JP2013142070A - Overcoming of trail resistivity using mitochondria division inhibitor - Google Patents

Overcoming of trail resistivity using mitochondria division inhibitor Download PDF

Info

Publication number
JP2013142070A
JP2013142070A JP2012002840A JP2012002840A JP2013142070A JP 2013142070 A JP2013142070 A JP 2013142070A JP 2012002840 A JP2012002840 A JP 2012002840A JP 2012002840 A JP2012002840 A JP 2012002840A JP 2013142070 A JP2013142070 A JP 2013142070A
Authority
JP
Japan
Prior art keywords
trail
group
cancer
inhibitor
mitochondrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002840A
Other languages
Japanese (ja)
Inventor
Yoshihiro Suzuki
良弘 鈴木
Toshio Inoue
寿男 井上
Miki Suzuki
美喜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2012002840A priority Critical patent/JP2013142070A/en
Publication of JP2013142070A publication Critical patent/JP2013142070A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To overcome TRAIL resistivity in a cancer cell, particularly, in a malignant tumor.SOLUTION: The fact that a mitochondria division inhibitor can be utilized for overcoming the TRAIL resistivity of a cancer cell has been found. TRAIL induced apoptosis can be reinforced in a tumor showing TRAIL resistivity by using a mitochondria division inhibitor together with TRAIL. The agent and method effectively kill a cancer cell with TRAIL resistivity, but does not show cytotoxicity to a normal cell at all or shows the same only little. Thus, by using the agent or method, the prognosis of a cancer patient is improved, or the QOL of a TRAIL therapy subject can be improved.

Description

本件発明は、TRAILを含有する抗癌剤に対する感受性を増強させる医薬の分野に属する。   The present invention belongs to the field of pharmaceuticals that enhance the sensitivity to anticancer agents containing TRAIL.

腫瘍壊死因子関連アポトーシス誘発リガンド(tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)、別名APO-2L)は腫瘍壊死因子スーパーファミリーの一員であり、種々多様な癌細胞に対して抗腫瘍活性を示し、かつ、ほとんどの正常細胞及び組織に対して細胞傷害性を示さないことから近年注目されている(非特許文献1)。TRAILはデスリガンド(death ligand)の一員であり、標的細胞上のデスレセプター(death receptor)に結合し、所謂デスレセプター経路(death receptor pathway)を介して標的細胞のアポトーシスを誘導する。TRAILが特異的に結合するデスレセプターとして、デスレセプター4(death receptor 4 (DR4)、別名TRAIL-R1;TNFRSF10A)とデスレセプター5(death receptor 5 (DR5)、別名TRAIL-R2;TNFRSF10B)が同定されている。   Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO-2L, is a member of the tumor necrosis factor superfamily and exhibits antitumor activity against a wide variety of cancer cells. In recent years, it has attracted attention because it does not show cytotoxicity to most normal cells and tissues (Non-patent Document 1). TRAIL is a member of the death ligand, binds to the death receptor on the target cell, and induces apoptosis of the target cell via the so-called death receptor pathway. Death receptor 4 (death receptor 4 (DR4), also known as TRAIL-R1; TNFRSF10A) and death receptor 5 (death receptor 5 (DR5), also known as TRAIL-R2; TNFRSF10B) are identified as death receptors that specifically bind to TRAIL Has been.

しかし、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、神経芽細胞腫などの悪性腫瘍は、DR4又はDR5が発現しているにも拘らずTRAIL抵抗性(TRAIL resistance / resistance to TRAIL)を示すことが知られている。また、TRAILタンパク質を継続的に投与すると、TRAIL抵抗性の癌細胞が選択されて増幅し、やがて被験者はTRAIL抵抗性を獲得することが知られている(非特許文献2)。従って、これらの癌細胞のTRAIL抵抗性の克服は、TRAILの臨床応用上非常に重要な課題となっている。   However, malignant tumors such as chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, neuroblastoma, etc. are not affected by TRAIL resistance (TRAIL resistance / resistance to TRAIL). Moreover, it is known that when TRAIL protein is continuously administered, TRAIL-resistant cancer cells are selected and amplified, and eventually the subject acquires TRAIL resistance (Non-patent Document 2). Therefore, overcoming the TRAIL resistance of these cancer cells is a very important issue for clinical application of TRAIL.

TRAIL抵抗性を克服するための薬剤として、DNA架橋剤オキサリプラチン(oxaliplatin)(非特許文献3)、PI3K阻害剤PI103(非特許文献4)、プロテアソーム阻害剤MG132(非特許文献5)、DNA架橋剤シスプラチン(cisplatin)(非特許文献6)、マングローブ由来の化合物(非特許文献7)、HDAC阻害薬MS-275(非特許文献8)、Rafキナーゼ阻害薬ソラフェニブ(sorafenib)(非特許文献9)、植物フェニルプロパノイド系中間二次代謝産物ナリンゲニン(naringenin)(非特許文献10)、プロテアソーム・NF-κB阻害剤ボルテゾミブ(bortezomib)(非特許文献11)、ヒストンアセチル化酵素p300阻害剤ガルシノール(Garcinol)(非特許文献12)、アデノシン受容体A3アゴニストCl-IB-MECA(非特許文献13)、HDAC阻害薬トリコスタチンA(trichostatin A)(非特許文献14)、hedgehogシグナル特異的阻害剤KAAD-シクロパミン(KAAD-Cyclopamine)(非特許文献15)、HDAC阻害薬アピシジン(apicidin)(非特許文献16)、HDAC阻害薬KD5170(非特許文献17)、抗生物質タウロリジン(taurolidine)(非特許文献18)、フリゴカンジダ由来化合物Fuligocandin B(非特許文献19)、プロテアソーム阻害薬ベンジルオキシカルボニルロイシルロイシルロイシンアルデヒド(benzyloxycarbonylleucyl-leucyl-leucine aldehyde, MG-132)(非特許文献20)、HDAC阻害薬バルプロ酸(valproic acid)(非特許文献21)、黄金花(Scutellaria baicalensis)由来のフラボノイドであるオウゴニン(Wogonin)(非特許文献22、非特許文献23)、カレー色素クルクミン(curcumin)(非特許文献24)、BIRドメイン結合オリゴペプチド(BIR Domain Binding oligopeptide)(特許文献1)が報告されている。   As drugs to overcome TRAIL resistance, DNA cross-linking agent oxaliplatin (non-patent document 3), PI3K inhibitor PI103 (non-patent document 4), proteasome inhibitor MG132 (non-patent document 5), DNA cross-linking Cisplatin (non-patent document 6), mangrove-derived compound (non-patent document 7), HDAC inhibitor MS-275 (non-patent document 8), Raf kinase inhibitor sorafenib (non-patent document 9) , Plant phenylpropanoid intermediate metabolite naringenin (Non-Patent Document 10), proteasome NF-κB inhibitor bortezomib (Non-patent Document 11), histone acetylase p300 inhibitor Garcinol (Garcinol) (Non-patent document 12), adenosine receptor A3 agonist Cl-IB-MECA (non-patent document 13), HDAC inhibitor trichostatin A (trichostatin A) (non-patent document 14), hedgehog signal-specific inhibitor KAAD- Cyclopamine (KAAD-Cyclopamine) (Non-patent Document 15) HDAC inhibitor apicidin (Non-patent document 16), HDAC inhibitor KD5170 (Non-patent document 17), antibiotic taurolidine (Non-patent document 18), Frigigocandin B (Non-patent document 19) ), Proteasome inhibitor benzyloxycarbonylleucyl-leucyl-leucine aldehyde, MG-132 (Non-patent document 20), HDAC inhibitor valproic acid (Non-patent document 21), Golden Flower (Scutellaria baicalensis) -derived flavonoid Wogonin (Non-patent document 22, Non-patent document 23), curry dye curcumin (non-patent document 24), BIR domain binding oligopeptide (BIR Domain Binding oligopeptide) (Patent Document 1) has been reported.

