AU2018446335B2 - Catalyst for treatment of tail gas and preparation thereof - Google Patents

Catalyst for treatment of tail gas and preparation thereof Download PDF

Info

Publication number
AU2018446335B2
AU2018446335B2 AU2018446335A AU2018446335A AU2018446335B2 AU 2018446335 B2 AU2018446335 B2 AU 2018446335B2 AU 2018446335 A AU2018446335 A AU 2018446335A AU 2018446335 A AU2018446335 A AU 2018446335A AU 2018446335 B2 AU2018446335 B2 AU 2018446335B2
Authority
AU
Australia
Prior art keywords
carrier
catalyst
active component
tail gas
make
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2018446335A
Other versions
AU2018446335A1 (en
Inventor
Lei Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pujing Chemical Industry Co Ltd
Original Assignee
Pujing Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pujing Chemical Industry Co Ltd filed Critical Pujing Chemical Industry Co Ltd
Publication of AU2018446335A1 publication Critical patent/AU2018446335A1/en
Application granted granted Critical
Publication of AU2018446335B2 publication Critical patent/AU2018446335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

A carrier of a catalyst for treating a CO-coupled oxalate synthesis tail gas is provided. The carrier consists of Al

Description

CATALYST FOR TREATMENT OF TAIL GAS AND PREPARATION THEREOF FIELD OF THE INVENTION
The invention relates to a catalyst for treating a tail gas.
BACKGROUND OF THE INVENTION
Oxalate is an important organic chemical raw material that can be used in fine chemicals to produce various dyes, medicines, solvents, extraction agents and various intermediates. Among them, hydrogenation of oxalate can be used to prepare a very important chemical raw material ethylene glycol. The synthesis of oxalate is an important step in the coal to ethylene glycol process. In the process of CO coupling synthesis of oxalate, the system pressure can be high due to the generation of an exhaust gas or tail gas, and thus it is necessary to periodically discharge the gas to release the pressure in the system. In this process, nitrogen oxides and alkyl nitrite in the system are released into the atmosphere, causing environmental pollution.
Among current technologies for treatment of a tail gas generated during oxalate synthesis by CO coupling, new processes or equipment are disclosed in most patents to reduce nitrogen oxides in the tail gas. As reported in Chinese Patent No. CN100493674C, the tail gas is first absorbed by an alkyl alcohol and then enters a catalyst bed for treatment. The treatment method not only requires high-energy consumption, but also has a low nitrogen oxide removal rate. The treated tail gas does not meet the emission standard. Chinese Patent No. CN102218259B reports the use of two rotating packed beds to treat a tail gas. Although the purpose of reducing nitrogen oxides is achieved, the energy consumption is high in the rotating bed and alkyl alcohol recycling.
There remains a new for an effective and efficient catalyst for reducing nitrogen oxides and alkyl nitrite in a tail gas.
SUMMARY OF THE INVENTION
The present invention provides a catalyst and its preparation and uses.
A carrier of a catalyst for treating a CO-coupled oxalate synthesis tail gas is provided. The carrier consists of Al 2O 3 and having a bimodal pore size distribution. The bimodal pore size distribution may have a first peak at 2-10 nm and a second peak at 10-50 nm. The carrier may have a pore size of 0.05-2.0 cm 3/g. The carrier may have a specific surface area of 5-120 m 2/g. The carrier may have a pore volume of about 0.05-2 cm 3/g. The carrier may consist of α-Al 2O 3 and γ-Al 2O 3, and the α-Al 2O 3 may account for 50-99 wt%of the carrier.
The catalyst may comprise an active component, which may comprise a precious metal. The precious metal may be platinum or palladium.
A catalyst is provided. The catalyst comprises an active component and the carrier of the present invention. The active component is selected from the group consisting of platinum, palladium and a combination thereof. The active component may have a particle size of 2-35 nm. The active component may have a dispersion of 10-50%.
For each carrier of the present invention, a process for preparing the carrier is provided. The carrier preparation process comprises dissolving a carrier precursor and two surfactants of different molecular weights in water to make an aluminum solution; adjusting pH of the aluminum solution to 2-5; aging the acidic aluminum solution to make an aluminum sol; drying the aluminum sol to form a dry sample; grounding the dry sample to make a grounded dry sample; calcining the grounded dry sample to make Al 2O 3 powder; and making Al 2O 3 particles from the Al 2O 3 powder. As a result, a carrier consisting of Al 2O 3 particles is prepared. Each of the surfactant may be selected from the group consisting of PEG300, PEG3000, PEG10000 and a combination thereof.
