AU2018208722A1 - Gas monitor, system and method - Google Patents

Gas monitor, system and method Download PDF

Info

Publication number
AU2018208722A1
AU2018208722A1 AU2018208722A AU2018208722A AU2018208722A1 AU 2018208722 A1 AU2018208722 A1 AU 2018208722A1 AU 2018208722 A AU2018208722 A AU 2018208722A AU 2018208722 A AU2018208722 A AU 2018208722A AU 2018208722 A1 AU2018208722 A1 AU 2018208722A1
Authority
AU
Australia
Prior art keywords
gas
jul
housing
battery
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2018208722A
Inventor
Robert E. Albinger
Michael W. Bertosh
Michael Berube
Brian Dunkin
David W. Hakins
Richard Hurst
Cody T. Lawler
Tom Michaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strata Products Worldwide LLC
Original Assignee
Strata Products Worldwide LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Strata Products Worldwide LLC filed Critical Strata Products Worldwide LLC
Priority to AU2018208722A priority Critical patent/AU2018208722A1/en
Publication of AU2018208722A1 publication Critical patent/AU2018208722A1/en
Priority to AU2020204005A priority patent/AU2020204005A1/en
Priority to AU2022202526A priority patent/AU2022202526A1/en
Priority to AU2024202546A priority patent/AU2024202546A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • G08B21/14Toxic gas alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • G08B21/16Combustible gas alarms

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A monitor for gases and a mine includes a housing. The monitor includes a battery disposed in the housing. The monitor includes a gas sensor portion powered by the battery and in electrical communication with the battery which detects a first gas and at least a second gas different from the first gas in the mine. The monitor includes an alarm portion disposed in the housing, powered by the battery and in electrical communication with the battery which emits a visual alert and an audible alert when the gas sensor portion senses that either the first or second gas is above a predetermined threshold. The monitor includes a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing that the gas sensor portion has sensed of either the first or second gas. The monitor includes a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, alarm portion, sensor portion and battery. Alternatively, the monitor includes a terminal portion that has two states, an output configuration state in which an output signal is sent from the processor to a first device, and an input configuration state in which an input signal is received from a second device. A method for monitoring gases in a mine. A system for monitoring gases underground. A method and a system for communicating in a mine. A miner communicator. A method for communicating with a minor. A system for monitoring gases on an oil or gas rig. A remote station. A miner apparatus. A method for a miner A method for a miner to move through a mine.