DNA架橋剤、HDAC阻害薬、プロテアソーム阻害剤などの抗癌剤は、正常細胞及び組織に対する副作用を有するが、TRAILと同時投与することにより相乗作用を示し、容認可能な程度の副作用をもって制癌作用を発揮できる可能性がある。しかし、これらの化合物によるTRAIL感受性増強作用は癌細胞に対する選択性が低く、理想的なTRAIL感受性増強剤とは言えない。   Anti-cancer drugs such as DNA cross-linking agents, HDAC inhibitors, and proteasome inhibitors have side effects on normal cells and tissues, but show synergism when coadministered with TRAIL and exert anticancer effects with acceptable side effects There is a possibility. However, the TRAIL sensitivity enhancing action by these compounds has low selectivity for cancer cells, and is not an ideal TRAIL sensitivity enhancing agent.

Fasらは、オウゴニンが、Jurkat株化細胞(ヒト白血病T細胞株)においてTRAIL誘導性アポトーシスを増強するのに対し、新鮮に単離された末梢血T細胞においてはTRAIL誘導性アポトーシスを増強しないことを示した(非特許文献22)。また、Leeらは、LNCaP細胞(ヒト前立腺癌細胞由来培養細胞株)及びYPEN株化細胞(ラット前立腺内皮細胞由来)を用いた系において、同様の癌細胞選択的な効果を報告している(非特許文献23)。Leeらは、更に、オウゴニンとTRAILの同時投与が誘導型カスパーゼであるカスパーゼ8及びカスパーゼ9、並びに、実行型カスパーゼ(executioner caspase)であるカスパーゼ3の切断を導くこと、オウゴニンが活性酸素種の産生を誘導すること、当該活性酸素種がDNA損傷を引き起こすこと、及び当該DNA損傷によりp53が上方制御されることを示唆している(非特許文献23)。   Fas et al. Show that ougonin enhances TRAIL-induced apoptosis in Jurkat cell lines (human leukemia T-cell line), but not TRAIL-induced apoptosis in freshly isolated peripheral blood T cells. (Non-patent Document 22). In addition, Lee et al. Reported similar cancer cell selective effects in a system using LNCaP cells (cultured cell lines derived from human prostate cancer cells) and YPEN cell lines (derived from rat prostate endothelial cells) ( Non-patent document 23). Lee et al. Further show that coadministration of ougonin and TRAIL leads to the cleavage of inducible caspases caspase 8 and caspase 9, and caspase 3, an executioner caspase, and ougonin produces reactive oxygen species. This suggests that the reactive oxygen species cause DNA damage and that p53 is up-regulated by the DNA damage (Non-patent Document 23).

上記のデスレセプター経路は外因性アポトーシス・プログラム(extrinsic apoptotic program)又は受容体活性化アポトーシス経路(receptor-activated apoptotic pathway)と呼ばれ、2つの主要なアポトーシス経路の一つである。他方の経路は内因性アポトーシス・プログラム(intrinsic apoptotic program)又はストレス活性化アポトーシス経路(stress-activated apoptotic pathway)と呼ばれ、ミトコンドリア外膜透過処理(mitochondrial outer membrane permeabilization, MOMP)を介したミトコンドリア膜間腔から細胞質へのチトクロムc(cytochrome c)の放出を伴う。細胞質のチトクロムcは、Apaf-1及びカスパーゼ9と共にアポプトソーム(apoptosome)を形成し、実行型カスパーゼであるカスパーゼ3、6、7を活性化する。   The death receptor pathway described above is called the extrinsic apoptotic program or the receptor-activated apoptotic pathway and is one of two major apoptotic pathways. The other pathway is called the intrinsic apoptotic program or the stress-activated apoptotic pathway, and it is between mitochondrial membranes via mitochondrial outer membrane permeabilization (MOMP). With the release of cytochrome c from the cavity into the cytoplasm. Cytoplasmic cytochrome c forms an apoptosome with Apaf-1 and caspase 9, and activates caspases 3, 6, and 7, which are operative caspases.

これらの外因性及び内因性のアポトーシス経路は、デスレセプターによるカスパーゼ8の活性化、これに続く実行型カスパーゼ及びBIDの活性化を通じて互いにクロストークすることが知られている。   These extrinsic and intrinsic apoptotic pathways are known to cross-talk with each other through activation of caspase 8 by death receptors, followed by activation of executive caspases and BID.

Cassidy-Stoneらは、ミトコンドリア分裂阻害剤のmdivi-1がミトコンドリア分裂ダイナミンDrp1を選択的に阻害すること、及びmdivi-1はBax/Bak依存性のMOMPを阻害することによりアポトーシスを減弱させることを示した。(非特許文献25)。このアポトーシス抑制効果により、脳卒中、心筋梗塞、神経変性疾患などの異常な細胞死が関与する疾患の治療薬として注目されている。   Cassidy-Stone et al. Show that the mitochondrial mitotic inhibitor mdivi-1 selectively inhibits mitochondrial dynamin Drp1, and mdivi-1 attenuates apoptosis by inhibiting Bax / Bak-dependent MOMP. Indicated. (Non-patent document 25). Due to this apoptosis inhibitory effect, it has attracted attention as a therapeutic agent for diseases involving abnormal cell death such as stroke, myocardial infarction, and neurodegenerative diseases.

驚くべきことに、本発明者らは、アポトーシス抑制効果を有するmdivi-1が、TRAILと併用することにより癌細胞のTRAIL誘導性アポトーシスを増強することを見出した。TRAILとmdivi-1を併用した場合、デスレセプター経路を介したアポトーシスの特徴であるカスパーゼ8の活性化は観察されず、小胞体ストレスならびに小胞体結合カスパーゼ12の活性化が惹起され、小胞体経路を介して経路を介してアポトーシスが誘導されていることが示唆される(本発明者らの未発表データ。データを示さず。)。   Surprisingly, the present inventors have found that mdivi-1 having an apoptosis inhibitory effect enhances TRAIL-induced apoptosis of cancer cells when used in combination with TRAIL. When TRAIL and mdivi-1 were used in combination, activation of caspase 8, which is a feature of apoptosis via the death receptor pathway, was not observed, and endoplasmic reticulum stress and activation of endoplasmic reticulum-bound caspase 12 were induced, and the endoplasmic reticulum pathway It is suggested that apoptosis is induced via the pathway via the present invention (unpublished data of the present inventors, data not shown).

[略号の説明]
TRAIL:tumor necrosis factor-related apoptosis-inducing ligand
APO-2L:Apo-2 ligand、TRAILの別名
DR4:death receptor 4
DR5:death receptor 5
TRAIL-R1:TNF-related apoptosis inducing ligand receptor 1; TRAIL receptor 1、DR4の別名
TRAIL-R2:TNF-related apoptosis inducing ligand receptor 2; TRAIL receptor 2、DR5の別名
TNFRSF10A:tumor necrosis factor receptor superfamily member 10A、DR4の別名
TNFRSF10B:tumor necrosis factor receptor superfamily member 10B、DR5の別名
HDAC:histone deacetylase
QOL:quality of life
MOMP:mitochondrial outer membrane permeabilization
[Explanation of abbreviations]
TRAIL: tumor necrosis factor-related apoptosis-inducing ligand
APO-2L: Apo-2 ligand, another name for TRAIL
DR4: death receptor 4
DR5: death receptor 5
TRAIL-R1: TNF-related apoptosis inducing ligand receptor 1; another name for TRAIL receptor 1, DR4
TRAIL-R2: TNF-related apoptosis inducing ligand receptor 2; another name for TRAIL receptor 2, DR5
TNFRSF10A: tumor necrosis factor receptor superfamily member 10A, also known as DR4
TNFRSF10B: tumor necrosis factor receptor superfamily member 10B, also known as DR5
HDAC: histone deacetylase
QOL: quality of life
MOMP: mitochondrial outer membrane permeabilization

本件発明が解決しようとする課題は、癌細胞、特に悪性腫瘍におけるTRAIL抵抗性を克服することである。   The problem to be solved by the present invention is to overcome TRAIL resistance in cancer cells, particularly malignant tumors.

