AU2018346412B2 - ECG-based cardiac ejection-fraction screening - Google Patents
ECG-based cardiac ejection-fraction screening Download PDFInfo
- Publication number
- AU2018346412B2 AU2018346412B2 AU2018346412A AU2018346412A AU2018346412B2 AU 2018346412 B2 AU2018346412 B2 AU 2018346412B2 AU 2018346412 A AU2018346412 A AU 2018346412A AU 2018346412 A AU2018346412 A AU 2018346412A AU 2018346412 B2 AU2018346412 B2 AU 2018346412B2
- Authority
- AU
- Australia
- Prior art keywords
- ecg
- ejection
- fraction
- mammal
- computer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/02028—Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Physiology (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Fuzzy Systems (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762569268P | 2017-10-06 | 2017-10-06 | |
| US62/569,268 | 2017-10-06 | ||
| US201762599163P | 2017-12-15 | 2017-12-15 | |
| US62/599,163 | 2017-12-15 | ||
| PCT/US2018/054371 WO2019070978A1 (en) | 2017-10-06 | 2018-10-04 | CARDIAC EJECTION FRACTION SCREEN BASED ON ECG |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2018346412A1 AU2018346412A1 (en) | 2020-04-30 |
| AU2018346412B2 true AU2018346412B2 (en) | 2023-11-23 |
Family
ID=65995234
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2018346412A Active AU2018346412B2 (en) | 2017-10-06 | 2018-10-04 | ECG-based cardiac ejection-fraction screening |
Country Status (7)
| Country | Link |
|---|---|
| US (4) | US12121326B2 (enExample) |
| EP (2) | EP4623811A3 (enExample) |
| JP (3) | JP7262452B2 (enExample) |
| CN (1) | CN111432720A (enExample) |
| AU (1) | AU2018346412B2 (enExample) |
| CA (1) | CA3078519A1 (enExample) |
| WO (1) | WO2019070978A1 (enExample) |
Families Citing this family (77)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2797980C (en) | 2010-05-12 | 2015-08-18 | Irhythm Technologies, Inc. | Device features and design elements for long-term adhesion |
| CA2898626C (en) | 2013-01-24 | 2020-05-12 | Irhythm Technologies, Inc. | Physiological monitoring device |
| CN113057649B (zh) | 2014-10-31 | 2023-04-11 | 意锐瑟科技公司 | 无线生理监测装置和系统 |
| US11672464B2 (en) | 2015-10-27 | 2023-06-13 | Cardiologs Technologies Sas | Electrocardiogram processing system for delineation and classification |
| CN111433860B (zh) | 2017-08-25 | 2024-03-12 | 皇家飞利浦有限公司 | 用于分析心电图的用户界面 |
| US12121326B2 (en) | 2017-10-06 | 2024-10-22 | Mayo Foundation For Medical Education And Research | ECG-based cardiac ejection-fraction screening |
| US11484273B2 (en) * | 2018-03-06 | 2022-11-01 | International Business Machines Corporation | Determining functional age indices based upon sensor data |
| US11931207B2 (en) * | 2018-12-11 | 2024-03-19 | Eko.Ai Pte. Ltd. | Artificial intelligence (AI) recognition of echocardiogram images to enhance a mobile ultrasound device |
| US11301996B2 (en) * | 2018-12-11 | 2022-04-12 | Eko.Ai Pte. Ltd. | Training neural networks of an automatic clinical workflow that recognizes and analyzes 2D and doppler modality echocardiogram images |
| US12400762B2 (en) * | 2018-12-11 | 2025-08-26 | Eko.Ai Pte. Ltd. | Automatic clinical workflow that recognizes and analyzes 2D and doppler modality echocardiogram images for automated cardiac measurements and diagnosis of cardiac amyloidosis and hypertrophic cardiomyopathy |
