AU2018331371B2 - A novel small molecule compound - Google Patents
A novel small molecule compound Download PDFInfo
- Publication number
- AU2018331371B2 AU2018331371B2 AU2018331371A AU2018331371A AU2018331371B2 AU 2018331371 B2 AU2018331371 B2 AU 2018331371B2 AU 2018331371 A AU2018331371 A AU 2018331371A AU 2018331371 A AU2018331371 A AU 2018331371A AU 2018331371 B2 AU2018331371 B2 AU 2018331371B2
- Authority
- AU
- Australia
- Prior art keywords
- disease
- cancer
- cpt
- mitochondrial
- condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 small molecule compound Chemical class 0.000 title description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 55
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 53
- 201000011510 cancer Diseases 0.000 claims abstract description 50
- 201000010099 disease Diseases 0.000 claims abstract description 43
- 150000001875 compounds Chemical class 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 230000004065 mitochondrial dysfunction Effects 0.000 claims abstract description 15
- 230000004770 neurodegeneration Effects 0.000 claims abstract description 12
- 208000015122 neurodegenerative disease Diseases 0.000 claims abstract description 12
- 208000012902 Nervous system disease Diseases 0.000 claims abstract description 11
- 208000005017 glioblastoma Diseases 0.000 claims description 25
- 210000004556 brain Anatomy 0.000 claims description 12
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 claims description 11
- 201000011176 T-cell adult acute lymphocytic leukemia Diseases 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 206010041067 Small cell lung cancer Diseases 0.000 claims description 10
- 208000004296 neuralgia Diseases 0.000 claims description 10
- 208000021722 neuropathic pain Diseases 0.000 claims description 10
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 10
- 208000006011 Stroke Diseases 0.000 claims description 8
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 7
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 7
- 208000024827 Alzheimer disease Diseases 0.000 claims description 6
- 206010006187 Breast cancer Diseases 0.000 claims description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 6
- 230000009529 traumatic brain injury Effects 0.000 claims description 6
- 208000009304 Acute Kidney Injury Diseases 0.000 claims description 5
- 206010002329 Aneurysm Diseases 0.000 claims description 5
- 208000004990 Cardiorenal syndrome Diseases 0.000 claims description 5
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 5
- 206010009944 Colon cancer Diseases 0.000 claims description 5
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 5
- 206010010904 Convulsion Diseases 0.000 claims description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 5
- 208000018737 Parkinson disease Diseases 0.000 claims description 5
- 206010064911 Pulmonary arterial hypertension Diseases 0.000 claims description 5
- 208000033626 Renal failure acute Diseases 0.000 claims description 5
- 206010063837 Reperfusion injury Diseases 0.000 claims description 5
- 206010040047 Sepsis Diseases 0.000 claims description 5
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 claims description 5
- 206010047139 Vasoconstriction Diseases 0.000 claims description 5
- 201000011040 acute kidney failure Diseases 0.000 claims description 5
- 208000031225 myocardial ischemia Diseases 0.000 claims description 5
- 208000020431 spinal cord injury Diseases 0.000 claims description 5
- 230000025033 vasoconstriction Effects 0.000 claims description 5
- 208000023105 Huntington disease Diseases 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 34
- 208000025966 Neurological disease Diseases 0.000 abstract description 6
- 208000029028 brain injury Diseases 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 56
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 48
- 108010070047 Notch Receptors Proteins 0.000 description 45
- 102000005650 Notch Receptors Human genes 0.000 description 45
- 230000000694 effects Effects 0.000 description 33
- 230000002438 mitochondrial effect Effects 0.000 description 28
- 230000011664 signaling Effects 0.000 description 22
- 208000035475 disorder Diseases 0.000 description 16
- 210000003470 mitochondria Anatomy 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 15
- 239000003642 reactive oxygen metabolite Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- 239000003981 vehicle Substances 0.000 description 11
- 241000700159 Rattus Species 0.000 description 10
- 239000003814 drug Substances 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229930012538 Paclitaxel Natural products 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- QELUYTUMUWHWMC-UHFFFAOYSA-N edaravone Chemical compound O=C1CC(C)=NN1C1=CC=CC=C1 QELUYTUMUWHWMC-UHFFFAOYSA-N 0.000 description 7
- 229960001592 paclitaxel Drugs 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 7
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 229950009041 edaravone Drugs 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 210000005013 brain tissue Anatomy 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 238000012453 sprague-dawley rat model Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 230000004094 calcium homeostasis Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000004898 mitochondrial function Effects 0.000 description 4
- 210000001700 mitochondrial membrane Anatomy 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 3
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000005913 Notch signaling pathway Effects 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000009702 cancer cell proliferation Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 210000004720 cerebrum Anatomy 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 229940125898 compound 5 Drugs 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000027721 electron transport chain Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 201000007309 middle cerebral artery infarction Diseases 0.000 description 3
- 230000008779 noncanonical pathway Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 102200082402 rs751610198 Human genes 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical group C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 235000006491 Acacia senegal Nutrition 0.000 description 2
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 2
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 102000015735 Beta-catenin Human genes 0.000 description 2
- 108060000903 Beta-catenin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 101100074187 Caenorhabditis elegans lag-1 gene Proteins 0.000 description 2
- 101100510617 Caenorhabditis elegans sel-8 gene Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- AILMZRFVWPMXCG-UHFFFAOYSA-N ClC=1C=C2C(N(C(=NC2=CC=1OC)S)C1=C(C=C(C(=C1)OC)Cl)Cl)=O Chemical compound ClC=1C=C2C(N(C(=NC2=CC=1OC)S)C1=C(C=C(C(=C1)OC)Cl)Cl)=O AILMZRFVWPMXCG-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 208000004454 Hyperalgesia Diseases 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- 108010034057 Mechanistic Target of Rapamycin Complex 2 Proteins 0.000 description 2
- 102000009308 Mechanistic Target of Rapamycin Complex 2 Human genes 0.000 description 2
- 101000978776 Mus musculus Neurogenic locus notch homolog protein 1 Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102000015499 Presenilins Human genes 0.000 description 2
- 108010050254 Presenilins Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 208000000389 T-cell leukemia Diseases 0.000 description 2
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000013814 Wnt Human genes 0.000 description 2
- 108050003627 Wnt Proteins 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 238000011953 bioanalysis Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000006931 brain damage Effects 0.000 description 2
- 210000000133 brain stem Anatomy 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000008777 canonical pathway Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000004992 fission Effects 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000001589 microsome Anatomy 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000008437 mitochondrial biogenesis Effects 0.000 description 2
- 230000008811 mitochondrial respiratory chain Effects 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 102000046701 nicastrin Human genes 0.000 description 2
- 108700022821 nicastrin Proteins 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000010410 reperfusion Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- YBAWYTYNMZWMMJ-UHFFFAOYSA-N 2-(6-fluoro-1h-indol-3-yl)-n-[[3-(2,2,3,3-tetrafluoropropoxy)phenyl]methyl]ethanamine Chemical compound FC(F)C(F)(F)COC1=CC=CC(CNCCC=2C3=CC=C(F)C=C3NC=2)=C1 YBAWYTYNMZWMMJ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- JJZFWROHYSMCMU-UHFFFAOYSA-N 3-(benzenesulfonyl)-8-piperazin-1-ylquinoline Chemical compound C=1N=C2C(N3CCNCC3)=CC=CC2=CC=1S(=O)(=O)C1=CC=CC=C1 JJZFWROHYSMCMU-UHFFFAOYSA-N 0.000 description 1
- SNKZJIOFVMKAOJ-UHFFFAOYSA-N 3-Aminopropanesulfonate Chemical compound NCCCS(O)(=O)=O SNKZJIOFVMKAOJ-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- PSXOKXJMVRSARX-SCSAIBSYSA-N 5-chloro-n-[(2s)-4,4,4-trifluoro-1-hydroxy-3-(trifluoromethyl)butan-2-yl]thiophene-2-sulfonamide Chemical compound FC(F)(F)C(C(F)(F)F)[C@@H](CO)NS(=O)(=O)C1=CC=C(Cl)S1 PSXOKXJMVRSARX-SCSAIBSYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000043279 ADAM17 Human genes 0.000 description 1
- 108091007505 ADAM17 Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 102000008096 B7-H1 Antigen Human genes 0.000 description 1
- 108010074708 B7-H1 Antigen Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 102100024263 CD160 antigen Human genes 0.000 description 1
- 101150041968 CDC13 gene Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 101100028208 Caenorhabditis elegans osm-11 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 1
- 102100031111 Disintegrin and metalloproteinase domain-containing protein 17 Human genes 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 102100024827 Dynamin-1-like protein Human genes 0.000 description 1
- 108050003303 Dynamin-1-like proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100021186 Granulysin Human genes 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000761938 Homo sapiens CD160 antigen Proteins 0.000 description 1
- 101001002170 Homo sapiens Glutamine amidotransferase-like class 1 domain-containing protein 3, mitochondrial Proteins 0.000 description 1
- 101001040751 Homo sapiens Granulysin Proteins 0.000 description 1
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 description 1
- 101000843556 Homo sapiens Transcription factor HES-1 Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 1
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 1
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 1
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 1
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101000957678 Mus musculus Cytochrome P450 7B1 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 229940127523 NMDA Receptor Antagonists Drugs 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 1
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 1
- 102400000552 Notch 1 intracellular domain Human genes 0.000 description 1
- 101800001628 Notch 1 intracellular domain Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 101000579647 Penaeus vannamei Penaeidin-2a Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108090000310 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Proteins 0.000 description 1