For each catalyst of the present invention, a process for preparing the catalyst is provided. The catalyst preparation process comprises adding the carrier of the present invention into a solution comprising an active component precursor and a solvent; removing the solvent to make a sample; and calcining the sample. As a result, the catalyst is prepared.
A method for treating a CO-coupled oxalate synthesis tail gas is provided. The treatment comprises exposing the tail gas to an effective amount of the catalyst of the present invention that has been reduced. The treatment lowers the level of the nitrogen oxides in the tail gas from higher than 80 ppm to below 50 ppm.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a catalyst for treating a tail gas and its preparation and uses. The catalyst comprises an active component and a carrier. The inventors have surprisingly discovered that the structure of a catalyst can be modified by adjusting the pore size distribution, specific surface area and pore volume of its carrier Al 2O 3 such that the active component in the catalyst can be highly dispersed. Such a catalyst can effectively reduce nitrogen in a tail gas generated in oxalate synthesis by CO coupling. For example, the resulting treated tail gas contains nitrogen oxides at a level below 50 ppm and meets the emission standard.
The term “tail gas” used herein refers to a gas discharged into the atmosphere from a chemical process that generates the gas. A CO-coupled oxalate synthesis tail gas is a tail gas that is generated in oxalate synthesis by CO-coupling and is discharged into the atmosphere. The CO-coupled oxalate synthesis tail gas may comprise nitrogen oxides (NO x) and methyl nitrite (MN) .
The term “feed gas” used herein refers to a gas that is introduced into a chemical process. The feed gas may react with other substances in the chemical process. The feed gas used in oxalate synthesis by CO-coupling may comprise nitrogen monoxide (NO) , carbon monoxide (CO) , methanol (CH 3OH or CH 4O) , methyl nitrite (MN) and nitrogen (N 2) .
The term “catalyst” used herein refers to a substance in a chemical reaction that promotes the chemical reaction. A catalyst for treating a CO-coupled oxalate synthesis tail gas promotes chemical reactions to reduce nitrogen oxides (NO x) and/or methyl nitrite (MN) in the tail gas. The catalyst comprises an active component and a carrier.
The term “active component” used herein refers to a substance in the catalyst that is responsible for promoting chemical reactions to reduce nitrogen oxides (NO x) and/or methyl nitrite (MN) in a CO-coupled oxalate synthesis tail gas.
The term “carrier” used herein refers to a substance in the catalyst that provides support for an active component. Depending on its structure, the carrier may change the distribution of the active component on the carrier such that the catalytic activity of the active component may be modified.
The term “pore size” used herein refers to the diameter of a pore. Where the pore is not spherical, the pore size may be an average diameter of the pore. The term “bimodal pore size distribution” used herein refers to the biomodal shape of a pore size distribution (PSD) for pores having different pore sizes in a carrier or a catalyst, i.e., a PSD having two distinct peaks (or local maxima) .
The term “specific surface area” used herein refers to a property of a solid defined as the total surface area of a material per unit of mass, or solid or bulk volume. The term “pore volume” used herein refers to the total volume of small openings in a substance. A substance having a large pore volume may have a large specific surface area.
The term “particle size” used herein refers to the diameter of a particle, which may be solid, liquid or gas. Where the particle is not spherical, the particle size may be the average diameter of the particle. The term “nanoparticle size distribution” used herein refers to a number percentage of particles in a size range over the total number of particles. The  term “dispersion” used herein refers to a number percentage of atoms of an active component exposed on the surface of a catalyst.
The term “active component loading” refers to the mass ratio of an active component to a carrier in a catalyst.
A carrier of a catalyst for treating a CO-coupled oxalate synthesis tail gas is provided. The carrier is aluminum oxide (Al 2O 3) . The carrier may consist of one or more crystalline polymorphic phases. For example, the carrier may consist of α-Al 2O 3 and γ-Al 2O 3. α-Al2O 3 may account for about 50-95 wt%or 87-99 wt%of the carrier.