Description

BACKGROUND OF THE DISCLOSURE [0003] This section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present disclosure. The following discussion is intended to provide information to facilitate a better understanding of the present disclosure. Accordingly, it should be understood that statements in the following discussion are to be read in this light, and not as admissions of prior art.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-2[0004] Atmospheric Monitoring Systems, herein after referred to as AMS, and their requirements are thoroughly described in The Mine Safety Health Administration’s 30 CFR § 75.351.
[θθθδ] http://www.msha..gov/30CFR/75.351 .htm [0006] Historically, AMS consisted of gas monitors connected over a hardwired network all communicating to a central area as described in the above requirement in section (b)(1). As the mine expanded and additional monitors were needed, lengths of cable were added to facilitate communications and power to new monitoring locations. As technology progressed, wireless and battery powered solutions became available. Extensive lengths of cable providing data and power were no longer needed. Mines now have the option of running a hardwired system or a hybrid of both hardwired with wireless. This becomes especially effective when the mine monitoring requirement consists of both permanent and temporary monitoring needs. Areas along the beltways are typically unchanging and are best suited for hardwired monitoring where developing areas of the mine are better suited for a wireless/battery powered solution. Aside from the existing hardwired network, a wireless communication network is still needed to transmit data from the wireless monitors to the designated central area. This could be served with a device that acts as an access point for the wireless monitor data to enter the existing hardwired network or an entirely separate true wireless network such as Strata Products Worldwide, LLC’s CommTrac system.
[0007] As taken from section (c)(2) of the above requirement, an AMS must have the ability to “Automatically provide visual and audible signals at the designated surface location when the carbon monoxide concentration or methane concentration at any sensor reaches the alert level as specified in § 75.351 (i). These signals must be of sufficient magnitude to be seen or heard by the AMS operator.” [0008] The detail of importance in this section is the mention of “methane”. Traditional AMS hardwired systems offer methane monitoring but only in the 05% by volume range using catalytic bead technology. Methane concentrations above 5% will cause catalytic technology to be permanently damaged. In the event of a disaster and mine ventilation is lost, methane levels can easily exceed 5% concentration. Existing technology
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-3cannot provide atmospheric information that is critical during rescue efforts. No wireless or hardwired option exists to fulfill this need. Furthermore, the available wireless gas monitoring devices only offer carbon monoxide as a detectable gas and only in the 100 PPM maximum range.
[0009] As taken from section (c)(4) of the above requirement, an AMS must have the ability to “Automatically provide visual and audible signals at all affected working sections and at all affected areas where mechanized mining equipment is being installed or removed when the carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in § 75.351(1). These signals must be of sufficient magnitude to be seen or heard by miners working at these locations. Methane signals must be distinguishable from other signals.” [0010] Traditional AMS hardwired systems offer this ability through a hybrid monitor/alarming unit although no wireless options for this requirement exist currently. Mines are often forced to ran a separate control network if using a wireless monitoring solution to satisfy the section alarming requirement.
[0011] Similar to mines, oil and gas rigs need to monitor the atmosphere for dangerous levels of various gases without the need of cables and wiring cluttering the rig. In places such as oil and gas rigs, there is also the risk of dangerous gases and the need to monitor the atmosphere for these dangerous gases. Typically, gas monitors were connected by cabling and wiring throughout the rig has been used to monitor dangerous gases on a rig. The presence of all of these cables and wires distributed throughout a rig creates the problem of properly organizing and positioning the cables and wires so they do not interfere with the operation of the rig nor can be damaged so that connection is lost with the monitor during operation. If connection is lost with a monitor, then the monitor as well as the entire length of the cable or wire that connects the monitor to a remote station for monitoring must be examined to correct the loss of communication with the monitor. Such cabling and wiring could extend quite a long distance and be located in difficult positions to examine and can become a significant issue to correct.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-4[0012] In addition, in a mine, it is important to be able to track and communicate with a miner in ideally the most unobtrusive way possible. Besides the mine environment being a dangerous place in and of itself, the more equipment a miner carries, the more difficult it is for the miner to perform his functions and move through the mine. What is desired is a simple way to alert a miner of a dangerous or emergency condition, as well as for the miner to inform a remote station of the miner's condition and the miner's location.
[0013] To further provide for the safety of a miner, the miner is required to carry a light, such as a cap lamp that the miner wears on his head, as well as is required to be tracked in the mine, and also be protected from contact with machinery so as not to be injured by the machinery by accidentally contacting the machinery during operation. The latter protection is afforded with the use of a proximity device earned by a miner and proximity sensors positioned on machinery which, when determining that a proximity device earned by a miner is within a predetermined location of the proximity sensor, the machine is turned off so the miner is not injured. As the light is already required to be carried by a miner, and the proximity device is commonly earned by a miner, it would be desirable to combine tracking with these functions since they are already present on the miner.
[0014] To provide communication to and from the miner to inform the miner of important information or to track the miner or to enable the miner to communicate with the remote station, communication networks are critical throughout the mine. Since the mine is a very difficult environment for communication networks, redundancy, as well as data networks that ideally work best to transmit data, and voice networks thatddeally work best to transmit voice bidirectionally, in which also can transmit data, and work in combination are desired.
BRIEF SUMMARY OF THE DISCLOSURE
The present disclosure pertains to a monitor for gases and a mine. The monitor comprises a housing. The monitor comprises a battery disposed in the housing. The monitor comprises a gas sensor portion powered by the battery and in electrical communication with the battery which detects a first gas and at least a second gas different from the first gas in the mine. The gas sensor portion includes a full range by volume between zero and 100% methane sensor.
10262892-1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-5The monitor comprises an alarm portion disposed in the housing, powered by the battery and in electrical communication with the battery which emits a visual alert and an audible alert when the gas sensor portion senses that either the first or second gas is above a predetermined threshold. The monitor comprises a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing that the gas sensor portion has sensed of either the first or second gas and receives a signal to change a set point for a given gas being monitored, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. The monitor comprises a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, alarm portion, sensor portion and battery. The processor changes the set point for a given gas being monitored from the signal received by the wireless communication portion. The gas sensor portion may include a carbon monoxide sensor and a H2S sensor and the wireless communication portion may transmit wirelessly from the housing a carbon monoxide value of carbon in the mine sensed by the sensor portion and an H2S value of H2S in the mine sensed by the sensor portion. The processor may receive a gas value signal from the gas sensing portion and may convert the gas value signal into a converted signal form of the gas value which can be sent wirelessly by the communication portion from the housing. The communication portion may include a transceiver in communication with the processor. The communication portion may include an amplifier with an internal antenna in communication with the transceiver. The processor may provide the converted signal form of the gas value to the transceiver which may then transmits the converted signal form of the gas value wirelessly through the amplifier and the internal antemia from the housing. The alarm portion may include a visual alarm and an audible alarm and the processor may receive an alarm signal from the gas sensor portion and activates the visual alarm and the audible alarm based on the alarm signal.
[0015] The present disclosure pertains to a method for monitoring gases in a mine.
The method comprises the steps of detecting with a gas sensor portion a first gas and at least a second gas different from the first gas in the mine, the gas sensor portion powered by a battery and in electrical communication with the battery, the gas sensor portion and the battery disposed in the housing. The gas sensor portion includes a full range by volume
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-6between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. There is the step of emitting with an alarm portion powered by the battery, disposed in the housing and in electrical communication with the battery a visual alert and an audible alert when the gas sensor portion senses that either the first or second gas is above a predetermined threshold. There is the step of sending with a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion a wireless signal from the housing that the gas sensor portion has sensed either the first or second gas and if it is the first gas, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. The method also includes receiving by the wireless communication portion a signal to change or set point for a given gas being monitored, and changing the set point of a given gas being monitored by the processor from the signal received by the wireless communication portion.
[0016] The present disclosure pertains to a monitor for gases in a mine. The monitor may comprise a housing. The monitor may comprise a battery disposed in the housing. The monitor may comprise a gas sensor portion powered by the battery and in electrical communication with the battery which detects a first gas and at least a second gas different from the first gas in the mine. The monitor may comprise a terminal portion that has two states, an output configuration state in which an output signal is sent from the processor to a first device, and an input configuration state in which an input signal is received from a second device. The monitor may comprise a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing that the gas sensor portion has sensed of either the first or second gas. The monitor may comprise a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, alarm portion, sensor portion and battery.
[0017] The present disclosure pertains to a monitor for gases and a mine. The monitor comprises a housing. The monitor comprises a battery disposed in the housing. The monitor comprises a gas sensor portion powered by the battery and in electrical communication with
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-7the battery which detects a first gas and at least a second gas different from the first gas in the mine. The monitor comprises a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing that the gas sensor portion has sensed of either the first or second gas, and receives a signal to change a set point for a given gas being monitored, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. The monitor comprises at least one input connection to a remote device. The one input receiving a status signal regarding the remote device. The status signal is transmitted by the wireless communication portion. The monitor comprises a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, the input, sensor portion and battery. The processor changes the set point for a given gas being monitored from the signal received by the wireless communication portion.
[0018] The present disclosure provides a system for monitoring gases underground.
The system comprises a monitor which detects a gas located in a tunnel underground and determines a gas value of the gas. The monitor has an audio alarm and a visual alann which is activated when the detected gas is above a predetermined value, and a transceiver which transmits the gas value. The monitor has a gas sensor portion, the gas sensor portion includes a full range by volume between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. The system comprises a wireless telecommunications network on which the gas value is transmitted from the apparatus. The system comprises a remote station which receives the gas value from the network and displays an alarm indication when the gas is above a predetermined value and an identity of the monitor associated with the alarm indication. The transceiver may receive a signal from the network to change a set point for an alarm condition for the gas to be determined by the monitor [0019] The present disclosure pertains to a system for monitoring gases on an oil or gas rig. The system comprises a monitor which detects a gas at the rig and determines a gas value of the gas. The monitor having an audio alarm and a visual alann, which is activated when the detected gas is above a predetermined value, and a transceiver which transmits the
10262892—1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-8gas value. The monitor has a gas sensor portion, the gas sensor portion includes a full range by volume between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion. The system comprises a wireless telecommunications network on which the gas value is transmitted from the monitor. The system comprises a remote station which receives the gas value from the network.
[0020] The remote station may include a receiver which receives the gas value from the network, a processor in communication with the receiver which receives the gas value from the receiver, and a display in communication with the processor on which the processor displays an alarm indication when the gas value is above a predetermined level.
[0021] The present disclosure pertains to a remote station which receives gas values of gas monitors from a wireless network. The remote station may comprise a receiver which receives the gas values wirelessly from the network. The remote station may comprise a processor in communication with the receiver which receives the gas values from the receiver. The remote station may comprise a display in communication with the processor on which the processor displays an alarm indication when the gas value is above a predetermined level.
[0022] The present disclosure pertains to a communication system. The system may comprise a data network on which solely data is sent. The system may comprise a wireless network on which voice and data is sent bi-directionally. The system may comprise a plurality of nodes distributed and apart from each other that form the data network and the wireless network. Each node may have a data portion which may receive and send data on the data network, a wireless portion which may receive and send voice signals on the wireless network, and a power supply portion in electrical communication with the data portion and the wireless portion which powers the data portion and the wireless portion.
[0023] The present disclosure pertains to a communication node of a data network and a wireless network. The node may comprise a data portion which receives data wirelessly on the data network. The node may comprise a wireless portion which may receive and send voice signals on the wireless network. The node may comprise a power supply portion in electrical communication with the data portion and the wireless portion which may power the
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-9data portion and the wireless portion. The node may comprise a data converter in communication with the data portion and the wireless portion which may convert the data from the data network into a transmission signal that is transmitted on the wireless network.
[0024] The present disclosure pertains to a method for communicating in a mine. The method may comprise the steps of receiving data wirelessly at a data portion of a first node of a plurality of nodes from a data network on which solely data is sent. The plurality of nodes may be distributed apart from each other and may form the data network and a wireless network. There may be the step of converting with a data converter in communication with the data portion the data from the data network into a transmission signal that is transmitted on the wireless network. The wireless network may transmit and receiving voice and data bidirectionally. There may be the step of transmitting the transmission signal from the first node on the wireless network with a wireless portion of the first node. There may be the step of powering the data portion and the wireless portion with a power supply portion in electrical communication with the data portion and the wireless portion.
[0025] The present disclosure pertains to a miner communicator in a communications network. The communicator may comprise a housing. The communicator may comprise a processor disposed in the housing. The communicator may comprise a transceiver disposed in the housing and in communication with the processor and the network to send to and receive from the network only data but not including text. The communicator may comprise an input disposed on the housing and in communication with the processor which may provide a trigger signal to the processor. The communicator may comprise an alarm in contact with the housing and in communication with the processor that may be activated by the processor when an alarm signal is received by the transceiver . The communicator may comprise a position portion disposed in the housing and in communication with the processor which may determine a location of the communicator and may provide a location to the processor, the processor may provide the location and an ID of the communicator to the transceiver which transmits the ID and location to the network to a communication node, ideally the closest node, and then to the remote station.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-10[0026] The present disclosure pertains to a method for communicating with a miner in a mine. The method may comprise the steps of sending an alarm signal wirelessly through a wireless communication network to a miner communicator earned by a miner in the mine. The communicator may only be able to receive data but not voice. There may be the step of receiving the alarm signal by the communicator. There may be the step of activating an alarm of the communicator by a processor of the communicator in response to the communicator receiving the alarm signal. There may be the step of activating a button of the communicator to cause the transmitter to transmit from the communicator to the network an indicator signal regarding the miner’s status, and with the indicator signal may be an id of the communicator and position of the communicator the communicator not having a display or a keyboard.
[0027] The present disclosure pertains to a miner apparatus of a wireless network.
The apparatus may comprise a housing which is carried by the miner. The apparatus may comprise a tracking portion disposed in the housing which may determine the miner's location and transmits the location wirelessly to the network. The apparatus may comprise a battery disposed in the housing and connected to the tracking portion which may power the tracking portion. The apparatus may comprise a cap lamp electrically connected to the battery which may be powered by the battery to provide light, the cap lamp worn by the miner.