- 102100028960 Peroxisome proliferator-activated receptor gamma coactivator 1-alpha Human genes 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108091008611 Protein Kinase B Proteins 0.000 description 1
- 102100020949 Putative glutamine amidotransferase-like class 1 domain-containing protein 3B, mitochondrial Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 101000957679 Rattus norvegicus 25-hydroxycholesterol 7-alpha-hydroxylase Proteins 0.000 description 1
- 102000034527 Retinoid X Receptors Human genes 0.000 description 1
- 108010038912 Retinoid X Receptors Proteins 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- PFYWPQMAWCYNGW-UHFFFAOYSA-M [6-(dimethylamino)-9-(2-methoxycarbonylphenyl)xanthen-3-ylidene]-dimethylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.COC(=O)C1=CC=CC=C1C1=C2C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C21 PFYWPQMAWCYNGW-UHFFFAOYSA-M 0.000 description 1
- QTWZICCBKBYHDM-UHFFFAOYSA-P [7-(dimethylazaniumyl)-10H-phenothiazin-3-yl]-dimethylazanium Chemical compound C[NH+](C)c1ccc2Nc3ccc(cc3Sc2c1)[NH+](C)C QTWZICCBKBYHDM-UHFFFAOYSA-P 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 101150089041 aph-1 gene Proteins 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229960001671 azapropazone Drugs 0.000 description 1
- WOIIIUDZSOLAIW-NSHDSACASA-N azapropazone Chemical compound C1=C(C)C=C2N3C(=O)[C@H](CC=C)C(=O)N3C(N(C)C)=NC2=C1 WOIIIUDZSOLAIW-NSHDSACASA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229950008971 begacestat Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000004635 cellular health Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- BFPSDSIWYFKGBC-UHFFFAOYSA-N chlorotrianisene Chemical compound C1=CC(OC)=CC=C1C(Cl)=C(C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 BFPSDSIWYFKGBC-UHFFFAOYSA-N 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960001653 citalopram Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 229940085082 donepezil / memantine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000007911 effervescent powder Substances 0.000 description 1
- 239000007938 effervescent tablet Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229950007832 encenicline Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 229960004341 escitalopram Drugs 0.000 description 1
- WSEQXVZVJXJVFP-FQEVSTJZSA-N escitalopram Chemical compound C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-FQEVSTJZSA-N 0.000 description 1
- 229950000206 estolate Drugs 0.000 description 1
- OPQRBXUBWHDHPQ-UHFFFAOYSA-N etazolate Chemical compound CCOC(=O)C1=CN=C2N(CC)N=CC2=C1NN=C(C)C OPQRBXUBWHDHPQ-UHFFFAOYSA-N 0.000 description 1
- 229950009329 etazolate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 229960004038 fluvoxamine Drugs 0.000 description 1
- CJOFXWAVKWHTFT-XSFVSMFZSA-N fluvoxamine Chemical compound COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 CJOFXWAVKWHTFT-XSFVSMFZSA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960001008 heparin sodium Drugs 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229950005109 idalopirdine Drugs 0.000 description 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 201000002313 intestinal cancer Diseases 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-M lactobionate Chemical class [O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-M 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical compound [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 1
- 229960004640 memantine Drugs 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 208000012268 mitochondrial disease Diseases 0.000 description 1
- 230000006677 mitochondrial metabolism Effects 0.000 description 1
- 230000030544 mitochondrion distribution Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- SSRDSYXGYPJKRR-ZDUSSCGKSA-N n-[(3r)-1-azabicyclo[2.2.2]octan-3-yl]-7-chloro-1-benzothiophene-2-carboxamide Chemical compound C1N(CC2)CCC2[C@H]1NC(=O)C1=CC(C=CC=C2Cl)=C2S1 SSRDSYXGYPJKRR-ZDUSSCGKSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000006036 negative regulation of mitochondrial membrane potential Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 230000003959 neuroinflammation Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 230000003955 neuronal function Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000008621 organismal health Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000008533 pain sensitivity Effects 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229960005095 pioglitazone Drugs 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000006950 reactive oxygen species formation Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000035806 respiratory chain Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 229960002073 sertraline Drugs 0.000 description 1
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- 102000035016 single-pass transmembrane receptors Human genes 0.000 description 1
- 108091005455 single-pass transmembrane receptors Proteins 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- ZWZVWGITAAIFPS-UHFFFAOYSA-N thiophosgene Chemical compound ClC(Cl)=S ZWZVWGITAAIFPS-UHFFFAOYSA-N 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 229960003570 tramiprosate Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/95—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/517—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
The present invention relates to compositions and methods for the treatment of cancer and other diseases associated with mitochondrial dysfunction, including but not limited to, neurodegenerative disease, brain injuries, and certain non-neurological disorders, using a novel compound, 6-chloro-3-(2,4-dichloro-5-methoxyphenyl)-2-mercapto-7- methoxyquinazolin-4(3
Description
A NOVEL SMALL MOLECULE COMPOUND
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. Provisional Pat. Appl. No.
62/558,323, filed September 13, 2017, which application is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
[0002] Mitochondria are iconic organelles in eukaryotic cells that are essential for ensuring numerous fundamental physiological processes such as cellular energy production, redox balance, buffering of cellular Ca2+ concentration, and hosting important biosynthetic pathways (Wallace 2005). They also govern the cell fate by participating in the apoptosis pathway, a pathway critically in major disease conditions such as cancer and
neurodegenerative diseases (Hedskog et al. 2012). The shape, volume, number and distribution of mitochondria within the cells are strictly controlled (Cahill et al. 2006). These parameters critically impact mitochondrial function, especially in the neuromuscular system, where mitochondria adopt strategic intracellular distribution, presumably to satisfy high local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential for cellular and organismal health. To achieve this, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes can lead to the accumulation of damaged mitochondria and ultimately result in disease conditions (Pickrell and Youle 2015), (Rugarli and Langer 2012).
[0003] Mitochondrial dysfunction can affect cellular function in a number of ways (Stepien et al. 2017), (Pieczenik and Neustadt 2007). First of all, as the cellular power plant, mitochondria provide the key source of ATP. Mitochondrial dysfunction will result in cellular energy deficit and impaired maintenance of cellular vitality. Second, mitochondria hosts the electron transport chain involved in oxidative phosphorylation. This process generates reactive oxygen species (ROS) that under basal condition may provide some signaling function, but defective mitochondria are inefficient in the electron transfer process, resulting in elevated ROS production, which can cause damages to all essential
macromolecules (proteins, nucleic acids, lipids, etc.). Such oxidative damages have been extensively linked to diseases, especially those age-related diseases (Kauppila et al. 2017). Third, mitochondria are important organelles in maintaining cellular calcium homeostasis (Paillusson et al. 2016). They uptake calcium released from intracellular stores, especially the ER, or calcium resulting from excitation. Dysfunctional mitochondria may alter cellular calcium homeostasis and cause conditions such as ER stress that have been linked to a number of disease conditions (Malhotra and Kaufman 201 1). Moreover, mitochondrial calcium is essential for the activities of certain enzymes in the TCA cycle and the electron transport chain (Glancy and Balaban 2012). Therefore, altered mitochondrial calcium homeostasis can lead to mitochondrial energetic deficit. Finally, as gatekeepers of cell life and cell death, mitochondria regulate both apoptotic and necrotic cell death (Galluzzi et al. 2016). Thus at its most extreme, disturbances involving these pathways may trigger untimely cell death and cause degenerative disease. Conversely, the lack of appropriate cell death can lead to inappropriate tissue growth and development of cancers, which are often
characterized by altered mitochondrial metabolism.
[0004] It is therefore not surprising that a large number of major human diseases, many of which represent urgent unmet medical needs, have been associated with mitochondrial dysfunction. These range from cancer (Wallace 2012) and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS (de Moura et al. 2010), (Lleonart et al. 2017), (Ganguly et al. 2017) to brain injuries such as Stroke, Seizures, Neuropathic pain, Traumatic brain injury, Spinal cord injury, Aneurysm, Subarachnoid hemorrhage (Dawson and Dawson 2017), (Areti et al. 2016), (Sui et al. 2013), (Zsurka and Kunz 2015), (Cahill et al. 2006), (Hiebert et al. 2015), (Arun et al. 2016), and certain non-neurological disorders, for example Sepsis, Acute kidney injury, Cardiorenal syndrome, Cardiac Ischemia-reperfusion injury, Pulmonary arterial hypertension, Chronic obstructive pulmonary disease, and vasoconstriction (Stepien et al. 2017), (Lesnefsky et al. 2017), (Emma et al. 2016), (Lerner et al. 2016), (Sutendra and Michelakis 2014), (Ratliff et al. 2016). However, the exact mechanisms by which defective mitochondria lead to the diverse disease conditions remain to be elucidated, and it remains to be seen whether novel mitochondrial medicine could be developed to treat a number of devastating and pervasive diseases.
SUMMARY OF THE INVENTION
[0005] Disclosed herein are composition for treating or preventing diseases associated with mitochondrial dysfunction. The compositions include CPT-2008 {i.e., 6-chloro-3-(2,4- dichloro-5-methoxyphenyl)-2-mercapto-7-methoxyquinazolin-4(3H)-one), pharmaceutically acceptable salts thereof, or derivatives thereof.
[0006] Also disclosed herein are methods for preventing or treating diseases associated with mitochondrial dysfunction. The methods include administering an effective amount of CPT-2008 or a composition containing an effective amount of CPT-2008, or a derivative thereof, to a subject in need thereof {e.g., in a human or other mammal). [0007] Aspects of the present disclosure include, but are not limited to, the appended claims and the following exemplary embodiments:
1. A compound according to Formula I:
or a pharmaceutically acceptable salt thereof. 2. A pharmaceutical composition for treating a disease or condition associated with mitochondrial dysfunction, the composition comprising the compound of embodiment 1 according to Formula I, a pharmaceutically acceptable salt thereof, or a derivative thereof, and a pharmaceutically acceptable carrier.