The carrier may have a bimodal pore size distribution. The bimodal pore size distribution may have a first peak at about 2-8 nm and a second peak at about 20-50 nm, or a first peak at about 15-35 nm and a second peak at about 65-100 nm. The carrier may have a pore size of about 1-200 nm, 2-120 nm, 2-35 nm or 55-120 nm
The carrier may have a specific surface area of about 5-35 m 2/g or 55-120 m 2/g. The carrier may have a pore volume of about 0.05-1.05 cm 3/g or 1.2-2 m 2/g.
The term “carrier precursor” used herein refers to a substance that provides the carrier in the catalyst. The carrier precursor may be a substance containing aluminum. For example, the carrier precursor may be aluminum isopropoxide, aluminum nitrate or aluminum chloride.
A catalyst comprising an active component and the carrier of this invention is provided. The active component may be about 0.01-2.00 wt%, 0.01-0.5 wt%or 0.5-2.0 wt%of the weight of the carrier. The catalyst may have a specific surface area of 1-200 m 2/g, 3-100 m 2/g, 3-20 m 2/g or 25-100 m 2/g. The catalyst may have a pore volume of about 0.01-2.00 m 2/g, 0.02-1.00 m 2/g, 0.02-0.50 cm 3/g or 0.5-1.0 m 2/g.
The active component may comprise platinum (Pt) , palladium (Pd) or a combination thereof, preferably Pt. The active component may be in the form of particles, for example, nanoparticles. The active component may have a particle size of about 1-30 nm, 2-25 nm, 2-15 nm or 15-25 nm. The active component may have a dispersion of about 5-60%, 10-50%, 10-30%or 30-50 %.
The term “active component precursor” used herein refers to a substance that provides the active component in the catalyst. For example, the active component precursor may be platinum nitrate, platinum sulfate, or platinum chloride. The active component precursor may be dissolved in a solvent to form an active component precursor solution.
For each carrier of the present invention, a process for preparing the carrier is provided. The process may comprise dissolving a carrier precursor and two surfactants of different molecular weights in water to make an aluminum solution; adjusting pH of the aluminum solution to be acidic; aging the acidic aluminum solution to make an aluminum sol; drying the aluminum sol to form a dry sample; grounding the dry sample; calcining the grounded dry sample to make Al 2O 3 powder; and making Al 2O 3 particles from the Al 2O 3 powder. As a result, a carrier consisting of Al 2O 3 particles is prepared.
In the dissolving step, each surfactant may be PEG300, PEG3000, PEG10000 or a combination thereof. The solution may be heated for hydration. The hydration temperature may be about 40-100 ℃.
In the pH adjustment step, an acid may be added to the aluminum solution to adjust its pH. The acid may be malic acid, tartaric acid, acetic acid or a combination thereof. The acidic aluminum solution may have a pH of 2-5.
In the aging step, the acidic aluminum solution may be aged for 4-24 h.
In the drying step, the aluminum sol may be dried by evaporation. The evaporation temperature may be 60-100 ℃.
In the calcining step, the grounded dry sample may be heated at a heating rate of 1 ℃/min to a calcining temperature and calcined in an air atmosphere to obtain the Al 2O 3 powder. The calcining temperature may be 1000-1300 ℃. The calcining time may be 5-8 h. Al 2O 3 powders may be shaped into Al 2O 3 particles.
For each catalyst of the present invention, a process for preparing the catalyst is provided. The catalyst preparation process comprises adding the carrier of the present invention, consisting of Al 2O 3 particles, into a solution comprising an active component precursor in a solvent; removing the solvent to obtain a sample; and calcining the sample. As a result, the catalyst is prepared. The solvent may be removed by rotary evaporation. The sample may be heated at a heating rate of 1 ℃/min to a calcining temperature. The calcining temperature may be 450 ℃. The calcining time may be 3-8 h.
A method for treating a CO-coupled oxalate synthesis tail gas having a high level of nitrogen oxides is provided. The treatment method comprises exposing the tail gas to an effective amount of the catalyst of the present invention that has been reduced. Before the treatment, the tail gas may have the nitrogen oxides at a level greater than about 50, 60, 70, 80, 90 or 100 ppm. After the treatment, the tail gas may have the nitrogen oxides at a level below about 80, 70, 60, 50, 40, 30, 20 or 10 ppm, preferably below about 50 ppm.
The catalyst may be reduced under reducing conditions before or during the treatment of the CO-coupled oxalate synthesis tail gas. For example, the catalyst may be exposed to a reducing gas. The reducing gas may comprise hydrogen (H 2) , nitrogen (N 2) or a combination thereof. The catalyst may be reduced at a temperature of 300-500 ℃, for example 400 ℃, for at least, for example, about 3, 6, 9, 12, 15, 18, 21 or 24 h.