本発明者らは、癌細胞のTRAIL抵抗性を克服するためにミトコンドリア分裂阻害剤が利用できることを見出した。ミトコンドリア分裂阻害剤をTRAILと併用することにより、TRAIL抵抗性を示す腫瘍においてTRAIL誘導性アポトーシスを増強することができる。   The inventors have found that mitochondrial mitotic inhibitors can be used to overcome the TRAIL resistance of cancer cells. By using a mitochondrial mitotic inhibitor in combination with TRAIL, TRAIL-induced apoptosis can be enhanced in tumors exhibiting TRAIL resistance.

具体的には、本件発明の態様には以下のものが含まれる。
[実施態様1]
有効量のミトコンドリア分裂阻害剤を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させるための医薬:
ここで、当該医薬はTRAILポリペプチドと同時に又は逐次的に投与される。
[実施態様2]
前記ミトコンドリア分裂阻害剤が下記一般式で表される、実施態様1に記載の医薬:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
[実施態様3]
前記ミトコンドリア分裂阻害剤がmdivi-1である、実施態様1に記載の医薬。
[実施態様4]
前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、実施態様1から3のいずれか1項に記載の医薬。
[実施態様5]
前記投与が、塗布、静注、筋注、又は経口による投与である、実施態様1から4のいずれか1項に記載の医薬。
[実施態様6]
前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、実施態様1から5のいずれか1項に記載の医薬。
[実施態様7]
有効量のTRAILポリペプチドを更に含む、実施態様1から6のいずれか1項に記載の医薬。
[実施態様8]
以下の構成要素を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させるための医薬のキット:
有効量のミトコンドリア分裂阻害剤、及び、
TRAILポリペプチドとの同時又は逐次的投与により、前記癌細胞の選択的なTRAIL誘導性アポトーシスが増加する旨を記載した説明書。
[実施態様9]
前記ミトコンドリア分裂阻害剤が下記一般式で表される、実施態様8に記載のキット:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
[実施態様10]
前記ミトコンドリア分裂阻害剤がmdivi-1である、実施態様8に記載のキット。
[実施態様11]
前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、実施態様8から10のいずれか1項に記載のキット。
[実施態様12]
前記投与が、塗布、静注、筋注、又は経口による投与である、実施態様8から11のいずれか1項に記載のキット。
[実施態様13]
前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、実施態様8から12のいずれか1項に記載のキット。
[実施態様14]
有効量のTRAILポリペプチドを更に含む、実施態様8から13のいずれか1項に記載のキット。
[実施態様15]
以下の工程を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させる方法:
in vivo又はex vivoにおいて有効量のミトコンドリア分裂阻害剤を当該癌細胞に接触させる工程;
ここで、当該癌細胞はTRAILポリペプチドにより同時に又は逐次的に処理される。
[実施態様16]
前記ミトコンドリア分裂阻害剤が下記一般式で表される、実施態様15に記載の方法:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
[実施態様17]
前記ミトコンドリア分裂阻害剤がmdivi-1である、実施態様15に記載の方法。
[実施態様18]
前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、実施態様15から17のいずれか1項に記載の方法。
[実施態様19]
前記接触させる工程が、塗布、静注、筋注、又は経口による投与である、実施態様15から18のいずれか1項に記載の方法。
[実施態様20]
前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、実施態様15から19のいずれか1項に記載の方法。
Specifically, aspects of the present invention include the following.
[Embodiment 1]
A medicament for increasing selective TRAIL-induced apoptosis of cancer cells, comprising an effective amount of an inhibitor of mitochondrial fission:
Here, the medicament is administered simultaneously or sequentially with the TRAIL polypeptide.
[Embodiment 2]
The medicament according to embodiment 1, wherein the mitochondrial division inhibitor is represented by the following general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
[Embodiment 3]
The medicament according to embodiment 1, wherein the mitochondrial division inhibitor is mdivi-1.
[Embodiment 4]
From embodiment 1, wherein the cancer cells are cancer cells derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma 4. The medicine according to any one of 3.
[Embodiment 5]
5. The medicament according to any one of embodiments 1 to 4, wherein the administration is application, intravenous injection, intramuscular injection, or oral administration.
[Embodiment 6]
The medicament according to any one of embodiments 1 to 5, wherein the amino acid sequence of the TRAIL polypeptide is the same as that of a human-derived TRAIL polypeptide.
[Embodiment 7]
Embodiment 7. The medicament according to any one of embodiments 1 to 6, further comprising an effective amount of a TRAIL polypeptide.
[Embodiment 8]
A pharmaceutical kit for increasing selective TRAIL-induced apoptosis of cancer cells comprising the following components:
An effective amount of an inhibitor of mitochondrial fission, and
A statement describing that simultaneous or sequential administration with a TRAIL polypeptide increases selective TRAIL-induced apoptosis of the cancer cells.
[Embodiment 9]
The kit according to embodiment 8, wherein the mitochondrial division inhibitor is represented by the following general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
[Embodiment 10]
The kit according to embodiment 8, wherein the mitochondrial division inhibitor is mdivi-1.
[Embodiment 11]
Embodiment 8 from which the cancer cell is a cancer cell derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma The kit according to any one of 10 above.
[Embodiment 12]
The kit according to any one of embodiments 8 to 11, wherein the administration is application, intravenous injection, intramuscular injection, or oral administration.
[Embodiment 13]
The kit according to any one of embodiments 8 to 12, wherein the amino acid sequence of the TRAIL polypeptide is the same as that of a human-derived TRAIL polypeptide.
[Embodiment 14]
14. The kit according to any one of embodiments 8 to 13, further comprising an effective amount of a TRAIL polypeptide.
[Embodiment 15]
A method of increasing selective TRAIL-induced apoptosis of cancer cells comprising the following steps:
contacting the cancer cell with an effective amount of a mitochondrial division inhibitor in vivo or ex vivo;
Here, the cancer cells are treated simultaneously or sequentially with the TRAIL polypeptide.
[Embodiment 16]
The method of embodiment 15, wherein the mitochondrial division inhibitor is represented by the general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
[Embodiment 17]
Embodiment 16. The method of embodiment 15, wherein the mitochondrial division inhibitor is mdivi-1.
[Embodiment 18]
From embodiment 15, wherein said cancer cell is a cancer cell derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma 18. The method according to any one of items 17.
[Embodiment 19]
The method according to any one of embodiments 15 to 18, wherein the contacting step is application, intravenous injection, intramuscular injection, or oral administration.
[Embodiment 20]
The method according to any one of embodiments 15 to 19, wherein the amino acid sequence of the TRAIL polypeptide is identical to a human-derived TRAIL polypeptide.

ミトコンドリア分裂阻害剤を用いる、癌細胞のTRAIL誘導性アポトーシスを増強するための薬剤及び方法は、TRAIL抵抗性の癌細胞を効果的に殺すのに対し、正常細胞に対する細胞傷害性を全く示さないか又は僅かしか示さない。従って、当該薬剤又は方法を用いることにより、癌患者の予後を改善し、また、TRAIL療法被験者のQOLを向上させることができる。   Do drugs and methods for enhancing TRAIL-induced apoptosis of cancer cells using mitochondrial mitotic inhibitors effectively kill TRAIL-resistant cancer cells while showing no cytotoxicity against normal cells? Or show only a few. Therefore, the prognosis of cancer patients can be improved and the QOL of TRAIL therapy subjects can be improved by using the drug or method.

ヒトメラノーマ細胞A375に対する、TRAIL、mdivi-1、及びこれらの組み合わせのアポトーシス誘導効果を蛍光顕微鏡で観察した図である。Live: カルセイン染色。Dead: エチジウムブロマイド・ホモダイマー染色。左パネルは明視野像である。It is the figure which observed the apoptosis induction effect of TRAIL, mdivi-1, and these combination with respect to the human melanoma cell A375 with the fluorescence microscope. Live: Calcein staining. Dead: Ethidium bromide homodimer staining. The left panel is a bright field image. 正常メラノサイトに対する、TRAIL、mdivi-1、及びこれらの組み合わせのアポトーシス誘導効果を蛍光顕微鏡で観察した図である。Live: カルセイン染色。Dead: エチジウムブロマイド・ホモダイマー染色。左パネルは明視野像である。It is the figure which observed the apoptosis induction effect of TRAIL, mdivi-1, and these combination with respect to normal melanocyte with the fluorescence microscope. Live: Calcein staining. Dead: Ethidium bromide homodimer staining. The left panel is a bright field image. ヒトメラノーマ細胞A375をTRAIL、mdivi-1、及びこれらの組み合わせで処理した場合の、アポトーシス細胞の割合(%)を示す棒グラフである。A: 最終濃度25ng/mLのTRAILタンパク質で処理した場合。B: 最終濃度100ng/mLのTRAILタンパク質で処理した場合。vehicle: mdivi-1なし。25μM Mdivi-1: 25μMのmdivi-1で処理した場合。50μM Mdivi-1: 50μMのmdivi-1で処理した場合。**はp<0.01、***はp<0.001を表す(AnovaおよびTukey post hoc test)。It is a bar graph which shows the ratio (%) of an apoptotic cell at the time of processing human melanoma cell A375 with TRAIL, mdivi-1, and these combination. A: When treated with a final concentration of 25 ng / mL TRAIL protein. B: When treated with TRAIL protein at a final concentration of 100 ng / mL. vehicle: No mdivi-1. 25 μM Mdivi-1: When treated with 25 μM mdivi-1. 50 μM Mdivi-1: When treated with 50 μM mdivi-1. ** represents p <0.01, *** represents p <0.001 (Anova and Tukey post hoc test).

[定義]   [Definition]

有効量:ミトコンドリア分裂阻害剤の有効量(最終濃度)は、例えば、1〜999μM、1〜607μM、1〜368μM、1〜223μM、1〜135μM、1〜82μM、1〜50μM、2〜999μM、2〜607μM、2〜368μM、2〜223μM、2〜135μM、2〜82μM、2〜50μM、3〜999μM、3〜607μM、3〜368μM、3〜223μM、3〜135μM、3〜82μM、3〜50μM、5〜999μM、5〜607μM、5〜368μM、5〜223μM、5〜135μM、5〜82μM、5〜50μM、9〜999μM、9〜607μM、9〜368μM、9〜223μM、9〜135μM、9〜82μM、9〜50μM、15〜999μM、15〜607μM、15〜368μM、15〜223μM、15〜135μM、15〜82μM、15〜50μM、25〜999μM、25〜607μM、25〜368μM、25〜223μM、25〜135μM、25〜82μM、25〜50μMであり、好ましくは25〜50μM (mdivi-1の場合は、8.8〜17.6μg/ml)である。   Effective amount: The effective amount (final concentration) of the mitochondrial division inhibitor is, for example, 1 to 999 μM, 1 to 607 μM, 1 to 368 μM, 1 to 223 μM, 1 to 135 μM, 1 to 82 μM, 1 to 50 μM, 2 to 999 μM, 2-607 μM, 2-368 μM, 2-223 μM, 2-135 μM, 2-82 μM, 2-50 μM, 3-999 μM, 3-607 μM, 3-368 μM, 3-223 μM, 3-135 μM, 3-82 μM, 3- 50 μM, 5-999 μM, 5-607 μM, 5-368 μM, 5-223 μM, 5-135 μM, 5-82 μM, 5-50 μM, 9-999 μM, 9-607 μM, 9-368 μM, 9-223 μM, 9-135 μM, 9-82 μM, 9-50 μM, 15-999 μM, 15-607 μM, 15-368 μM, 15-223 μM, 15-135 μM, 15-82 μM, 15-50 μM, 25-999 μM, 25-607 μM, 25-368 μM, 25- 223 μM, 25-135 μM, 25-82 μM, 25-50 μM, preferably 25-50 μM (8.8-17.6 μg / ml in the case of mdivi-1).

ミトコンドリア分裂阻害剤: 一実施形態においては、ミトコンドリア分裂阻害剤は下記一般式で表される化合物を意味する。
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
Mitochondrial Mitosis Inhibitor: In one embodiment, mitochondrial fission inhibitor refers to a compound represented by the general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.

本発明に特に適したミトコンドリア分裂阻害剤の例としては、以下の化学式であらわされる化合物が挙げられる(非特許文献25)。
Examples of mitochondrial mitotic inhibitors particularly suitable for the present invention include compounds represented by the following chemical formula (Non-patent Document 25).

mdivi-1:以下の化学式で示される、IUPAC名: 3-(2,4-dichloro-5-methoxyphenyl)-2-sulfanylidene-1H-quinazolin-4-one の化合物を意味する。
mdivi-1: A compound represented by the following chemical formula: IUPAC name: 3- (2,4-dichloro-5-methoxyphenyl) -2-sulfanylidene-1H-quinazolin-4-one.

癌細胞:本願明細書において癌細胞と言うときは、任意の癌細胞を意味する。本件発明の一実施形態において、癌細胞という用語はTRAIL抵抗性を示す任意の癌細胞を意味する。本件発明の他の実施形態においては、癌細胞という用語は非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞を意味する。   Cancer cell: In the present specification, the term “cancer cell” means any cancer cell. In one embodiment of the invention, the term cancer cell refers to any cancer cell that exhibits TRAIL resistance. In other embodiments of the invention, the term cancer cell is derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma Means cancer cells.

選択的:本願明細書において、癌細胞の「選択的」なTRAIL誘導性アポトーシスと言うときは、正常細胞と比較して、癌細胞において高頻度でTRAIL誘導性アポトーシスが生ずることを意味する。   Selective: As used herein, “selective” TRAIL-induced apoptosis of cancer cells means that TRAIL-induced apoptosis occurs more frequently in cancer cells compared to normal cells.

TRAIL誘導性アポトーシス:本願明細書において「TRAIL誘導性アポトーシス」とは、TRAILタンパク質が癌細胞に対して誘導するアポトーシスを意味する。   TRAIL-induced apoptosis: As used herein, “TRAIL-induced apoptosis” refers to apoptosis induced by TRAIL protein on cancer cells.

増加させる:本願明細書において、TRAIL誘導性アポトーシスを「増加させる」と言うときは、ミトコンドリア分裂阻害剤をTRAILと併用した場合に、TRAILのみの場合と比較して、癌細胞において高頻度でTRAIL誘導性アポトーシスが生ずることを意味する。   Increase: In this specification, when `` increasing '' TRAIL-induced apoptosis, when a mitochondrial mitosis inhibitor is used in combination with TRAIL, it is more frequently observed in cancer cells compared to TRAIL alone. It means that induced apoptosis occurs.

TRAILポリペプチド:本願明細書において「TRAILポリペプチド」と言うときは、腫瘍壊死因子関連アポトーシス誘発リガンド(tumor necrosis factor-related apoptosis-inducing ligand (TRAIL))を意味する。本件発明に使用されるTRAILポリペプチドは、効果の観点から、被験者と同一の種由来のアミノ酸配列を有することが好ましい。また、安全性及び経済性の観点から、TRAILポリペプチドは組換え型であることが好ましい。   TRAIL polypeptide: In the present specification, the term “TRAIL polypeptide” means a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). From the viewpoint of effect, the TRAIL polypeptide used in the present invention preferably has an amino acid sequence derived from the same species as the subject. Further, from the viewpoint of safety and economy, the TRAIL polypeptide is preferably recombinant.