3. A method for treating a disease or condition associated with mitochondrial dysfunction, the method comprising an effective amount of the compound of embodiment 1 or an effective amount of the composition of embodiment 2 to a subject in need thereof.
4. The method of embodiment 3, wherein the effective amount is a therapeutically effective amount.
5. The method of embodiment 3, wherein the effective amount is a prophylactically effective amount.
6. The method of embodiment 3, wherein the disease is cancer.
7. The method of embodiment 6, wherein the cancer is T-acute lymphoblastic leukemia (T-ALL), small cell lung cancer (SCLC), non-small cell lung cancer (NSCL), glioblastoma, colorectal cancer, breast cancer, or ovarian cancer.
8. The method of embodiment 3, wherein the disease is a neurodegenerative disease. 9. The method of embodiment 8, wherein the neurodegenerative disease is Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, or Huntington's disease.
10. The method of embodiment 3, wherein the condition is a brain condition.
11. The method of embodiment 10, wherein the brain condition is stroke, seizure, neuropathic pain, traumatic brain injury, spinal cord injury, aneurysm, or subarachnoid hemorrhage.
12. The method of embodiment 3, wherein the disease or condition is a non- neurological disorder.
13. The method of embodiment 14, wherein the non-neurological disorder is sepsis, acute kidney injury, cardiorenal syndrome, cardiac ischemia-reperfusion injury, pulmonary arterial hypertension, chronic obstructive pulmonary disease, or vasoconstriction.
14. The method of embodiment 3, wherein the condition is human aging caused by mitochondrial dysfunction.
[0008] While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 shows a route for the chemical synthesis of CPT-2008
[0010] FIG. 2 shows the chemical structure of CPT-2008
[0011] FIG. 3 shows the efficacy of CPT-2008 in the Molt-4 T-ALL model.
[0012] FIG. 4 shows the efficacy of CPT-2008 in the Jurkat T-cell leukemia model.
[0013] FIG. 5 shows the efficacy of CPT-2008 in the NCI-H82 SCLC model.
[0014] FIG. 6 shows the efficacy of CPT-2008 in the Ul 18MG Glioblastoma model.
[0015] FIG. 7 shows the efficacy of CPT-2008 in the T98G Glioblastoma model.
[0016] FIG. 8 shows the efficacy of CPT-2008 in the NCI-H446 SCLC model. [0017] FIG. 9 shows the efficacy of CPT-2008 in the MCF7 breast cancer model.
[0018] FIG. 10 shows the efficacy of CPT-2008 in the HCT-1 16 Colorectal cancer model
[0019] FIG. 11 shows the efficacy of CPT-2008 in the A549 NSCLC model.
[0020] FIG. 12 shows the efficacy of CPT-2008 in the NCI-H1299 NSCLC model.
[0021] FIG. 13 shows the efficacy of CPT-2008 in the A2780 Ovarian cancer model. [0022] FIG. 14 shows the effect of CPT-2008 on mitochondrial calcium in human GBM cells. GBM cells treated with DMSO vehicle (control) or with CPT-2008 in DMSO were stained with Rhod-2AM to probe mitochondrial calcium (mito-Ca2+) level. CPT-2008 elevated mito-Ca2+.
[0023] FIG. 15 shows the effect of CPT-2008 on mitochondrial ROS in human GBM cells. GBM cells treated with DMSO vehicle (control) or with CPT-2008 in DMSO were stained with Mito-SOX to probe mitochondrial ROS level. CPT-2008 significantly elevated mitochondrial ROS level.
[0024] FIG. 16 shows the effect of CPT-2008 on mitochondrial morphology in GBM cells. GBM cells treated with DMSO (control) or CPT-2008 in DMSO were immunostained for TOM-20 to reveal mitochondrial morphology. Note that CPT-2008 induced mitochondrial size reduction.
[0025] FIG. 17 shows the effect of CPT-2008 on mitochondrial membrane potential in human GBM cells. GBM cells treated with DMSO vehicle or with CPT-2008 in DMSO were stained with TMRM to probe mitochondrial membrane potential. CPT-2008 dramatically reduced mitochondrial membrane potential.
[0026] FIG. 18 shows the effect of CPT-2008 in inhibiting the self-renewal of human GBM cells. Control: cells treated with DMSO vehicle; CPT-2008: cells treated with 20 uM CPT- 2008. Note that while DMSO treated GBM cells formed neurospheres indicating of cancer stem cell self-renewal, CPT-2008 treated cells lost such ability.
[0027] FIG. 19A shows the level of brain tissue infarction in rats treated with vehicle or edaravone (top panels) and rats treated with CPT-2008 (bottom panels).
[0028] FIG. 19B shows the brain tissue infarction area for rats treated with edaravone or CPT-2008. *P<0.05, **P<0.01, ***P<0.001 vs. vehicle, by one-way ANOVA post
Dunnett's test.
[0029] FIG. 20 shows paw withdrawal threshold (PWT) measurements in paclitaxel-treated mice following administration of CPT-2008. * p<0.05, ** p<0.01 vs. vehicle group by unpaired t test.
[0030] FIG. 21A shows the CPT-2008 plasma concentration following oral administration and intravenous administration to Sprague-Dawley rats.
[0031] FIG. 21B shows the CPT-2008 brain concentration following oral administration and intravenous administration to Sprague-Dawley rats.
DETAILED DESCRIPTION OF THE INVENTION I. Field of the Invention
[0032] The present invention pertains generally to compositions and methods of treating diseases associated with mitochondrial dysfunction. In particular, the invention relates to methods of treating cancer, neurodegenerative diseases (including Parkinson's disease, Alzheimer's disease, ALS, Huntington's disease), brain injuries (including Stroke, Seizures, Neuropathic pain, Traumatic brain injury, Spinal cord injury, Aneurysm, Subarachnoid hemorrhage), and certain non-neurological disorders (including Sepsis, Acute kidney injury, Cardiorenal syndrome, Cardiac Ischemia-reperfusion injury, Pulmonary arterial hypertension, Chronic obstructive pulmonary disease, vasoconstriction) using CPT-2008 or its derivatives to alter mitochondrial reactive oxygen species (ROS) generation, electron transport chain activity, mitochondrial morphology, or mitochondrial activity.
II. Definitions
[0033] As used herein, "CPT-2008" refers to 6-chloro-3-(2,4-dichloro-5-methoxyphenyl)- 2-mercapto-7-methoxyquinazolin-4(3H)-one, i.e., a compound having the formula of C16H11CI3N2O3S and a structure according to Formula I:
[0034] As used herein, the term "treatment" refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder. This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder. In various aspects, the term covers any treatment of a subject, including a mammal (e.g., a human), and includes: (i) preventing the disease from occurring in a subject that can be predisposed to the disease but has not yet been diagnosed as having it; (ii) inhibiting the disease, i.e., arresting its development; or (iii) relieving the disease, i.e., causing regression of the disease. In one aspect, the subject is a mammal such as a primate, and, in a further aspect, the subject is a human. The term
"subject" also includes domesticated animals (e.g., cats, dogs, etc.), livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), and laboratory animals (e.g., mouse, rabbit, rat, guinea pig, fruit fly, etc.).
[0035] As used herein, the term "prevent" or "preventing" refers to precluding, averting, obviating, forestalling, stopping, or hindering something from happening, especially by advance action. It is understood that where reduce, inhibit, or prevent are used herein, unless specifically indicated otherwise, the use of the other two words is also expressly disclosed.
[0036] As used herein, the term "diagnosed" means having been subjected to a physical examination by a person of skill, for example, a physician, and found to have a condition that can be diagnosed or treated by the compounds, compositions, or methods disclosed herein.
[0037] As used herein, the phrase "identified to be in need of treatment for a disorder," or the like, refers to selection of a subject based upon need for treatment of the disorder. For
example, a subject can be identified as having a need for treatment of a disorder (e.g., a disorder related to Alzheimer's disease) based upon an earlier diagnosis by a person of skill and thereafter subj ected to treatment for the disorder. It is contemplated that the identification can, in one aspect, be performed by a person different from the person making the diagnosis. It is also contemplated, in a further aspect, that the administration can be performed by one who subsequently performed the administration.
[0038] As used herein, the terms "administering" and "administration" refer to any method of providing a pharmaceutical preparation to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, oral administration, transdermal administration, administration by inhalation, nasal administration, topical administration, intravaginal administration, ophthalmic administration, intraaural administration, intracerebral administration, rectal administration, sublingual administration, buccal administration, and parenteral administration, including injectable such as intravenous administration, intra-arterial administration, intramuscular administration, and subcutaneous administration. Administration can be continuous or intermittent. In various aspects, a preparation can be administered therapeutically; that is, administered to treat an existing disease or condition. In further various aspects, a preparation can be administered
prophylactically; that is, administered for prevention of a disease or condition.
[0039] The term "contacting" as used herein refers to bringing a disclosed compound and a cell, target receptor, or other biological entity together in such a manner that the compound can affect the activity of the target (e.g., receptor, transcription factor, cell, etc.), either directly; i.e., by interacting with the target itself, or indirectly; i.e., by interacting with another molecule, co-factor, factor, or protein on which the activity of the target is dependent.
[0040] As used herein, the terms "effective amount" and "amount effective" refer to an amount that is sufficient to achieve the desired result or to have an effect on an undesired condition. For example, a "therapeutically effective amount" refers to an amount that is sufficient to achieve the desired therapeutic result or to have an effect on undesired symptoms, but is generally insufficient to cause adverse side effects. The specific
therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of excretion of the specific
compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of a compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. If desired, the effective daily dose can be divided into multiple doses for purposes of administration. Consequently, single dose compositions can contain such amounts or submultiples thereof to make up the daily dose. The dosage can be adjusted by the individual physician in the event of any contraindications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. In further various aspects, a preparation can be administered in a "prophylactically effective amount"; that is, an amount effective for prevention of a disease or condition.