| US12322100B2 (en) * | 2018-12-11 | 2025-06-03 | Eko.Ai Pte. Ltd. | Automatic clinical workflow that recognizes and analyzes 2D and doppler modality echocardiogram images for automated cardiac measurements and grading of aortic stenosis severity |
| US12001939B2 (en) * | 2018-12-11 | 2024-06-04 | Eko.Ai Pte. Ltd. | Artificial intelligence (AI)-based guidance for an ultrasound device to improve capture of echo image views |
| US11446009B2 (en) * | 2018-12-11 | 2022-09-20 | Eko.Ai Pte. Ltd. | Clinical workflow to diagnose heart disease based on cardiac biomarker measurements and AI recognition of 2D and doppler modality echocardiogram images |
| US12016694B2 (en) | 2019-02-04 | 2024-06-25 | Cardiologs Technologies Sas | Electrocardiogram processing system for delineation and classification |
| US20200293590A1 (en) * | 2019-03-17 | 2020-09-17 | Kirill Rebrov | Computer-implemented Method and System for Age Classification of First Names |
| US11633159B2 (en) | 2019-05-06 | 2023-04-25 | Medtronic, Inc. | Personalization of artificial intelligence models for analysis of cardiac rhythms |
| US11445918B2 (en) | 2019-08-30 | 2022-09-20 | Heart Test Laboratories, Inc. | Electrocardiogram-based assessment of diastolic function |
| US11657921B2 (en) | 2019-09-18 | 2023-05-23 | Tempus Labs, Inc. | Artificial intelligence based cardiac event predictor systems and methods |
| AU2020351232B2 (en) | 2019-09-18 | 2025-08-14 | Geisinger Clinic | ECG based future atrial fibrillation predictor systems and methods |
| CN110693486B (zh) * | 2019-09-27 | 2022-06-14 | 武汉中旗生物医疗电子有限公司 | 一种心电图的异常标注方法及装置 |
| US11617528B2 (en) * | 2019-10-08 | 2023-04-04 | GE Precision Healthcare LLC | Systems and methods for reduced lead electrocardiogram diagnosis using deep neural networks and rule-based systems |
| JP7708769B2 (ja) * | 2020-01-10 | 2025-07-15 | プレノシス,インコーポレイテッド | ストリーミングデータ環境のための時間依存トリガ |
| JP7455295B2 (ja) * | 2020-01-15 | 2024-03-26 | 国立大学法人 東京医科歯科大学 | 生体情報処理装置及びその制御方法 |
| AU2021218704B2 (en) | 2020-02-12 | 2023-11-02 | Irhythm Technologies, Inc. | Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient |
| DE102020203848A1 (de) * | 2020-03-25 | 2021-09-30 | Siemens Healthcare Gmbh | Verfahren und Vorrichtung zur Ansteuerung eines medizinischen Geräts |
| US20210401347A1 (en) * | 2020-06-24 | 2021-12-30 | Mayo Foundation For Medical Education And Research | Machine-learning models for ecg-based troponin level detection |
| CN111879772B (zh) * | 2020-07-28 | 2021-11-05 | 食安慧(深圳)科技股份有限公司 | 一种基于大数据的食品安全智慧管理方法与系统 |
| DE102020004698A1 (de) | 2020-08-03 | 2022-02-03 | Hochschule Offenburg | Steuerung für eine extrakorporale Kreislaufunterstützung |
| WO2022032118A1 (en) | 2020-08-06 | 2022-02-10 | Irhythm Technologies, Inc. | Electrical components for physiological monitoring device |
| WO2022032117A1 (en) | 2020-08-06 | 2022-02-10 | Irhythm Technologies, Inc. | Adhesive physiological monitoring device |
| JP7152724B2 (ja) | 2020-08-21 | 2022-10-13 | 雅文 中山 | 機械学習装置、プログラム、及び検査結果推定装置 |
| CN112270951B (zh) * | 2020-11-10 | 2022-11-01 | 四川大学 | 基于多任务胶囊自编码器神经网络的全新分子生成方法 |
| US12290407B2 (en) | 2021-01-25 | 2025-05-06 | Lazaro Eduardo Hernandez | System and method of monitoring a life-threating medical situation based on an ejection-fraction measurement |