同時:本願明細書において「同時」投与と言うときは、単にミトコンドリア分裂阻害剤とTRAILポリペプチドを併用することを意味し、正確に同時である必要はない。   Simultaneous: As used herein, “simultaneous” administration simply refers to the combined use of a mitochondrial inhibitor and a TRAIL polypeptide, and need not be exactly simultaneous.

逐次的:本願明細書において「逐次的」投与と言うときは、ミトコンドリア分裂阻害剤とTRAILポリペプチドを意図的に一定の時間差を持って投与することを意味する。   Sequential: As used herein, “sequential” administration means that the mitochondrial mitotic inhibitor and the TRAIL polypeptide are intentionally administered with a certain time difference.

投与:ミトコンドリア分裂阻害剤又はTRAILポリペプチドの投与は、メラノーマ等の皮膚癌では塗布、静注、筋注、又は経口による投与が好ましく、その他の癌では静注、筋注、又は経口による投与が好ましい。   Administration: Mitochondrial mitosis inhibitor or TRAIL polypeptide is preferably applied by application, intravenous, intramuscular, or oral for skin cancer such as melanoma, and intravenous, intramuscular, or oral for other cancers. preferable.

[実験材料及び実験方法]   [Experimental materials and experimental methods]

<ミトコンドリア分裂阻害剤>
Mdivi-1はEnzo Life Sciences, Inc.,から購入した(Cat. No. BML-CM127-0050)。
<Mitochondrial division inhibitor>
Mdivi-1 was purchased from Enzo Life Sciences, Inc. (Cat. No. BML-CM127-0050).

<株化細胞及び培養条件>
ヒトメラノーマ細胞(A375細胞)は、10%FBS/DMEM (High glucose)を用いて、5%CO2/95%大気中37℃で培養した。ヒト白血病細胞(Jurkat細胞)は、10%FBS/DRPMI1640を用いて、5%CO2/95%大気中37℃で培養した。
<Cells and culture conditions>
Human melanoma cells (A375 cells) were cultured at 37 ° C. in 5% CO 2 /95% air using 10% FBS / DMEM (High glucose). Human leukemia cells (Jurkat cells) were cultured in 10% FBS / DRPMI1640 at 37 ° C. in 5% CO 2 /95% air.

<TRAILタンパク質>
可溶性ヒトリコンビナントTRAIL (500μg/ml) (Killer TRAILTM, Cat. No. ALX-201-073-3020, Enzo Life Sciences, Inc.)を-80℃で保存した。これを使用時に最終濃度が6.3〜100 ng/mlになるように希釈して使用した。
<TRAIL protein>
Soluble human recombinant TRAIL (500 μg / ml) (Killer TRAIL , Cat. No. ALX-201-073-3020, Enzo Life Sciences, Inc.) was stored at −80 ° C. This was diluted to a final concentration of 6.3 to 100 ng / ml at the time of use.

<アポトーシスアッセイ>
24ウェルプレートに接着させたA375細胞又は浮遊させたJurkat細胞 (2×105 cells/ウェル)に、Mdivi-1(最終濃度:8.8〜17.6μg/ml)とTRAIL(最終濃度:25〜100 ng/ml)を単独またはコンビネーションで添加し、37℃で24時間培養した。細胞を洗浄後、FITC-Annexin V Apoptosis Detection Kit I(BD Pharmingen社)を用いて染色したアポトーシス (Annexin V+)細胞の割合を、フローサイトメーターFACSCalibur (BD Bioscience, San Jose, CA) で測定し、データをCellQuest software (BD Bioscience)で解析した。
<Apoptosis assay>
A375 cells adhered to 24-well plates or suspended Jurkat cells (2 × 10 5 cells / well) were mixed with Mdivi-1 (final concentration: 8.8 to 17.6 μg / ml) and TRAIL (final concentration: 25 to 100 ng). / ml) was added alone or in combination and incubated at 37 ° C. for 24 hours. After washing the cells, the percentage of apoptotic (Annexin V + ) cells stained with FITC-Annexin V Apoptosis Detection Kit I (BD Pharmingen) was measured with a flow cytometer FACSCalibur (BD Bioscience, San Jose, CA). The data was analyzed with CellQuest software (BD Bioscience).

<蛍光顕微鏡観察>
8チャンバーカバーガラス(Asahi Glass Co., Tokyo, Japan)に接着させたA375細胞(1×104 cells)にMdivi-1(最終濃度:8.8〜17.6μg/ml)とTRAIL(最終濃度:25〜100 ng/ml)を単独又はコンビネーションで添加した。細胞を洗浄後LIVE/DEAD(登録商標)Viability/Cytotoxicity Kit(Invitrogen)を用いて細胞死を調べた。即ち、4μMカルセイン-AMエチヂウムブロマイドホモダイマー(ethidium bromide homodimer)を用いて細胞を37℃で30分染色した後、蛍光顕微鏡(Olympus IX71 inverted microscope, Olympus, Tokyo, Japan)で観察し、データをLuminaVision software (Mitani Corporation, Fukui, Japan)を用いて解析した。
<Fluorescence microscope observation>
Adivided on A375 cells (1 × 10 4 cells) adhered to 8-chamber cover glass (Asahi Glass Co., Tokyo, Japan) with Mdivi-1 (final concentration: 8.8 to 17.6 μg / ml) and TRAIL (final concentration: 25 to 100 ng / ml) was added alone or in combination. After cell washing, cell death was examined using LIVE / DEAD (registered trademark) Viability / Cytotoxicity Kit (Invitrogen). That is, cells were stained at 37 ° C. for 30 minutes with 4 μM calcein-AM ethidium bromide homodimer, and then observed with a fluorescence microscope (Olympus IX71 inverted microscope, Olympus, Tokyo, Japan). Analysis was performed using LuminaVision software (Mitani Corporation, Fukui, Japan).

[実施例1]
ヒトメラノーマ細胞A375及び正常メラノサイトに対するヒトリコンビナントTRAILの効果を、それぞれ図1及び図2に示した。生細胞はカルセイン(calcein)で緑色に、死細胞はエチヂウムブロマイドホモダイマーで赤色に、それぞれ染色される。TRAIL(100 ng/ml)単独、20時間処理では殆ど細胞死が見られず、ヒトメラノーマ細胞A375はTRAIL抵抗性であることが確認された(図1、TRAIL)。
[Example 1]
The effects of human recombinant TRAIL on human melanoma cells A375 and normal melanocytes are shown in FIGS. 1 and 2, respectively. Live cells are stained green with calcein and dead cells are stained red with ethidium bromide homodimer. When TRAIL (100 ng / ml) alone was treated for 20 hours, almost no cell death was observed, confirming that human melanoma cell A375 was TRAIL resistant (FIG. 1, TRAIL).

ミトコンドリア分裂阻害剤mdivi-1(最終濃度17.6μg/ml (50μM))は、単独では細胞死を起こさないが(図1、Mdivi)、TRAILのアポトーシス誘導効果を著しく増強した(図1、TRAIL+Mdivi)。   Mitochondrial mitosis inhibitor mdivi-1 (final concentration 17.6 μg / ml (50 μM)) alone did not cause cell death (Fig. 1, Mdivi), but significantly enhanced the apoptosis-inducing effect of TRAIL (Fig.1, TRAIL + Mdivi).

一方で、TRAIL単独、mdivi-1単独、又は両者の組み合わせのいずれも、正常メラノサイトに対して殆ど細胞傷害性を示さなかった(図2)。   On the other hand, TRAIL alone, mdivi-1 alone, or a combination of both showed little cytotoxicity against normal melanocytes (FIG. 2).

[実施例2]
実施例1と同様の実験において、アネキシンV-FITC及びヨウ化プロピジウム(PI)で染色した細胞をフローサイトメーターで解析し、全体の細胞数に対する百分率として図3に示した。ヒトメラノーマ細胞A375は25ng/mL又は100ng/mLのTRAILに対して抵抗性を示したが(vehicle)、25μM又は50μMのmdivi-1の同時投与により、濃度依存的にアポトーシスが誘導された(25μM Mdivi-1、50μM Mdivi-1)。25から100ng/mLの間で、TRAILはある程度の濃度依存性を示し、100ng/mLの方がより多くの細胞にアポトーシスを誘導した。
[Example 2]
In the same experiment as in Example 1, cells stained with annexin V-FITC and propidium iodide (PI) were analyzed with a flow cytometer and shown as a percentage of the total cell number in FIG. Human melanoma cell A375 was resistant to 25 ng / mL or 100 ng / mL TRAIL (vehicle), but co-administration of 25 μM or 50 μM mdivi-1 induced apoptosis in a concentration-dependent manner (25 μM Mdivi-1, 50 μM Mdivi-1). Between 25 and 100 ng / mL, TRAIL showed some concentration dependence, and 100 ng / mL induced apoptosis in more cells.

ミトコンドリア分裂阻害剤を含む医薬は、製薬産業、医療産業、及び研究試薬製造業界などにおいて利用することができる。   A medicine containing a mitochondrial mitotic inhibitor can be used in the pharmaceutical industry, the medical industry, the research reagent manufacturing industry, and the like.

WO/2004/072641WO / 2004/072641

Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 2005 Mar;12(3):228-37.Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer.Cancer Gene Ther. 2005 Mar; 12 (3): 228-37. Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B. Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 2002 Sep;9(18):1262-70.Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B. Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line.Gene Ther. 2002 Sep; 9 (18): 1262-70. El Fajoui Z, Toscano F, Jacquemin G, Abello J, Scoazec JY, Micheau O, Saurin JC. Oxaliplatin sensitizes human colon cancer cells to TRAIL through JNK-dependent phosphorylation of Bcl-xL. Gastroenterology. 2011 Aug;141(2):663-73. Epub 2011 Apr 30.El Fajoui Z, Toscano F, Jacquemin G, Abello J, Scoazec JY, Micheau O, Saurin JC.Oxaliplatin sensitizes human colon cancer cells to TRAIL through JNK-dependent phosphorylation of Bcl-xL.Gastroenterology. 2011 Aug; 141 (2): 663-73.Epub 2011 Apr 30. Opel D, Naumann I, Schneider M, Bertele D, Debatin KM, Fulda S. Targeting aberrant PI3K/Akt activation by PI103 restores sensitivity to TRAIL-induced apoptosis in neuroblastoma. Clin Cancer Res. 2011 May 15;17(10):3233-47. Epub 2011 Feb 25.Opel D, Naumann I, Schneider M, Bertele D, Debatin KM, Fulda S. Targeting aberrant PI3K / Akt activation by PI103 restores sensitivity to TRAIL-induced apoptosis in neuroblastoma. Clin Cancer Res. 2011 May 15; 17 (10): 3233 -47. Epub 2011 Feb 25. Yoshiba S, Iwase M, Kurihara S, Uchida M, Kurihara Y, Watanabe H, Shintani S. Proteasome inhibitor sensitizes oral squamous cell carcinoma cells to TRAIL-mediated apoptosis. Oncol Rep. 2011 Mar;25(3):645-52. doi: 10.3892/or.2010.1127. Epub 2010 Dec 28.Yoshiba S, Iwase M, Kurihara S, Uchida M, Kurihara Y, Watanabe H, Shintani S. Proteasome inhibitor sensitizes oral squamous cell carcinoma cells to TRAIL-mediated apoptosis. Oncol Rep. 2011 Mar; 25 (3): 645-52. doi: 10.3892 / or.2010.1127. Epub 2010 Dec 28. Zhang B, Shan H, Li D, Li ZR, Zhu KS, Jiang ZB, Huang MS. Cisplatin sensitizes human hepatocellular carcinoma cells, but not hepatocytes and mesenchymal stem cells, to TRAIL within a therapeutic window partially depending on the upregulation of DR5. Oncol Rep. 2011 Feb;25(2):461-8. doi: 10.3892/or.2010.1084. Epub 2010 Dec 8.Zhang B, Shan H, Li D, Li ZR, Zhu KS, Jiang ZB, Huang MS. Cisplatin sensitizes human hepatocellular carcinoma cells, but not hepatocytes and mesenchymal stem cells, to TRAIL within a therapeutic window partially depending on the upregulation of DR5. Oncol Rep. 2011 Feb; 25 (2): 461-8. Doi: 10.3892 / or.2010.1084. Epub 2010 Dec 8. Minakawa T, Toume K, Ahmed F, Sadhu SK, Ohtsuki T, Arai MA, Ishibashi M. Constituents of Pongamia pinnata isolated in a screening for activity to overcome tumor necrosis factor-related apoptosis-inducing ligand-resistance. Chem Pharm Bull (Tokyo). 2010;58(11):1549-51.Minakawa T, Toume K, Ahmed F, Sadhu SK, Ohtsuki T, Arai MA, Ishibashi M. Constituents of Pongamia pinnata isolated in a screening for activity to overcome tumor necrosis factor-related apoptosis-inducing ligand-resistance. Chem Pharm Bull (Tokyo 2010; 58 (11): 1549-51. Srivastava RK, Kurzrock R, Shankar S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther. 2010 Dec;9(12):3254-66. Epub 2010 Nov 1.Srivastava RK, Kurzrock R, Shankar S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther. 2010 Dec; 9 (12): 3254-66. Epub 2010 Nov 1. Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Li PK, Chen PJ, Cheng AL. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 2010 Nov 1;16(21):5189-99. Epub 2010 Sep 30.Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Li PK, Chen PJ, Cheng AL.Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 2010 Nov 1; 16 (21): 5189-99. Epub 2010 Sep 30. Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res. 2011 Feb;55(2):300-9. doi: 10.1002/mnfr.201000024.Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res. 2011 Feb; 55 (2): 300-9. Doi: 10.1002 / mnfr.201000024. Seki N, Toh U, Sayers TJ, Fujii T, Miyagi M, Akagi Y, Kusukawa J, Kage M, Shirouzu K, Yamana H. Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways. Mol Cancer Ther. 2010 Jun;9(6):1842-51. Epub 2010 Jun 1.Seki N, Toh U, Sayers TJ, Fujii T, Miyagi M, Akagi Y, Kusukawa J, Kage M, Shirouzu K, Yamana H. Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways. Mol Cancer Ther. 2010 Jun; 9 (6): 1842-51. Epub 2010 Jun 1. Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB. Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther. 2010 Apr;9(4):856-68. Epub 2010 Apr 6.Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB. Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther. 2010 Apr; 9 (4): 856-68. Epub 2010 Apr 6 . Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, Pinto A. Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-kappaB signalling pathway in thyroid cancer cells. J Cell Physiol. 2009 Nov;221(2):378-86.Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, Pinto A. Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-kappaB signaling pathway in thyroid cancer cells. J Cell Physiol. 2009 Nov; 221 (2): 378-86. Park SJ, Kim MJ, Kim HB, Sohn HY, Bae JH, Kang CD, Kim SH. Trichostatin A sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by down-regulation of c-FLIPL via inhibition of EGFR pathway. Biochem Pharmacol. 2009 Apr 15;77(8):1328-36. Epub 2009 Jan 24.Park SJ, Kim MJ, Kim HB, Sohn HY, Bae JH, Kang CD, Kim SH.Trichostatin A sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by down-regulation of c-FLIPL via inhibition of EGFR pathway.Biochem Pharmacol. 2009 Apr 15; 77 (8): 1328-36. Epub 2009 Jan 24. Siegelin MD, Siegelin Y, Habel A, Rami A, Gaiser T. KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiol Dis. 2009 May;34(2):259-66.Siegelin MD, Siegelin Y, Habel A, Rami A, Gaiser T. KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiol Dis. 2009 May; 34 (2): 259-66 . Park SJ, Kim MJ, Kim HB, Sohn HY, Bae JH, Kang CD, Kim SH. Cotreatment with apicidin overcomes TRAIL resistance via inhibition of Bcr-Abl signaling pathway in K562 leukemia cells. Exp Cell Res. 2009 Jul 1;315(11):1809-18. Epub 2009 Mar 4.Park SJ, Kim MJ, Kim HB, Sohn HY, Bae JH, Kang CD, Kim SH.Cotreatment with apicidin overcomes TRAIL resistance via inhibition of Bcr-Abl signaling pathway in K562 leukemia cells.Exp Cell Res. 2009 Jul 1; 315 ( 11): 1809-18.Epub 2009 Mar 4. Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, Hager JH, Lentzsch S. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther. 2008 Jun;7(6):1494-505.Feng R, Ma H, Hassig CA, Payne JE, Smith ND, Mapara MY, Hager JH, Lentzsch S. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling. Mol Cancer Ther. 2008 Jun; 7 (6): 1494-505. Daigeler A, Chromik AM, Geisler A, Bulut D, Hilgert C, Krieg A, Klein-Hitpass L, Lehnhardt M, Uhl W, Mittelkotter U. Synergistic apoptotic effects of taurolidine and TRAIL on squamous carcinoma cells of the esophagus. Int J Oncol. 2008 Jun;32(6):1205-20.Daigeler A, Chromik AM, Geisler A, Bulut D, Hilgert C, Krieg A, Klein-Hitpass L, Lehnhardt M, Uhl W, Mittelkotter U. Synergistic apoptotic effects of taurolidine and TRAIL on squamous carcinoma cells of the esophagus. Int J Oncol 2008 Jun; 32 (6): 1205-20. Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Sunazuka T, Izuhara T, Sugahara K, Tsuruda K, Masuda M, Takasu N, Tsukasaki K, Tomonaga M, Kamihira S. A novel natural compound, a cycloanthranilylproline derivative (Fuligocandin B), sensitizes leukemia cells to apoptosis induced by tumor necrosis factor related apoptosis-inducing ligand (TRAIL) through 15-deoxy-Delta 12, 14 prostaglandin J2 production. Blood. 2007 Sep 1;110(5):1664-74. Epub 2007 Jun 5.Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Sunazuka T, Izuhara T, Sugahara K, Tsuruda K, Masuda M, Takasu N, Tsukasaki K, Tomonaga M, Kamihira S. A novel natural compound, a cycloanthranilylproline derivative (Fuligocandin B), sensitizes leukemia cells to apoptosis induced by tumor necrosis factor related apoptosis-inducing ligand (TRAIL) through 15-deoxy-Delta 12, 14 prostaglandin J2 production.Blood. 2007 Sep 1; 110 (5): 1664-74 Epub 2007 Jun 5. Li W, Zhang X, Olumi AF. MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIP(L). Cancer Res. 2007 Mar 1;67(5):2247-55.Li W, Zhang X, Olumi AF.MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos / c-Jun heterodimers and repressing c-FLIP (L) .Cancer Res. 2007 Mar 1; 67 (5): 2247-55. Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A, Teufel A, Worns M, Fischer T, Strand S, Lohse AW, Galle PR. Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep. 2006 Jan;15(1):227-30.Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A, Teufel A, Worns M, Fischer T, Strand S, Lohse AW, Galle PR.Histone deacetylase inhibition by valproic acid down-regulates c-FLIP / CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep. 2006 Jan; 15 (1): 227-30. Fas SC, Baumann S, Zhu JY, Giaisi M, Treiber MK, Mahlknecht U, Krammer PH, Li-Weber M. Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood. 2006 Dec 1;108(12):3700-6. Epub 2006 Aug 24.Fas SC, Baumann S, Zhu JY, Giaisi M, Treiber MK, Mahlknecht U, Krammer PH, Li-Weber M. Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood. 2006 Dec 1; 108 (12) : 3700-6. Epub 2006 Aug 24. Lee DH, Rhee JG, Lee YJ. Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Br J Pharmacol. 2009 Aug;157(7):1189-202. Epub 2009 May 11.Lee DH, Rhee JG, Lee YJ.Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin.Br J Pharmacol. 2009 Aug; 157 (7): 1189-202. Epub 2009 May 11. Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis. 2005 Nov;26(11):1905-13. Epub 2005 Jun 29.Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis. 2005 Nov; 26 (11): 1905-13. Epub 2005 Jun 29. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008 Feb;14(2):193-204.Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax / Bak- dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008 Feb; 14 (2): 193-204.

Claims (20)

有効量のミトコンドリア分裂阻害剤を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させるための医薬:
ここで、当該医薬はTRAILポリペプチドと同時に又は逐次的に投与される。
A medicament for increasing selective TRAIL-induced apoptosis of cancer cells, comprising an effective amount of an inhibitor of mitochondrial fission:
Here, the medicament is administered simultaneously or sequentially with the TRAIL polypeptide.
前記ミトコンドリア分裂阻害剤が下記一般式で表される、請求項1に記載の医薬:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
The medicament according to claim 1, wherein the mitochondrial division inhibitor is represented by the following general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
前記ミトコンドリア分裂阻害剤がmdivi-1である、請求項1に記載の医薬。   2. The medicament according to claim 1, wherein the mitochondrial division inhibitor is mdivi-1. 前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、請求項1から3のいずれか1項に記載の医薬。   The cancer cell is a cancer cell derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma. 4. The medicine according to any one of 3. 前記投与が、塗布、静注、筋注、又は経口による投与である、請求項1から4のいずれか1項に記載の医薬。   5. The medicament according to any one of claims 1 to 4, wherein the administration is application, intravenous injection, intramuscular injection, or oral administration. 前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、請求項1から5のいずれか1項に記載の医薬。   6. The medicament according to any one of claims 1 to 5, wherein the amino acid sequence of the TRAIL polypeptide is the same as that of a human-derived TRAIL polypeptide. 有効量のTRAILポリペプチドを更に含む、請求項1から6のいずれか1項に記載の医薬。   The medicament according to any one of claims 1 to 6, further comprising an effective amount of a TRAIL polypeptide. 以下の構成要素を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させるための医薬のキット:
有効量のミトコンドリア分裂阻害剤、及び、
TRAILポリペプチドとの同時又は逐次的投与により、前記癌細胞の選択的なTRAIL誘導性アポトーシスが増加する旨を記載した説明書。
A pharmaceutical kit for increasing selective TRAIL-induced apoptosis of cancer cells comprising the following components:
An effective amount of an inhibitor of mitochondrial fission, and
A statement describing that simultaneous or sequential administration with a TRAIL polypeptide increases selective TRAIL-induced apoptosis of the cancer cells.
前記ミトコンドリア分裂阻害剤が下記一般式で表される、請求項8に記載のキット:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
The kit according to claim 8, wherein the mitochondrial division inhibitor is represented by the following general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
前記ミトコンドリア分裂阻害剤がmdivi-1である、請求項8に記載のキット。   9. The kit according to claim 8, wherein the mitochondrial division inhibitor is mdivi-1. 前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、請求項8から10のいずれか1項に記載のキット。   The cancer cell is a cancer cell derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma. The kit according to any one of 10 above. 前記投与が、塗布、静注、筋注、又は経口による投与である、請求項8から11のいずれか1項に記載のキット。   12. The kit according to any one of claims 8 to 11, wherein the administration is application, intravenous injection, intramuscular injection, or oral administration. 前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、請求項8から12のいずれか1項に記載のキット。   The kit according to any one of claims 8 to 12, wherein the amino acid sequence of the TRAIL polypeptide is the same as that of a human-derived TRAIL polypeptide. 有効量のTRAILポリペプチドを更に含む、請求項8から13のいずれか1項に記載のキット。   14. The kit according to any one of claims 8 to 13, further comprising an effective amount of a TRAIL polypeptide. 以下の工程を含む、癌細胞の選択的なTRAIL誘導性アポトーシスを増加させる方法:
in vivo又はex vivoにおいて有効量のミトコンドリア分裂阻害剤を当該癌細胞に接触させる工程;
ここで、当該癌細胞はTRAILポリペプチドにより同時に又は逐次的に処理される。
A method of increasing selective TRAIL-induced apoptosis of cancer cells comprising the following steps:
contacting the cancer cell with an effective amount of a mitochondrial division inhibitor in vivo or ex vivo;
Here, the cancer cells are treated simultaneously or sequentially with the TRAIL polypeptide.
前記ミトコンドリア分裂阻害剤が下記一般式で表される、請求項15に記載の方法:
ここで、R1はCl及びCF3からなる群から選択され、
R2はH及びClからなる群から選択され、
R3はH、OCH3、及びOCH(CH3)2からなる群から選択され、
R4はH及びCH3からなる群から選択され、かつ、
R5はH及びClからなる群から選択される。
The method of claim 15, wherein the mitochondrial mitotic inhibitor is represented by the general formula:
Where R 1 is selected from the group consisting of Cl and CF 3 ;
R 2 is selected from the group consisting of H and Cl;
R 3 is selected from the group consisting of H, OCH 3 , and OCH (CH 3 ) 2 ;
R 4 is selected from the group consisting of H and CH 3 and
R 5 is selected from the group consisting of H and Cl.
前記ミトコンドリア分裂阻害剤がmdivi-1である、請求項15に記載の方法。   16. The method according to claim 15, wherein the mitochondrial division inhibitor is mdivi-1. 前記癌細胞が、非肺小細胞癌、グリオブラストーマ、慢性リンパ性白血病、星状細胞腫、髄膜腫、膵臓癌、メラノーマ、又は神経芽細胞腫由来の癌細胞である、請求項15から17のいずれか1項に記載の方法。   The cancer cell is a cancer cell derived from non-small cell lung cancer, glioblastoma, chronic lymphocytic leukemia, astrocytoma, meningioma, pancreatic cancer, melanoma, or neuroblastoma. 18. The method according to any one of items 17. 前記接触させる工程が、塗布、静注、筋注、又は経口による投与である、請求項15から18のいずれか1項に記載の方法。   The method according to any one of claims 15 to 18, wherein the contacting step is application, intravenous injection, intramuscular injection, or oral administration. 前記TRAILポリペプチドのアミノ酸配列が、ヒト由来のTRAILポリペプチドと同一である、請求項15から19のいずれか1項に記載の方法。   20. The method according to any one of claims 15 to 19, wherein the amino acid sequence of the TRAIL polypeptide is the same as that of a human-derived TRAIL polypeptide.
JP2012002840A 2012-01-11 2012-01-11 Overcoming of trail resistivity using mitochondria division inhibitor Pending JP2013142070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002840A JP2013142070A (en) 2012-01-11 2012-01-11 Overcoming of trail resistivity using mitochondria division inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002840A JP2013142070A (en) 2012-01-11 2012-01-11 Overcoming of trail resistivity using mitochondria division inhibitor

Publications (1)

Publication Number Publication Date
JP2013142070A true JP2013142070A (en) 2013-07-22

Family

ID=49038835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002840A Pending JP2013142070A (en) 2012-01-11 2012-01-11 Overcoming of trail resistivity using mitochondria division inhibitor

Country Status (1)

Country Link
JP (1) JP2013142070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751392B1 (en) * 2015-05-22 2017-06-29 한국과학기술원 Method for screening regulator of mitochondrial fission
CN109776501A (en) * 2019-02-27 2019-05-21 湖北科技学院 A kind of -2 (1H) -40 thione derivatives of 3,4- dihydroquinazoline and its synthetic method
JP2020533399A (en) * 2017-09-13 2020-11-19 セレピュート インコーポレイテッド New low molecular weight compound
WO2021058503A1 (en) * 2019-09-24 2021-04-01 Centre National De La Recherche Scientifique - Cnrs - Method for identifying gene products involved in incomplete response of drug sensitive cell populations

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751392B1 (en) * 2015-05-22 2017-06-29 한국과학기술원 Method for screening regulator of mitochondrial fission
US10398710B2 (en) 2015-05-22 2019-09-03 Intelligent Synthetic Biology Center Method for screening regulator of mitochondrial fission
JP2020533399A (en) * 2017-09-13 2020-11-19 セレピュート インコーポレイテッド New low molecular weight compound
JP7170341B2 (en) 2017-09-13 2022-11-14 セレピュート インコーポレイテッド New low-molecular-weight compounds
US11912669B2 (en) 2017-09-13 2024-02-27 Cerepeut, Inc. Small molecule compound
CN109776501A (en) * 2019-02-27 2019-05-21 湖北科技学院 A kind of -2 (1H) -40 thione derivatives of 3,4- dihydroquinazoline and its synthetic method
WO2021058503A1 (en) * 2019-09-24 2021-04-01 Centre National De La Recherche Scientifique - Cnrs - Method for identifying gene products involved in incomplete response of drug sensitive cell populations

Similar Documents

Publication Publication Date Title
Dai et al. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy
Ren et al. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells
Huang et al. Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes
Wei et al. RETRACTED ARTICLE: Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways
Refaat et al. TRAIL combinations: The new ‘trail’for cancer therapy
Wu et al. Protection of dexmedetomidine against ischemia/reperfusion‐induced apoptotic insults to neuronal cells occurs via an intrinsic mitochondria‐dependent pathway
Chiara et al. GSK-3 and mitochondria in cancer cells
Liu et al. Oleanolic acid induces protective autophagy in cancer cells through the JNK and mTOR pathways
Yan et al. NR4A1-induced increase in the sensitivity of a human gastric cancer line to TNFα-mediated apoptosis is associated with the inhibition of JNK/Parkin-dependent mitophagy
He et al. Liquiritin (LT) exhibits suppressive effects against the growth of human cervical cancer cells through activating Caspase-3 in vitro and xenograft mice in vivo
Siu Natural products and their role in cancer therapy
Kim et al. Quercetin sensitizes pancreatic cancer cells to TRAIL-induced apoptosis through JNK-mediated cFLIP turnover
Mazevet et al. Complications of chemotherapy, a basic science update
Happy et al. Sigma 1 Receptor antagonist potentiates the anti-cancer effect of p53 by regulating ER stress, ROS production, Bax levels, and caspase-3 activation
Jeong et al. Honokiol exerts an anticancer effect in T98G human glioblastoma cells through the induction of apoptosis and the regulation of adhesion molecules
Chen et al. Saikosaponin D disrupts platelet-derived growth factor-β receptor/p38 pathway leading to mitochondrial apoptosis in human LO2 hepatocyte cells: A potential mechanism of hepatotoxicity
Wu et al. Luteolin enhances TRAIL sensitivity in non-small cell lung cancer cells through increasing DR5 expression and Drp1-mediated mitochondrial fission
Kong et al. Plumbagin enhances TRAIL-induced apoptosis of human leukemic Kasumi‑1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP
Wang et al. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating sp1/caveolin-1 signaling
Shi et al. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction
JP2013142070A (en) Overcoming of trail resistivity using mitochondria division inhibitor
Shibu et al. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders
Zhang et al. Silibinin inhibited autophagy and mitochondrial apoptosis in pancreatic carcinoma by activating JNK/SAPK signaling
Gao et al. Juniperus communis suppresses melanoma tumorigenesis by inhibiting tumor growth and inducing apoptosis
Li et al. Phosphocreatine attenuates Gynura segetum-induced hepatocyte apoptosis via a SIRT3-SOD2-mitochondrial reactive oxygen species pathway