohol by catalytic hydrogenation on assistant modified carbon dioxide and preparation method thereof
CN102500382B (en) Catalyst used in synthesis of methanol and preparation method thereof
CN111686740B (en) Preparation method of methanol synthesis catalyst
WO2022126825A1 (en) Dimethylbenzyl alcohol hydrogenolysis catalyst and preparation method therefor
CN115888725B (en) C (C)2+Catalyst for conversion reaction of alkane and carbon dioxide to synthesis gas and preparation thereof
CN110935456B (en) Preparation method of catalyst for synthesizing methanol
CN111686741B (en) Preparation method of copper-zinc catalyst
CN112691668B (en) Catalyst for producing ethylamine and preparation method and application thereof
CN114618501A (en) Copper-based catalyst for preparing neopentyl glycol by hydrogenation method and preparation method thereof
CN106423202A (en) Preparation method of rhodium-ruthenium composite catalyst for preparing ethyl alcohol through acetic acid hydrogenation
CN110935478B (en) Preparation method of methanol synthesis catalyst
CN103521235A (en) Catalyst for preparing acrylic acid through acrolein oxidation and preparation method thereof
CN114870847B (en) Preparation method of copper-zinc-aluminum gas-phase hydrogenation catalyst, prepared catalyst and application
CN112452333B (en) Nano gold catalyst, preparation method and application thereof
CN117548113A (en) Preparation method of copper-zinc catalyst and copper-zinc catalyst prepared by preparation method
CN109569619B (en) Catalyst composition, method of manufacture and use
JP2024508879A (en) Ammonia decomposition catalyst, its manufacturing method, and hydrogen production method using the same
CN117019159A (en) Composite catalyst for preparing 1, 3-propanediol by hydrogenating methyl 3-hydroxypropionate
CN106423201A (en) Method for preparing TiO2-loaded rhodium-based catalyst of ethyl alcohol through acetic acid hydrogenation method
CN114471578A (en) Preparation method of copper-zinc-aluminum gas-phase aldehyde hydrogenation catalyst and catalyst
CN116273055A (en) Nickel-based bimetallic catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)