[0028] The present disclosure pertains to a miner apparatus of a wireless network.
The apparatus may comprise a housing which is earned by the miner. The apparatus may comprise a tracking portion disposed in the housing which determines the miner's location and transmits the location wirelessly to the network. The apparatus may comprise a battery disposed in the housing and connected to the tracking portion which powers the tracking portion. The apparatus may comprise a proximity device electrically connected to the battery and disposed in the housing which may be powered by the battery to provide a detectable presence to a proximity detector when the miner gets too close to the proximity detector, the proximity device worn by the miner.
[0029] The present disclosure pertains to a miner apparatus of a wireless network.
The apparatus may comprise a housing which is earned by the miner. The apparatus may comprise a tracking portion disposed in the housing which may determine the miner's location
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-πand transmits the location wirelessly to the network. The apparatus may comprise a battery disposed in the housing and connected to the tracking portion which may power the tracking portion. The apparatus may comprise a proximity device electrically connected to the battery and disposed in the housing which may be powered by the battery to provide a detectable presence to a proximity detector when the miner gets too close to the proximity detector, the proximity device may be worn by the miner. The apparatus may comprise a cap lamp electrically connected to the battery which is powered by the battery to provide light. The cap lamp may be worn by the miner.
[0030] The present disclosure pertains to a method for a miner to move through a mine. The method may comprise the steps of powering a light of a cap lamp on the miner’s head with a battery in a housing carried by the miner. There may be the step of sending location information from the housing so the miner can be tracked as the miner moves through the mine. There may be the step of stopping a machine with a proximity sensor connected to the machine, because the proximity sensor has sensed a proximity device in the housing has come within a predetermined distance to the proximity device.
[0031] The present disclosure pertains to a proximity detector attached to a machine .
The detector for detecting a miner’s presence may comprise a generator which produces a magnetic field. The detector may comprise a processor. The detector may comprise a transceiver for sending a message produced by the processor having information about the generator’s health and an ID of a PAD of a miner that has triggered a warning or hazard that has effectively stopped operation of the machine. . *
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING [0032] In the accompanying drawings, the preferred embodiment and preferred methods are illustrated in which:
[0033] Figures ΙΑ, 1AA, IB and 2A-2E are engineering schematic diagrams of the wireless communications portion, the alarm portion and the battery.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-12[0034] Figure 3 is a block diagram of an embodiment of the present disclosure.
[0035] Figure 4 is a block diagram of the wireless communications portion, the alarm portion and the battery.
[0036] Figure 5 is an operations diagram of an embodiment of the present disclosure.
[0037] Figure 6 is a representation of the output configuration of the claimed invention.
[0038] Figure 7 is a representation of the input configuration of an embodiment of the disclosure.
[0039] Figure 8 is a representation of the terminal connectivity regarding input mode of an embodiment of the disclosure.
[0040] Figure 9 is a representation of the terminal connectivity regarding output mode of an embodiment of the disclosure.
[0041] Figure 10 is a representation of the terminal.
[0042] Figure 11 shows the apparatus having a housing with a first shell and a second shell.
[0043] Figure 12 shows the apparatus having a first port and a second port for inputs or outputs.
[0044] Figure 13 is a block diagram regarding the system of an embodiment.
[0045] Figure 14A is a schematic representation of a communication system of the present disclosure.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-13-
[0046] Figures 14B and 14C are block diagrams of a shared power supply of a node.
[0047] Figure 15 is a block diagram of a miner communicator.
[0048] gas monitors. Figure 16 is a block diagram of a remote station which receives gas values of
[0049] Figure 17 is a perspective view of a housing of the remote station
[0050] tracking. Figure 18 is a block diagram of a miner apparatus with a cap lamp and
[0051] tracking. Figure 19 is a block diagram of a miner apparatus with a proximity device and
[0052] Figure 20 is a block diagram of a miner apparatus with a cap lamp, proximity
device and tracking.
[0053] Figure 21 is a representation of a system for a miner.
[0054] embodiment. Figures 22 and 23 are circuit diagrams of the miner communicator of an
[0055] Figure 24 shows an overhead view of the circuit board having the circuitry
described in figures 22 and 23.
[0056] Figures 25 - 28 are circuit diagrams of the miner apparatus of an embodiment
of the disclosure.
[0057] Figure 29 is an exploded view of the miner apparatus.
[0058] Figure 30 shows the terminals of the miner apparatus.
10262892_1 (GHMahers) P98209.AU.1
2018208722 26 Jul 2018
-14DETAILED DESCRIPTION OF THE DISCLOSURE [0059] Referring now to the drawings wherein like reference numerals refer to similar or identical parts throughout the several views, and more specifically to figures 1A-5, 11,12 and 13 thereof, there is shown a monitor 10 for gases in a mine. The monitor 10 comprises a housing 12. The monitor 10 comprises a battery 14 disposed in the housing 12. The monitor 10 comprises a gas sensor portion 16 powered by the battery 14 and in electrical communication with the battery 14 which detects a first gas and at least a second gas different from the first gas in the mine. The monitor 10 comprises an alarm portion 18 disposed in the housing 12, powered by the battery 14 and in electrical communication with the battery 14 which emits a visual alert and an audible alert when the gas sensor portion 16 senses that either the first or second gas is above a predetermined threshold. The monitor 10 comprises a wireless communication portion 20 disposed in the housing 12, powered by the battery 14 and in electrical communication with the battery 14 and the sensor portion, which sends a wireless signal from the housing 12 that the gas sensor portion 16 has sensed of either the first or second gas. The monitor 10 comprises a processor 22 disposed in the housing 12, powered by the battery 14 and in electrical communication with the wireless communication portion 20, alarm portion 18, sensor portion and battery 14.
[0060] The housing 12 may be one single shell or a combination of shells that are effectively engaged together, as shown in figures 11 and 12. For instance, audio and visual (AV) alarms of the alarm portion 18 may be in a separate or second shell 26 from the processor 22 and the wireless communication portion 20 which is in a first shell 24 separate from the second shell 26, with the AV alarms electrically connected by wires which extend through MSHA approved glands 28 and the first and second shells 24, 26 may be held together with screws or rivets. The gas monitoring portion may be in a separate shell from the processor 22 and wireless communication portion 20 and be in electrical communication through wires passing through a gland(s) 28. Figure 11 shows the apparatus having a housing 12 with a first shell 24 and a second shell 26. The second shell 26 has the AV alarms. Figure 12 shows the apparatus having a first port 34 and a second port 36 with glands 28 for inputs 54 or outputs 56. Figure 12 also shows an embodiment of the apparatus with the capability of
10262892,1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-15monitoring and detecting four different gases, for instance here Nitric Oxide, Methane, Oxygen and Carbon Monoxide, as shown in a display 38 of the housing 12. Here, there are four openings 40, one for each gas being sensed, in fluid communication for the respective gas module monitoring and detecting the respective gas.
[0061] The gas sensor portion 16 may include a fall range by volume between zero and 100% methane sensor 42 and the wireless communication portion 20 transmits wirelessly from the housing 12 a methane value of methane in the mine sensed by the sensor portion. The gas sensor portion 16 may include a carbon monoxide sensor 44 and a H2S sensor 46 and the wireless communication portion 20 transmits wirelessly from the housing 12 a carbon monoxide value of carbon in the mine sensed by the sensor portion and an H2S value of H2S in the mine sensed by the sensor portion. The processor 22 may receive a gas value signal from the gas sensing portion and converts the gas value signal into a converted signal form of the gas value which can be sent wirelessly by the communication portion 20 from the housing 12.
[0062] The communication portion 20 may include a transceiver 48 in communication with the processor 22, as shown in figures ΙΑ, 1AA and 2A-2E. The communication portion 20 may include an amplifier 50 with an internal antenna 52 in communication with the transceiver 48, as shown in figures 1A and 1AA. The processor 22 may provide the converted signal of the gas value to the transceiver 48 which then transmits the converted signal form of the gas value wirelessly through the amplifier 50 and the internal antenna 52 from the housing 12. The processor 22 may receive an alarm signal from the gas sensor portion 16 and activates the visual alarm 32 and the audible alarm based on the alarm signal.
[0063] The present disclosure pertains to a monitor 10 for gases and a mine, as shown in figure 13. The monitor 10 comprises a housing 12. The monitor 10 comprises a battery 14 disposed in the housing 12. The monitor 10 comprises a gas sensor portion 16 powered by the battery 14 and in electrical communication with the battery 14 which detects a first gas and at least a second gas different from the first gas in the mine. The monitor 10 comprises a wireless communication portion 20 disposed in the housing 12, powered by the battery 14 and in electrical communication with the battery 14 and the sensor portion, which sends a wireless
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-16signal from the housing 12 that the gas sensor portion 16 has sensed of either the first or second gas. The monitor 10 comprises at least one input 54 for connection to a remote device which provides a status signal regarding the remote device which is transmitted by the wireless communication portion 20 from the detector. The monitor 10 comprises a processor 22 disposed in the housing 12, powered by the battery 14 and in electrical communication with the wireless communication portion 20, the input 54, sensor portion and battery 14.
[0064] The present disclosure pertains to a method for monitoring gases in a mine.
The method comprises the steps of detecting with a gas sensor portion 16 a first gas and at least a second gas different from the first gas in the mine, the gas sensor portion 16 powered by a battery 14 and in electrical communication with the battery 14, the gas sensor portion 16 and the battery 14 disposed in the housing 12. There is the step of emitting with an alarm portion 18 powered by the battery 14, disposed in the housing 12 and in electrical communication with the battery 14 a visual alert and an audible alert when the gas sensor portion 16 senses that either the first or second gas is above a predetermined threshold. There is the step of sending with a wireless communication portion 20 disposed in the housing 12, powered by the battery 14 and in electrical communication with the battery 14 and the sensor portion a wireless signal from the housing 12 that the gas sensor portion 16 has sensed either the first or second gas.
[0065] The present disclosure pertains to a monitor 10 for gases in a mine, as shown in figure 13. The monitor 10 comprises a housing 12. The monitor 10 comprises a battery 14 disposed in the housing 12. The monitor 10 comprises a gas sensor portion 16 powered by the battery 14 and in electrical communication with the battery 14 which detects a first gas and at least a second gas different from the first gas in the mine. The monitor 10 comprises a terminal portion 58 that has two states, an output configuration state in which an output signal is sent from the processor 22 to a first device 60, such as the audio alarm 30, as shown in figure 4, and an input 54 configuration state in which an input 54 signal is received from a second device 62, such as a field switch, as shown in figure 7. The monitor 10 comprises a wireless communication portion 20 disposed in the housing 12, powered by the battery 14 and in electrical communication with the battery 14 and the sensor portion, which sends a wireless signal from the housing 12 that the gas sensor portion 16 has sensed of either the first or
10262892.1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
- 17second gas. The monitor 10 comprises a processor 22 disposed in the housing 12, powered by the battery 14 and in electrical communication with the wireless communication portion 20, alarm portion 18, sensor portion and battery 14.
[0066] The present disclosure is related to a system 64 for monitoring gases underground, as shown in figure 13. The system 64 comprises a monitor 10 which detects a gas located in a tunnel underground and determines a gas value of the gas. The monitor 10 has an audio alarm 30 and a visual alarm 32 which is activated what the detected gas is above a predetermined value, and a transmitter which transmits the gas value. The system 64 comprises a wireless telecommunications network 66 on which the gas value is transceiver 48 from the monitor. The system 64 comprises a remote station 68 which receives the gas value from the network 66. The transceiver may receive a signal from the network to change a set point for an alarm condition for the gas to be determined by the monitor.
[0067] In the operation of the disclosure, and with reference to figure 13, the system is a battery 14 powered CommTrac enabled gas monitor 10 to fulfill the MSHA requirements identified above and offer a truly unique solution. To meet the requirement of section (c)(2), a visual and audible alarm has been integrated into a Trolex Sentro gas detector 70 equipped with a battery 14 pack and CommTrac Interface module 72 (CIM), as shown in figures 3 and 4. The alert points will allow for a completely wireless gas monitor 10 that has the ability to alert personnel in the working zones in accordance with section (c)(2). The gas concentration alert and alarm points as mentioned in sections (i)(2) and (i)(3) will trigger the integrated monitor 10 audible and visual alarms via two unique output options. The first output 74 will trigger the visual alarm 32 when an alert level is reached. Different color visual alarms 32 will be available for different gases. The second output 76 will trigger the audible alarm when an alarm level is reached. If the monitor 10 is not being configured as a section alarm, the outputs 56 can be used as remote output to control connected devices. Aside from just methane and carbon monoxide, carbon dioxide, hydrogen sulfide, nitrogen dioxide, chlorine, oxygen, nitric oxide, and hydrogen will also be available for detection. Methane will be detectable over the entire volume range using an infrared technology based sensor as opposed to the current catalytic technology. Aside from full range capabilities, infrared technology is not affected by high concentrations. Carbon monoxide will be
10262892_l (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-18available in 1000 PPM maximum range. Hydrogen discriminate carbon monoxide detection will also be supported along with nitrogen dioxide filtered carbon monoxide detection capabilities. Open wireless protocols such as 802.11 will also be a supported means of communication aside from the CommTrac mesh infrastructure. Ultimately, the wireless battery 14 powered gas monitor 10 can offer a complete and single system solution to the MSHA AMS requirement. The features outline above are truly unique and the first of their kind. The CommTrac network 66 already exists and is available from Strata Products Worldwide, LLC, Sandy Springs, Georgia.
[0068] In regard to figure 5, there is shown a theory of operation of the present disclosure. First, the monitor 10 is turned on and powered up. Then, the necessary software and functionality is written into the static registers of the monitor 10 for operation. From that point, stable operation of the monitor 10 proceeds from an idle state. From the idle state, the processor 22 requests of the gas sensor portion 16 a status report every five seconds. The gas sensor portion 16, if there is no warnings or alarms identified, reports back to the processor 22 that there are no warnings or alarms. If there is a warning state or alarm state or calibration state that occurs, the processor 22 takes the information that it has received from the gas sensor portion 16 and prepares this information to be sent through the transceiver 48 and out the antenna 52 to the CommTrac network 66 and ultimately to the central monitoring station. In addition, if the processor 22 does not receive a response from the gas sensor portion 16 within the interval timer period after the request for sensor status has been issued, then the processor 22 also transmits through the CommTrac network 66 a signal that communication has been lost with the gas sensor portion extending. When the central monitoring station receives the signal that communication has been lost with the gas sensor portion 16, steps are then taken to investigate and review the gas sensor portion 16 to correct the problem that is causing the failure of the gas sensor portion 16 to respond to the processor 22.
[0069] In regard to figure 3, there is shown a block diagram of the monitor 10. The
CommTrac transceiver 48 is in electrical connection over a UART connection to the antenna 52. The CommTrac transceiver 48 is also in communication with the battery 14 power supply through which power from the mine power supply is available. There is feedback protection connected to the external port connectors connected to the mine power supply. The battery 14
10262892_1 (GHMattera) P98209.AU.1
2018208722 26 Jul 2018
-19power supply is also connected at 3.3 V to the output 56 ports to provide power to them. There are two input 54 ports and two output 56 ports. There is also a video alarm 32 and an audio alarm 30. There is input/output protection connected to the battery 14 power supply, the CommTrac transceiver 48 and the input and output ports.
[0070] In the operation of the disclosure, reference is made to the parts list below which identifies the parts by model number and vendor from which they can be obtained. The operation of the parts listed below, as individual components, is well known.
[0071] The gas sensor portion 16 itself is an off-the-shelf Trolex TX 6351/2 Sentro 1 universal gas detector 70. It has the ability to monitor several different gases at once. For a given gas value identified by the detector, this value is provided to the processor 22, which is a PIC 24 processor 22. The processor 22 converts the gas value into a packet form which can be transmitted wirelessly. The gas value provided from the detector 70 to the processor 22 is across a standard serial connection. It is received at pin header 6 of the processor 22, as shown in figures IB and 2A-2E. The detector 70 provides a specific gas value for a given gas being monitored by the detector 70 in response to a request sent by the processor 22 from its pin header 4. The requests for the different gases, occurs one at a time in sequence, and then is continually repeated so that the different gases being monitored by the detector 70 are continually reviewed over time by the processor 22.
[0072] The packet produced by the processor 22 for a given gas being monitored, is then sent from PIC 24 to the transceiver 48, CC 1110, as shown in figure 1 A, where it is received at its pin 34 input 54. From the transceiver 48, the packet signal is then provided to the amplifier 50 CC 1190 which boosts the signal and then transmits it through its antenna 52. The wireless transmitted packet having the value of the gas is then transmitted over the existing CommTrac network 66. The PIC 24, CC 1110, CC 1190 and internal antenna 52 form and define the CIM 72 [0073] Signals can also be received by the antenna 52 of the amplifier 50, which modulates the received signal, and provides it to the transceiver 48 where it is outputted through transceiver 48 pin 35 back to the processor 22 that receives it at pin header 6. The