[0041] "Pharmaceutically acceptable excipient or carrier" refers to an excipient that may optionally be included in the compositions of the invention and that causes no significant adverse toxicological effects to the patient. "Pharmaceutically acceptable salt" includes, but is not limited to, amino acid salts, salts prepared with inorganic acids, such as chloride, sulfate, phosphate, diphosphate, bromide, and nitrate salts, or salts prepared from the corresponding inorganic acid form of any of the preceding, e.g., hydrochloride, etc., or salts prepared with an organic acid, such as malate, maleate, fumarate, tartrate, succinate, ethyl succinate, citrate, acetate, lactate, methanesulfonate, benzoate, ascorbate, para- toluenesulfonate, palmitate, salicylate and stearate, as well as estolate, gluceptate and lactobionate salts. Similarly salts containing pharmaceutically acceptable cations include, but are not limited to, sodium, potassium, calcium, aluminum, lithium, and ammonium (including substituted ammonium).
[0042] As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the
permissible substituents of organic compounds. Also, the terms "substitution" or "substituted with" include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. It is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).
[0043] As used herein, the terms "derivative" and "analog" refer to a compound having a structure derived from the structure of a parent compound (e.g., a compound disclosed herein) and whose structure is sufficiently similar to those disclosed herein and based upon that similarity, would be expected by one skilled in the art to exhibit the same or similar activities and utilities as the claimed compounds, or to induce, as a precursor, the same or similar activities and utilities as the claimed compounds.
[0044] Ranges can be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, a further aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms a further aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed. [0045] References in the specification and concluding claims to parts by weight of a particular element or component in a composition denotes the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed. Thus, in a compound containing 2 parts by weight of component X and 5 parts by weight component Y, X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
[0046] A weight percent (wt. %) of a component, unless specifically stated to the contrary, is based on the total weight of the formulation or composition in which the component is included.
[0047] As used herein, the terms "optional" or "optionally" means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
III. A new pharmaceutical and compositions thereof
[0048] Provided herein are pharmaceutical compositions containing CPT-2008 and one or more pharmaceutically acceptable carriers or other excipients. The pharmaceutical compositions can be prepared by any of the methods well known in the art of pharmacy and drug delivery. In general, methods of preparing the compositions include the step of bringing the active ingredient into association with a carrier containing one or more accessory ingredients. The pharmaceutical compositions are typically prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. The compositions can be conveniently prepared and/or packaged in unit dosage form.
[0049] The pharmaceutical compositions can be in the form of a sterile inj ectable aqueous or oleaginous solutions and suspensions. Sterile inj ectable preparations can be formulated using non-toxic parenterally-acceptable vehicles including water, Ringer' s solution, and isotonic sodium chloride solution, and acceptable solvents such as 1,3-butane diol. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
[0050] Aqueous suspensions contain the active ingredient in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include, but are not limited to: suspending agents such as sodium carboxymethylcellulose, methylcellulose, oleagino-propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin, polyoxyethylene stearate, and
polyethylene sorbitan monooleate; and preservatives such as ethyl, w-propyl, and p- hydroxyb enzoate.
[0051] Oily suspensions can be formulated by suspending the active ingredient in a vegetable oil, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions can contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. These compositions can be preserved by the addition of an anti -oxidant such as ascorbic acid.
[0052] Dispersible powders and granules (suitable for preparation of an aqueous suspension by the addition of water) can contain the active ingredient in admixture with a dispersing agent, wetting agent, suspending agent, or combinations thereof. Additional excipients can also be present.
[0053] The pharmaceutical compositions of the invention can also be in the form of oil-in- water emulsions. The oily phase can be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents can be naturally-occurring gums, such as gum acacia or gum tragacanth; naturally-occurring phospholipids, such as soy lecithin; esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate; and condensation products of said partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate.
[0054] Pharmaceutical compositions containing CPT-2008 can also be in a form suitable for oral use. Suitable compositions for oral administration include, but are not limited to, tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups, elixirs, solutions, buccal patches, oral gels, chewing gums, chewable tablets, effervescent powders, and effervescent tablets. Compositions for oral administration can be formulated according to any method known to those of skill in the art. Such compositions can contain one or more agents selected from sweetening agents, flavoring agents, coloring agents, antioxidants, and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
[0055] Tablets generally contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients, including: inert diluents, such as cellulose, silicon dioxide, aluminum oxide, calcium carbonate, sodium carbonate, glucose, mannitol, sorbitol, lactose, calcium phosphate, and sodium phosphate; granulating and disintegrating agents, such as corn starch and alginic acid; binding agents, such as polyvinylpyrrolidone (PVP),
cellulose, polyethylene glycol (PEG), starch, gelatin, and acacia; and lubricating agents such as magnesium stearate, stearic acid, and talc. The tablets can be uncoated or coated, enterically or otherwise, by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate can be employed. Tablets can also be coated with a semi-permeable membrane and optional polymeric osmogents according to known techniques to form osmotic pump compositions for controlled release.
[0056] Compositions for oral administration can be formulated as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent (such as calcium carbonate, calcium phosphate, or kaolin), or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium (such as peanut oil, liquid paraffin, or olive oil).
[0057] Transdermal delivery of CPT-2008 can be accomplished by means of iontophoretic patches and the like. The compound can also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.
[0058] In some embodiments, the pharmaceutical composition includes CPT-2008 and one or more additional active agents. In some embodiments, pharmaceutical compositions containing CPT-2008 and one or more additional active agents for treatment of neurological diseases are provided. Examples of such active agents include, but are not limited to, cholinesterase inhibitors (e.g., donepezil, donepezil/memantine, galantamine, rivastigmine, tacrine, or the like), alpha-7 nicotinic receptor modulators (e.g., alpha-7 agonists such as encenicline and APN1125), serotonin modulators (e.g., idalopirdine, RVT-101, citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, or the like), NMDA modulators (e.g., NMDA receptor antagonists such as memantine), Αβ-targeted therapies (e.g., pioglitazone, begacestat, atorvastatin, simvastatin, etazolate, tramiprosate, or the like), ApoE- targeted therapies (e.g., retinoid X receptor agonists), tau-targeted therapies (e.g., methylthioninium, leuco-methylthioninium, or the like), and anti-inflammatories (e.g., NSAIDs such as apazone, diclofenac, ibuprofen, indomethacin, ketoprofen, nabumetone, naproxen, piroxicam, or sulindac).
[0059] In some embodiments, pharmaceutical compositions containing CPT-2008 and one or more additional active agents for treatment of cancer are provided. Examples of such active agents include, but are not limited to, angiogenesis inhibitors (e.g., bevacizumab, ranibizumab, and the like), immune checkpoint inhibitors (e.g., a CTLA-4 antibody, an OX40 antibody, a PD-L1 antibody, a PD1 antibody, or a BY55 antibody), anthracyclines (e.g., doxorubicin, daunorubicin, and the like), platins (e.g., cisplatin, oxaliplatin, carboplatin, and the like), antimetabolites (e.g., 5-fluorouracil, methotrexate, and the like), kinase inhibitors (e.g., erlotinib, gefitinib, and the like), nucleoside analogs (e.g., gemcitabine, cytarabine, and the like), and taxanes (e.g., paclitaxel, docetaxel, and the like). IV. Methods for the treatment of mitochondrial diseases and conditions
[0060] CPT-2008 and composition thereof are useful for treating diseases and conditions associated with mitochondrial dysfunction. Such diseases include, but are not limited to, cancer, neurodegenerative diseases, brain conditions, and non-neurological disorders.
[0061] In some embodiments, methods are provided wherein the disease or condition is a neurodegenerative disease. Examples of neurodegenerative diseases include, but are not limited to, Parkinson' s disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease.
[0062] In some embodiments, methods are provided wherein the disease or condition is a brain condition. Examples of brain conditions include, but are not limited to, stroke, seizure, neuropathic pain, traumatic brain injury, spinal cord injury, aneurysm, and subarachnoid hemorrhage.
[0063] In some embodiments, methods are provided wherein the disease or condition is a non-neurological disorder. Examples of non-neurological disorders include, but are not limited to, sepsis, acute kidney injury, cardiorenal syndrome, cardiac ischemia-reperfusion injury, pulmonary arterial hypertension, chronic obstructive pulmonary disease, and vasoconstriction. In some embodiments, the condition is human aging caused by
mitochondrial dysfunction.
[0064] Also provided are methods and compositions for reducing cancer cell proliferation, e.g., in an individual having a cancer, e.g., so as to treat the cancer. By cancer it is meant the group of diseases involving unregulated cell growth. In cancer, cells proliferate, i.e., divide, uncontrollably, forming malignant tumors, and invading nearby parts of the body. The cancer
may also metastasize, that is, spread to more distant parts of the body through the lymphatic system or bloodstream. The treatment may be prophylactic in terms of completely or partially preventing a cancer or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a cancer and/or adverse effect attributable to the cancer. [0065] Treatment of cancer can include: (a) preventing the cancer from occurring in a subject which may be predisposed to the cancer but has not yet been diagnosed as having it; (b) inhibiting the cancer, i.e., arresting its development; or (c) relieving the cancer, i.e., causing regression of the cancer. The therapeutic agent may be administered before, during or after the onset of cancer. The treatment of ongoing cancer, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment is desirably performed prior to complete loss of function in the affected tissues. The subject therapy will desirably be administered during the symptomatic stage of the cancer, and in some cases after the symptomatic stage of the cancer. The terms "individual," "subject," "host," and "patient," are used interchangeably herein and refer to any mammalian subject for whom diagnosis, treatment, or therapy is desired, particularly humans. In some instances, the subject methods and compositions reduce e.g., inhibit, the proliferation of the cancer. In some instances, the subject methods and compositions reduce, e.g., inhibit, the metastasis of the cancer.