| US12178656B2 (en) | 2021-01-25 | 2024-12-31 | Lazaro Eduardo Hernandez | System and method of triggering non-invasive continuous echocardiographic monitoring |
| US11957505B2 (en) | 2021-01-25 | 2024-04-16 | Dl-Hrt Llc | System and method of non-invasive continuous echocardiographic monitoring |
| US11457889B2 (en) * | 2021-01-25 | 2022-10-04 | Lazaro Eduardo Hernandez | System and method of non-invasive continuous echocardiographic monitoring |
| CN113077874B (zh) * | 2021-03-19 | 2023-11-28 | 浙江大学 | 基于红外热像的脊椎疾病康复智能辅助诊疗系统及方法 |
| USD1076106S1 (en) | 2021-03-23 | 2025-05-20 | Lazaro Eduardo Hernandez | Ultrasound transducer probe holder |
| CN113080996B (zh) * | 2021-04-08 | 2022-11-18 | 大同千烯科技有限公司 | 一种基于目标检测的心电图分析方法及装置 |
| KR102483567B1 (ko) * | 2021-04-21 | 2023-01-04 | 주식회사 메디코아 | 인공지능 기반의 3분 미만 측정구간의 심박변이도 데이터로부터 5분 또는 3분의 심박변이도 지표를 예측하는 방법 및 그 시스템 |
| US11869668B2 (en) | 2021-05-28 | 2024-01-09 | Tempus Labs, Inc. | Artificial intelligence based cardiac event predictor systems and methods |
| USD1063079S1 (en) | 2021-08-06 | 2025-02-18 | Irhythm Technologies, Inc. | Physiological monitoring device |
| KR102766827B1 (ko) * | 2021-08-17 | 2025-02-13 | 주식회사 메디컬에이아이 | 비동기 심전도를 이용한 건강상태 예측 시스템 |
| KR102607446B1 (ko) * | 2021-08-27 | 2023-11-30 | 주식회사 팬토믹스 | 심실 구축률 측정을 통한 심부전 진단 방법 |
| EP4407633A4 (en) * | 2021-09-25 | 2025-07-30 | Medical Ai Co Ltd | METHOD, PROGRAM AND APPARATUS FOR TRAINING AND DEDUCTING A DEEP LEARNING MODEL BASED ON MEDICAL DATA |
| WO2023057200A1 (en) * | 2021-10-04 | 2023-04-13 | Biotronik Se & Co. Kg | Computer implemented method for determining a medical parameter, training method and system |
| US20240374220A1 (en) * | 2021-10-11 | 2024-11-14 | Medical Ai Co., Ltd. | Method, program, and device for diagnosing left ventricular systolic dysfunction on basis of electrocardiogram |
| EP4440435A1 (en) * | 2021-11-29 | 2024-10-09 | Icahn School of Medicine at Mount Sinai | Systems and methods for electrocardiogram deep learning interpretability |
| US12102485B2 (en) * | 2022-04-05 | 2024-10-01 | Icahn School Of Medicine At Mount Sinai | Surfacing insights into left and right ventricular dysfunction through deep learning |
| US20230346288A1 (en) * | 2022-04-28 | 2023-11-02 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and Methods for Evaluating Cardiovascular Disease Risks |
| EP4533482A1 (en) * | 2022-05-27 | 2025-04-09 | Yale University | Articles and methods for format independent detection of hidden cardiovascular disease from printed electrocardiographic images using deep learning |
| US20230380698A1 (en) * | 2022-05-31 | 2023-11-30 | Singular Medical (USA) Inc. | Multi-sensor device for cardiopulmonary management |
| TWI865880B (zh) * | 2022-06-20 | 2024-12-11 | 陳崗熒 | 基於心電圖訊號的指標數值之轉化方法及系統 |
| CN114831643B (zh) * | 2022-07-04 | 2022-10-04 | 南京大学 | 一种心电信号监测装置和可穿戴设备 |
| TWI867541B (zh) * | 2022-07-11 | 2024-12-21 | 長庚醫療財團法人林口長庚紀念醫院 | 基於心電圖的死亡風險預測系統及方法 |
| KR20240016648A (ko) * | 2022-07-29 | 2024-02-06 | 주식회사 메디컬에이아이 | 심전도에 기반한 운동 추천 방법 및 이를 실행하기 위하여 기록매체에 기록된 컴퓨터 프로그램 |
| KR20240025317A (ko) * | 2022-08-18 | 2024-02-27 | 주식회사 뷰노 | 심장 나이를 예측하는 방법 |
| WO2024049563A1 (en) * | 2022-08-29 | 2024-03-07 | Medtronic, Inc. | Identifying ejection fraction using a single lead cardiac electrogram sensed by a medical device |
| WO2024071845A1 (ko) * | 2022-09-28 | 2024-04-04 | 주식회사 메디컬에이아이 | 의료용 인공지능 모델의 구축 방법, 프로그램 및 장치 |