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-20signal that is received by the monitor 10 can be a signal to change the set point by the processor 22 for an alarm condition for a given gas being monitored.
[0074] In addition to the gas value that is provided by the gas detector 70 to the processor 22, along the same serial connection and same pin attachments, an alarm signal for a given gas is provided to the processor 22 when the monitor 10 gas is above a certain predetermined value. The processor 22 receives the alarm signal and then activates an audio alarm 30 as well as a visual alarm 32. The audio alarm 30 is loud enough to be heard by miners in the vicinity of the monitor 10. The visual alarm 32 is formed by a plurality of LED lights that are illuminated when the alarm occurs. A different sequence of colors, or simply different colors are illuminated for a corresponding type of gas, so for instance methane would have a different set of LED lights or different colors of lights activated then the LED lights activated for carbon dioxide. In addition, if so desired, the audio alarm 30 can be set to have a different tone or frequency corresponding to the type of gas detected if desired. The processor 22 also transmits an alarm signal through the transceiver 48 to the CommTrac network 66.
[0075] The processor 22, detector, transceiver 48 and amplifier 50 are all powered by battery 14 through a standard battery 14 selection circuit 74. Also available is an external power interface 76 that can receive wired electricity from the mine external power source.
[0076] The wireless communication portion 20 that has been added to the gas detector contains a microcontroller - a CC1110 which is in electrical communication with thee PIC24 microcontroller. The PIC24 is the center of the monitor in that it communicates with the detector’s microcontroller to obtain sensor information and also communicates with the CC1110 to send and receive data over the CommTrac network 66.
[0077] The software in the PIC24 polls the detector’s microcontroller, here the Trolex
PIC 18, on a continuous basis for sensor information. It packages this sensor information and sends it to the CC1110 to be transmitted over the CommTrac system at configurable intervals. The software also monitors the information from the PIC 18 on the Trolex detector for alarms
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-21and if any are generated, a message will be sent to the CC1110 for transmission via the CommTrac network 66.
[0078] The software can also be configured to use the two available I/Os 80, as shown in figures 12 and 13. These I/Os 80 can either be connected to audible and visual alarms 30, 32 - in which case, they would be activated if an alarm condition is reported by the detector 70, as shown in figures 6 and 8. Alternatively, these I/Os 80 can be used as inputs which will cause the software to send a message over CommTrac if the circuit on the I/O line is broken, (e.g. a belt stop switch), as shown in figures 7 and 9. In between these activities, the software will put the CC1110 and the PIC24 into sleep mode in order to conserve power.
[0079] The CC110 transceiver 48 receives the message from the PIC 24 and places it into the transmit queue. The CC1110 is then listening for a beacon message from one of the CommTrac Communication Nodes (backbone of the network 66). When it hears a beacon message it will select a data slot to transmit the message. During the chosen slot the message is sent and it waits to receive an ack from the Communication Node during the acknowledgement slot. If the ack is properly received the message will be removed from the transmit queue. If it doesn’t receive an ack then the message is resent during the next beacon cycle. The CC1190 is typically only used to amplify the transmit and receive signal to allow for greater distances when transmit/receiving.
[0080] The AV unit may be mounted beneath a Wireless Sentro Gas detector 70 with the communication portion 20 with hard wiring between the two units, as shown in figure 11. The sound and light alarms will be activated by switching the battery 14 supply on and off. This can be controlled by software allowing the option of pulsed light and sound alarms.
[0081] The same two outputs of the pic 24 that are used to drive the audible and visual alarms 32 can be configured using software to also be inputs 54. The configuration allows the states of various input devices such as pull cords, emergency stops buttons or fault switches to be transmitted through the CommTrac network 66 to the surface for monitoring. The states of the switches are often unrelated to the gas monitoring data that the sensors are transmitting, but the sensors are typically located in remote areas in the mine
10262892J (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-22where other communication networks do not exist. It is quite attractive to give the mine the option of monitoring a remote switch through a communication network 66 that is available in remote areas. Alternately, if the apparatus is not equipped with an audible or visual alarm 30, 32, the available output 56 can be used to drive a low current consumption device that may also be located remotely in the mine where the CommTrac network 66 is available.
[0082] In regard to figure IB, the screw terminal corresponds to the description of figures 8 through 10 can connect to a given output 56 or input 54 depending on the configuration. The pin headers connect to the gas detection portion, here specifically the Trolex assembly card. The program headers connect to the pic 24 through J 3 into the CC1110 through J 5.
[0083] In regard to figures 2A-2E, depending on whether the apparatus is in an input configuration or an output configuration, the pic 24 through L out 1 and L out 2 communicates to control out 1 and control out 2, respectively, of the output control section which then is provided, for instance through output 1 and output 2, respectively, to the audio alarm 30 and the video visual alarm 32, respectively, if in the output configuration. When in the input 54 configuration, the outputs 56 are reversed and are inputs 54, so the pic 24 receives input 54 signals from input 1 (instead of output 1) and from input 2 (instead of output 2) and these input signals follow a reverse direction back to the pic 24 from that described above in the output direction, that is to control out 1 and control out 2, respectively, to L out 1 and L out 2, respectively, of pic 24.
[0084] As explained above, and with reference to figure 6, when in the output configuration, output 1 is used for the visual alarm 32, and output 2 is used for the audible alarm. In the output mode, and with reference to figure 9, terminal 1 has a voltage, for instance 1.2 V, connected to the visual alarm 32 load, and terminal 2 is connected to ground and the visual alarm 32 load. The 1.2 V energizes the visual alarm 32 when the switch is closed. Similarly, output 3 has 1.2 V and energizes the audible alarm, and either terminal 5 or terminal 2 is connected to ground and the audible alarm. In this configuration, the operation of the alarms is as described above.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-23[0085] If the monitor 10 is desired to be in the input 54 configuration, as shown in figure 7, the monitor 10 is used to monitor 10 whatever the device, such as a field switch or pull cord or emergency stop, is connected to it. Here, terminal 1 has 1.2 V on it and is connected to the device being monitored, here a field switch, as shown in figure 8. Terminal 2 is connected to ground and to the field switch. When the switch is closed, pic 24 senses the 1.2 V going to ground and produces a field switch signal that is then converted by the pic 24 into a form that can be sent wirelessly by the apparatus, as described above in regard to the description of the gas value being sent wirelessly from the apparatus.
[0086] Similarly, and with reference to figure 8, a second device 62, such as a pull cord, can be in electrical connection with terminal 3 having 1.2 V. Terminal 5, which is ground, is electrically connected to the second device 62, such as the pull cord, and the same description is applicable in sending a signal involving the pull cord being pulled occurs as described for the field switch connected to terminals 1 and 2.
[0087] As shown in figure 10, the terminal is a six position terminal disposed on the housing 12 and accessible from outside the monitor 10. Terminal 1 is either the first output 74 or input, terminal 2 is ground, terminal 3 is the second output 76 or input, terminal 4 is electrically connected to the battery 14, terminal 5 is ground, and terminal 6 is connected to external power for the apparatus to receive external power.
[0088] Accordingly, when in the input 54 configuration, which is established prior to the monitor 10 being positioned at a desired location in the mine, input 1 and input 2 of the terminal can receive signals through hardwired connections with various types of devices, to allow for the devices to be monitored. In the output configuration, the same terminals having input 1 and input 2 are now output 1 and output 2 and are configured as described above, for the pic 24 to send alarm signals to activate the audible and visual alarms 30, 32.
[0089] The following are features of the apparatus.
[0090] Sound Output Level: >90 dB at 12 inches [0091] Constant tone in range of 2,000 - 4,000 Hz
10262892-1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-24-
[0092] Dual sounders and horns for 180 degree
coverage
[0093] Visual Alami: Constantly on high intensity LEDs; color selected by jumper on board
[0094] Red for CO; Green for CH4; Blue for H2S
[0095] Supply Voltage: Typically 3.9VDC, Min 3.5VDC, Max 6VDC
[0096] operation Supply Current: < 80ma consumption of simultaneous AV
[0097] Control Signal: Power will be switch on/off from Sentro Gas detector 70
[0098] Mounting Arrangement: Mounted under the Sentro-1 Wireless Sensor using the two cable glands 28 for fixing and routing the wiring. The module must allow for external 12-30VDC to be connected to the Sentro-1 terminals.
[0099] life. 1 Powered from commercially available batteries giving 40 to 45 days operating
[00100] Wireless output board with internal antenna 52.
[00101] Measures CO, H2S, CH4 options for other gases
[00102] Able to interrogate Modbus registers via wireless system
[00103] Large LCD screen
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-25-
[00104] Programmable set points
[00105] Option to monitor external relay contacts and to report their state via the
wireless system
[00106] setup. Wireless operation removes need for expensive setup and maintain wired
[00107] Measures gas concentrations every 1 second and reports status every 90
seconds, except under warning and alert conditions when changes reported immediately.
[00108] Display backlight is turned on whenever control button is pressed. A warning
or alert triggers the screen to flash.
[00109] Sensors draw minimum power to maximize battery 14 life.
[00110] Dual-wall housing 12 gives maximum impact strength.
[00111] Housing 12 cover can be removed with power applied for module replacement
and servicing.
[00112] Simultaneously monitor up to 8 different gases, together with levels of
temperature, air velocity, pressure, smoke and fire.
[00113] • Power Conditioning
[00114] [00115] -(M) provide power conditioning from a (4) D-Cell EN95 battery pack -(M) monitor the voltage of the battery pack
[00116] -(M) provide 3.3V 50ma to the controller and display boards
[00117] -(M) power CommTrac transceiver
[00118] -(D) powered from external power voltage
[00119] • (D) measure the external power voltage
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-26-
[00120] • Communications (CommTrac Transceiver)
[00121] -(M) Support UART communications with Trolex board
[00122] • (M) Write and Read Mod-Bus registers from the Trolex board
[00123] -(M) Contain an internal antenna
[00124] • I/O
[00125] -(D) Input from a dry contact (state open/closed)
[00126] -(D) Output power to contact (Batt or Ext Pwr)
[00127] Integrated I/O Module
[00128] The following are a list of parts with reference to figures la, lb and 2),
all of which are individually alone well known and are identifiable by their part number, description and manufacturer.
10262892_1 (GHMatters) P98209.AU.1
-272018208722 26 Jul 2018 [00129]
Line Item Reference Designator Quantity Manufacturer Part Number Description Alt Part Number
1 U$2 1 Linx Technologies, Inc. CONSMA001-SMD CONN SMA JACK STR 50 OHM SMD CONSMA001- SMD-ND
2
3 F2 1 1206 SMD, xxA Vfast, fuse
4 U1 1 Texas Instruments CC1110F32RSPR cell 10, QLP 296-22740-1-ND
5 U2 1 Texas Instruments CC1190RGVT ccll90, VQFN 296-25 826-2-ND
6 U25 Microchip Technology PIC24FJ64GA004- E/JL PIC24FJ64GA00 4-E/ML-ND
7 R3 1 RESISTOR, xxOMH 1206 SMD
8 C31, C23, C27, C28, C40, C41 5 Kemet CBR04C200F5GAC CAP CER 20PF 50V 1%NPOP402 399-8786-1-ND
9 C1,C2, C3, C4, C6, C7, C8, C9, C32, C33, C35, C36, C37, C38, C39 15 TDK Corporation C1005X5R1A104K0 50BA CAP CER 0.1 UF 10V 10%X5R0402 445-1265-1-ND
10 C5, C19 2 TDK Corporation C1005X5R1C105K0 50BC CAP CER 1UF 16V 10%X5R0402 445-4978-1-ND
11 C18 1 TDK Corporation C1005X7R1C103K.0 SOBA CAP CER 10000PF 16V 10%X7R0402 445-1262-1-ND
12 C17 1 250R07N221JV4T CAP CER 220PF 25V 5%NP0 0402 709-1125-1-ND
13 C26 1 F950J337MBAAQ2 CAP TANT 330UF 6.3V 20% 1210 493-5795-1-ND
14 C25, C53 2 TDK Corporation CGA2B2C0G1H6R8 D050BA CAP CER 6.8PF 50V ΝΡ0 0402 445-5580-1-ND
15 C24 1 TDK Corporation CGJ2B2C0G1H030C 050BA CAP CER 3PF 50V ΝΡ0 0402 445-13278-1-ND
16 C15,C16, C14 3 TDK Corporation C1005C0G1H470J05 0ΒΑ CAP CER 47PF 50V 5% ΝΡ0 0402 445-1243-1-ND
17 CIO 1 TDK Corporation C1005C0G1H010C0 50BA CAP CER 1 PF 50V ΝΡ0 0402 445-4855-1-ND
18 Cll 1 TDK Corporation C1005C0G1H101J05 0ΒΑ CAP CER100PF 50V 5% ΝΡ0 0402 445-1247-1-ND
19 C12, C13 2 TDK Corporation C1005C0G1H1R5B0 50BA CAP CER 1.5PF 50V ΝΡ0 0402 445-4858-1-ND
20 C42, C43, C44, C34 4 TDK Corporation C1608X5R1C106M0 80AB CAP CER 10UF 16V 20% X5R 0603 445-9065-1-ND
21 C22 2 Johanson Dielectrics, Inc. 500R07S120GV4T CAP CER 12PF 50V 2% ΝΡ0 0402 712-1256-1-ND
22 C29, C30, C46, C50, C51,C52 6 TDK Corporation C1005C0G1H330J05 0ΒΑ CAP CER 33PF 50V 5% ΝΡ0 0402 445-1241-1-ND
23 C20, C21 2 TDK Corporation C1005NP01H150J05 0ΒΑ CAP CER 15PF50V 5% ΝΡ0 0402 445-13788-1-ND
24 L1,L2 2 TDK Corporation MLG1005S12NJ INDUCTOR MULTILAYER 12NH 0402 445-3060-1-ND
25 .3, L4 2 TDK Corporation MLG1005S18NJ INDUCTOR 445-3062-1-ND
10262892_1 (GHMatters) P98209.AU.1
-282018208722 26 Jul 2018
MULTILAYER 18NH 0402
26 L5 1 Pulse Electronics Corporation PE-0603CD680JTT INDUCTOR WW RF 68NH 600MA 0603 553-1027-1-ND
27 L8 1 TDK Corporation MLG1005S3N3S INDUCTOR MULTILAYER 3.3NH 0402 445-3047-1-ND
28 L6 1 TDK Corporation MLG1005S2N2S INDUCTOR MULTILAYER 6.2NH 0402 445-3043-1-ND
29 L7 1 TDK Corporation MLK1005S2N2S INDUCTOR MULTILAYER 2.2NH 0402 445-1459-1-ND
30 R4, R7, R26, R29, R31 5 Panasonic Electronic Components ERJ-2RKF1002X RES 10.OK OHM l/10Wl%0402 SMD P10.0KLCT-ND
31 R1 1 Panasonic Electronic Components ERJ-2RKF5602X RES 56.0K OHM 1/10W l%0402 SMD P56.0KLCT-ND
32 R2 1 Panasonic Electronic Components ERJ-2GEJ332X RES 3.3KOHM 1/10W 5% 0402 SMD P3.3KJCT-ND
33 R8 1 Panasonic Electronic Components ERJ-2RKF22R0X RES 22.0 OHM 1/10W l%0402 SMD P22.0LCT-ND
34 RIO 1 Panasonic Electronic Components ERJ-2RKF2701X RES 2.70K OHM 1/10W l%0402 SMD P2.70KLCT-ND
35 Y2 1 ECS, INC. ECS-122.8-20-5PX- TR CRYSTAL 12.288MHZ 20PF SMD XC1278CT-ND
36 Yl, Y4 2 Abracon Corporation ABS06-32.768KHZ- T CRYSTAL 32.768KHZ 12.5PF SMD 535-10104-1-ND
37 Y3 1 CTS- Frequency- Controls 403C11A26M00000 CRYSTAL 26.0MHZ 10PF SMD CTX951CT-ND
38 U26 1 Microchip Technology 23K256-1/ST IC SRAM 256KBIT 20MHZ 8TSSOP 23K256-I/ST- ND
39 U3 1 TRiQuent Semiconductor 856327 Signal Conditioning 915/26MHz Filter 772-856327 (mouser)
40 U24 1 Torex Semiconductor XC6210B332MR-C IC REG LDO 3V 0.7A SOT25 893-1074-1-ND
41 U20 1 STMicroelectroni cs L7806ABD2t-TR IC REG LDO 6V 1,5A D2PAK 497-1172-1-ND
42 U23 1 Texas Instruments TPS62050DGSR IC REG BUCK SYNC ADJ 0.8A 10MSOP 296-14392-1-ND
43 U21 1 Linear Technology LTC4412IS6#TRMP BF IC OR CTRLR SRC SELECT TSOT23-6 LTC4412IS6#T RMPBFCT-ND
44 U22 1 Faichild Semiconductor FDC638P MOSFET P-CH 20V 4.5A SSOT-6 FDC638PCT- ND
45 Fl 1 FUSE, xxA, 2410
46 R6 1 RESISTOR, 2010
47 D1,D2, D3 3 DIODE, SHOTTKY, 1206
48 R23 1 RESISTOR, xxK, 2010
49 R24 1 RESISTOR, xxK, 2010
50 C47 1 TDK Corporation C1608X5R1E334M0 80AC CAP CER 0.33UF 25V 20% X5R 0603 445-5143-1-ND
51 U31 1 Microchip Technology MCP6041T-E/OT IC OP AMP 1,4V SNGL R-R SOT23-5 MCP6041T- E/OTCT-ND
52 IC1, IC2, 4 Vishay Siliconix SI1869DH-T1-E3 IC LOAD SW LVL SI1869DH-T1-
10262892_1 (GHMatters) P98209.AU.1
-292018208722 26 Jul 2018
IC3, IC4 SHIFT 20V SC70-6 E3CT-ND
53 R5 1 Panasonic Electronic Components ERJ-8ENF6043V RES 604K OHM 1/4W l% 1206 SMD P604KFCT-ND
54 C49 1 GRM188C81E475K E11D CAP CER 4.7UF 25V 10%X6S 0603 490-7199-1-ND
55 Rll 1 Panasonic Electronic Components ERJ-2RKF2803X RES 28 OK OHM 1/10W l%0402 SMD P280KLCT-ND
56
57 R13 1 Panasonic Electronic Components ERJ-3GEYJ473V RES 47K OHM 1/10W 5% 0603 SMD P47KGCT-ND
58 D4 1 DIODE, SCHOTTKY
59 R9 1 Panasonic Electronic Components ERJ-3GEYJ105V RES 1MOHM 1/10W 5% 0603 SMD P1.0MGCT-ND
60 R25, R27 2 Panasonic Electronic Components ERJ-2GEJ473X RES 47K OHM 1/10W 5% 0402 SMD P47KJCT-ND
61
62
63 D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, D32, D33, D34, D38, D39, D40 24 DIODE, ZENER, 6.2V, SOT-23
64 D35, D36, D37 3 Micro Commercial Co. SMBJ5341B-TP DIODE, ZENER, 6.2V, 5W, DO-214AC
65 L9 1 Wurth Electronics, Inc. 7445510 INDUCTOR POWER 10UH 1.2A SMD 732-1335-1-ND
66 C45 1 Kemet C1210C476M4PACT U CAP CER47UF 16V 20%X5R 1210 399-5514-1-ND
67 C54, C55, C48 3 TDK Corporation C1608X7R1H104K0 80AA CAP CER0.1UF50V 10%X7R 0603 445-1314-1-ND
68 U28, U30 2 Maxim Integrated MAX4372HEUK+T IC AMP CURRENT SENSE SOT23-5 MAX4372HEU K+TCT-ND
69 R18, R19 2 RESISTOR, XXXK, 0402
70 R15, R14 Na RESISTOR, 1OHM, 1206
71 R16, R17 2 RESISTOR, XXXK, 1206
72 D5, 36, D7, D8, D9, DIO 6 DIODE, SHOTTKY, 0603, 50V
73 R20 1 ERJ-2RKF2803X RES 280K OHM 1/10W l%0402 SMD P280KLCT-ND
74 R21 1 ERJ-2RKF6043X RES 604K OHM 1/10W l%0402 SMD P604KLCT-ND
75 R22 1 RESISTOR, XXXXK, 1206
10262892_1 (GHMatters) P98209.AU.1
-302018208722 26 Jul 2018
76 JI, J2 2 HEADER, MALE, .1, 6P0S
77 J6 1 HEADER, SCREW TERMINAL, 6 POS
78 J5 1 HEADER, MALE, .1,5 POS
79 D11,D12, D13 3 Vishay Semiconductor BZG03C10TR DIODE, ZENER 10V, DO-2 MAC BZG03C10CT- ND
80
81 R38 1 Panasonic Electronic Components ERJ-2GEJ624X RES 620K OHM 1/10W 5% 0402 SMD P620KJCT-ND
82 R39 1 Panasonic Electronic Components ERJ-2GEJ104X RES 100K OHM 1/10W 5% 0402 SMD P100KJCT-ND
[00130] The present disclosure pertains to a system 64 for monitoring gases on an oil or gas rig, as shown in figure 13. The system comprises a monitor 10 which detects a gas at the rig and determines a gas value of the gas. The monitor 10 having an audio alarm 30 and a visual alann 32, which is activated when the detected gas is above a predetermined value, and a transceiver 48 which transmits the gas value. The system 64 comprises a wireless telecommunications network 66 on which the gas value is transmitted from the monitor 10. The system 64 comprises a remote station 68 which receives the gas value from the network 66.
[00131] The remote station 68 may include a receiver which receives the gas value from the network 66, a processor 22 in communication with the receiver which receives the gas value from the receiver, and a display 38 in communication with the processor 22 on which the processor 22 displays an alarm indication when the gas value is above a predetermined level.
[00132] The present disclosure pertains to a remote station 68 which receives gas values of gas monitors from a wireless network 66. The remote station 68 comprises a receiver which receives the gas values wirelessly from the network 66. The remote station 68 comprises a processor 22 in communication with the receiver which receives the gas values from the receiver. The remote station 68 comprises a display 38 in communication with the
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-31processor 22 on which the processor 22 displays an alarm indication when the gas value is above a predetermined level.
[00133] The station 68 may include a housing 12 and the processor 22 and the receiver are disposed in the housing 12 and the display 38 is disposed on a face of the housing 12.