[0066] In some embodiments, the cancer is a Notch-associated cancer; that is, the cancer is associated with, i.e., due at least in part to, active Notch signaling. By "Notch" it is meant the evolutionarily conserved single-pass transmembrane receptor that affects numerous cell fate decisions through short-range cell-cell interactions (Artavanis-Tsakonas and Muskavitch 2010). Notch protein (cLIN-12 and cGLP-1 in C. elegans, Notch in Drosophila, Notchl-4 in mammals) consists of an extracellular domain (NECD) with 29-36 epidermal growth factor (EGF) repeats for ligand binding, a transmembrane domain, and an intracellular domain (NICD) having transcriptional activity. By "active Notch signaling", it is meant that the Notch protein is active in the cancer cell, e.g., it is an activated Notch, or a constitutively active Notch, e.g., the Notch protein has been mutated such that the Notch protein or a domain thereof is always active. Examples of Notch-associated cancers include
hematological malignancies, e.g., acute lymphoblastic leukemia (T-ALL); mammary gland tumors, e.g., breast cancer; brain tumors, e.g., glioblastoma multiforme (GBM); lung cancer; and intestinal cancer (Artavanis-Tsakonas and Muskavitch 2010). A cancer may be readily identified as a Notch-associated cancer by detecting in a cancerous cell, e.g., in a tumor
biopsy or cell smear, a Notch mutation that results in constitutively active Notch. A number of mutations have been identified that result in constitutively active Notch signaling, which may be detected by, for example, chromosome spread or PCR as known in the art.
Alternatively, a cancer may be identified as a Notch-associated cancer by detecting the upregulated activity of downstream effectors of Notch signaling, e.g., the upregulated activity of the non-canonical Notch signaling proteins e.g., elevated PINK1 expression, elevated mTORC2 signaling (increased Akt phosphorylation), and elevated respiratory chain complex assembly as compared to noncancerous cells.
[0067] Notch protein modulates cell activity by a canonical pathway and non-canonical pathways. In canonical Notch pathway signaling, Notch ligands (transmembrane proteins comprising three motifs: DSL (Delta, Serrate, LAG-2), DOS (Delta and OSM-11 like) and EGF repeats) bind to the EGF repeats of the Notch extracellular domain from adjacent cells. The ligand-Notch interaction allows members of the a-secretase/metalloprotease family (ADAMIO/Kuzmanian, ADAM17/TACE) to cleave the extracellular domain of Notch, leading to sequential cytoplasmic cleavage of the intracellular domain of Notch by γ- secretase (a multi-subunit protease complex composed of presenilin (PS), nicastrin (NCT), Aph-1, Pen-2 and others). The freed intracellular domain translocates to the nucleus, where it interacts via its RAM domain with the DNA-binding transcription factor CSL
("CBF l/RBPjk" in vertebrates, "Suppressor of Hairless" in Drosophila, "Lag-1" in C.
elegans) and acts as a co-activator for CSL, Mastermind-like proteins ("MAMLl" in vertebrates, "Mastermind" in drosophila, "Lag-3" in C. elegans) and other cof actors such as CBP/p300 to transcriptionally activate Notch target genes (Kopan and Ilagan 2009). In the absence of free intracellular domain Notch, CSL functions as a sequence-specific repressor. Thus, genes that mediate canonical Notch signaling (that is, "canonical Notch signaling genes") would include genes encoding polypeptides of the γ-secretase complex, CSL
("CBF l/RBPjk" in vertebrates, "Suppressor of Hairless" in Drosophila, "Lag-1" in C.
elegans), genes encoding Mastermind-like proteins ("MAMLl" in vertebrates, "Mastermind" in drosophila, "Lag-3" in C. elegans) and the CBP/p300 gene.
[0068] Notch can also signal through non-canonical pathways. Non-canonical Notch signaling is CSL-independent and can be either ligand-dependent or independent (Kopan and Ilagan 2009). Although some genes are affected by non-canonical Notch function, in most cases the mediators of non-canonical Notch signaling are unknown. The most well studied and conserved effect of non-canonical Notch function is regulation of Wnt/p-catenin
signaling. In this non-canonical Notch signaling pathway, Notch binds and titrate levels of the obligate Wnt-signaling component active β-catenin (Takebe et al. 2011). Therefore, active β-catenin activity may serve as a useful readout for non-canonical Notch signals. Other studied non-canonical Notch signaling pathways include signaling through NF -kappa B, signaling through the JNK pathway, and signaling through HES1 and MCK (Andersen et al. 2012).
[0069] Recently, mTORC2, Akt, and proteins that promote mitochondrial development or function, e.g., ΡΓΝΚ1, mitochondrial respiratory chain complex proteins, mitochondrial fission proteins, and mitochondrial biogenesis proteins, are found to mediate non-canonical Notch signaling (Lee et al. 2013). For example, polypeptides of mitochondrial respiratory chain complex I (e.g., the 75 kD subunit, ND-75), the mitochondrial fission protein Dynamin- 1-like protein (Drpl), and the mitochondrial biogenesis protein Peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-Ια). Importantly, many of these genes in the non-canonical Notch signaling pathway encode proteins that are regulate mitochondrial function (Lee et al. 2013). As disclosed in the working examples, CPT-2008 is effective in targeting Notch-promoted cancer cell proliferation, e.g., proliferation of T-ALL (Molt-4, Jurkat cell lines) and glioblastoma (T98G, Ul 18MG cell lines).
[0070] As an important regulator of neuronal development and function, Notch signaling is profoundly involved in many aspects of brain development, functioning, and maintenance. Deregulated Notch signaling has been implicated in the pathogenesis of brain tumor, stroke, neurodegeneration, neuropathic pain, traumatic brain injury, depression, and neuropsychiatric disorders (Mathieu et al., 2013; Zhang et al., 2018; Alfred and Vaccari, 2018). The fact that the outcome of Notch signaling is highly context-dependent suggests that non-canonical Notch function might be a norm rather than an exception. The fact that efficient inhibition of canonical Notch signaling has proved to be too toxic for clinical use, mostly due to unwanted on-target effects (Andersson and Lendahl, 2014), suggests that expanding methods for modulating Notch signaling beyond the canonical pathway will increase the available range of therapeutic options. It is thus expected that by inhibiting aberrant Notch activation through the non-canonical pathway, CPT-2008 will be of therapeutic value against a broad spectrum of brain diseases and conditions.
[0071] In some embodiments, methods for the treatment of T-acute lymphoblastic leukemia (T-ALL), small cell lung cancer (SCLC), non-small cell lung cancer (NSCL), glioblastoma, colorectal cancer, breast cancer, and/or ovarian cancer are provided.
[0072] CPT-2008 can be administered at any suitable dose in the methods provided herein. In general, CPT-2008 will be administered at a dose ranging from about 0.1 milligrams to about 1000 milligrams per kilogram of a subject's body weight (i.e., about 0.1-1000 mg/kg). The dose of the CPT-2008 can be, for example, about 0.1-1000 mg/kg, or about 1-500 mg/kg, or about 25-250 mg/kg, or about 50-125 mg/kg. The dose of the CPT-2008 can be about 0.1- 1 mg kg, or about 1-50 mg/kg, or about 50-100 mg/kg, or about 100-150 mg/kg, or about 150-200 mg/kg, or about 200-250 mg/kg, or about 250-300 mg/kg, or about 350-400 mg/kg, or about 450-500 mg/kg, or about 500-550 mg/kg, or about 550-600 mg/kg, or about 600-650 mg/kg, or about 650-700 mg/kg, or about 700-750 mg/kg, or about 750-800 mg/kg, or about 800-850 mg/kg, or about 850-900 mg/kg, or about 900-950 mg/kg, or about 950-1000 mg/kg. The dose of the CPT-2008 can be about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 mg/kg. CPT-2008 can be administered, orally, topically, parenterally, intravenously, intraperitoneally, intramuscularly, intralesionally, intranasally, subcutaneously, or intrathecally using a suitable vehicle, including any of the compositions described above. Alternatively, the CPT-2008 can be administered via a suppository or via implantation of a slow-release device, e.g., a mini-osmotic pump.
[0073] The dosages can be varied depending upon the requirements of the patient, the severity of disease or condition being treated, and the particular formulation being administered. The dose administered to a patient should be sufficient to result in a beneficial therapeutic response in the patient. The size of the dose will also be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of the drug in a particular patient. Determination of the proper dosage for a particular situation is within the skill of the typical practitioner. The total dosage can be divided and
administered in portions over a period of time suitable to treat to the disease or condition.
[0074] Administration of CPT-2008 can be conducted for a period of time which will vary depending upon the nature of the particular disorder, its severity and the overall condition of the patient. Administration can be conducted, for example, hourly, every 2 hours, three hours, four hours, six hours, eight hours, or twice daily including every 12 hours, or any
intervening interval thereof. Administration can be conducted once daily, or once every 36 hours or 48 hours, or once every month or several months. Following treatment, a patient can be monitored for changes in his or her condition and for alleviation of the symptoms of the disorder. The dosage of CPT-2008 can either be increased in the event the patient does not respond significantly to a particular dosage level, or the dose can be decreased if an alleviation of the symptoms is observed, or if unacceptable side effects are seen with a particular dosage. The dosage regimen can consist of two or more different interval sets. For example, a first part of the dosage regimen can be administered to a subject multiple times daily, daily, every other day, or every third day. The dosing regimen can start with dosing the subject every other day, every third day, weekly, biweekly, or monthly. The first part of the dosing regimen can be conducted, for example, for up to 30 days, such as 7, 14, 21, or 30 days. A subsequent second part of the dosing regimen with a different interval administration administered weekly, every 14 days, or monthly can optionally follow, continuing for 4 weeks up to two years or longer, such as 4, 6, 8, 12, 16, 26, 32, 40, 52, 63, 68, 78, or 104 weeks. Alternatively, if the symptoms go into remission or generally improves, the dosage may be maintained or kept at lower than maximum amount. If the condition or symptoms worsen, the first dosage regimen can be resumed until an improvement is seen, and the second dosing regimen can be implemented again. This cycle can be repeated multiple times as necessary. V. Examples
[0075] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
[0076] Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric.
Example 1: Synthesis of CPT-2008
[0077] A convergent synthetic approach was taken to make CPT-2008, in which two fragments (compound 3 and compound 5) were made separately and combined to make the final product (FIG. 1) as described below. The final product had the formula of
Ci6HnChN203S, a molecular weight of 417.69 g/mole, and a purity greater than 95% as determined by HPLC and LCMS/¾ NMR
[0078] The chemical synthesis of CPT-2008 involved the following steps.
1 2
[0079] Preparation of compound 2. To a solution of compound 1 (50 g, 276 mmol) in CHCb (600 mL) was added SO2CI2 (26 mL, 331 mmol) in an ice bath and stirred at reflux for 4 hours. The reaction mixture was concentrated to afford the crude product, which was purified by trituration with PE/EA = 1 : 1 (200 mL) to get desired product as white solid (36 g, 61% yield). 1H MR (400 MHz, DMSO-d6) δ: 7.64 (IH, s), 6.48 (IH, s), 3.81 (3H, s), 3.75 (3H, s).
[0080] Preparation of compound 3. A mixture of compound 2 (26 g, 167 mmol) in a solution of NaOH (13.4 g, 0.334 mmol) in water (400 mL) was stirred at r.t. overnight, after which time complete reaction was observed by TLC. The reaction was acidified with 2N HCl and filtered, washed with water, and dried to provide the desired product as a white solid (30 g, 90% yield). ¾ NMR (400 MHz, DMSO-d6) δ: 7 62 (IH, s), 6.44 (IH, s), 3.80 (3H, s).
5
4
[0081] Preparation of compound 5. To a solution of compound 4 (28.7 g, 149 mmol) in dioxane (300 mL) was added thiophosgene (19.5 mL, 253 mmol), and the mixture was stirred at reflux for 2 h. Complete reaction was observed by TLC, and the reaction mixture was concentrated to afford the crude product as a yellow solid (35 g, 100% yield). ¾ NMR (400 MHz, CDC13) δ: 7.41 (1H, s), 6.76 (1H, s), 3.88 (3H, s).
5 CPT 2008
[0082] Preparation of CPT-2008. To a mixture of compound 5 (35 g, 149 mmol) and compound 3 (30 g, 149 mmol) in 2-propanol (500 mL) was added NaOMe (402 mg, 7.4 mmol), and the mixture was stirred overnight at reflux. The reaction was concentrated, and the resulting residue was suspended in DCM (200 mL) and filtered. The filter cake was washed with DCM (50 mL) to obtain the product as a white solid (21.5 g, 34% yield over two steps). ¾ NMR (400 MHz, DMSO-d6) δ: 13.21 (1H, s), 7.93 (1H, s), 7.79 (1H, s), 7.43 (1H, s), 7.12 (1H, s), 3.98 (3H, s), 3.82 (3H, s); ESI LC-MS: Rt=1.730 min, 418.8 [M+l]+. Example 2. Anti-tumor activity of CPT-2008 in cell culture.
(a) Reagents and Materials
[0083] CellTiter-Glo Luminescent Cell Viability Assay Kit was obtained from Promega. RPMI 1640 was obtained from Invitrogen. Fetal Bovine Serum (FBS) was obtained from Corning. L-glutamine was obtained from Invitrogen. 100X Penicillin-Streptomycin was obtained from HyClone. 0.05% Trypsin-EDTA (T-E) was obtained from Invitrogen. DPBS was obtained from Corning. DMSO was obtained from Sigma. Black 384 well plate was obtained from Greiner. 96-well V bottom plate was obtained from Axygen.
(b) Experimental Procedure
[0084] Cell seeding (Day The cell density of eight adherent cell lines was adjusted according to supplier-recommended information. 50 cells were seeded in four 384-well- plates, and 50 μΐ^ DPBS was added to the edge wells. [0085] Compound preparation (Day 0): All test compounds were dissolved in DMSO and stored in a nitrogen cabinet. The stock concentration of the test compounds was 120 mM. The stock concentration of the reference compounds was 10 mM. The reference compound paclitaxel was diluted with DMSO to provide a 400 μΜ stock solution.
[0086] Cell treatment with test compounds (Day 0): Test compounds (125 nL in DMSO) were added to the wells using an ECHO liquid handling system (Labcyte Inc.) and serially diluted by three fold, providing 10 doses in each series with a maximum
concentration of 300 μΜ. Equal volumes of DMSO without test compound were transferred to control rows in the well plate.
[0087] Cell seeding (Day 0): The cell density of two suspension cell lines was adjusted according to supplier-recommended information. 50 μΐ. of cells were seeded in a 384-well- plate. 50 μί of DPBS were added to the edge wells.
[0088] Using the procedures described above, the highest concentration for the reference compound paclitaxel was 1 μΜ and the DMSO concentration across the well plate was 0.25% (v/v). [0089] Assay (Day 3): After the cells were treated with the compounds for 72 hours, the plates were equilibrated at room temperature for approximately 30 minutes. 25 μΕ of CellTiter Glo reagent was added to each well, and the luminescence in each well was measured after 10 min using an ENVISION fluorescence plate reader (PerkinElmer).
(c) Data Analysis Method [0090] Calculation formula: Inhibition % = (Max-Sample Value)/Max* 100.
[0091] Curves were fitted by Prism with a Sigmoidal dose-response (variable slope) model and generated by 4 Parameter Logistic Model or Sigmoidal Dose-Response Model,
Y=Bottom+(Top-Bottom)/(l+10A((logEC50-x)*HillSlope)).
(d) Results
[0092] CPT-2008 exhibits potent anti-tumor activity in multiple cellular models of cancer. To evaluate the anti-tumor activity of CPT-2008, the growth inhibitory effect of the compound was measured in various human cancer cell lines after 72 hour incubation. In the assays, all the cell lines met the criteria that the viability of adherent/mixed cells was greater than 90% and the viability of suspension cells was greater than 85% during the initial cell plating. All the cell plates in this assay met the criteria that coefficient of variation (CV) < 10%. The data recorded for the paclitaxel reference compound were consistent with the historical published data.
[0093] The cell lines included the following cancer models: T-ALL (T-acute lymphoblastic leukemia) model (Molt-4), T cell leukemia (Jurkat), small cell lung cancer (SCLC: NCH-H82 and NCI-H446), non-small cell lung cancer (NSCLC: NCI-H1299 and A549), glioblastoma (T98G and Ul 18MG), breast cancer (MCF7), ovarian cancer (A2780), and colorectal cancer (HCT116). CPT-2008 exhibited IC50s in the nM range in the NCI-H82, NCI-H446, Jurkat, and A2780 cancer cell lines. In the other cell lines, it exhibited IC50s in the low μΜ range. These results indicate that CPT-2008 possesses potent anti -tumor activity in human cell culture models of cancer.
[0094] CPT-2008 affects mitochondrial function. The efficacy of CPT-2008 against a broad range of cancer models suggest that its mechanism of action is unique, targeting a general cellular mechanism required for cancer cell proliferation. Given the important role of mitochondria in maintaining cancer cells, especially cancer stem cells, the effects of CPT- 2008 on a number of mitochondrial parameters in human glioblastoma (GBM) cells were texted next. First, the effects of CPT-2008 on mitochondrial ROS level were studied. For this purpose, the mito-SOX dye was used. Mito-SOX can specifically monitor mitochondrial ROS levels. As shown in FIG. 15, CPT-2008 caused significant increase of mitochondrial ROS in GBM cells. The effect of CPT-2008 on mitochondrial membrane potential, a key factor that determines mitochondrial health and activity, was also measured using the TRM dye. As shown in FIG. 17, CPT-2008 induced a dramatic reduction of mitochondrial membrane potential in GBM cells. The effect of CPT-2008 on mitochondrial calcium homeostasis was also measured using the Rhod-2AM dye, which specifically monitors mitochondrial calcium levels. As shown in FIG. 14, CPT-2008 caused an increase of mitochondrial calcium. The effect of CPT-2008 on mitochondrial morphology was also measured using immunostaining of the mitochondrial outer membrane marker Tom20. As shown in FIG. 16, CPT-2008 induced a dramatic fragmentation of mitochondria, resulting in
small and round mitochondria as opposed to the long and tubular mitochondria in control cells. Together, these results indicate that CPT-2008 affects mitochondrial function. Finally, the effect of CPT-2008 on the self-renewal of GBM cells was tested. As shown in FIG. 18, CPT-2008 significantly inhibited the self-renewal of GBM cells, as measured by the ability to form neurospheres in culture.
Example 3. CPT-2008 provides improved protective effects in an in vivo stroke model.
[0095] Edaravone (3-methyl-l-phenyl-2-pyrazolin-5-one) is a reactive oxygen species (ROS) scavenger approved for the treatment of stroke and ALS in Japan, and for the treatment of ALS in the United States. The efficacy of CPT-2008 for preventing brain damage in a rat middle cerebral artery occlusion (MCOA) model was compared with the efficacy of edaravone. Sprague-Dawley rats were dosed with vehicle, edaravone (6 mg/kg), or CPT-2008 (25-100 mg/kg), and the level of infarcted brain tissue was assessed. In this study rats underwent middle cerebral artery occlusion (MCAO) for 1.5 h followed by 24 h reperfusion. CPT-2008 was given intraperitoneally 0 h and 8 h after reperfusion, and behavior deficits and brain insult were assessed by Longa score scale and TTC staining, respectively. As shown in FIG. 19A and FIG. 19B, the reduced levels of dead brain tissue upon treatment with CPT-2008 indicate that CPT-2008 outperforms edaravone. It is believed that the improved benefit of CPT-2008 is due, in part, to prevention ROS formation in brain tissue mitochondria. Example 4. CPT-2008 exhibits efficacy in a chemo-induced neuropathic pain model.
[0096] An estimated 30-40% of cancer patients undergoing chemotherapy experience peripheral neuropathic pain, a neuroinflammation-induced debilitating side effect that causes patients to stop their treatment early or take lower doses. The effects of CPT-2008 in reducing neuropathic pain were studied in paclitaxel -treated rats. After paclitaxel treatment for 8 days, Sprague-Dawley rats were housed for additional days. On day 22, 16 rats were randomly separated into two groups. One group was dosed with vehicle, and the other group was dosed via intraperitoneal injection with CPT-2008 at 100 mg/kg. Pain (mechanical allodynia) test subjects was assessed using a paw withdrawal test (PWT) as described by Xie ("Activation of notch signaling mediates the induction and maintenance of mechanical allodynia in a rat model of neuropathic pain." Molecular Medicine Reports 12: 639-644,
2015). Rats were measured for paw withdrawal threshold post dosing of test compound at 1.5
h, 3 h, and 4.5 h. Administration of CPT-2008 to paclitax el-treated animals decreased pain sensitivity, as indicated by the increased threshold values shown in FIG. 20.
Example 5. Study of CPT-2008 pharmacokinetic properties.
[0097] Sprague-Dawley rats were administered CPT-2008 by IV or PO. Blood samples (about 1 mL) were collected via cardiac puncture after euthanasia by carbon dioxide inhalation at 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h of post dose. Blood samples were placed into tubes containing heparin sodium and centrifuged at 3500 rpm for 10 minutes at 4 °C to separate plasma from the samples. Following centrifugation, the resulting plasma was transferred to labeled tubes and stored frozen at -80 °C pending bioanalysis. The brain each studied animal at each time point was collected after the animal was euthanized by carbon dioxide inhalation. The whole tissue was harvested, excised and then placed into one tube per tissue per animal. The tissue samples were placed on dry ice and then stored at -80 °C until bioanalysis.
[0098] CPT-2008 was found to efficiently cross the blood brain barrier, as shown in FIG. 21A and FIG. 21B. The measured plasma bioavailability for CPT-2008 in rats was 94.5%. The measured brain bioavailability was 38.97%, with drug detected in brain plasma, cerebrum, cerebellum, and brain stem. In beagle dogs, the concentration of CPT-2008 in various brain regions (left cerebrum, right cerebrum, cerebellum, and brain stem) reached 1.5 to 2 μΜ, which was close to or above the compound' s EC50 values in a number of cancer cell lines. The compound also exhibited excellent stability in microsomes and hepatocytes. For example, the measured half-life was around 3.6 hours in human microsomes and around 94.3 hours (3.9 days) in human hepatocytes.
VI. References
[0099] Alfred V, Vaccari T. 2018. "Mechanisms of Non-canonical Signaling in Health and Disease: Diversity to Take Therapy up a Notch?" Adv Exp Med Biol. 1066: 187-204. \
[0100] Andersen P, Uosaki H, Shenje LT, Kwon C. 2012. "Non-canonical Notch signaling: emerging role and mechanism." Trends Cell Biol 22: 257-265.
[0101] Andersson ER, Lendahl U. 2014. "Therapeutic modulation of Notch signalling—are we there yet?" Nat Rev Drug Discov. 13 (5): 357-78.
[0102] Areti A, Yerra VG, Komirishetty P, Kumar A. 2016. "Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies." Curr
Neuropharmacol 14: 593-609.
[0103] Artavanis-Tsakonas S, Muskavitch MA. 2010. "Notch: the past, the present, and the future." Curr Top Dev Biol 92: 1-29.
[0104] Arun S, Liu L, Donmez G. 2016. "Mitochondrial Biology and Neurological Diseases." Curr Neuropharmacol 14: 143-154.
[0105] Cahill J, Calvert JW, Zhang JH. 2006. "Mechanisms of early brain injury after subarachnoid hemorrhage." J Cereb Blood Flow Metab 26: 1341-1353. [0106] Dawson TM, Dawson VL. 2017. "Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics." Annu Rev Pharmacol Toxicol 57: 437-454.
[0107] de Moura MB, dos Santos LS, Van Houten B. 2010. "Mitochondrial dysfunction in neurodegenerative diseases and cancer." Environ Mol Mutagen 51 : 391-405.
[0108] Emma F, Montini G, Parikh SM, Salviati L. 2016. "Mitochondrial dysfunction in inherited renal disease and acute kidney injury." Nat Rev Nephrol 12: 267-280.
[0109] Galluzzi L, Kepp O, Kroemer G. 2016. "Mitochondrial regulation of cell death: a phylogenetically conserved control." Microb Cell 3: 101-108.
[0110] Ganguly G, Chakrabarti S, Chatterj ee U, Saso L. 2017. "Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease." DrugDes Bevel Ther 11: 797-810.
[0111] Glancy B, Balaban RS. 2012. "Role of mitochondrial Ca2+ in the regulation of cellular energetics." Biochemistry 51: 2959-2973.
[0112] Hedskog L, Zhang S, Ankarcrona M. 2012. "Strategic role for mitochondria in Alzheimer's disease and cancer." Antioxid Redox Signal 16: 1476-1491. [0113] Hiebert JB, Shen Q, Thimmesch AR, Pierce JD. 2015. "Traumatic brain injury and mitochondrial dysfunction." Am J Med Sci 350: 132-138.
[0114] Kauppila TES, Kauppila JHK, Larsson NG. 2017. "Mammalian Mitochondria and Aging: An Update." Cell Metab 25: 57-71.
[0115] Kopan R, Ilagan MX. 2009. T"he canonical Notch signaling pathway: unfolding the activation mechanism." Cell 137: 216-233.
[0116] Lee KS, Wu Z, Song Y, Mitra SS, Feroze AH, Cheshier SH, Lu B. 2013. "Roles of PINKl, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical Notch signaling pathway." Genes & development 27: 2642-2647.
[0117] Lerner CA, Sundar IK, Rahman I. 2016. "Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD." Int J Biochem Cell Biol 81: 294-306.
[0118] Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. 2017. "Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies." Annu Rev Pharmacol Toxicol 57: 535-565.
[0119] Lleonart ME, Grodzicki R, Graifer DM, Lyakhovich A. 2017. "Mitochondrial dysfunction and potential anticancer therapy." Med Res Rev.
[0120] Malhotra JD, Kaufman RJ. 2011. "ER stress and its functional link to mitochondria: role in cell survival and death." Cold Spring Harbor perspectives in biology 3: a004424. [0121] Mathieu P, Adami PV, Morelli L. 2013. "Notch signaling in the pathologic adult brain." Biomol Concepts. 4 (5):465-76.
[0122] Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC. 2016. "There's Something Wrong with my MAM; the ER-Mitochondria Axis and
Neurodegenerative Diseases." Trends Neurosci 39: 146-157. [0123] Perumalsamy LR, Nagala M, Sarin A. 2010. "Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival." Proceedings of the National Academy of Sciences of the United States of America 107: 6882-6887.
[0124] Pickrell AM, Youle RJ. 2015. "The roles of PINKl, parkin, and mitochondrial fidelity in Parkinson's disease." Neuron 85: 257-273. [0125] Pieczenik SR, Neustadt J. 2007. "Mitochondrial dysfunction and molecular pathways of disease." Exp Mol Pathol 83: 84-92.
[0126] Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. 2016. "Oxidant Mechanisms in Renal Injury and Disease." Antioxid Redox Signal 25: 1 19-146.
[0127] Rugarli EI, Langer T. 2012. "Mitochondrial quality control: a matter of life and death for neurons." The EMBO journal.
[0128] Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP. 2017 "Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders." J Clin Med 6.
[0129] Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL. 2013. "Understanding the role of mitochondria in the pathogenesis of chronic pain." Postgrad Med J 89: 709-714.
[0130] Sutendra G, Michelakis ED. 2014. "The metabolic basis of pulmonary arterial hypertension." CellMetab 19: 558-573.
[0131] Takebe N, Harris PJ, Warren RQ, Ivy SP. 201 1. "Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways." Nat Rev Clin Oncol 8: 97-106.
[0132] Wallace DC. 2005. "A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine." Annu Rev Genet 39: 359- 407.
[0133] Wallace DC. 2012. "Mitochondria and cancer." Nat Rev Cancer 12: 685-698.
[0134] Zhang R, Engler A, Taylor V. 2018. "Notch: an interactive player in neurogenesis and disease." Cell Tissue Res. 371 (l):73-89
[0135] Zsurka G, Kunz WS. 2015. "Mitochondrial dysfunction and seizures: the neuronal energy crisis." Tancet Neurol 14: 956-966.
[0136] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications may be practiced within the scope of the appended claims. In addition, each reference provided herein is incorporated by reference in its entirety to the same extent as if each reference was individually incorporated by reference. Where a conflict exists between the instant application and a reference provided herein, the instant application shall dominate.
Claims (14)
- WHAT IS CLAIMED IS: 1. A compound according to Formula I:ocl clor a pharmaceutically acceptable salt thereof.
- 2. A pharmaceutical composition for treating a disease or condition associated with mitochondrial dysfunction, the composition comprising the compound of claim 1 according to Formula I, a pharmaceutically acceptable salt thereof, or a derivative thereof, and a pharmaceutically acceptable carrier.
- 3. A method for treating a disease or condition associated with mitochondrial dysfunction, the method comprising an effective amount of the compound of claim 1 or an effective amount of the composition of claim 2 to a subject in need thereof.
- 4. The method of claim 3, wherein the effective amount is a therapeutically effective amount.
- 5. The method of claim 3, wherein the effective amount is a prophylactically effective amount.
- 6. The method of claim 3, wherein the disease is cancer.
- 7. The method of claim 6, wherein the cancer is T-acute lymphoblastic leukemia (T-ALL), small cell lung cancer (SCLC), non-small cell lung cancer (NSCL), glioblastoma, colorectal cancer, breast cancer, or ovarian cancer.
- 8. The method of claim 3, wherein the disease is a neurodegenerative disease.
- 9. The method of claim 8, wherein the neurodegenerative disease is Parkinson' s disease, Alzheimer's disease, amyotrophic lateral sclerosis, or Huntington' s disease.
- 10. The method of claim 3, wherein the condition is a brain condition.
- 11. The method of claim 10, wherein the brain condition is stroke, seizure, neuropathic pain, traumatic brain injury, spinal cord injury, aneurysm, or subarachnoid hemorrhage.
- 12. The method of claim 3, wherein the disease or condition is a non- neurological disorder.
- 13. The method of claim 14, wherein the non-neurological disorder is sepsis, acute kidney injury, cardiorenal syndrome, cardiac ischemia-reperfusion injury, pulmonary arterial hypertension, chronic obstructive pulmonary disease, or vasoconstriction.
- 14. The method of claim 3, wherein the condition is human aging caused by mitochondrial dysfunction.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762558323P | 2017-09-13 | 2017-09-13 | |
US62/558,323 | 2017-09-13 | ||
PCT/US2018/050689 WO2019055528A1 (en) | 2017-09-13 | 2018-09-12 | A novel small molecule compound |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2018331371A1 AU2018331371A1 (en) | 2020-04-02 |
AU2018331371B2 true AU2018331371B2 (en) | 2024-02-15 |
AU2018331371C1 AU2018331371C1 (en) | 2024-05-09 |
Family
ID=65723058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2018331371A Active AU2018331371C1 (en) | 2017-09-13 | 2018-09-12 | A novel small molecule compound |
Country Status (9)
Country | Link |
---|---|
US (3) | US11186550B2 (en) |
EP (1) | EP3681874B1 (en) |
JP (1) | JP7170341B2 (en) |
KR (1) | KR102644045B1 (en) |
CN (1) | CN111372921B (en) |
AU (1) | AU2018331371C1 (en) |
CA (1) | CA3075649A1 (en) |
IL (1) | IL273242B2 (en) |
WO (1) | WO2019055528A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3131294A1 (en) * | 2019-02-27 | 2020-09-03 | Cerepeut, Inc. | Quinazolinone compounds |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051974A2 (en) * | 2003-06-09 | 2005-06-09 | The Regents Of The University Of California | Novel molecules for regulating cell death |
US8759097B2 (en) * | 2011-04-19 | 2014-06-24 | University of Pittsburgh—of the Commonwealth System of Higher Eduction | Inhibition of dynamin related protein 1 to promote cell death |
US20150164896A1 (en) * | 2013-12-13 | 2015-06-18 | The Board Of Trustees Of The Leland Stanford Junior University | Targeting a non-canonical notch signaling pathway for cancer treatment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060011785A (en) | 2002-06-27 | 2006-02-03 | 디 인다우먼트 포 리써치 인 휴먼 바이올로지, 인크. | Compounds useful for the inhibition of aldh |
EP1957475A1 (en) | 2005-10-21 | 2008-08-20 | Merz Pharma GmbH & Co.KGaA | Chromenones and their use as modulators of metabotropic glutamate receptors |
US9492450B2 (en) * | 2011-04-19 | 2016-11-15 | University of Pittsburgh—of the Commonwealth System of Higher Education | Inhibition of dynamin related protein 1 to promote cell death |
JP2013142070A (en) | 2012-01-11 | 2013-07-22 | Nihon Univ | Overcoming of trail resistivity using mitochondria division inhibitor |
WO2014105751A1 (en) | 2012-12-28 | 2014-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for treatment of mitochondrial diseases and for differentiation of cells to neurons |
US9289448B2 (en) | 2013-03-15 | 2016-03-22 | Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for treating alzheimer's disease and other tauopathies |
GB201522232D0 (en) | 2015-12-16 | 2016-01-27 | Liverpool School Tropical Medicine | Combination product |
-
2018
- 2018-09-12 KR KR1020207010525A patent/KR102644045B1/en active IP Right Grant
- 2018-09-12 AU AU2018331371A patent/AU2018331371C1/en active Active
- 2018-09-12 US US16/647,383 patent/US11186550B2/en active Active
- 2018-09-12 CN CN201880070789.4A patent/CN111372921B/en active Active
- 2018-09-12 EP EP18856020.5A patent/EP3681874B1/en active Active
- 2018-09-12 CA CA3075649A patent/CA3075649A1/en active Pending
- 2018-09-12 WO PCT/US2018/050689 patent/WO2019055528A1/en unknown
- 2018-09-12 JP JP2020515882A patent/JP7170341B2/en active Active
-
2020
- 2020-03-11 IL IL273242A patent/IL273242B2/en unknown
-
2021
- 2021-11-29 US US17/537,142 patent/US11912669B2/en active Active
-
2024
- 2024-02-26 US US18/587,753 patent/US20240246919A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051974A2 (en) * | 2003-06-09 | 2005-06-09 | The Regents Of The University Of California | Novel molecules for regulating cell death |
US8450333B2 (en) * | 2003-06-09 | 2013-05-28 | The Regents Of The University Of California | Molecules for regulating cell death |
US8759097B2 (en) * | 2011-04-19 | 2014-06-24 | University of Pittsburgh—of the Commonwealth System of Higher Eduction | Inhibition of dynamin related protein 1 to promote cell death |
US20150164896A1 (en) * | 2013-12-13 | 2015-06-18 | The Board Of Trustees Of The Leland Stanford Junior University | Targeting a non-canonical notch signaling pathway for cancer treatment |
Also Published As
Publication number | Publication date |
---|---|
IL273242B2 (en) | 2023-08-01 |
CA3075649A1 (en) | 2019-03-21 |
IL273242B1 (en) | 2023-04-01 |
KR20200053560A (en) | 2020-05-18 |
US20220340534A1 (en) | 2022-10-27 |
JP7170341B2 (en) | 2022-11-14 |
IL273242A (en) | 2020-04-30 |
CN111372921B (en) | 2023-12-01 |
US20200216400A1 (en) | 2020-07-09 |
EP3681874A4 (en) | 2021-01-13 |
CN111372921A (en) | 2020-07-03 |
EP3681874B1 (en) | 2022-04-06 |
US20240246919A1 (en) | 2024-07-25 |
AU2018331371C1 (en) | 2024-05-09 |
US11912669B2 (en) | 2024-02-27 |
AU2018331371A1 (en) | 2020-04-02 |
KR102644045B1 (en) | 2024-03-05 |
EP3681874A1 (en) | 2020-07-22 |
WO2019055528A1 (en) | 2019-03-21 |
US11186550B2 (en) | 2021-11-30 |
JP2020533399A (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240246919A1 (en) | Novel small molecule compound | |
US20190282544A1 (en) | Pharmaceutical combination for the treatment of melanoma | |
CN101287728A (en) | Novel high affinity thiophene-based and furan-based kinase ligands | |
US20210085649A1 (en) | Methods and use of compounds that bind to rela of nf-kb | |
JPH08502488A (en) | Tumoricidal activity of benzoquinoid ansamycin against prostate cancer and early neurological malignancies | |
CN111971063A (en) | Treatment of diseases by targeted modulation of gene signaling networks | |
US11987568B2 (en) | Allosteric inhibitor of WEE1 kinase | |
KR20170080447A (en) | Pharmaceutical composition for preventing, treating and inhibiting metastasis of tumor comprising sulfonamide | |
US20210308111A1 (en) | Clinical Methods And Pharmaceutical Compositions Employing AMPA Receptor Antagonists To Treat Glioblastoma And Other Cancers | |
JP6293258B2 (en) | Treatment of chemotherapy-induced cognitive impairment | |
US20220162172A1 (en) | Quinazolinone compounds | |
TWI542348B (en) | Use of a composition containing 4-acetyl-antroquinonol b for preparing pharmaceutical compositions for inhibiting growth of cancer cells | |
CN100415219C (en) | Substituted bicyclo[3.3.1]nonan-2,4,9-triones as pharmaceutical active ingredients | |
US20240355686A1 (en) | Clinical Methods and Pharmaceutical Compositions Employing AMPA Receptor Antagonists to Treat Glioblastoma and Other Cancers | |
WO2017069913A1 (en) | Chalcone compounds | |
KR20030085421A (en) | Pharmaceutical Composition Containing Actin Inhibitor For Treatment Of Cancer Lacking Functional p53 or p21 gene | |
EP4408538A1 (en) | Cannabinoids c- and o-glycosides possessing anti-proliferative and anti-metastatic properties and process for preparation thereof | |
CN112999236A (en) | Application of ouabain in treating brain stem glioma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 09 FEB 2024 |
|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT FILED 09 FEB 2024 |
|
FGA | Letters patent sealed or granted (standard patent) |