| EP4567679A4 (en) * | 2022-09-28 | 2025-11-19 | Medical Ai Co Ltd | METHOD, PROGRAM AND DEVICE FOR CONSTRUCTING A MEDICAL ARTIFICIAL INTELLIGENCE MODEL |
| WO2024118718A1 (en) * | 2022-11-29 | 2024-06-06 | Yale University | Articles and methods for detection of hidden cardiovascular disease from portable electrocardiographic signal data using deep learning |
| WO2024182052A1 (en) * | 2023-03-01 | 2024-09-06 | Medtronic, Inc. | Identifying ejection fraction using a single lead cardiac electrogram sensed by a medical device |
| TWI896995B (zh) * | 2023-07-07 | 2025-09-11 | 國防醫學大學 | 應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統 |
| US20250046461A1 (en) * | 2023-08-03 | 2025-02-06 | Anumana, Inc. | Apparatus and method for determining a patient survival profile using artificial intelligence-enabled electrocardiogram (ecg) |
| CN116721777B (zh) * | 2023-08-10 | 2023-10-27 | 中国医学科学院药用植物研究所 | 基于神经网络的药物药效评价方法、装置、设备及介质 |
| KR102733909B1 (ko) * | 2023-08-22 | 2024-11-26 | 시너지에이아이 주식회사 | 심장 질환 예측 방법 및 상기 방법을 수행하는 컴퓨팅 장치 |
| CN117058149B (zh) * | 2023-10-12 | 2024-01-02 | 中南大学 | 一种用于训练识别骨关节炎的医学影像测量模型的方法 |
| WO2025095008A1 (ja) * | 2023-10-30 | 2025-05-08 | Jsr株式会社 | 情報処理システム、プログラム、及び情報処理装置 |
| WO2025106046A1 (en) * | 2023-11-13 | 2025-05-22 | Sakarya Universitesi Rektorlugu | Machine learning-based device for detection of heart failure cases with reduced and preserved ejection fraction |
| US20250160799A1 (en) * | 2023-11-21 | 2025-05-22 | Worcester Polytechnic Institute | Cardiac function assessment and classification |
| EP4589602A1 (en) * | 2024-01-16 | 2025-07-23 | Koninklijke Philips N.V. | Predicting heart disease |
| WO2025179176A1 (en) * | 2024-02-21 | 2025-08-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for analysing electrocardiograms using deep learning |
| US20250278408A1 (en) * | 2024-02-29 | 2025-09-04 | Anumana, Inc. | Apparatus and method for time series data format conversion and analysis |
| US12333413B1 (en) | 2024-03-01 | 2025-06-17 | Mayo Foundation For Medical Education And Research | Apparatus and method for training an artificial intelligence-supported diagnostic assessment tool |
| EP4648063A1 (en) * | 2024-05-09 | 2025-11-12 | Industry Academic Cooperation Foundaton, Yonsei University | Method for providing information on subject and device for providing information on subject using the same |
| US20250352149A1 (en) * | 2024-05-16 | 2025-11-20 | Anumana, Inc. | Apparatus and method for left ventricular ejection fraction prediction |
| US12318205B1 (en) | 2024-05-16 | 2025-06-03 | Anumana, Inc. | Apparatus and method for generating cardiac catheterization data |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110021933A1 (en) * | 2008-03-24 | 2011-01-27 | Deepbreeze Ltd. | Methods and Systems for Use in Determination of a Patient's Heart Condition |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4245646A (en) | 1978-06-19 | 1981-01-20 | Picker Corporation | Nuclear cardiology apparatus and method |
| GB0113212D0 (en) * | 2001-05-31 | 2001-07-25 | Oxford Biosignals Ltd | Patient condition display |
| WO2007109059A2 (en) * | 2006-03-15 | 2007-09-27 | Board Of Trustees Of Michigan State University | Method and apparatus for determining ejection fraction |
| US7904153B2 (en) * | 2007-04-27 | 2011-03-08 | Medtronic, Inc. | Method and apparatus for subcutaneous ECG vector acceptability and selection |
| US8457706B2 (en) * | 2008-05-16 | 2013-06-04 | Covidien Lp | Estimation of a physiological parameter using a neural network |
| WO2011115576A2 (en) * | 2010-03-15 | 2011-09-22 | Singapore Health Services Pte Ltd | Method of predicting the survivability of a patient |
| US8634911B2 (en) | 2010-10-29 | 2014-01-21 | Medtronic, Inc. | Pacing interval determination for ventricular dyssynchrony |
| US20130165776A1 (en) * | 2011-12-22 | 2013-06-27 | Andreas Blomqvist | Contraction status assessment |
| US9968265B2 (en) * | 2012-08-17 | 2018-05-15 | Analytics For Life | Method and system for characterizing cardiovascular systems from single channel data |
| KR20140108417A (ko) * | 2013-02-27 | 2014-09-11 | 김민준 | 영상정보를 이용한 건강 진단 시스템 |
| JP6190033B2 (ja) * | 2013-03-14 | 2017-08-30 | カーディアック ペースメイカーズ, インコーポレイテッド | 再入院を回避するための心不全管理 |
| US9737229B1 (en) * | 2013-06-04 | 2017-08-22 | Analytics For Life | Noninvasive electrocardiographic method for estimating mammalian cardiac chamber size and mechanical function |
| US9700219B2 (en) * | 2013-10-17 | 2017-07-11 | Siemens Healthcare Gmbh | Method and system for machine learning based assessment of fractional flow reserve |
| US10039468B2 (en) * | 2013-11-12 | 2018-08-07 | Analytics For Life Inc. | Noninvasive electrocardiographic method for estimating mammalian cardiac chamber size and mechanical function |
| CN106455995A (zh) * | 2014-05-15 | 2017-02-22 | 心脏起搏器股份公司 | 心力衰竭恶化的自动鉴别诊断 |
| US9724008B2 (en) * | 2014-07-07 | 2017-08-08 | Zoll Medical Corporation | System and method for distinguishing a cardiac event from noise in an electrocardiogram (ECG) signal |
| EP3399907A4 (en) * | 2016-01-04 | 2019-08-28 | Aventusoft, LLC | SYSTEM AND METHOD FOR MEASURING HEMODYNAMIC PARAMETERS FROM CARDIAC VALVE SIGNALS |
| CN105748063A (zh) * | 2016-04-25 | 2016-07-13 | 山东大学齐鲁医院 | 基于多导联和卷积神经网络的心律失常智能诊断方法 |
| US20170347899A1 (en) * | 2016-06-03 | 2017-12-07 | FOURTH FRONTIER TECHNOLOGIES, Pvt. Ltd. | Method and system for continuous monitoring of cardiovascular health |
| US12121326B2 (en) | 2017-10-06 | 2024-10-22 | Mayo Foundation For Medical Education And Research | ECG-based cardiac ejection-fraction screening |
-
2018
- 2018-10-04 US US16/754,007 patent/US12121326B2/en active Active
- 2018-10-04 EP EP25196540.6A patent/EP4623811A3/en active Pending
- 2018-10-04 EP EP18864365.4A patent/EP3691524B1/en active Active
- 2018-10-04 WO PCT/US2018/054371 patent/WO2019070978A1/en not_active Ceased
- 2018-10-04 JP JP2020519717A patent/JP7262452B2/ja active Active
- 2018-10-04 CN CN201880078887.2A patent/CN111432720A/zh active Pending
- 2018-10-04 CA CA3078519A patent/CA3078519A1/en active Pending
- 2018-10-04 AU AU2018346412A patent/AU2018346412B2/en active Active
-
2022
- 2022-11-07 US US18/053,200 patent/US12121327B2/en active Active
-
2023
- 2023-04-11 JP JP2023064119A patent/JP7636461B2/ja active Active
- 2023-10-31 US US18/385,523 patent/US12201404B2/en active Active
-
2024
- 2024-09-14 US US18/885,624 patent/US20250000371A1/en active Pending
-
2025
- 2025-02-13 JP JP2025021238A patent/JP2025087714A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110021933A1 (en) * | 2008-03-24 | 2011-01-27 | Deepbreeze Ltd. | Methods and Systems for Use in Determination of a Patient's Heart Condition |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7636461B2 (ja) | 2025-02-26 |