[00134] When the monitors 10 are used on an oil or gas rig, the monitors 10 are placed at various locations throughout the rig. A single communication node, such as a CommTrac node is placed with the central control station on the rig, where all of the monitors 10 are monitored. On the rig, since there are no seams or earth to interfere in any way with the transmission and reception of signals by the monitors 10, typically just a single communication node 206 is all that is needed for communication with the monitors 10. The communication node 206 essentially forms a hub network 66 with the monitors 10. The network 66 can be a CommTrac network 66 where data signals are sent over the network 66 as described above between the CommTrac communication node 206 and the monitors 10.
[00135] In one embodiment, as shown in figure 16, the receiver of the remote station 68 is part of the transceiver 48 of the CIM 72 described above, disposed in a housing 12 of the remote station 68. The gas value from each of the monitors 10 on the rig is received over the CommTrac network 66 at the CIM 72. The CIM 72 provides the gas values the CIM 72 has received to the Moxa 230 Miineport, as described above in regard to the shared power supply 200, which converts the serial data signal from the CIM 72 into an Ethernet format signal. The Ethernet signal is provided to a switch 236 which in turn provides it to a Beagle Bone PC 232 through the switch 236 that prepares the signal for a modbus PLC 234. The PC 232 provide the prepared signal through the switch 236 to the PLC 234 which then causes the prepared signal to be displayed on the display 38 on the housing 12 face, as shown in figure 17. The status of all the monitors 10 are displayed at once on the display 38. The value of the gas, such as methane, at each monitor 10 is displayed as well as an alarm indication at a monitor 10 if the gas value at the monitor 10 is above a predetermined level.
[00136] Regarding the protocol for the gas monitor, the message the monitor 10 sends out at predetermined times, or when queried, to the network 66 may have a byte for battery
10262892.1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-32level. The message may have a byte for external voltage level. The message may have a byte for status. The message may have a byte for gas reading. The message may have a byte for node address. The message may have a byte for serial number.
[00137] The present disclosure pertains to a communication system 64, as shown in figures 14a and 14b. The system 64 comprises a data network 204 on which solely data is sent. The system 64 comprises a wireless network 202 on which voice and data is sent bidirectionally. The system 64 comprises a plurality of nodes 206 distributed and apart from each other that form the data network 204 and the wireless network 202. Each node 206 has a data portion 223 which receives and sends data on the data network 204, a wireless portion 224 which receives and sends voice signals on the wireless network 202, and a power supply portion 200 in electrical communication with the data portion 224 and the wireless portion 223 which powers the data portion 224 and the wireless portion 223.
[00138] Data on the data network 204 may include tracking information of an individual. The data on the data network 204 may be sent and received at least one node 206 of the plurality of nodes 206 and the data network 204 is bidirectional. The data from the data network 204 may be sent on the data network 204 and the wireless network 202. Each node 206 may include a data converter 226 in communication with the data portion 224 and the wireless portion 223 which converts the data from the data network 204 into a transmission signal that is transmitted on the wireless network 202.
[00139] The present disclosure pertains to a communication node 206 of a data network 204 and a wireless network 202, as shown in figures 14a and 14b. The node 206 comprises a housing 12. The node 206 comprises a data portion 224 disposed in the housing 12 which receives data wirelessly on the data network 204. The node 206 comprises a wireless portion 223 disposed in the housing 12 which receives and sends voice signals on the wireless network 202. The node 206 comprises a power supply portion 200 disposed in the housing 12 in electrical communication with the data portion 224 and the wireless portion 223 which powers the data portion 224 and the wireless portion 223. The node 206 comprises a data converter 226 disposed in the housing 12 in communication with the data portion 224 and the
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-33wireless portion 223 which converts the data from the data network 204 into a transmission signal that is transmitted on the wireless network 202.
[00140] The wireless portion 223 may include a first radio 218 to transmit the transmission signal. The wireless portion 223 may include a switch 221 in communication with the first radio 218 and the data converter. The wireless portion 223 may include an external fiber connector 223 in communication with the switch 221 to connect with an external fiber to transmit the transmission signal.
[00141] The present disclosure pertains to a method for communicating in a mine. The method comprises the steps of receiving data wirelessly at a data portion 224 of a first node 206 of a plurality of nodes 206 from a data network 204 on which solely data is sent. The plurality of nodes 206 distributed and apart from each other and form the data network 204 and a wireless network 202. There is the step of converting with a data converter 226 in communication with the data portion 224 the data from the data network 204 into a transmission signal that is transmitted on the wireless network 202. The wireless network 202 transmitting and receiving voice and data bi-directionally. There is the step of transmitting the transmission signal from the first node 206 on the wireless network 202 with a wireless portion 223 of the first node 206. There is the step of powering the data portion 224 and the wireless portion 223 with a power supply portion 200 in electrical communication with the data portion 224 and the wireless portion 223.
[00142] Referring to figure 14B, there is shown a schematic diagram focusing on the shared power supply 200 that is shared by the wireless network 202 and the wireless data network 204 which is separate and distinct and independent from the wireless network 202, all of which is found in a single communication node 206, such as a StrataConnect node 206 A. The wireless network 202 may be that wireless network 202 as described in U.S. application 14/290,755, incorporated by reference herein, which supports and provides for bidirectional voice and data communication. The data network 204 may be the CommTrac network 66 sold by Strata Products Worldwide, LLC, Sandy Springs, Georgia. The data network 204 may provide bidirectional data communication, as well as tracking of miners and vehicles and various devices throughout the mine. The node 206 receives data from the data
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-34network 204, processes the data so the data can be transmitted on the wireless Wi-Fi voice network 202 with the fibers 222, and then transmits the processed data on to the remote station 68, either through the Wi-Fi network 202 with the fibers 222.
[00143] A node 206 having the functionality of the CommTrac network 66 and the wireless network 202 receives power from the mine power supply 208 at power input 210. The power from the mine power supply 208 is at between 12 and 48 VDC. The power input 210 is electrically connected to a POE injector 212 which converts the power to 10 VDC to power the components inside the node 206. Power from the injector 212 at 10 VDC and 1 amp is provided to the first radio 218 and second radio 220 over a Cat5/Ethemet connection connected to each radio. Power from the injector 212 at 10 VDC and 500 mA is provided to the switch 221 in the node 206. Also connected to the switch 221 are external fibers 222 through external fiber connectors 223 over which transmission and reception of communication signals occur. The injector 202 powers the data connection portion 224, here preferably the CommTrac portion 224, such as a CIM 72 that communicates with the CommTrac network 66 and a data converter 226, such as a serial to Ethernet converter 226, and specifically a Moxa 230, at 3.3 V and 500 mA.
[00144] The CommTrac portion 224 connects with the serial to Ethernet converter 226 through a UART connection at 3.3 VDC and at 115 kb per second which provides the data signal received by the CommTrac portion 224 to the serial to Ethernet converter 226. The serial to Ethernet converter 226 converts the data signal received by it from the CommTrac portion 224 into a form that can then be transmitted through the fibers 222 or through the radios and provides the converted signal to the switch 221. The switch 221 then transmits the converted signal that was originally received by the CommTrac portion 224 through the fibers 222, or if the fiber connection is not available, through the radios.
[00145] In addition, the node 206 may also receive power from another node 206 through a Cat 5 connection 228 and also provide power to another node through a Cat 5 connection 228 to form a daisy chain of nodes 206. Each of the Cat 5 power connections 228 are RJ45 connectors. The power level of the Cat 5 connections 228 coming in or going out of
10262892.1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-35the node 206 is the same as the power level received by the node 206 from the mine power supply 208.
[00146] Figure 14B shows a non-IS node 206. Figure 14C shows a node 206 that is IS. The node 206 operates essentially the same as the node 206 of figure 14B, except that certain power levels are different, as indicated, and the external Cat 5 connections 228 are omitted.
[00147] The present disclosure pertains to a miner communicator 298 in a communications network 66, as shown in figure 15. The communicator 298 comprises a housing 12. The communicator 298 comprises a processor 22 disposed in the housing 12. The communicator 298 comprises a transceiver 48 disposed in the housing 12 and in communication with the processor 22 and the network 66 to send to and receive from the network 66 only data but not including text. The communicator 298 comprises an input 300 disposed on the housing 12 and in communication with the processor 22 which provides a trigger signal to the processor 22. The communicator 298 comprises an alarm 302 in contact with the housing 12 and in communication with the processor 22 that is activated by the processor 22 when an alarm 302 signal is received by the transceiver 48. The communicator 298 comprises a tracking portion 310 disposed in the housing 12 which provides a tracking signal that is transmitted by the transceiver to the network from which the location of the housing in the mine is determined along with an ID of the communicator 298. The transceiver 48 transmits the ID and tracking signal to the network 66 to a communication node 206, ideally the closest node 206, and then to the remote station 68. The tracking portion 310 may be part of the CC 1110. The CC 1110 is an off the shelf transceiver that is. purchased and also provides tracking ability by measuring the signal strength of the CommTrac node 205 ideally closest to the transceiver 48, whose location is known and stored in a server in the remote station 68. The signal strength is sent through the network 66 to the server, and using triangulation by the server, which receives the signal strength, determines the location of the transceiver 48, as is more fully explained below and is already part of the CommTrac network 66.
[00148] The input 300 may be a single button 304. The alarm 302 may be a first LED 306 that illuminates when the alarm 302 signal is received by the transceiver 48. The alarm
10262892.1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-36302 may be a plurality of LEDs 306 which is illuminated when the alarm 302 signal is received by the transceiver 48. There may be no display 38 and no key board or key pad, only the single button 304.
[00149] The trigger signal may be a fixed shape signal whose duration corresponds to how long the button 304 is activated. The alarm 302 may be activated only when an alarm 302 signal is received during to listening intervals in a listening period by the transceiver 48. The activation of the button 304 may cause the processor 22 to produce an indicator signal to the network 66 through the transceiver 48 corresponding to the activation length and activation frequency of the button 304.
[00150] The transceiver 48 may have its settings changed by the processor 22 when the communicator 298 is within a predetermined distance of a communication node so the transceiver 48 is not saturated by the communication node. When the communicator 298 transitions from an area of surface communication nodes to only underground communication nodes, the processor 22 may transmit to the network 66 through the transceiver 48 a check in message that the communicator 298 is present in the mine.
[00151] The present disclosure pertains to a method for communicating with a miner in a mine. The method comprises the steps of sending an alarm 302 signal wirelessly through a wireless communication network 66 to a miner communicator 298 carried by a miner in the mine. The communicator 298 is only able to receive data but not voice. There is the step of receiving the alarm 302 signal by the communicator 298. There is the step of activating an alarm 302 of the communicator 298 by a processor 22 of the communicator 298 in response to the communicator 298 receiving the alarm 302 signal. There is the step of activating a button 304 of the communicator 298 to cause the transmitter to transmit from the communicator 298 to the network 66 an indicator signal regarding the miner’s status, and with the indicator signal is an id of the communicator 298 and information associated with the position of the communicator 298, The communicator 298 does not have a display 38 or a keyboard.
[00152] The communicator 298 for communicating with a user, such as a miner, provides for limited but important information transfer between the user and a monitoring
10262892..1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-37station. This limited information transfer is bidirectional to provide the remote station 68 with information about the user, and to provide the user with critical emergency alert information. The communicator 298 is very lightweight so that it is easily carried or worn by the user and is battery powered.
[00153] The communicator 298 sends position messages that report the ID, the cun-ent position data by providing the signal strength of signals received by the communicator 298 from a closest operable communication node 206 in the mine to the communicator 298, the ID of the closest communication node 206 and possibly battery level, and event information at predetermined intervals wirelessly over a network 66 to the remote station 68 so the miner can be tracked. The network 66 can be the CommTrac network 66 or the StrataConnect network 66, which is comprised of the CommTrac network 66 and a WiFi network 66, as described above. The communicator 298 will listen for any messages sent to it at different predetermined intervals.
[00154] The communicator 298 includes a processor 22, such as a PIC 24, and a transceiver 48, such as a CC1110, and can be the CIM 72, the operation of which is already described above in regard to the operation of the wireless gas monitor 10. The CommTrac network 66 is synchronized with the communicator 298 so that when the communicator 298 sends information or receives information at the appropriate predetermined intervals, the CommTrac network 66 knows to send or receive the respective information in the appropriate timeframe.
[00155] When the communicator 298 is within a predetermined distance of a Commtrac node, the transceiver 48 is attenuated by about 10 db, and its RSSI values are adjusted upward by the same amount. This is to deal with the condition of a CommTrac node being very close to the communicator 298 and saturating the transceiver 48. The transmission power of the transceiver 48 is also reduced by 10 db if the communicator 298 is close to the CommTrac node so as to prevent saturating the CommTrac node transceiver 48.
[00156] During listening periods by the communicator 298 to receive information, a mine-wide alert state bit is used to determine that an emergency condition exists. This bit
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-38must be detected in at least two listening intervals within a predetermined listening period to be considered valid. By requiring information received by the communicator 298 in at least two listening intervals in a predetermined listening period to have this bit, it reduces the possibility of false alarms. When none of the listening intervals in the predetermined listening period do not have this bit, the alert state is considered no longer present.
[00157] A light on the apparatus will flash, preferably in a distinct pattern, when the mine-wide alert is recognized by the communicator 298. After a mine-wide alert is recognized; the miner will press a button 304 one, two or three times to indicate the miner's status. For instance, if the button 304 is pushed once, it means the miner is fine. If the button 304 is placed twice in succession, it means the miner is trapped. If the miner pushes the button 304 three times in succession, it means the miner is injured. The miner can push the button 304 twice, then wait a few seconds and push it again three times to indicate he is trapped and injured. The communicator 298 will send an emergency response acknowledgment with the position message to indicate the miner's response. The light may be several LEDs 306 of different color.
[00158] A quick press on the button 304 performs a communication check and battery status update. Holding down the button 304 for an extended period of time or multiple presses of the button 304 during a short period of time is used to trigger an emergency message. Holding down the button 304 for an extended period of time shall remove this condition. Two quick presses of the button 304 turn the LED 306 flasher on or off. In response to a mine-wide alert message, one, two or three presses indicate the user's response condition.
[00159] One bit of received information in a listening interval is used to indicate if the CommTrac node is a surface node. Transitioning from an area of surface nodes to only underground nodes triggers the apparatus to issue a check in message. A checkout message is transmitted when transitioning in the other direction-transmitting a checkout message when only surface nodes are heard and the apparatus is formally in a check in state. The apparatus only waits for the network 66 level acknowledgment that indicates the check in/out message made it successfully to the CommTrac node. The apparatus does not need to wait for check in/out acknowledgment.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-39[00160] For a communication check, after the button 304 is quickly pressed, the LEDs 306 flash once immediately to provide feedback. After a short pause, a series of 1-3 LED 306 flashes indicate battery life (1 - needs replacing soon, 2 - middle life, 3 - new). After another pause, a second series of flashes indicate strength of node (1 - weak, 3 - strong). The LEDs 306 will flash in a pattern indicative of an emergency state. For example, a - flash with pauses in between will indicate an emergency state. The LEDs 306 will flash in a basic pattern used only for visual warning. During a mine-wide alert message, the LEDs 306 blink in a pattern making it very clear the apparatus is in an alert state.
[00161] The housing of the communicator 298 has a 1 x w x h of less than 110 mm x 210 mm x 50 mm and is preferably about 72 mm x 165 mm x 20 mm. It has a weight of less than 150 gm and is preferably about 75 gm.
[00162] Then present disclosure pertains to a miner apparatus 450 of a wireless network, as shown in figure 18 and figure 21. The apparatus 450 comprises a housing 12 which is earned by the miner. The apparatus 450 comprises a tracking portion 310 disposed in the housing 12 which transmits information associated with the miner’s location wirelessly to the network 66. The apparatus 450 comprises a battery 14 disposed in the housing 12 and connected to the tracking portion 310 which powers the tracking portion 310. The apparatus 450 comprises a cap lamp 400 electrically connected to the battery 14 which is powered by the battery 14 to provide light. The cap lamp 400 is worn by the miner.
[00163] The tracking portion 310 may be part of a transceiver 48, described above, and the location of the housing 12 is determined, as described.
[00164] The present disclosure pertains to a miner apparatus 450 of a wireless network 66, as shown in figure 19 and figure 21. The apparatus 450 comprises a housing 12 which is earned by the miner. The apparatus 450 comprises a tracking portion 310 disposed in the housing 12 which transmits information associated with the miner’s location wirelessly to the network. The apparatus 450 comprises a battery 14 disposed in the housing 12 and connected to the tracking portion 310 which powers the tracking portion 310. The apparatus 450