Nitrogen oxides (NO x) may include various substances such as nitrous oxide (N 2O) , nitrogen monoxide (NO) , nitrogen dioxide (NO 2) , dinitrogen tetroxide (N 2O 3) , dinitrogen tetroxide (N 2O 4) and nitrous oxide (N 2O 5) and the like.
The term “about” as used herein when referring to a measurable value such as an amount, a percentage, and the like, is meant to encompass variations of ±20%or ±10%, more preferably ±5%, even more preferably ±1%, and still more preferably ±0.1%from the specified value, as such variations are appropriate.
Example 1. Carrier Al 2O 3-1
Carrier Al 2O 3-1 was prepared. 40.848 g aluminum isopropoxide was dissolved in 150 ml deionized water to make a solution in a 250 ml beaker. 10 g PEG 300 was added to the solution, stirred, and heated to 80 ℃. After the solution became transparent and uniform, 0.4 g glacial acetic acid was added and refluxed for 6h to obtain aluminum sol. The aluminum sol was dried in a vacuum oven at 60 ℃ to obtain a dry sample. The dry sample was grounded, heated to 1200 ℃ at a rate of 5 ℃/min, and calcined for 3 h to obtain Al 2O 3-1 powder. The Al 2O 3-1 powder was molded to obtain Al 2O 3-1 granules.
Example 2. Carrier Al 2O 3-2
Carrier Al 2O 3-2 was prepared according to the process as described in Example 1 except that PEG 3000 was used instead of PEG 300.
Example 3. Carrier Al 2O 3-3
Carrier Al 2O 3-3 was prepared according to the process as described in Example 1 except that PEG 10000 was used instead of PEG 300.
Example 4. Carrier Al 2O 3-4
Carrier Al 2O 3-4 was prepared according to the process as described in Example 3 except that malic acid was used instead of acetic acid.
Example 5. Carrier Al 2O 3-5
Carrier Al 2O 3-5 was prepared according to the process as described in Example 3 except that tartaric acid was used instead of acetic acid.
Example 6. Carrier Al 2O 3-6
Carrier Al 2O 3-6 was prepared according to the process as described in Example 5 except that 5 g PEG 3000 and 5 g PEG 10000 was used instead of 10 g PEG 10000.
Example 7. Carrier Al 2O 3-7
Carrier Al 2O 3-7 was prepared according to the process as described in Example 6 except that 0.2 g tartaric acid was used instead of 0.4 g tartaric acid.
Example 8. Carrier Al 2O 3-8
Carrier Al 2O 3-8 was prepared according to the process as described in Example 6 except that 0.3 g tartaric acid was used instead of 0.4 g tartaric acid.
Example 9. Carrier Al 2O 3-9
Carrier Al 2O 3-9 was prepared according to the process as described in Example 6 except that 0.5 g tartaric acid was used instead of 0.4 g tartaric acid.
Example 10. Catalysts Pt-Al 2O 3
Catalyst Pt-Al 2O 3-1 was prepared with 0.5 wt%Pt loading. Al 2O 3-1 particles were added to 16 g of a 0.511 wt%platinum nitrate solution in a 10 ml beaker, and then dried under rotary evaporation at 80 ℃ to obtain a dry sample. The dried sample was grounded and heated to 450 ℃ for 5 h at a heating rate of 1 ℃/min in an air atmosphere to obtain a catalyst Pt-Al 2O 3-1.
Catalysts Pt-Al 2O 3-2, Pt-Al 2O 3-3, Pt-Al 2O 3-4, Pt-Al 2O 3-5, Pt-Al 2O 3-6, Pt-Al 2O 3-7, Pt-Al 2O 3-8 and Pt-Al 2O 3-9 were prepared according to the process used to prepare Pt-Al 2O 3-1 except that carriers Al 2O 3-2, Al 2O 3-3, Al 2O 3-4, Al 2O 3-5, Al 2O 3-6, Al 2O 3-7, Al 2O 3-8 and Al 2O 3-9 were used instead of Al 2O 3-1, respectively.
Example 11. Carrier structure
The structure of the carriers of Examples 1-9 was analyzed. Table 1 shows the specific surface area, average pore size, content of α-Al 2O 3 and pore distribution for these carriers. Carriers Al 2O 3-6, Al 2O 3-7, Al 2O 3-8 and Al 2O 3-9 exhibited a bimodal pore size distribution.
Table 1. Carrier structure
Example 12. Catalytic effects
The catalysts of Example 10 were evaluated according to the following method:
(1) The temperature was raised to 400 ℃ at a heating rate of 1 ℃/min under an atmosphere of 20%H 2 and 80%N 2, and the temperature was maintained for 12 h.
(2) A feed gas was introduced. The feed gas contained 4 %methyl nitrite (MN) , 10 %NO, 10 %CO, 3 %CH 4O, and the remaining was N 2, based on the total volume of the feed gas.
(3) The temperature was maintained at 230 ℃, the pressure was 0.1 MPa, and the space velocity was 3000 h -1.
Table 2 shows the specific surface area, average pore size, Pt dispersion and Pt average pore size of the catalysts and the contents of nitrogen oxides (NO x) and methyl nitrite (MN) in the tail gas treated with the catalysts. For all the catalysts tested, the treated tail gas contained no MN and contained NO x below 50 ppm. The tail gas treated with catalysts Pt-Al 2O 3-6, Pt-Al 2O 3-7, Pt-Al 2O 3-8 or Pt-Al 2O 3-9, whose respective carriers had a bimodal particle size distribution, showed a NO x level no more than 20 ppm and no MN.
Table 2. Catalytic effects
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims without departing from the invention.

Claims (15)

  1. A carrier of a catalyst for treating a CO-coupled oxalate synthesis tail gas, consisting of Al 2O 3 and having a bimodal pore size distribution.
  2. The carrier of claim 1, wherein the bimodal pore size distribution has a first peak at 2-10 nm and a second peak at 10-50 nm.
  3. The carrier of claim 1, wherein the carrier has a pore size of 0.05-2.0 cm 3/g.
  4. The carrier of claim 1, wherein the carrier has a specific surface area of 5-120 m 2/g.
  5. The carrier of claim 1, wherein the carrier has a pore volume of about 0.05-2 cm 3/g.
  6. The carrier of claim 1, wherein the carrier consists of α-Al 2O 3 and γ-Al 2O 3, and wherein the α-Al 2O 3 accounts for 50-99 wt%of the carrier.
  7. The carrier of claim1, wherein the catalyst comprises an active component, and wherein the active component comprises a precious metal.
  8. The carrier of claim 6, wherein the precious metal is platinum or palladium.
  9. A catalyst comprising an active component and the carrier of claim 1, wherein the active component is selected from the group consisting of platinum, palladium and a combination thereof.
  10. The catalyst of claim 9, wherein the active component has a particle size of 2-35 nm.
  11. The catalyst of claim 9, wherein the active component has a dispersion of 10-50%.
  12. A process for preparing the carrier of claim 1, comprising:
    (a) dissolving a carrier precursor and two surfactants of different molecular weights in water to make an aluminum solution;
    (b) adjusting pH of the aluminum solution to 2-5;
    (c) aging the acidic aluminum solution to make an aluminum sol;
    (d) drying the aluminum sol to form a dry sample;
    (e) grounding the dry sample to make a grounded dry sample;
    (f) calcining the grounded dry sample to make Al 2O 3 powder; and
    (g) making Al 2O 3 particles from the Al 2O 3 powder, whereby a carrier consisting of Al 2O 3 particles is prepared.
  13. The process of claim 12, wherein each of the surfactants is selected from the group consisting of PEG300, PEG3000, PEG10000 and a combination thereof.
  14. A process for preparing the catalyst of claim 9, comprising:
    (a) adding the carrier of claim 1 into a solution comprising an active component precursor and a solvent;
    (b) removing the solvent to make a sample; and
    (c) calcining the sample, whereby the catalyst is prepared.
  15. A method for treating a CO-coupled oxalate synthesis tail gas having nitrogen oxides at a level higher than 80 ppm, comprising exposing the tail gas to an effective amount of the catalyst of claim 9, wherein the catalyst has been reduced, whereby the level of the nitrogen oxides in the tail gas is lowed to below 50 ppm.
AU2018446335A 2018-10-22 2018-10-22 Catalyst for treatment of tail gas and preparation thereof Active AU2018446335B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/111135 WO2020082198A1 (en) 2018-10-22 2018-10-22 Catalyst for treatment of tail gas and preparation thereof

Publications (2)

Publication Number Publication Date
AU2018446335A1 AU2018446335A1 (en) 2021-04-01
AU2018446335B2 true AU2018446335B2 (en) 2022-12-08

Family

ID=68318228

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2018446335A Active AU2018446335B2 (en) 2018-10-22 2018-10-22 Catalyst for treatment of tail gas and preparation thereof

Country Status (3)

Country Link
AU (1) AU2018446335B2 (en)
RU (1) RU2703712C1 (en)
WO (1) WO2020082198A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249208A (en) * 1998-09-28 2000-04-05 中国石油化工集团公司 Macroporous alumina carrier and preparing process thereof
WO2002043862A2 (en) * 2000-11-28 2002-06-06 Shell Internationale Research Maatschappij B.V. Alumina having novel pore structure, method of making and catalysts made therefrom
CN101433842A (en) * 2008-09-27 2009-05-20 中国石油天然气股份有限公司 Hydrogenation catalyst and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1590118A1 (en) * 1987-03-23 1990-09-07 Рубежанский филиал Ворошиловградского машиностроительного института Method of cleaning waste gases from nitrogen oxides
RU2102143C1 (en) * 1996-08-02 1998-01-20 Акционерное общество открытого типа "Катализатор" Method of preparing catalyst for cleaning gases form nitrogen oxides
CN1209195C (en) * 2002-12-20 2005-07-06 中国科学院生态环境研究中心 Oxygen-enriched tail gas nitrogen oxide purifying catalyst
CN101704537A (en) * 2009-11-09 2010-05-12 中国海洋石油总公司 Method for preparing aluminum oxide with bimodal pore distribution
GB201000045D0 (en) * 2010-01-04 2010-02-17 Johnson Matthey Plc Catalyst and method of catalyst manufacture
US20120264952A1 (en) * 2011-04-14 2012-10-18 Basf Se Catalyst for preparing ethylene oxide
CN106457227B (en) * 2016-09-20 2020-07-10 高化学技术株式会社 Catalyst carrier and catalyst comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249208A (en) * 1998-09-28 2000-04-05 中国石油化工集团公司 Macroporous alumina carrier and preparing process thereof
WO2002043862A2 (en) * 2000-11-28 2002-06-06 Shell Internationale Research Maatschappij B.V. Alumina having novel pore structure, method of making and catalysts made therefrom
CN101433842A (en) * 2008-09-27 2009-05-20 中国石油天然气股份有限公司 Hydrogenation catalyst and preparation method thereof

Also Published As

Publication number Publication date
WO2020082198A1 (en) 2020-04-30
AU2018446335A1 (en) 2021-04-01
RU2703712C1 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
EP2500093B1 (en) Use of a supported composite particle material, production process of said material and process for producing compounds using supported composite particle material as catalyst for chemical synthesis
CN108069502B (en) Organic wastewater treatment method
CN1178743C (en) Carrier catalyst for selective hydrogenation of alkines and dienes
EP3257815A1 (en) Micron-scale cerium oxide particle having multi-core single-shell structure and preparation method therefor
CN112246250B (en) Integral catalytic combustion catalyst and preparation method and application thereof
CN108906043A (en) A kind of alloy catalyst of degradation of formaldehyde and its preparation method and application
CN102872920A (en) Preparation method of catalyst for catalytic combustion of organic exhaust gas
CN107876047B (en) Preparation method of Pd/C catalyst for alpha, beta-unsaturated aldehyde/ketone hydrogenation
CN108671934B (en) Preparation method of hydrofining catalyst with high mechanical strength
US7390770B2 (en) Catalyst for purifying an exhaust gas and a preparation process of the catalyst
US20190060832A1 (en) Low-Temperature Oxidation Catalyst With Particularly Marked Hydrophobic Properties For The Oxidation Of Organic Pollutants
CN107321355B (en) Preparation method and application of tetracycline polluted water body remediation material
CN109772393A (en) A kind of preparation method and applications of sulfur doping hydrogenation catalyst
AU2018446335B2 (en) Catalyst for treatment of tail gas and preparation thereof
MX2011003008A (en) Catalyst and process.
CN107376981B (en) Catalyst for liquid phase reduction of bromate radical and preparation method and application thereof
White et al. Control of porosity and surface area in alumina: II. Alcohol and glycol additives
CN109529613A (en) A kind of method and purification system of the formaldehyde of mineralising at room temperature
US9248435B2 (en) Process for preparing a cobalt-containing fischer tropsch catalyst
CN108069495A (en) A kind of catalytic wet oxidation processing method of organic wastewater
CN104419452B (en) A kind of hydrorefined method of siliceous coking distillate
CN112657522B (en) Hydrogenation catalyst, preparation method and application thereof
CN114405504A (en) Low-load noble metal catalyst and preparation method and application thereof
CN112547060A (en) Wet oxidation catalyst for organic wastewater treatment and preparation method thereof
CN111318283A (en) Wastewater treatment catalyst and preparation method thereof

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)