| EP3691524B1 (en) | 2025-09-24 |
| AU2018346412A1 (en) | 2020-04-30 |
| EP4623811A2 (en) | 2025-10-01 |
| JP2025087714A (ja) | 2025-06-10 |
| WO2019070978A1 (en) | 2019-04-11 |
| US12201404B2 (en) | 2025-01-21 |
| EP4623811A3 (en) | 2025-10-08 |
| EP3691524A1 (en) | 2020-08-12 |
| US12121327B2 (en) | 2024-10-22 |
| US20240081653A1 (en) | 2024-03-14 |
| CA3078519A1 (en) | 2019-04-11 |
| CN111432720A (zh) | 2020-07-17 |
| JP2020536629A (ja) | 2020-12-17 |
| JP2023089112A (ja) | 2023-06-27 |
| US12121326B2 (en) | 2024-10-22 |
| US20200397313A1 (en) | 2020-12-24 |
| JP7262452B2 (ja) | 2023-04-21 |
| US20250000371A1 (en) | 2025-01-02 |
| EP3691524A4 (en) | 2021-08-11 |
| EP3691524C0 (en) | 2025-09-24 |
| US20230089991A1 (en) | 2023-03-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12201404B2 (en) | ECG-based cardiac ejection-fraction screening | |
| Shu et al. | Clinical application of machine learning-based artificial intelligence in the diagnosis, prediction, and classification of cardiovascular diseases | |
| WO2022034045A1 (en) | Systems and methods for generating health risk assessments | |
| Hayashi et al. | Optimal analysis of left atrial strain by speckle tracking echocardiography: P‐wave versus R‐wave trigger | |
| US12494288B2 (en) | Noninvasive heart failure detection | |
| US20210361217A1 (en) | Ecg-based age and sex estimation | |
| US12357278B2 (en) | Echocardiography deep learning and cardiovascular outcomes | |
| Jiang et al. | Detection of left atrial enlargement using a convolutional neural network-enabled electrocardiogram | |
| Ravera et al. | Applications, challenges and future directions of artificial intelligence in cardio‐oncology | |
| Ramesh et al. | Performance analysis of machine learning algorithms to predict cardiovascular disease | |
| Dai et al. | Deep learning fusion framework for automated coronary artery disease detection using raw heart sound signals | |
| Hasumi et al. | Heart failure monitoring with a single‑lead electrocardiogram at home | |
| US20230404488A1 (en) | Noninvasive cardiovascular event detection | |
| Rao et al. | Machine Learning Based Cardiovascular Disease Prediction | |
| Sahoo et al. | Artificial Intelligence Assisted Cardiac Signal Analysis for Heart Disease Prediction | |
| Yadav et al. | Machine Learning Approaches for Predicting Heart Failure from Echocardiography Data | |
| Danjittisiri et al. | Application for Predicting Left Ventricular Diastolic Dysfunction | |
| Kulkarni et al. | Artificial Intelligence (AI) in Evaluation of Heart | |
| Tse | Electrocardiographic P-Wave Indices for Risk Stratification in Cardiovascular Diseases | |
| Bandyopadhyay et al. | Long-term, ambulatory 12-lead ECG from a single non-standard lead using perceptual reconstruction | |
| Oza et al. | Advancing Early Detection of Congestive Heart Failure Using BiLSTM Networks: A Robust Clinical Framework | |
| Stewart et al. | AI in Emergency | |
| Yuan et al. | Deep learning evaluation of echocardiograms to identify occult atrial | |
| ATTIA et al. | 11 Artificial Intelligence in Cardiovascular Medicine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) |