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-40comprises a proximity device 402 electrically connected to the battery 14 and disposed in the housing 12 which is powered by the battery 14 to provide a detectable presence to a proximity detector 404 when the miner gets too close to the proximity detector 404, the proximity device 402 worn by the miner.
[00165] The present disclosure pertains to a miner apparatus 450 of a wireless network, as shown in figure 20 and figure 21. The apparatus 450 comprises a housing 12 which is earned by the miner. The apparatus 450 comprises a tracking portion 310 disposed in the housing 12 which transmits information associated with the miner’s location wirelessly to the network 66. The apparatus 450 comprises a battery 14 disposed in the housing 12 and connected to the tracking portion 310 which powers the tracking portion 310. The apparatus 450 comprises a proximity device electrically connected to the battery 14 and disposed in the housing 12 which is powered by the battery 14 to provide a detectable presence to a proximity detector when the miner gets too close to the proximity detector. The proximity device is worn by the miner. The apparatus 450 comprises a cap lamp 400 electrically connected to the battery 14 which is powered by the battery 14 to provide light. The cap lamp 400 is worn by the miner. Together these components of tracking, light and proximity are referred to as TPL.
[00166] The present disclosure pertains to a method for a miner to move through a mine. The method comprises the steps of powering a light of a cap lamp 400 on the miner’s head with a battery 14 in a housing 12 carried by the miner. There is the step of sending information associated with location information of the miner’s location in the mine from the housing 12 identified with a tracking portion 310 in the housing so the miner can be tracked as the miner moves through the mine. There is the step of stopping a machine with a proximity sensor connected to the machine, because the proximity sensor has sensed a proximity device in the housing 12 has come within a predetermined distance to the proximity device.
[00167] The following information may be contained in a message sent from the proximity detector 404. The message may include at least one byte regarding the health of a generator of the proximity detector 404. The message may include at least one byte that a miner has moved close enough to the proximity detector 404 that a warning has occurred.
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
-41 The message may include at least one byte that a miner has moved close enough to the proximity detector 404 that a hazard has occurred which has effectively stopped the operation of the machine associated with the proximity detector 404. The message may include at least one byte which identifies the magnetic field strength of a generator. The message may include at least one byte that identifies the ID of a proximity device 402, such as a personal alarm device (PAD), of a miner which has triggered a warning or hazard depending on how close the proximity device 402 is to the proximity detector 404. The message may include at least one byte which identifies the battery strength of the proximity device 402 which has triggered a warning or a hazard. The proximity device 402 and the proximity detector 404 themselves are sold by Strata Products Worldwide, LLC, Sandy Springs, Georgia, USA. The PAD sends an ID signal to the proximity detector 404 so the proximity detector 404 knows the ID of the PAD that has caused a warning or a hazard which effectively turns the machine off.
[00168] The present disclosure pertains to a proximity detector 404 attached to a machine 475, as shown in figure 21. The detector 404 for detecting a miner’s presence comprises a generator 477 which produces a magnetic field. The detector 404 comprises a processor 22. The detector 404 comprises a transceiver 48 for sending a message produced by the processor 22 having information about the generator’s health and an ID of a PAD of a miner that has triggered a warning or hazard that has effectively stopped operation of the machine 475.
[00169] Preferably, the tracking portion 310 is a CIM 72 and the wireless network 66 is the CommTrac network 66. In one embodiment the CIM 72 and the battery 14 are in the housing 12 and the housing 12 is attached to the cap lamp 400 with wiring extending from the housing 12 to the lamp through a socket in the cap to power the lamp. In another embodiment, the housing 12 is positioned in a pocket or on a belt held with a buckle of the miner, and wiring extends from the battery 14 through the housing 12 up to the back of the cap lamp 400 and attached to a socket of the cap to power the lamp. The cap may be a standard miner helmet modified to have the socket to receive the power wire from the battery 14 in the housing 12.
10262β92_1 (GHMatters) P98209.AU.1
-422018208722 26 Jul 2018 [00170] In an alternative embodiment, the CIM 72 and the battery 14 are disposed in the housing 12 along with a proximity device 402. The battery 14 powers the CIM 72 and the proximity device 402 so that proximity detection and tracking of the miner are located in the housing 12 which is earned by the miner.
[00171] In yet another embodiment, the CIM 72, the battery 14 and the proximity device 402 are all disposed in the housing 12, with the battery 14 powering the CIM 72 and the proximity device 402. In addition, wiring extending from the battery 14 and out through the housing 12 to the back of a cap lamp 400 worn by a miner to power the lamp.
[00172] With reference to figures 22 and 23 that are schematic circuit diagrams for the miner communicator 298, the following is a parts list for the communicator 298.The operation of the processor 22 and transceiver 48, that form the CIM 72 is the same, but there is additional circuitry for the features of the communicator 298. All of the following parts are themselves alone well known and are identifiable by their part number, description and manufacturer. Figure 24 shows an overhead view of the circuit board having the circuitry described in figures 22 and 23.
[00173]
Line Item Reference Designator Quantity Manufacturer Part Number Description
1 Cl, C2, C3, C6, C7, C9, C32, C35, C36, C37, C38, C39 12 Taiyo Yuden EMK105B7104KV-F CAP CER 0.1UF 16V 10% X7R 0402
2 C4, Cl8 2 TDK Corporation CGA2B2X7R1H102 K050BA CAP CER 1000PF 50V 10% X7R 0402
3 C5, C19 2 TDK Corporation C1005X5R1C105K0 50BC CAP CER 1UF 16V 10% X5R 0402
C8, C52, L14 3 Panasonic Electronic Components ERJ-2GE0R00X RES 0.0 OHM 1/10W JUMP 0402 SMD
4 C10 1 TDK Corporation C1005C0G1H010C0 50BA CAP CER 1PF 50V ΝΡ0 0402
5 Cll 1 TDK Corporation C1005C0G1H101J05 0ΒΑ CAP CER 100PF 50V 5% ΝΡ0 0402
6 C12, C13 2 TDK Corporation C1005C0G1H1R5B0 50BA CAP CER 1.5PF 50V ΝΡ0 0402
7 C14, C15, C16 3 TDK Corporation C1005C0G1H470J05 0ΒΑ CAP CER 47PF 50V 5% ΝΡ0 0402
8 C17 1 Johanson 250R07N221JV4T CAP CER 220PF 25V 5% ΝΡ0
10262892_1 (GHMatters) P98209.AU.1
-432018208722 26 Jul 2018
Dielectrics Inc 0402
10 C20, C21, C45, C61 4 TDK Corporation C1005NP01H150J05 0ΒΑ CAP CER 15PF 50V 5% ΝΡ0 0402
11 C22 1 Johanson Dielectrics Inc 500R07S120GV4T CAP CER 12PF 50V 2% ΝΡ0 0402
12 C23, C27, C28, C31, C40, C41 6 Murata Electronics North America GRM1555C1H200G A01D CAP CER 20PF 50V 2% ΝΡ0 0402
13 C24 1 TDK Corporation C1OO5C0G1HO3OCO 50BA CAP CER 3PF 50V ΝΡ0 0402
14 C25,C51 2 TDK Corporation CGA2B2C0G1H6R8 D050BA CAP CER 6.8PF 50V ΝΡ0 0402
15 C26, C29, C30 3 TDK Corporation C1005C0G1H330J05 0ΒΑ CAP CER 33PF 50V 5% ΝΡ0 0402
C33 1 TDK Corporation C1005C0G1H270J05 0ΒΑ CAP CER 27PF 50V 5% ΝΡ0 0402
16 C34 1 Taiyo Yuden UMK105CG181JV-F CAP CER 180PF 50V 5% ΝΡ0 0402
17 C42, C43, C44, C60 4 TDK Corporation C1608X5R1A106M0 80AC CAP CER 10UF 10V 20% X5R 0603
18 C46, C49 0 DNP
19 C47, C48, C50 3 TDK Corporation C2012X5R1A226M0 85AC CAP CER 22UF 10V 20% X5R 0805 0.95MM THICK
C59 1 TDK Corporation C1005C0G1H221J05 0ΒΑ CAP CER 220PF 50V 5% ΝΡ0 0402
20 D1,D2 2 Avago Technologies US Inc. HSMZ-C170 LED CHIP ALINGAP2 RED TOP MOUNT 0805
21 D4, D5, D6 3 Diodes B0520WS-7-F DIODE SCHOTTKY 20V 0.5A SOD323
22 El 1 Vishay VJ5301M915MXBS R RF ANTENNA, 915 MHz
23 Fl 1 Littelfuse 0466.500NR FUSE .500A 63V FAST 1206
Hl 1 Tech-Etch EMI Shield 0.500in. x 0.800in. x 0.060in.
24 J3 1 Samtec MTMM-105-05-F-D- 250
25 L1,L2 2 TDK Corporation MLG1005S12NJ INDUCTOR MULTILAYER 12NH 0402
26 L3, L4 2 TDK Corporation MLG1005S18NJ INDUCTOR MULTILAYER 18NH0402
27 L5 1 Coilcraft 0603HP-68NXJLU INDUCTOR WIREWOUND 68NH 0603 5%
28 L6 1 TDK Corporation MHQ1005P6N2S INDUCTOR MULTILAYER 6.2NH 0402
29 L7 1 TDK Corporation MHQ1005P2N2S INDUCTOR MULTILAYER 2.2NH 0402
30 L8, Lil 2 TDK Corporation MHQ1005P3N3S INDUCTOR MULTILAYER 3.3NH0402
31 L9 1 Taiyo Yuden NR6045T6R3M INDUCTOR 6.3UH 3.8A 20% SMD
32 LIO 1 DNP
L12, L13 2 Murata Electronics North America BLM15HG102SN1D FILTER CHIP 1000 OHM 250MA 0402
L15 1 DNP
34 P1,P2, P3, 6 Keystone 56 BATTERY CLIP AAA SMD
10262892_1 (GHMatters) P98209.AU.1
-442018208722 26 Jul 2018
P4, P5, P6
35 R1 1 Panasonic Electronic Components ERJ-2RKF5602X RES 56K OHM 1/10W 1% 0402 SMD
36 R2 1 Panasonic Electronic Components ERJ-2GEJ332X RES 3.3K OHM 1/10W 5% 0402 SMD
37 R3 1 Panasonic Electronic Components ERJ-2RKF4993X RES 499K OHM 1/10W 1% 0402 SMD
38 R4, R12 2 Panasonic Electronic Components ERJ-2RKF1133X RES 113K OHM 1/10W 1% 0402 SMD
39 R5, R7, R9, R29 4 Panasonic Electronic Components ERJ-2RKF1002X RES 10K OHM 1/10W 1% 0402 SMD
40 R6 1 Panasonic Electronic Components ERJ-8GEY0R00V RES 0.0 OHM 1/4W JUMP 1206 SMD
41 R8 1 Yageo RC0402FR-0722RL RES 22.0 OHM 1/16W 1% 0402 SMD
42 RIO, R16 2 Panasonic Electronic Components ERJ-2RKF2701X RES 2.7K OHM 1/10W 1% 0402 SMD
43 Rll 1 Panasonic Electronic Components ERJ-2RKF51R0X RES 51 OHM 1/10W 1% 0402 SMD
44 R13 1 Panasonic Electronic Components ERJ-2RKF1004X RES IM OHM 1/10W 1% 0402 SMD
R14, R15 2 Panasonic Electronic Components ERJ-2RKF24R9X RES 24.9 OHM 1/10W 1% 0402 SMD
45 R17, R18, R19, R22, R23, R24, R25, R26 8 Panasonic Electronic Components ERJ-2RKF1001X RES IK OHM 1/10W 1% 0402 SMD
46 R20 1 Panasonic Electronic Components ERJ-2RKF2003X RES 200K OHM 1/10W 1% 0402 SM
47 R21 1 Panasonic Electronic Components ERJ-2RKF6043X RES 604K OHM 1/10W 1% 0402 SMD
R27 1 Panasonic Electronic Components ERJ-2RKF10R0X RES 10 OHM 1/10W 1% 0402 SMD
R28 1 Panasonic Electronic Components ERJ-2RKF47R0X RES 47 OHM 1/10W 1% 0402 SMD
48 S4 1 Coto Technology CT05-1535-G1 REED SWITCH MOLDED 140V 15-35AT
49 S2 1 C&K Components PTS645VH39-2 LFS SWITCH TACTILE SPST-NO 0.05A 12V
50 S3 1 SignalQuest SQ-MIN-200 SQ-MIN-200
51 U1 1 Texas Instniments CC1190RGVT IC RF FRONT-END 16VQFN
52 U2 1 Microchip PIC24FJ64GA004- I/ML IC MCU 16BIT 64KB FLASH 44QFN
10262892_1 (GHMatters) P98209.AU.1
-452018208722 26 Jul 2018
53 U3 1 Texas Instruments TPS62040DGQR IC REG BUCK SYNC ADJ 1,2A 10MSOP
54 U4 1 Epcos B39921B3588U410 Signal Conditioning 915MHz 50ohms 2.9dB
55 U6 1 Microchip MCP6041T-I/OT IC OP AMP GP 14KHZ RRO SOT23-5
56 U7 1 Microchip 23K256-I/ST IC SRAM 256KBIT 20MHZ 8TSSOP
57 U8 1 Texas Instruments CC1110F32RHHT IC SOC RF TXRX W/8051 MCU 36-VQF
58 Yl, Y4 2 Abracon ABS06-32.768KHZ- T CRYSTAL 32.768KHZ 12.5PF SMD
59 Y2 1 TXC 7M-12.288MAAJ-T CRYSTAL 12.288MHZ 18PF SMD
60 Y3 1 CTS 403C11A26M00000 CRYSTAL 26MHZ 10PF SMD
PCB 1 Strata Products Worldwide PCBU000098 Rev C
[00174] With reference to figures 25 - 28 which are schematic circuit diagrams for the miner apparatus 450, the following is a parts list for the miner apparatus 450. The operation of the processor 22 and transceiver 48, that form the CIM 72 is the same, but there is additional circuitry for the features of the miner apparatus 450. All of the following parts are themselves alone are well known and are identifiable by their part number, description and manufacturer.
[00175]
Line Item Designator Quantity Manufacturer Part Number Description
1 BZ1 1 PUI AUDIO AI-1027-TWT-5V-R BUZZER MAGN 5VDC 2.7KHZ PCB
2 Cl 1 Kemet T495D337K010ATE 150 CAP TANT 330UF 10V 10% 2917
3 C2, C3, C4, C7, C20, C21.C27, C28, C29, C32, C33, C34, C36, C37, C38, C39, C41, C42, C43, C44, C101, Cl 02, C103 23 Panasonic C0603C104K4RACT U CAP CER 0.1 UF 16V 10% X7R 0603
4 C8 1 Samsung ElectroMechanics America CL21B106KOQNNN E CAP CER 10UF 16V 10% X7R 0805
5 C9.C10, 5 Panasonic C0603C103K4RACT CAP CER 0.1 UF 16V 10% X7R
10262892_1 (GHMatters) P98209.AU.1
-462018208722 26 Jul 2018
C11,C12, C19 U 0603
6 C13 1 TDK Corporation C1005C0G1H680J05 0ΒΑ CAP CER 68PF 50V 5% ΝΡ0 0402
7 C14 1 TDK Corporation C1005X7R1H103K0 50BB CAP CER 10000PF 50V 10% X7R 0402
8 C15, C17, C48 3 TDK Corporation C1005C0G1H101J05 0ΒΑ CAP CER 100PF 50V 5% ΝΡ0 0402
9 C16 1 Panasonic ERJ-2GE0R00X JUMPER 0 OHM 1/10W 0402 SMD
10 C18, R34, R35, R36, TP9 5 DO NOT INSTALL
11 C5, C22 2 Kemet C0603C105K4RACT U CAP CER 1UF 16V 10% X7R 0603
12 C23, C24, C56, C63 4 TDK Corporation C1005NP01H150J05 0ΒΑ CAP CER 15PF 50V 5% ΝΡ0 0402
13 C25 1 TDK Corporation C1608X5R1E106M0 80AC CAP CER 10UF 25V 20% X5R 0603
14 C26, C30, C49, C50, C51,C52 6 Kemet CBR04C200F5GAC CAP CER 20PF 50V 1% ΝΡ0 0402
15 C31,C57, C60 3 TDK Corporation C1005X5R1A104K0 50BA CAP CER 0.1UF 10V 10% X5R 0402
16 C35, C53 2 TDK Corportation C1005X5R1C105K0 50BC CAP CER 1UF 16V 10% X5R 0402
17 C40, C47 2 TDK Corporation C1005C0G1H1R5B0 50BA CAP CER 1.5PF 50V ±0.1PF ΝΡ0 0402
18 C45, C61, C64 3 TDK Corporation C1005C0G1H470J05 0ΒΑ CAP CER 47PF 50V 5% ΝΡ0 0402
19 C46 1 TDK Corporation C1OO5C0G1HO1OCO 50BA CAP CER 1PF 50V ±0.25PF ΝΡ0 0402
20 C54 1 TDK Corporation C1005X7R1C103K0 50BA CAP CER 10000PF 16V 10% X7R 0402
21 C55 1 Johanson Dielectrics Inc 250R07N221JV4T CAP CER 220PF 25V 5% ΝΡ0 0402
22 C58 1 TDK Corporation CGA2B2C0G1H6R8 D050BA CAP CER 6.8PF 50V ΝΡ0 0402
23 C59 1 TDK Corporation CGJ2B2C0G1H030C 050BA : CAP CER 3PF 50V ΝΡ0 0402
24 C62 1 Johanson Technology Inc 500R07S120GV4T CAP CER 12PF 50V 5% ΝΡ0 0402
25 DI 1 OSRAM Opto Semiconductors LR A67F-U2AB-1-Z LED SIDELED RED 625NM CLR RA SMD
26 D6, D7, D8 3 OSRAM Opto Semiconductors LB Q39G-L2N2-35-1 LED CHIPLED BLUE 470NM 0603 SMD
27 E1,E2 2 Pulse Electronics Corporation W3113, W3114
28 Fl 1 Littelfuse 0466002.NR FUSE 2A 63V FAST 1206
29 LI 1 Panasonic ELL-6RH8R2M COIL 8.2UH 1200MA CHOKE SMD
30 L2 1 TDK Corporation MLG1005S47NJT00 0 INDUCTOR MULTILAYER 47NH 0402
31 L3,L4 2 TDK Corporation MLG1005S6N8JT00 0 INDUCTOR MULTILAYER 6.8NH 0402
32 L5, L7 2 TDK Corporation MLG1005S12NJ INDUCTOR MULTILAYER 12NH 0402
10262892_1 (GHMatters) P98209.AU.1
-472018208722 26 Jul 2018
33 L6, L8 2 TDK Corporation MLG1005S18NJ INDUCTOR MULTILAYER 18NH0402
34 L9 1 Pulse Electronics Corporation PE-0603CD680JTT INDUCTOR WW RF 68NH 600MA 0603
35 LIO 1 TDK Corporation MLG1005S3N3S INDUCTOR MULTILAYER 3.3NH 0402
36 Lil 1 TDK Corporation MLK1005S2N2S INDUCTOR MULTILAYER 2.2NH 0402
37 L12 1 TDK Corporation MLG1005S6N2S INDUCTOR MULTILAYER 6.2NH 0402
38 Pl 1 Samtec SSW-106-01-L-D Header, 6-Pin, Dual row
39 P2 1 Samtec TSW-104-06-L-S Header, 4-Pin, Single row
40 P3 1 Samtec TSW-105-06-L-S Header, 5-Pin, Single row
41 P4 1 Samtec SLW-105-01-L-S
42 Q1,Q2, Q3, Q4, Q5 5 International Rectifier IRLML2502TRPBF MOSFET N-CH 20V 4.2A SOT- 23
43 Q6 1 Fairchild Semiconductor MMBT3904 TRANSISTOR GP NPN AMP SOT-23
44 R1,R12, R24, R29, R30, R31, R32, R54, R63, R64, R65, R66, R67, R68, R69 15 Bourns ERJ-8ENF4990V RES 499 OHM 1/4W 1% 1206 SMD
45 R2 1 Panasonic ERJ-M1WSF20MU RES 0.02 OHM 1W 1% 2512 SMD
46 R3 1 Bourns CRM1206-FZ- R050ELF RES 0.05 OHM 1/2W 1% 1206 SMD
47 R4, R5, R9, RIO, R15, R16, R19, R20, R22, R23 10 Bourns CRA2512-FZ- R100ELF RES 0.1 OHM 3W 1% 2512 SMD
48 R6 1 Panasonic ERJ-3EKF5102V RES 5IK OHM 1/10W 1% 0603 SMD
49 R7, R8, R13,R14, R18 5 Stackpole Electronics CSRN2512FKR680 RES 0.68 OHM 2W 1% 2512
50 Rll 1 Panasonic ERJ-3EKF10R0V RES 10 OHM 1/10W 1% 0603 SMD
51 R17 1 Panasonic ERJ-14NF40R2U RES 40.2 OHM 1/2W 1% 1210 SMD
52 R21 1 Panasonic ERJ-3EKF1502V RES 15K OHM 1/10W 1% 0603 SMD
53 R25, R44, R45, R46 4 Panasonic ERJ-3EKF1001V RES IK OHM 1/10W 1% 0603 SMD
54 R26 1 Panasonic ERJ-3EKF2001V RES 2K OHM 1/10W 1% 0603 SMD
55 R27 1 Panasonic ERJ-3EKF1003V RES 100K OHM 1/10W 1% 0603 SMD
56 R28, R40, R41,R42, R43, R47, R48, R49, R50 9 Panasonic ERJ-3EKF1002V RES 10K OHM 1/10W 1% 0603 SMD
10262892_1 (GHMatters) P98209.AU.1
-482018208722 26 Jul 2018
57 R33, R37, R38, R39 4 Panasonic ERJ-3EKF1000V RES 100 OHM 1/10W 1% 0603 SMD
58 R51 1 Panasonic ERJ-2RKF2701X RES 2.7K OHM 1/10W 1% 0603 SMD
59 R52 1 Panasonic ERJ-8ENF6043V RES 604K OHM 1/4W 1% 1206 SMD
60 R53 1 Panasonic ERJ-3EKF2803V RES 280K OHM 1/10W 1% 0402 SMD
61 R55, R56, R57, R58 4 Panasonic ERJ-3EKF4702V RES 47K OHM 1/10W 1% 0603 SMD
62 R59 1 Panasonic ERJ-2GEJ105X RES IM OHM 1/10W 1% 0603 SMD
63 R60 1 Panasonic ERJ-2RKF22R0X RES 22 OHM 1/10W 1% 0402 SMD
64 R61 1 Panasonic ERJ-2RKF5602X RES 56K OHM 1/10W 1% 0402 SMD
65 R62 1 Panasonic ERJ-2GEJ332X RES 3.3KOHM 1/10W 1% 0402 SMD
66 SI, S2, S3 3 C&K Components KSC641GLFS SWITCH TACTILE SPST-NO 0.05A 32V
67 U1 1 International Rectifier IRF8714PbF MOSFET N-CH 30V 13.8A 8- SOIC
68 U2 1 Linear Tech LT4356IS-1#PBF IC OVERVOLT PROT REG 16SOIC
69 U3 1 Microchip MCP1525T-I/TT IC VREF SERIES PREC 2.5V SOT23-3
70 U4 1 International Rectifier IRF7406TRPBF MOSFET P-CH 30V 5.8A 8- SOIC
71 U5 1 Texas Instruments INA199A1DCK IC OPAMP CURR SENSE 14KHZ SC70-6
72 U6 1 Vishay Siliconix SI1869DH-T1-E3 IC LOAD SW LVL SHIFT 20V SC70-6
73 U7 1 Avago Technologies US MGA-68563-TR1G IC AMP LNA MMIC GAAS SMD SOT-363
74 U8 1 Linx Technologies TXM-916-ES TRANSMITTER RF 916MHZ 10PIN SMD
75 U9 1 Microchip MCP1826S- 3002E/DB IC REG LDO 3V 1A SOT223-3
76 U10 1 Microchip Technology PIC24FJ64GA004- I/PT IC MCU 16BIT 64KB FLASH 44TQFP
77 U11,U13, U15 3 Texas Instruments SN74LVC2T45DCT IC BUS TRANSCVR 2BIT NINV SM8
78 U12 1 MICROCHIP 23K256-I/ST IC SRAM 256KBIT 20MHZ 8TSSOP
79 U14 1 Microchip Technology MCP6041T-E/OT IC OP AMP GP 14KHZ RRO SOT23-5
80 U16 1 Texas Instruments CC1110F32RHHR IC SOC RF TXRX W/8051 MCU 36-VQF
81 U17 1 TriQuint Semiconductor 856327 Signal Conditioning 915/26MHz Filter
82 U18 1 Texas Instruments CC1190RGVT RF Front End 850 - 950MHz
83 U101 1 Texas Instruments SN74LVC1G332DC KR IC GATE OR 1CH 3-INP SC-70- 6
84 U102 1 Texas Instruments SN74LVC1G11DCK R IC GATE AND 1CH 3-INP SC70-6
85 Yl 1 TXC CORPORATION AX-12.288MAGV-T CRYSTAL 12.288MHZ 8PF SMD
10262892.1 (GHMatters) P98209.AU.1
-492018208722 26 Jul 2018
86 Y2, Y4 2 Abracon Corporation ABS06-32.768KHZ- T CRYSTAL 3 2.768KHZ 12.5PF SMD
87 Y3 1 CTS-Frequency Controls 403C11A26M00000 CRYSTAL 26MHZ 10PF SMD
[00176] Figure 29 is an exploded view of the miner apparatus 450, and specifically the TPL. The housing 12 encases the tracking portion 310 that carries the circuitry shown in figures 25 - 28, which includes the CIM 72. There is the proximity device 402 which is a standard proximity device 402 that is currently available and exists in the proximity device sold by Strata Products Worldwide, LLC. There is the battery 14 and circuitry 602 through which the battery and the tracking portion 310 and the proximity detector 402 is connected to the terminals 600 in the housing 12. There is a data port cover 606 that covers over a port to which the software operations can be reprogrammed if necessary in the apparatus 450. There is also a cover plate 612 that covers the terminals 600 on the outside of the housing 12. In the cover 612, there is a wiring port 604 through which the wiring from the terminals 600 extend to the cap lamp 400 to power and trigger the components of the cap lamp 400.
[00177] Figure 30 is a close-up view of the terminals 600. Wiring from terminal 607 extends to power the light in the cap lamp 400. Wiring from the terminal 608 extends to the battery 14 to receive power from the battery 14. Wiring from terminal 609 extends to an LED in the cap lamp 400 to power the LED. Wiring from the terminal 610 extends to a sounder in the cap lamp 400 that makes a noise to alert the miner when they have come to close to a proximity detector 404 and a warning or a hazard state is triggered. Terminal 611 receives wiring from the cap lamp 400 and provides a ground or a return from the cap lamp 400.
[00178] Although the disclosure has been described in detail in the foregoing embodiments for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the disclosure except as it may be described by the following claims.
[00179] In the claims which follow and in the preceding description, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense,
10262892_1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018
i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the monitor, system and method.
[00180] It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
10262892.1 (GHMatters) P98209.AU.1
2018208722 26 Jul 2018

Claims (16)

  1. CLAIMS:
    1. A monitor of a communication network for gases in a mine comprising:
    a housing;
    a battery disposed in the housing;
    a gas sensor portion powered by the battery and in electrical communication with the battery which detects a first gas and at least a second gas different from the first gas in the mine, the gas sensor portion includes a full range by volume between 0 and 100% methane sensor;
    an alarm portion disposed in the housing, powered by the battery and in electrical communication with the battery which emits a visual alert and an audible alert when the gas sensor portion senses that either the first or second gas is above a predetermined threshold;
    a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing to the network in the mine that the gas sensor portion has sensed of either the first or second gas and receives a signal to change a set point for a given gas being monitored, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion; and a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, alarm portion, sensor portion and battery, the processor changing the set point for a given gas being monitored from the signal received by the wireless communication portion.
  2. 2. The monitor of claim 1 wherein the gas sensor portion includes a carbon monoxide sensor and a H2S sensor and the wireless communication portion transmits wirelessly from the housing a carbon monoxide value of carbon in the mine sensed by the sensor portion and an H2S value of H2S in the mine sensed by the sensor portion.
  3. 3. The monitor of claim 1 or 2 wherein the processor receives a gas value signal from the gas sensing portion and converts the gas value signal into a converted signal form of the gas value which can be sent wirelessly by the communication portion from the housing.
    10262892J (GHMatters) P98209.AU.1
    2018208722 26 Jul 2018
  4. 4. The monitor of any one of claims 1 to 3 wherein the communication portion includes a transceiver in communication with the processor.
  5. 5. The monitor of claim 4 wherein the communication portion includes an amplifier with an internal antenna in communication with the transceiver.
  6. 6. The monitor of claim 5 wherein the processor provides the converted signal form of the gas value to the transceiver which then transmits the converted signal form of the gas value wirelessly through the amplifier and the internal antenna from the housing.
  7. 7. The monitor of any one of claims 1 to 6 wherein the alarm portion includes a visual alarm and an audible alarm and the processor receives an alarm signal from the gas sensor portion and activates the visual alarm and the audible alarm based on the alarm signal.
  8. 8. A monitor of a communication network for gases in a mine comprising:
    a housing;
    a battery disposed in the housing;
    a gas sensor portion powered by the battery and in electrical communication with the battery which detects a first gas and at least a second gas different from the first gas in the mine;
    a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion, which sends a wireless signal from the housing to the network in the mine that the gas sensor portion has sensed of either the first or second gas, and receives a signal to change a set point for a given gas being monitored, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion;
    at least one input for connection to a remote device, the one input receiving a status signal regarding the remote device, the status signal is transmitted by the wireless communication portion; and a processor disposed in the housing, powered by the battery and in electrical communication with the wireless communication portion, the input, sensor portion and battery, the processor changing the set point for a given gas being monitored from the signal
    10262892_1 (GHMatters) P98209.AU.1
    2018208722 26 Jul 2018
    -53received by the wireless communication portion.
  9. 9. A method for monitoring gases in a mine comprising the steps of:
    detecting with a gas sensor portion a first gas and at least a second gas different from the first gas in the mine, the gas sensor portion powered by a battery and in electrical communication with the battery, the gas sensor portion and the battery disposed in the housing, the gas sensor portion includes a full range by volume between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion;
    emitting with an alarm portion powered by the batteiy, disposed in the housing and in electrical communication with the battery a visual alert and an audible alert when the gas sensor portion senses that either the first or second gas is above a predetermined threshold; and sending with a wireless communication portion disposed in the housing, powered by the battery and in electrical communication with the battery and the sensor portion a wireless signal from the housing that the gas sensor portion has sensed either the first or second gas and if it is the first gas, the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion;
    receiving by the wireless communication portion a signal to change or set point for a given gas being monitored; and changing the set point of a given gas being monitored by the processor from the signal received by the wireless communication portion.
  10. 10. A system for monitoring gases underground comprising:
    a monitor which detects a gas located in a tunnel underground and determines a gas value of the gas, the monitor having an audio alarm and a visual alarm which is activated when the detected gas is above a predetermined value, and a transceiver which transmits the gas value, the monitor having a gas sensor portion, the gas sensor portion includes a full range by volume between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion;
    a wireless telecommunications network in the tunnel on which the gas value is transmitted from the monitor; and
    1O262892_1 (GHMatters) P98209.AU.1
    2018208722 26 Jul 2018
    -54a remote station which receives the gas value from the network and displays an alarm indication when the gas is above a predetermined value and an identity of the monitor associated with the alarm indication.
  11. 11. The system of claim 10 wherein the transceiver receives a signal from the network to change a set point for an alarm condition for the gas to be determined by the monitor.
  12. 12. A system for monitoring gases on an oil or gas rig comprising:
    a monitor which detects a gas at the rig and determines a gas value of the gas, the monitor having an audio alarm and a visual alarm which is activated when the detected gas is above a predetermined value, and a transceiver which transmits the gas value, the monitor having a gas sensor portion, the gas sensor portion includes a full range by volume between zero and 100% methane sensor and the wireless communication portion transmits wirelessly from the housing a methane value of methane in the mine sensed by the sensor portion;
    a wireless telecommunications network on which the gas value is transmitted from the monitor; and a remote station which receives the gas value from the network.
  13. 13. The system of claim 12 wherein the remote station includes a receiver which receives the gas value from the network, a processor in communication with the receiver which receives the gas value from the receiver, and a display in communication with the processor on which the processor displays an alarm indication when the gas value is above a predetermined level.
    10262892_1 (GHMatters) P98209.AU.1
    2018208722 26 Jul 2018
    I
    I
    I
    I
    I
    I
    I
    I σ>
    KwJ
    I
    I lid ctr
    O
    Q_ CO
    O Qi ro (O CM °° 4=
    '—1 oo Ml 1—i— Z5 ( 1 ---- < 1 Z5 ‘ Ml f ’rt 1 lJ CO 1 =5 ( >«—-
    83d
    8£d
    GJ> <_> >
    -<— rO -*4Q_ QJd
    HO
    JdO I :£IO
    8ld
    Zld
    ITTo-oiwno
    Sid 0-00930' nd 3ioo nd N3“Vd
    ZLd N3“VN1 hlOH
    Old
    __ CM ro n_ CL_ Q_ Q_
    Ml l_i_ Z5 ( —: 1 fO . M ( 1 CM . < 1 u_ 1 =5 < Luu. Z3 (
    LO CO oo Q_ Q_ Q_ Q_ GO cz> ’M· C_> C_5 -=c I | Lx- Q_ ctr Qi -<c CL_ CO
    I
    2018208722 26 Jul 2018
    CD
    CD
    CD
    CD
    CD
    I
    I
    2018208722 26 Jul 2018
    3/40
    © © @ @ 9d +1X3 id ’ td +11V0 id zindino Zd ONO id undino
    Cxi NO LO m <_> C i CZJ -=r C 3 C 5 > <-£> Q_ Q_
    non Cxi ro ’’Φ LO m Q l 1
    2018208722 26 Jul 2018 co cp co >1082
    CJ>
    Ί
    0N3
    J
    CP CP
    7/W
    W09
    CN
    OO Lj_ =5 CJ> —7->| K2018208722 26 Jul 2018
    Z5 , <=> -frz 1 GO i 93 -J c\l CD , 1 Q ui>' hO 1 1 GO NO
    2018208722 26 Jul 2018
    2018208722 26 Jul 2018
    2018208722 26 Jul 2018 bJ
    8-90830
    8/40
    I_______ CD o > CO CD co > 4_ | >
    oo
    CO
    M CMT^t >— bOCD bObO bo
    QC Qi *<C CD CD Q-Q_xx LOCO I—Cti a c_> z c_> GS>>
    CD CO 1— CD LO bO CM CM CM CM CM CM CM
    OfO<N</)Q<N·^- Omcsl occcrjacjcjcjmm i— Q^cti>->-ct:Q-:ct:cirQi:
    αλλ?
    Li
    Ot £t tV8 ιαι
    208 t08
    808 SSA OOA
    888
    988
    388
    888
    CM I CM
    CD lo
    LO
    CM S=2 ZD Q_
    LO CO Qi
    CM bO
    LO
    CD oo
    CD
    Q I
    CD
    CM
    CD
    CD I
    CD I cer oc cr> c_>
    I
    CM
    CD
    CD
    038
    Pwv >1003
    33 xnod \Z ViVOd 03 61 81 /1 C_5 —
    I—.< CD QC «CD «CD
    CD «CD
    TO 1 z CD
    OO
    I-CO LO
    LO CM
    CO LO CM bO CM c_> C-X C-J->C=1COCZ1
    CD co COOCJCO OOOZ>
    -r— I CM hO M· co o cr> <_> I zs ________1 -=c ci- an co
    CD
    2018208722 26 Jul 2018
    9/40
    FIG. 3
    FIG. 4
    2018208722 26 Jul 2018
    10/40
    THEORY OF OPERATION
    OUTPUT CONFIGURATION \ I /
    / («Ο’)) \ o SENTRO CO
    FIG. 7
    FIG. 6
    2018208722 26 Jul 2018
    NPUT MODE U/40
    OUTPUT MODE
    FIG.10
    12/40
    2018208722 26 Jul 2018
    SHELL 24
    SHELL 26
    HOUSING
    FIG.ll
    INPUT/OUTPUT
    13/40
    2018208722 26 Jul 2018
    GAS SENSOR PORTION J1 METHANE' — CO 46^- H25
    ^68
    REMOTE
    STATION
    FIG.13
  14. 14/40
    2018208722 26 Jul 2018
  15. 15/40
    2018208722 26 Jul 2018
    Moxa ω a > cr> 1-0 Q_ _Q NO LO I........... O' .,_____ OJ r*. or ¢3 CD
    1 1 10VDC 500mA
    rv* LO LO LxJ ”3“ •^4* o Q_ Q_ on Qi Qi
    2018208722 26 Jul 2018
    17/40
    2018208722 26 Jul 2018
    FIG. 16
    FIG. 17
    18/40
    2018208722 26 Jul 2018
    400/310
    450
    FIG. 21
    19/40
    2018208722 26 Jul 2018 no
    Qi
    303Ί gg θ
    3-9Π830Ί0 9£
    CD a
    ΟCD CD
    0400 <ω Qi>
    OtO CD CQ oroc
    -4- Q m q Qi |—
    OCsl ^οωω > or oi
    CD ND ex nd hO 1 “I — 1 1 “I J cd 04 CD Lx— Q_ ND ΝΊ
    ________6£
    83 □was it
    I 103 £t so oid n
    I8d
    088
    IVd OVd m 0 OAV SSAV £188 nsd
    NOl sm >11 818 whnod ττ >11 93d AA/Vm
    CD cr> co Qi co CD Qi r-cd Qi oo cd CD CD
    Oi Qi oo to m Qi
    04 ND _ Xi O o OO OO CD CD |------- 1_______ I_______ Q_ Q_ Q_ -=f OO OO OO Qi
    LO
    CO
    I-oo
    CD r*.
    oo
    Qi
    I CD
    CD
    Z5
    CJ>
    20/40
    2018208722 26 Jul 2018
    ZV
    92'zV'
    C'-J CO OO CD
    O □
    o
    -<--- CD CD NCD . I > ' 1 co CM 'll 2d'1 1------- LO , , ΛΛ Λ CD CO QC Z z-1 ' VVv
    CD CD Q_ CL_
    QN9
    m ”— co U.S 1 CD
    Ό 2d 3NOiSA3>l 9
    3NOiSA3>l 99
    Id
    CD QC c“5 CD Q_ 32
    21/40
    2018208722 26 Jul 2018 vcc
    A
    O----------------1 __C44 _[_C43 10uF TlOuF GN0 FIG.22D
    VCC
    C35 C36 C37
    C38 GND FIG.22E vcc
    8 A KAM Cb 1 rc SPLMISD 2 SO NC VSS HOLD SCK SI 7 ' 3 6 SPI CLK -L 4 5 SPI. MOSI 1
    FIG.22G
    22/40
    2018208722 26 Jul 2018
    HSMZ-C170
    LED1 r/a
    ---VA---y----51 HSMZ-C170
    I eno R15D2
    ---[>VW2525
    DUEL RESISTORS DUE TO
    PROXIMITY TO ANTENNA
    GND
    VCC
    PUSH-BUTTON
    FIG.22H
    S2 s PTS645VH5B-2LFS
    FIG. 221 GND
    FIG. 22J
    VCC
    GND
    15pF VIRE SENSE
    .22K
    23/40
    2018208722 26 Jul 2018 hO CO >— 04
    HO
    04 _
    CO , III “ cz c oo r La- w— / CL. 04 <_ J θ U- r 1 Z5
    l£d
    ΊΓ
    NJVd £2
    NJ“VN1 t£ co
    TTTaaaJ
    LO co o- oo cr> CO C.J 1 04 θ co co o co CJ> | 1 ZE -< cm C-> 1 1 c_> CJ> CX. Q_ Q_ co CO
    91 0-9Π830 10 91 Q-0A83G-ΙΌ n ZJWdS £[ ZJdVdS
    24/40
    2018208722 26 Jul 2018
    Ci
    CJ> CJ>
    25/40
    2018208722 26 Jul 2018
    ISO
    UuuU •9 iuqo o
    OO --
    —I <_5-r- ° CO H _ o_
    La— OO CO co Hi- z 1 co CO OS CL— CO rO , co *-------
    A Osl co q LO co Ο- ^4” CO | 1 Q UuuJ- ' UcuJ- 1 1 Hugg dNQ
    26/40
    2018208722 26 Jul 2018
    FIG. 24
    2018208722 26 Jul 2018 •^Wv m ω zd <ω
    Λ bO •M- : 1 Lf> CO
    28/40
    2018208722 26 Jul 2018
    BATT_UNPROT R4
    0.1, 1%-
    VA 0.1, 1% „ BAIJU5L ΛΛΛ ~ 2A^/ V V V 0.05, 1% RIO R7 R8 —wv— —ANfr- 0.1, 1% 0.68, 2W 0.68, 2W R16 R13 R14 —AM— ~^/W- 0.1, 1% 0.68, 2W 0.68, 2W R20 BAT SAFE PAD R18 >—am— -mm— 0.1, 1% 0.68, 2W
    BAT.SAFE
    R22
    L-WV
    0.1, 1!
    R23
    -Yw-1 FIG 25B
    0.1, U
    FIG.25D
    29/40
    2018208722 26 Jul 2018
    TP1
    TP2
    TP3
    TP4
    TP5
    TP15.NET (SPI.CLK)
    TP16.NET (SPLDIN)
    TP18.NET (SPLDOUT)
    TP21.NET (SPI-CS)
    TP6
    TP7
    TP8
    TP9
    ΤΡΙΟ
    FIG.25E
    P2
    P+ 1 2 3 4 PDN.RF TX RF 1 TSW-104-14
    GND
    FIG.25F
    FIG. 25 G
    30/40
    2018208722 26 Jul 2018
    VCC
    C7 .1uF, 16V
    FIG. 25 J
    2018208722 26 Jul 2018
    GND
    FIG.26C
    32/40
    2018208722 26 Jul 2018
    CO
    FUUUU co
    CXI Λ NO
    LO ro
    CD
    U- ~CD CD “T“ <=>
    WV
    A/W
    Q ω Q <r CD Z _j ·>· CD CD cxi ex CD CD
    CXI GO CD (Di
    2018208722 26 Jul 2018
    A A A A A V V V V V
    UD . 1 _ 1 1
    CD
    -c
    CD CT) O
    CD GD GO CD
    GD
    CO i— 1 CD
    CM cxi M- T~-~· —
    -cc —i o_ r— -=r m cxi £□ <_> ck: cxi cx| cxi cxi OO OO ~x~^Z
    CD cr>
    LO CO Q_ Q_ Qi
    Qi Qi bO CD bO CD cm
    CD CD CD GD ZD CD CQ L_i_J LxJ CD CZ3 .,____ .,______ CD CD .,— Μ ,— w l i > 1 ' 1
    Λ V
    CM
    CM CM CD ί— cm
    Qi qc Qi
    -cC
    8 oi !ξε
    CD CD O_
    CD 1_lJ L-i—l CD CD Q_ Q_ > CD CD ro bO Q_ CD GD CD CD CD ··— Q— Q_ zz
    CD CD Qi
    CD Qi
    CM CD Qi CM bO M LTD CO r--- oo CT) -C CD CD GD GD GD GD GD zs Qi Qi Qi QC Qi Qi Qi
    CM
    CD CD CD CD CD
    Qi bO CM
    CO OO I— O CD CM — ”— CM *—
    CT>
    —r- CD uo _l_ Cxl
    O£. *— wvU
    2018208722 26 Jul 2018
  16. 16V
    ... BAT SAFE 1 C27 C28 C29 —=--- VIN VOUT ,1uF, 16V ,1uF, 16V ,1uF, 16V GND .1uF, 16V TAB
    U11 VCCA VCCB Al Bl A2 B2 GND DIR
    VCCA VCCB Al Bl A2 B2 GND DIR
    VCCA VCCB Al Bl A2 B2 GND DIR
    35/40
    2018208722 26 Jul 2018
    PROGRAMMING HEADER FOR CAM PIC
    VCC P4 GND HEADER 5
    FIG.27E
    VCC
    R50
    10K <
    PROT_FLT
    PB1____H4 PBLPROT
    ——v. ——· 499, .25W PB2 H PB2.PR0T 499, .25W PB3 R69 DD7 DDQT —Wv -
    469, ,25W
    FIG.27F
    FIG.27G
    VCC __C101
    JuF,
    VCC
    16V
    C102
    VCC □/303 GND FIG.271
    36/40
    2018208722 26 Jul 2018
    FIG. 27J
    RAM CS 1 cs vcc SO HOLD NO SCK VSS SI 8 SPLMISO 2 7 ’ 3 6 SPI CLK J 4 5 SPI MOSI 1
    2018208722 26 Jul 2018
    I
    9£ oo
    CD
    I
    I 1
    I Q Q_
    CO Qci
    04 I o Q_
    04 CZJ
    I Q > Q_ CZJ d_
    C\2
    04 ---------------------------------------1 CZ2 GO ΓΟ o CD
    oo °q
    OuuU oo a -<4- co
    1-- ro 0-. 04 co 04 LO 04 4- 04 NO 04 04 04 04 CO 04 CD
    aavno 93da~aaAV idnooa
    I <O
    04 ro LO n_ CO O_ oo OO L_i_ gj> j GJ j ZZ5 GJ CL- -< or 1 I Li_
    I
    38/40
    2018208722 26 Jul 2018
    Exq
    I
    UuuU
    < CD ----------------1 OQ LO ro ”— w ’’—
    oo -SC Cxi -<C GO *=r <c a z ο 1 2? S Ο- Ι £ZP a CO _______1 1 Q Q CP 1 n_ 5 - -<c τ— > > 'T— 1 CO V—- CP ZD ¾ z ώ z o GO 1 1 ‘-‘J o> 1 CZ> 1 -c <c 1 -=c or Z CP z -=c a cp CL_ co zc ___i a__ -=C 1 1 1 1 1 1 1 1 Ql_ CM bO LD co 1— oo
    I
    Η^9
    LuuU~
    ΖΠ
    ioF _______1 <C -=£ z £X_ LxJ CM Z / L-uJ *=C
    39/40
    2018208722 26 Jul 2018
    40/40
    2018208722 26 Jul 2018
    FIG. 30
AU2018208722A 2013-10-07 2018-07-26 Gas monitor, system and method Abandoned AU2018208722A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018208722A AU2018208722A1 (en) 2013-10-07 2018-07-26 Gas monitor, system and method
AU2020204005A AU2020204005A1 (en) 2013-10-07 2020-06-16 Gas monitor, system and method
AU2022202526A AU2022202526A1 (en) 2013-10-07 2022-04-15 Gas monitor, system and method
AU2024202546A AU2024202546A1 (en) 2013-10-07 2024-04-18 Gas Monitor, System and Method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361887768P 2013-10-07 2013-10-07
US61/887,768 2013-10-07
AU2014240299A AU2014240299A1 (en) 2013-10-07 2014-10-03 Gas monitor, system and method
AU2016222526A AU2016222526A1 (en) 2013-10-07 2016-09-05 Gas monitor, system and method
AU2018208722A AU2018208722A1 (en) 2013-10-07 2018-07-26 Gas monitor, system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2016222526A Division AU2016222526A1 (en) 2013-10-07 2016-09-05 Gas monitor, system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2020204005A Division AU2020204005A1 (en) 2013-10-07 2020-06-16 Gas monitor, system and method

Publications (1)

Publication Number Publication Date
AU2018208722A1 true AU2018208722A1 (en) 2018-08-16

Family

ID=51946836

Family Applications (6)

Application Number Title Priority Date Filing Date
AU2014240299A Abandoned AU2014240299A1 (en) 2013-10-07 2014-10-03 Gas monitor, system and method
AU2016222526A Abandoned AU2016222526A1 (en) 2013-10-07 2016-09-05 Gas monitor, system and method
AU2018208722A Abandoned AU2018208722A1 (en) 2013-10-07 2018-07-26 Gas monitor, system and method
AU2020204005A Abandoned AU2020204005A1 (en) 2013-10-07 2020-06-16 Gas monitor, system and method
AU2022202526A Abandoned AU2022202526A1 (en) 2013-10-07 2022-04-15 Gas monitor, system and method
AU2024202546A Pending AU2024202546A1 (en) 2013-10-07 2024-04-18 Gas Monitor, System and Method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2014240299A Abandoned AU2014240299A1 (en) 2013-10-07 2014-10-03 Gas monitor, system and method
AU2016222526A Abandoned AU2016222526A1 (en) 2013-10-07 2016-09-05 Gas monitor, system and method

Family Applications After (3)

Application Number Title Priority Date Filing Date
AU2020204005A Abandoned AU2020204005A1 (en) 2013-10-07 2020-06-16 Gas monitor, system and method
AU2022202526A Abandoned AU2022202526A1 (en) 2013-10-07 2022-04-15 Gas monitor, system and method
AU2024202546A Pending AU2024202546A1 (en) 2013-10-07 2024-04-18 Gas Monitor, System and Method

Country Status (6)

Country Link
AU (6) AU2014240299A1 (en)
CA (4) CA3201995A1 (en)
GB (1) GB2519857A (en)
PL (1) PL409720A1 (en)
RU (1) RU2014140322A (en)
ZA (1) ZA201407238B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105021775B (en) * 2015-07-27 2017-11-17 煤炭科学技术研究院有限公司 Multi-parameter gas detector
CN105136997B (en) * 2015-10-09 2017-05-24 扬中市南方矿用电器有限公司 GYH25 oxygen sensor for mine
CN105303781B (en) * 2015-11-13 2018-06-08 成都秦川物联网科技股份有限公司 Highly sensitive alarm and its judgment method
CN105303780A (en) * 2015-11-13 2016-02-03 成都秦川科技发展有限公司 High-interference-resistance methane gas sensing module used for fuel gas alarm
CN105354994B (en) * 2015-11-13 2018-06-08 成都秦川物联网科技股份有限公司 Alarm delay linked system and method
CN105736053A (en) * 2016-02-29 2016-07-06 周丹 Coal mine underground environment monitor
CN106097669A (en) * 2016-08-04 2016-11-09 无锡尊宝电动车有限公司 A kind of mine work safety-protection system
CN106295214B (en) * 2016-08-18 2017-11-10 西安科技大学 A kind of Mine Methane method for early warning
CN106194264B (en) * 2016-08-31 2018-04-17 淮南师范学院 A kind of coal and gas prominent monitors in real time and early warning system
CN108119184A (en) * 2016-11-28 2018-06-05 河南星云慧通信技术有限公司 The safety-protection system that prevention mine caves in
CN106887119A (en) * 2017-05-03 2017-06-23 山东科技大学 A kind of intelligent kitchen alarm based on Internet of Things
CN106979034A (en) * 2017-05-05 2017-07-25 江苏三恒科技股份有限公司 The mining application communication system communicated based on Wireless Mesh multifrequency point
CN107701234A (en) * 2017-09-01 2018-02-16 郭亚晋 A kind of intelligent mine supervisory systems
CN107476825A (en) * 2017-10-10 2017-12-15 湖南工学院 A kind of coal mine gas monitor and alarm system
CN107829780B (en) * 2017-10-27 2019-11-05 精英数智科技股份有限公司 A kind of gas false alarm recognition methods based on coal mine safety monitoring networked system
CN108389369A (en) * 2018-04-28 2018-08-10 安信科工(北京)技术开发有限公司 A kind of atomic battery communication device of the explosive atmosphere with detection warning function
CN108597190A (en) * 2018-04-28 2018-09-28 安信科工(北京)技术开发有限公司 A kind of graphene-based lithium ion battery communication device of explosive atmosphere
CN108952813B (en) * 2018-08-01 2020-03-31 中国矿业大学(北京) Novel gas detection early warning and emergent sparse intelligent marking system based on LBS
CN109488385B (en) * 2019-01-05 2020-07-31 绍兴市尊铖自动化设备有限公司 Coal mine safety monitoring device
CN112413409A (en) * 2019-08-23 2021-02-26 中国石油天然气股份有限公司 Petroleum pipeline alarm system and petroleum pipeline monitoring alarm method
US11467039B2 (en) 2020-02-03 2022-10-11 Saudi Arabian Oil Company Systems and methods for real-time offshore flare monitoring in drilling ships
CN111311897A (en) * 2020-03-26 2020-06-19 四川信息职业技术学院 Mine monitoring device based on wireless Lora
CN111485950B (en) * 2020-05-25 2022-04-12 合肥工大高科信息科技股份有限公司 Multi-platform alarm linkage method, system and alarm device for mine
CN111980752B (en) * 2020-08-06 2022-06-14 武汉理工大学 High-altitude mine underground transportation environment sensing device and method
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
CN112489381B (en) * 2020-11-30 2022-05-03 北京航天试验技术研究所 Hydrogen leakage detection alarm and event grade estimation method
CN113240889B (en) * 2021-05-17 2022-02-11 安徽省亳州煤业有限公司信湖煤矿 Dangerous gas dangerous case early warning method and system for mine
CN113605978A (en) * 2021-08-23 2021-11-05 中煤科工集团重庆研究院有限公司 Return airway gas emission monitoring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201003413Y (en) * 2007-01-23 2008-01-09 包头奥普德电子科技有限公司 Down-hole safe alarming and personnel management device for coal mine
CN201628706U (en) * 2010-01-28 2010-11-10 南京北路自动化系统有限责任公司 Four-gas detection device based on wireless fidelity
CN201754636U (en) * 2010-03-12 2011-03-02 常熟市智胜信息技术有限公司 Mining lamp
CN202483627U (en) * 2011-05-11 2012-10-10 赵景台 Hazardous gas detection alarming system of multi-function mine lamp
CN202431304U (en) * 2011-12-21 2012-09-12 成都众询科技有限公司 Multifunctional mine safety monitoring device
CN202707148U (en) * 2012-07-05 2013-01-30 陕西西科美芯科技集团有限公司 Digitization miner terminal

Also Published As

Publication number Publication date
GB201417552D0 (en) 2014-11-19
CA2866032A1 (en) 2015-04-07
AU2022202526A1 (en) 2022-05-05
CA3201995A1 (en) 2015-04-07
CA2952114A1 (en) 2015-04-07
RU2014140322A (en) 2016-04-20
CA2866032C (en) 2023-05-23
CA3114662A1 (en) 2015-04-07
PL409720A1 (en) 2015-04-13
ZA201407238B (en) 2016-08-31
AU2020204005A1 (en) 2020-07-02
GB2519857A (en) 2015-05-06
AU2014240299A1 (en) 2015-04-23
CA2952114C (en) 2021-04-20
AU2024202546A1 (en) 2024-05-09
AU2016222526A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
AU2018208722A1 (en) Gas monitor, system and method
US10600306B2 (en) Gas monitor, system and method sensing two different gases
US10433141B2 (en) Communication system in a mine, a node, and method
US20150145649A1 (en) Gas Monitor, System and Method
JP6475395B1 (en) Train smoke and fire alarm communication method based on independent module combination and 3U chassis structure
CN106128001B (en) Train pyrotechnics alarm communication system method based on standalone module combination 3U casing structure
CN103592621A (en) Location beacon and fire protection internet of things location system
CN108663701A (en) A kind of fire-fighting emergent personnel position in real time, call for help and monitoring data acquisition system and method
CN111028493A (en) Intelligent fire detection system and method
CN106429696A (en) Intelligent fire-fighting control system in building elevator
CN103839370A (en) Design of home fire detection and alarm system based on GSM network
CN105894710A (en) Temperature monitoring warning device and fire control warning system
CN204204140U (en) A kind of fire hazard monitoring warning system based on Internet of Things
CN207637265U (en) A kind of node type alarm communication system
CN110996190A (en) Emergency permission starting communication equipment system and method thereof
KR20100081594A (en) Multi gas sensor and method of measuring gas in a vehicle
CN2927203Y (en) Safety long-range fire-fighting monitor
CN101649960B (en) Portable lamp and failure monitoring system used for mine operation
CN203803012U (en) Positioning beacons and positioning system for fire-fighting Internet of Things
CN205581560U (en) Monitored control system is worn at operation scene with visual talkbacking and writing function
CN115035695A (en) Early warning system
CN201629818U (en) Monitoring system
CN208380631U (en) A kind of more place gas monitor systems
CN109374841A (en) A kind of method and apparatus of the interior inflammable volatilization gas concentration of monitoring of bus
CN105572296A (en) Gas monitor, gas monitoring system and gas monitoring method

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted