AU2017212317A1 - Porous articles formed from polyparaxylylene and processes for forming the same - Google Patents

Porous articles formed from polyparaxylylene and processes for forming the same Download PDF

Info

Publication number
AU2017212317A1
AU2017212317A1 AU2017212317A AU2017212317A AU2017212317A1 AU 2017212317 A1 AU2017212317 A1 AU 2017212317A1 AU 2017212317 A AU2017212317 A AU 2017212317A AU 2017212317 A AU2017212317 A AU 2017212317A AU 2017212317 A1 AU2017212317 A1 AU 2017212317A1
Authority
AU
Australia
Prior art keywords
ppx
pct
expanded
article
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2017212317A
Other versions
AU2017212317B2 (en
Inventor
Guy A. SBRIGLIA
Peter J. Walsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/007,319 external-priority patent/US20160136914A1/en
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of AU2017212317A1 publication Critical patent/AU2017212317A1/en
Application granted granted Critical
Publication of AU2017212317B2 publication Critical patent/AU2017212317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/04Polyxylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D165/04Polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2865/00Use of polyphenylenes or polyxylylenes as mould material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/04Polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2465/04Polyxylylenes

Abstract

Polyparaxylylene (PPX) polymer films that can be expanded into porous articles that have a node and fibril microstructure are provided. The fibrils contain PPX polymer chains oriented with the fibril axis. The PPX polymer may contain one or more comonomer. PPX polymer articles may be formed by applying PPX to one or both sides of a substrate, such as by vapor deposition. The nominal thickness of the PPX polymer film(s) is less than about 50 microns. The PPX polymer film(s) may be removed from the substrate to form a free-standing PPX polymer film(s), which may then be stretched into a porous article.

Description

The present invention relates generally to polyparaxyiylene, and more specifically to porous articles containing polyparaxyiylene polymers where the articles have a node and fibril structure. A process for the formation of porous articles from polyparaxyiylene polymers is also provided.
BACKGROUND [0002] Polyparaxyiylene (PPX) and its derivatives are well known in the art. Articles made from PPX possess physical properties such as resistance to chemical attack, resistance to gamma radiation, thermo-oxidative stability at elevated temperatures, biocompatibility, high dielectric strength, high mechanical strength, and excellent barrier properties. Because of the favorable attributes associated with it, PPX has been utilized as a monolithic coating or film in a variety of applications including thin film dielectrics, electrical insulation, chemical resistance, and barrier coatings.
[0003( Unfortunately, PPX polymers cannot be made into useful forms by conventional processing routes such as compression molding, extrusion, solvent casting, gel spinning, or sintering because there is no melt state or solution state. However, porous PPX articles have been made through the addition of porogens, by coating a porous scaffold composed of another polymer, and by thermal exposure that causes degradation of the PPX polymer introducing localized holes. These approaches to creating porous microstructures limit the possible microstructures and/or degrade the physical properties of the porous PPX material.
[0004( Thus, there exists a need in the art for a process for making a PPX article and a PPX article that is porous and maintains the excellent physical properties of PPX.
WO 2017/132077
PCT/US2017/014490
SUMMARY [0005] One embodiment relates to a process for forming a porous poiyparaxylyiene article that includes (1) depositing a poiyparaxylyiene (PPX) polymer film on a first side and a second side of a substrate to form a PPX composite structure and {2) expanding the PPX composite structure to form a first porous PPX polymer article on the first side of the substrate and a second porous PPX polymer article on the second side of the substrate. Each of the porous PPX polymer articles have a node and fibril structure, in one embodiment, the process further includes removing at least one of the porous PPX polymer articles from the substrate. The PPX polymer films have a thickness less than about 50 microns.
The PPX composite structure may be expanded at a temperature from about 80°C to about 450°C, or from 220°C to about 450°C. Polymer chains in the fibrils are oriented along a fibril axis. In at least one embodiment, PPX is deposited onto the first and second sides of the substrate by vapor deposition. The substrate is a substrate that is capable of substantial deformation.
[0006] A second embodiment relates to a porous poiyparaxylyiene (PPX) polymer article that includes (1) a substrate having a first side and a second side, (2) a first expanded PPX polymer film on the first side of the substrate, and (3) a second expanded PPX polymer film on the second side of the substrate, The porous PPX polymer article includes nodes and fibrils. The fibrils include polymer chains oriented along a fibril axis. In addition, the substrate may be an expanded polytetrafluoroethylene (ePTFE) membrane, a polytetrafluoroethyiene (PTFE) tape, a PTFE membrane, an expanded polytetrafluorethylene (ePTFE) tape, poiyimide, polyamide-imide, silicon, glass, or zinc.
[0007] A third embodiment relates to a process for forming a porous poiyparaxylyiene article that includes (1) forming a poiyparaxylyiene (PPX) composite article and (2) expanding the PPX composite article to form a porous PPX polymer article having a node and fibril structure. The composite article is formed by (1) depositing a first PPX polymer film on a first side of a substrate and (2) forming a second PPX polymer film on the second side of the substrate. The PPX polymer films have a thickness less than about 50 microns. In some embodiments, the first PPX polymer film has a microstructure that is different from the microstructure of the second PPX polymer film. In other embodiments, the microstructures of the first and second PPX polymer films are the same or substantially the same.
WO 2017/132077
PCT/US2017/014490
BRIEF DESCRIPTION OF THE DRAWINGS [0008] The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the description serve to explain the principles of the disclosure.
[0009] FiG. 1 is a scanning electron micrograph (SEM) of the surface of the non-expanded, non-porous polyparaxylylene-AF4 film of the Comparative Example taken at 5,000x magnification;
[OOOW] FiG. 2 is a scanning electron micrograph (SEM) of the cross-section of the non-expanded:, non-porous poiyparaxylylene-AF4 film of the Comparative Example taken at 5,000x magnification;
[00011] FIG. 3 is a scanning electron micrograph (SEM) of the surface of the expanded porous poiyparaxylylene-AF4 membrane of Example 1 taken at 50,000x magnification where the machine direction (MD) is horizontal in accordance with one embodiment of the invention;
[000.1.2] FiG. 4 is a scanning electron micrograph (SEM) of the cross-section of the expanded porous po!yparaxyiyiene-AF4 sheet of Example 1 taken at 11,000x magnification in accordance with one embodiment of the invention;
[00013] FIG . 5 is a wide angle x-ray diffraction (WAXD) pattern of the nonexpanded, non-porous po!yparaxylyiene-AF4 fiim of the Comparative Example;
[00014] FIG, 6 is wide angle x-ray diffraction (WAXD) pattern of the biaxially expanded porous polyparaxyiylene-AF4 membrane of Example 1 with the machine direction oriented in the vertical direction according to at feast one embodiment of the invention;
[00015] FIG. 7 A is a scanning electron micrograph (SEM) of the surface of the expanded porous polyparaxylylene-AF4 article of Example 3 taken at 2G,000x magnification in accordance with an embodiment of the invention;
[00016] FiG. 7B is a scanning electron micrograph (SEM) of the surface of the expanded porous expanded porous polyparaxyiylene-AF4 article of Example 3 taken at 5000x magnification according to at least one embodiment of the invention;
[00017] FIG, 8 is a scanning electron micrograph (SEM) of the surface of the expanded polyparaxylylene-AF4 article of Example 6 taken at 2G,000x magnification in accordance with an embodiment of the invention;
WO 2017/132077
PCT/US2017/014490 [00018] FIG. 9 is a scanning electron micrograph (SEM) of the surface of the expanded poiyparaxylylene-AF4 article of Example 9 taken at 45,000x magnification according to at least one embodiment of the invention;
[00019] FIG. 10 is a scanning electron micrograph (SEM) of the surface of the PPX-N membrane of Example 11 drawn to an extension ratio of 2,2 at an engineering strain rate of 50 percent per second taken at 20,Q0Gx magnification in accordance with an embodiment of the invention;
[00020] FIG. 11 is a scanning electron micrograph (SEM) of the PPX-N fine powder of Example 12 taken at 4,000x magnification according to at least one embodiment of the invention;
[00021] FIG. 12 is a differential scanning thermogram (DSC) of the nonexpanded, non-porous PPX-AF4 membrane of the Comparative Example; and [00022] FIG. 13 Is a differential scanning thermogram (DSC) of the expanded, porous PPX-AF4 membrane of Example 1 according to an embodiment of the invention;
[00023] FIG. 14 is a scanning electron micrograph (SEM) of the surface of the co-expanded PTFE/PPX-AF4 membrane of Example 14 taken at 40,00Gx magnification according to at least one embodiment of the invention;
[00024] FIG , 15 is a scanning electron micrograph (SEM) of the cross-section of the co-expanded PTFE/PPX-AF4 membrane of Example 14 taken at 30G0x magnification in accordance with one embodiment of the invention;
[00025] FIG. 16 is a scanning electron micrograph (SEM) of the cross-section of the expanded PTFE/FPX-AF4 composite article of Example 16 taken at 500x magnification in accordance with one embodiment of the invention; and [00026] FIG. 17 is a scanning electron micrograph (SEM) of the cross-section of the expanded PTFE/PPX-AF4 composite article of Example 16 taken at 500x magnification according to an embodiment.
GLOSSARY [00027] As used herein, the term “PPX refers to polyparaxylylene.
[00028] As used herein, the term “PPX polymer” is meant to include all forms of
PPX, including PPX-N, PPX-AF4, PPX-VT4, and combinations thereof.
[00029] The term “PPX polymer film” as used herein is meant to denote unexpanded PPX polymer, either free-standing or on a substrate.
WO 2017/132077
PCT/US2017/014490 [00030] The term “PPX polymer membrane as used herein is meant to denote a PPX polymer film that has been expanded in one or more directions, [00O31] The term PPX composite structure’’ as used herein is meant to describe a PPX polymer film that has been formed on one or both sides of a substrate, [00032] As used herein, a porous PPX polymer article is meant to denote an expanded PPX polymer film (e.g., PPX polymer membrane), either free-standing or as a co-expanded PPX polymer film/substrate or a co-expanded PPX polymer film/substrate/PPX polymer film.
[00033] As used herein, the term “lubricant is meant to describe a processing aid that includes, and in some embodiments, consists of, an incompressible fluid that is not a solvent for the polymer at processing conditions, The fluid-polymer surface interactions are such that it is possible to create a homogenous mixture.
[00034] As used herein, the term “extension ratio Is meant to define strain as the final length divided by the original length, [00035] As used herein, the term “node” is meant to describe the connection point of at least two fibrils.
[00036] As used herein, the term thin is meant to describe a thickness of less than about 50 microns.
[00037] As used herein, the term “fibril axis is meant to describe direction parallel to the long dimension of the fibril.
[00038] As used herein, the term substantial deformation is meant to describe a substrate that is capable of elongating in one or more direction without breaking.
DETAILED DESCRIPTION [00039] Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. It should also be noted that the accompanying drawing figures referred to herein are not necessarily drawn to scale, but may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the drawing figures should not be construed as limiting.
[0ΘΘ40] The present invention relates to polyparaxylylene (PPX) polymers that can be expanded into porous articles that have a node and fibril microstructure. In at least one embodiment, the fibrils contain PPX polymer chains oriented with the fibril
WO 2017/132077
PCT/US2017/014490 axis. Optionally, the PPX polymer may contain one or more comonomer. As used herein, the term “PPX polymer” is meant to include all forms of PPX, including PPXN, PPX-AF4, PPX-VT4, and combinations thereof [00041} in forming a porous PPX polymer article, PPX may be applied to one or both sides of a substrate, such as by any conventional vapor deposition method.
The substrate is not particularly limiting so long as the substrate is dimensionally stable and the PPX polymer film formed thereon can be removed from the substrate, if desired. Non-limiting examples of suitable substrates include a poiytetrafiuoroethytene (PTFE) tape or membrane, an expanded poiytetrafluorethylene (ePTFE) tape or membrane, polyimide, polyamide-imide, silicon, glass, zinc, or any substrate that can withstand expansion temperatures above about 220°C. In exemplary embodiments, the substrate is capable of substantial deformation in one or more directions, such as a PTFE film or membrane.
[00042] The PPX polymer film, either free-standing or formed on a substrate, may have a nominal thickness less than about 50 microns, in exemplary embodiments, the PPX polymer film has a thickness from about 0.1 microns to about 50 microns, from about 0.1 microns to about 40 microns, from about 0.1 microns to about 30 microns, from about 0.1 microns to about 20 microns, from about 0.1 microns to about 10 microns, from about 0,1 microns to about 5 microns, from about
O, 1 microns to about 2 microns, or from about 0.1 microns to about 1 micron.
[00043] The ability to apply a thin PPX polymer film on one side of a substrate, for example a PTFE substrate, enables the formation of a composite structure containing two different polymer layers with two different microstructures. Applying a PPX polymer film to both sides of a substrate, such as a PTFE substrate, enables the formation of a composite structure containing three polymer layers (e.g.., a PPX polymer film on either side of the substrate) and potentially three different microstructures. It is to be appreciated that the PPX polymer film on one side of the substrate may or may not have the same microstructure as the PPX polymer film on the opposing side of the substrate, if the PPX polymer films have different microstructures, the composite structure contains three different mi era structures. If the PPX polymer films have the same microstructure (or substantially the same microstructure such that the microstructures cannot be distinguished from each other), the composite structure contains two different microstructures. The
WO 2017/132077
PCT/US2017/014490 difference between the first mlcFOStruciure, the second microstructure, and the third microstructure can be measured by, for example, a difference in pore size (porosity), a difference in node and/or fibril geometry or size, and/or a difference in density, it is to be appreciated that the composite structure may include additional PPX polymer film(s) and/or substrate(s) and may therefore have more than three microstructures within the composite structure, [00044] The PPX polymer film(s) may be removed from the substrate to form a free-standing PPX polymer film(s). The free-standing PPX polymer film may be stretched or expanded in one or more directions to form a porous PPX membrane. Alternatively, a PPX composite structure (e.g., the PPX polymer film(s) on a substrate) may be co-expanded in one or more directions to form a porous PPX polymer article (e.g., co-expanded PTFE/PPX membrane or co-expanded PPX polymer film /PTFE/PPX polymer film). It is to be appreciated that even though the substrate and the PPX polymer film (s) are expanded together, the expanded PPX polymer may be removed from the expanded substrate to form a free standing expanded PPX polymer membrane(s). The expanded PPX polymer membrane may be referred to herein as a porous PPX polymer article. It is to be noted that the expanded composite structure (e.g., the expanded PPX polymer film/expanded substrate or expanded PPX polymer film/expanded substrate/expanded PPX polymer film) may remain as a single unit in some embodiments. In other embodiments, a PPX polymer film is deposited on one or both sides of a substrate and co-expanded into a PPX composite structure, after which one or both of the expanded PPX polymer films is removed.
[00045] In an alternate embodiment, a PPX polymer film(s) may be deposited onto a partially expanded substrate, such as a partially expanded PIPE tape or membrane. The PPX polymer film(s) and the partially expanded substrate may then be co-expanded. The expanded PPX polymer film(s) may be removed from the expanded substrate to become a free-standing PPX expanded polymer membrane or porous PPX article.
[00046] The PPX polymer film (with or without an expandable substrate) may be cut into suitable sizes for expansion. Expansion of the free-standing PPX polymer film(s) occur at a temperature from about 80°G to about 220°C or from about 220°G to about 290°C or from about 290°C to about 450°C. Expansion of a composite structure of a PPX polymer fllm/PTFE substrate or PPX polymer
WO 2017/132077
PCT/US2017/014490 film/PTFE substrate/PPX polymer film may occur at temperatures from about 80°C to about 220°C, from about 220°C to about 340°C, or from about 290°C to about 340°G (/. e., below the melt temperature of the PTFE substrate). It is to be noted that the maximum temperature for expanding any composite structure described herein is the temperature at which the substrate degrades or melts. Expansion may be conducted at engineering strain rates (ESR) up to 10,000%/second, or from 1% to 10,000%/ second or from 10% to 5000%/second to form an expanded, porous PRX article, [00047] The expanded PPX membrane has a microstructure of nodes interconnected by fibrils, optionally with regions of unexpanded PPX, such as may be seen in FIGS.3, 4, 7, 8, 9 and 10. FIGS. 4 and 78, for example, show expanded regions 40 and unexpanded regions 50 in the expanded PPX membranes. The microporous structure and the geometry of the interconnected fibrils can be controlled by the deposition conditions, the rate of expansion, temperature of expansion, and ultimate expansion ratio in each direction.
[00048] Looking at FIG, 5, a wide angle x-ray diffraction (WAXD) pattern consistent with highly crystalline, randomly oriented lamella of the unexpanded or as-deposited PPX sampie is depicted. In contrast, the WAXD pattern of an expanded PPX article oriented with the larger expansion in the vertical direction is depicted in FIG. 8, which shows a new diffraction peak at reference numeral 30.
This WAXD pattern shows an emergence of two additional equatorial reflections (at 3 o’clock arid 9 o'clock) in a d-spacing of about 0.45 nm and two distinct meridonal reflections {at 12 o’clock and 6 o’clock) in a d-spacing of about 0.32 nm. These reflections are associated with oriented polymer chains in the fibrils in the expanded PPX article. In other words, the polymer chains in the fibrils are oriented along the fibril axis. As would be understood by one of ordinary skill in the art, with a more balanced biaxial expansion, the expanded PPX article would display a WAXD pattern illustrating an additional signal at the 0.45 nm d-spacing, which may show up as additional diffraction spots or a concentric ring.
[00049] Additionally, the expanded PPX articles are porous, and may have a percent porosity of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least
WO 2017/132077
PCT/US2017/014490 about 80%, at least about 85%, or up to (and including) 90%. In exemplary embodiments, the expanded PPX articles may have a percent porosity from about 5% to about 75%, from about 10% to about 50%, or from about 10% to about 25%.
[00050] In an alternate embodiment, a porous PPX article may be formed from a crystalline PPX polymer in the form of a powder. In at least one embodiment, PPX polymer and a lubricant are mixed so as to uniformly or substantially uniformly distribute the lubricant in the mixture. It is to be appreciated that the term “lubricant”, as used herein, is meant to describe a processing aid that is an incompressible fluid that is not a solvent for the polymer at the process conditions. The fluid-polymer surface interactions are such that it is possible to create a homogenous mixture. It is also to be noted that that choice of lubricant is not particularly limiting and the selection of lubricant is largely a matter of safety and convenience. Non-limiting examples of lubricants for use herein include light mineral oil, aliphatic hydrocarbons, aromatic hydrocarbons, halogenafed hydrocarbons, and the like, and may be selected according to flammability, evaporation rate, and economic considerations.
[00051] it is to be appreciated that various times and mixing methods may be used to distribute the PPX polymer in the mixture. For example, for PPX-AF4, the lubricated PPX polymer is heated to a temperature about 80°C to about 220°C or from about 220°C to about 290°C or from about 290°C to about 450°C. For those PPX variants that are subject to thermal decomposition and oxidation, such as PPXN and PPX-VT4, the lubricated PPX polymer is heated to at a temperature from about 220°C and below the temperature at which the polymer would decompose during processing, and in exemplary embodiments, from about 220°C to about 250°C (in an inert atmosphere). Along with the heating of the PPX polymer, sufficient pressure and shear is applied so as to form inter-particle connections and create a solid form. Non-limiting examples of methods of applying pressure and shear include ram extrusion (e,g., typically called paste extrusion or paste processing when lubricant is present) and calendering.
[00052] In one exemplary embodiment, the lubricated PPX polymer is calendered or ram extruded to produce a cohesive sheet that may be used as a preform. As used herein, the term “cohesive’'' is meant to describe a sheet that is sufficiently strong for further processing. For PPX-AF4, the calendering or ram extrusion occurs at a temperature about 80°C to about 220°C or from about 220°C
WO 2017/132077
PCT/US2017/014490 to about 290°C or from about 290eC to about 450°C, For PPX-N and PPX-VT4, the calendering or ram extrusion occurs from about 220°C and below the temperature at which the polymer would decompose during processing, and in exemplary embodiments, from about 220°C to about 250°G (in an inert atmosphere), In at least one other embodiment, the lubricated PPX polymer may be ram extruded to produce a cohesive sheet, tube, or cylinder preform, in either calendering or ram extruding, the PPX polymer preform may be subsequently expanded as described above to form a porous PPX polymer article.
TEST METHODS [00053] it should be understood that although certain methods and equipment are described below, other methods or equipment determined suitable by one of ordinary skill in the art may be alternatively utilized,
SEM Sample Preparation Method [00054] SEM images were collected using an Hitachi SU8000 FE Ultra High Resolution Scanning Electron Microscope with Dual SE detectors. Cross-sectioned samples were prepared using a Cooled straight-razor blade method. Surface and cross-sectioned samples were mounted onto a 25 mm diameter metal stub with a 25 mm carbon double sided adhesive. The mounted samples were sputter coated with platinum.
Wide Angie X-ray Diffraction (WAXD) [0005S] Diffraction patterns from as-deposited and expanded films were collected using a Molecular Metrology instrument configured for 2-D WAXD observations. The X-Ray source was a Rigaku MicroMax Sealed Micro Source CuKo element with a wavelength of 0.1542 nm running at 45 kV/66 mA, To collect twodimensional diffraction information at wide angles a 20 cm x 20 cm Fuji film BAS SR2040 imaging plate was placed in the instrument vacuum chamber perpendicular to the X-Ray beam line at a camera length of 146 mm. Camera length was calibrated by collecting a WAXD pattern from a tricosane standard and calculating the camera length from the 110 reflection at q of 15.197 ηητΊ or d =0.4134 nm.
Films approximately TO pm thick were placed on a motorized stage and aligned perpendicular to the beam line. The vacuum chamber was then seated and
WO 2017/132077
PCT/US2017/014490 evacuated to 500 mTorr below atmospheric pressure and the beam shutter opened. Diffraction patterns were collected at ambient temperature for a period of 1-6 hours depending on the thickness and scattering intensity of the film sample. The diffraction data were collected from the Fujifilm BAS SR2040 image plates using a General Electric Typhoon FLA7000 image plate reader. Diffraction pattern images were saved as grayscale TIFF files and subsequently analyzed using POLAR analysis software.
Powder X-ray Diffraction [00056] Diffraction patterns from calendered PPX powder were collected using a Bruker Discovery D-8 instrument. The X-Ray source was CuKa element with a wavelength of 0.1542 nm running at 40 kV/SO mA. The instrument was configured in a Brentano-Bragg geometry. Diffraction intensify was measured using a 0D scintillation counter rotating at 0.02 degree 2-theta increments for a one second duration. The range of 2-theta was 10 degrees to 45 degrees. The instrument was calibrated using a polycrystalilne silicon and an automated interna! calibration algorithm. A PPX polymer was placed on the Bruker Discovery D-8 stage and aligned with the beam line,
Gurley Flow [00057] The Gurley air flow test measures the time in seconds for 100 cm3 of air to flow through a 6,45 cm2 aperture at 12.4 cm of water pressure. If the sample size was smaller than 6,45 cm2 an aperture of 0.645 cm2 was used and the time observed divided by a factor of 10 to normalize observations made with both apertures. The samples were measured in a Gurley Densomefer Model 4110 Automatic Densometer equipped with a Gurley Model 4320 automated digital timer. The reported results are the average of multiple (3-5) measurements.
DSC Measurements [00058] DSC data were collected using a TA instruments Q2000 DSC between 0°C and 425°C using a heating and a cooling rate of 10 °G/min. The expanded porous membrane samples and the solid film samples were prepared by punching out 4 mm disks. The 4 mm disk was placed flat in the pan and the lid was crimped to sandwich the disk between the pan and lid.
WO 2017/132077
PCT/US2017/014490
EXAMPLES
Comparative Example [000593 A film of PPX-AF4 having a nominal thickness of 10 pm was deposited onto a blended, extruded, and dried PTFE tape made generally in accordance with the teachings of U.S. Patent No, 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems, 7645 Woodland Drive, Indianapolis, IN 46278).
(000601 The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 350°C for 300 seconds. The heat treated article was allowed to cool to room temperature under restraint of the pantograph biaxial expander grips. After cooling, the article was removed from the expander grips, the PPX-AF4 film was removed from the melted PTFE carrier tape to yield a free-standing, non-expanded, nonporous film of PPX-AF4.
[00061] A scanning electron micrograph (SEM) of the surface and crosssection of toe non-expanded, non-porous PPX-AF4 film are shown in FIGS, 1 and 2, respectively. A wide angle x-ray diffraction (WAXD) pattern of the PPX-AF4 film is shown in FIG. 5. A differential scanning thermogram (DSC) of the PPX-AF4 film is shown in FIG. 12, As shown in F!G, 12, the non-expanded, non-porous PPX-AF4 film, on cooling, exhibits a single exothermic peak at approximately 380°C. A Gurley number of the non-expanded, non-porous PPX AF4 film was determined to be greater than 3600 seconds and is reported in Table 1,
Example 1 [09062] A film of PPX-AF4 having a nominal thickness of 10 pm was deposited onto a blended, extruded, and dried PTFE tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems, 7645 Woodland Drive, Indianapolis, IN 46278).
[00063] The coated article was then cut to dimensions of 200 mrn x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a
WO 2017/132077
PCT/US2017/014490 convection oven. The coated tape was heat soaked at a constant temperature of 350°C for 300 seconds. The coated tape was then simuStaneously stretched at an engineering strain rate (ESR) of100 percent/second to an extension ratio in the tape machine direction of T.1 and 4:1 in the tape transverse direction. The expanded article was allowed to coo! to room temperature under restraint of the pantograph biaxial expander grips. After cooling, the article was removed from the expander grips and a film of porous PPX-AF4 was removed from the melted PTFE tape to yield a free-standing porous membrane of PPX-AF4.
[00064] Scanning electron micrographs (SEMs) of the surface and the crosssection of the expanded porous PPX-AF4 membrane are shown in FIGS. 3 and 4, respectively. A wide angle x-ray diffraction (WAXD) pattern of the expanded porous PPX-AF4 membrane is shown in FIG. 6. A differentia! scanning thermogram (DSC) of the expanded , porous PPX-AF4 membrane is shown in FIG. 13. As shown in FIG, 13, the free-standing expanded, porous PPX-AF4 membrane, on cooling, exhibits two exothermic peaks, namely a first peak at 378.8°C and the second peak at 401,36°C. The second peak is associated with the fibrils of the porous membrane. A Gurley number of the expanded PPX-AF4 membrane was determined to be 127,5 seconds and is reported in Table 1.
Example 2 [00065] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onio a blended, extruded, and dried polytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolss, IN 46278).
[00066] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 300°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 7 percent/second to an extension ratio in the extrudate machine direction of 4:1 and 4:1 in the extrudate transverse direction. The expanded PPX-AF4 article was removed from the oven, and allowed to coo! to room temperature under restraint of the biaxial batch expander grips. After cooling the
WO 2017/132077
PCT/US2017/014490 expanded PPX-AF4 article (/.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips. A Gurley number of the expanded PPX-AF4 article was determined to be 68.38 and is reported in Table 1.
Example 3 [00067] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto a blended, extruded, and dried poiytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278). The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 300°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESP) of 70 peroent/second to an extension ratio in the extrudate machine direction of 4:1 and 4:1 in the extrudate transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4article (/. e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips.
[60068] A scanning electron micrograph (SEM) of the surface of the expanded PPX-AF4 membrane taken at 20,000x magnification is shown in FIG. 7A, A representative node is depicted by reference numeral 10 and a representative fibril is depicted by reference numeral 20. FiG. 7B is an SEM of the surface of the expanded PPX-AF4 membrane taken at 5000x magnification depicting therein an expanded region 40 and an unexpanded region 50. A Gurley number of the expanded PPX-AF4 article was determined to be 89.1 seconds and is reported in Table 1.
Example 4 [00069] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto a blended, extruded, and dried poiytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No, 3,953,566 to Gore by
WO 2017/132077
PCT/US2017/014490 a commercially available vapor deposition process {Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
[00070] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 300c'C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 700 percent/second- to an extension ratio in the extrudate machine direction of 4:1 and 4:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (i.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips. A Gurley number of the expanded PPX-AF4 article was determined to be 111.7 seconds and is reported in Table 1.
Example 5 [00Θ71] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto a blended, extruded, and dried poiytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U,S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems, 7645 Woodland Drive, Indianapolis, IN 46278).
[00072] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked gt a constant temperature of 300°C for 300 seconds, The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 7 percent/second to an extension ratio in the extrudate machine direction of 6:1 and 6:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to coo! to room temperature under restraint of the pantograph biaxial expander grips. After cooling, the expanded PPX-AF4 article (i.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the expander grips. A Gurley number of the expanded PPX-AF4 article was determined to be 60.92 seconds and is reported in Table 1.
WO 2017/132077
PCT/US2017/014490
Example 6 [00073] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto blended, extruded, and dried polytetrafiuoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
[00074] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 300°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 70 percent/second to an extension ratio in the tape machine direction of 6:1 and 6:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (/.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips. A Gurley number of the expanded PPX-AF4 article was determined to be 54.36 seconds and is reported in Table 1.
Example 7 [00075] A film of PPX-AF4 having a nominal thickness of 5pm was deposited onto a blended, extruded, and dried polytetrafiuoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
[00076] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 300°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 700 percent/second to an extension ratio in the extrudate tape machine direction of 6:1 and 6:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (/. e., co-expanded PTFE/PPX-AF4 membrane) was
WO 2017/132077
PCT/US2017/014490 removed from the grips. A Guriey number of the expanded PPX-AF4 article was determined to be 65.06 and is reported in Table 1.
Example 8 [00077] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto blended, extruded, and dried polytetrafluoroethyiene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
[00078] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 250°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 7 percent/second to an extension ratio in the tape machine direction of 4:1 and 4:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (/.&., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips, A Guriey number of the expanded PPX-AF4 article was determined to be 109.0 seconds and is reported in Table 1.
Example 9 [00079] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto a blended, extruded, and dried polytetrafluoroethyiene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems, 7645 Woodland Drive, Indianapolis, IN 46278).
[00080] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 250°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 70 percent/second to an extension ratio in the tape machine direction of 6:1 and 6:1 in the tape transverse direction. The expanded
WO 2017/132077
PCT/US2017/014490
PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (i.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips. FIG. 9 is a scanning electron micrograph (SEM) of the surface of the expanded PPX-AF4 article of taken at 45,000x magnification showing a fibriilated region. A Gurley number of the expanded PPX-AF4 article was determined to be 103.26 seconds and is reported in Table 1.
Example 10 [00081 ] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto a blended, extruded, and dried polytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN, 46278).
[00082] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 25G°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 700 percent/second to an extension ratio in the tape machine direction of 6:1 and 6:1 in the tape transverse direction. The expanded PPX-AF4 article was removed from the oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PPX-AF4 article (/.e., co-expanded PTFE/PPX-AF4 membrane) was removed from the grips. A Gurley number of the expanded PPX-AF4 article was determined to be 119.3 seconds and is reported in Table 1.
WO 2017/132077
PCT/US2017/014490
Table 1
Example Description Gurley (s)
Comp. Ex. 1 Monolithic PPX AF4 Film >3600
Ex. 1 Expanded PPX-AF4 membrane 127.5
Ex, 2 Co-expanded PTFE/PPX-AF4 membrane 68,38““]
Ex. 3 Co-expanded PTFE/PPX-AF4 membrane 89.1
Ex. 4 Co-expanded PTFE/PPX-AF4 membrane 111.7 i
Ex. 5 Co-expanded PTFE/PPX-AF4 membrane 60,92
Ex. 6 Co-expanded PTFE/PPX-AF4 membrane 54,36
Ex. 7 Co-expanded PTFE/PPX-AF4 membrane 65.06
Ex. 8 Co-expanded PTFE/PPX-AF4 membrane 109.0
Ex. 9 Co-expanded PTFE/PPX-AF4 membrane 103.26
Ex. 10 Co-expanded PTFE/PPX-AF4 membrane 119.3
Ex 14 Go-expanded PTFE/PPX-AF4 membrane 407.7
Ex. 15 Co-expanded PTFE/PPX-AF4 composite article 137.5
Ex. 16 Co-expanded PTFE/PPX-AF4 composite article 79.0 ____
Example 11 [00083] A film of PPX-N having a nominal thickness of 10 pm was deposited onto a biended, extruded, and dried polytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S, Patent No. 3,953,566 to Gore by a commercially available vapor deposition process {Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
[00084] The coated article was then cut into a 35 rnm x 13 mm rectangle with the samples long dimension aligned with the Example 1 tape machine direction (MD) direction. The rectangular sample was drawn to an extension ratio of 2,2 at an engineering strain rate (ESR) of 50 percent per second in a RSA 3 Dynamic Mechanical Analyzer (DMA), the gauge length was 10 mm, TA Instruments, Newcastle, DE using the standard TA film grips. The atmosphere in the DMA oven was a continuous purge of nitrogen gas. Oven temperature was set to 290°G and the film sample was heat soaked for 300 seconds. A scanning electron micrograph
WO 2017/132077
PCT/US2017/014490 (SEM) of the surface of the PPX-N membrane taken at 20,000x magnification is shown in FIG. 10,
Example 12 [00085] Approximately 1000 grams of anhydrous p-xylene was charged into 2 lifer round bottom flask with a magnetic stirrer at room temperature. Approximately 16 grams of potassium t-butoxide was added to the reaction flask. The flask was heated to 90°C. When all of the potassium t-butoxide was dissolved, 15 grams of alpha-chloro p-xylene was added the flask. The mixture immediately turned yellow. The reaction mixture was then heated to reflux at approximately 135°C. After 30 minutes, 5.7 grams of the alpha chloro p-xylene dissolved in approximately 87 grams of p-xylene was added dropwise to the reaction mixture over 40 minutes. The reaction mixture was allowed to stir for approximately 16 hours. The solution was a cloudy suspension. The solution was cooled and then vacuum filtered to remove the xylene. The resulting product was dispersed into 2 liters of a 50/50 IPA/water mixture and filtered again. This was done two times. The product was allowed to dry overnight. The dried product was then mixed into an IPA/water mixture, boiled, and filtered 2 more times. The product was allowed to dry in a hood overnight. Final drying was done at 120°C for 4 hours in a vacuum oven. The final product was a PPX-N powder. FIG. 11 is a scanning electron micrograph (SEM) of the PPX-N powder taken at 4,000x magnification.
Example 13 [00086] The PPX-N powder of Example 12 was lubricated with mineral oil and calendered at 150°C to form a thin PPX-N sheet about 0,5 mm thick.
Example 14 [00687] A film of PPX-AF4 having a nominal thickness of 10 pm was deposited onto a blended, extruded, and dried polytetrafiuoroethylene (FIFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems,
7645 Woodland Drive, Indianapolis, IN 46278).
WO 2017/132077
PCT/US2017/014490 (00088] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated article was heat soaked at a constant temperature of 300cC for 300 seconds. The coated article was then simultaneously stretched at an engineering strain rate (ESR) of 100 percent/second to an extension ratio of 2:1 in both the extrudate machine and transverse directions. The expanded PPX-AF4 article was removed from the oven, and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the co-expanded PTFE/PPX-AF4 membrane was removed from the grips. A scanning electron micrograph (SEM) of a surface of the above co-expanded PTFE/PPX-AF4 membrane taken at 40,000x magnification is shown in FIG. 14, FIG. 15 shows a scanning electron micrograph (SEM) of the cross-section of the above co-expanded PTFE/PPX-AF4 membrane taken at 3000x magnification. FIG. 15 illustrates a first tight miqrostructure (60) and a second open microstructure (70) of the above composite structure, Gurley number of the expanded PPX-AF4 article was determined to be 407.7 seconds.
Example 15 [00089] A film of PPX-AF4 having a nominal thickness of 5 pm was deposited onto the external surfaces of a blended, extruded, and dried poiytetrafluoroethylene (PTFE) tape made generally in accordance with the teachings of U.S. Patent No. 3,953,566 to Gore by a commercially available vapor deposition process (Specialty Coating Systems, 7645 Woodland Drive, Indianapolis, IN 46278, [00090] The coated article was then cut to dimensions of 200 mm x 200 mm and placed in the grips of a pantograph type biaxial batch expander equipped with a convection oven. The coated tape was heat soaked at a constant temperature of 335°C for 300 seconds. The coated tape was then simultaneously stretched at an engineering strain rate (ESR) of 10 percenfrsecond to an extension ratio in the extrudate machine direction of 2:1 and 2:1 in the extrudate transverse direction. The article was then heat soaked at a constant temperature of 330°C for 30 seconds.
The expanded PTFE/PPX-AF4 composite article was formed of a first layer of expanded PPX-AF4, a layer of expanded PTFE, and a second layer of expanded PPX-AF4. The expanded PTFE/PPX-AF4 composite article was removed from the
WO 2017/132077
PCT/US2017/014490 oven and allowed to cool to room temperature under restraint of the biaxial batch expander grips. After cooling, the expanded PTFE/PPX-AF4 composite article (I.e., co-expanded PTFE/PPX-AF4 film) was removed from the grips.
j00991] FIG, 16 shows a scanning electron micrograph (SEM) of the crosssection of the co-expanded PTFE/PPX-AF4 composite article taken at 500x magnification. FIG, 16 illustrates the first tight microstructure (80) (first expanded PPX-AF4 film), the open microstructure (90) (ePTFE membrane), and the second tight microstructure (100) (second expanded PPX-AF4 film) of the expanded composite article on a carbon tape SEM mount (110). The Gurley number of the expanded PPX-AF4 polymer article was determined to be 137.5 seconds.
Example 16 [00092] A layer of PPX-AF4 was removed from one side of the co-expanded PPX-AF4 article of Example 15 to form an expanded PTFE/PPX-AF4 composite article formed of a layer of expanded PPX-AF4 and a layer of expanded PTFE (having a tight/open microstructure).
[00093] FIG, 17 shows a scanning electron micrograph (SEM) of the crosssection of the co-expanded PTFE/PPX-AF4 composite article taken at 506x magnification. FiG. 17 illustrates the tight microstructure of the expanded PPX-AF4 film (120) and the open microstructure of the ePTFE (130). The Gurley number of the porous PTFE/PPX-AF4 composite article was determined to be 79.0 seconds, [90094] The invention of this application has been described above both generically and with regard to specific embodiments. It wilt be apparent to those skilled in the art that various modifications and variations can be made in the embodiments without departing from the scope of the disclosure, Thus, it is intended that the embodiments cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
WO 2017/132077
PCT/US2017/014490

Claims (21)

  1. WHAT IS CLAIMED IS:
    1. A process for forming a porous poiyparaxylyiene article comprising: depositing a poiyparaxylyiene (PPX) film on a first side and a second side of a substrate to form a PPX composite structure; and expanding said PPX composite structure to form a first porous PPX polymer article on said first side and a second porous PPX polymer article on said second side, each said porous PPX polymer article having a node and fibril structure.
  2. 2. The process of claim 1, further comprising removing at least one of said first porous PPX polymer article and said second porous PPX polymer article from said substrate.
  3. 3. The process of claim 1, wherein said PPX film has a thickness less than about 50 microns.
  4. 4. The process of claim 1, wherein said expanding of said PPX composite structure occurs at a temperature from about 80°C to about 450°C,
  5. 5. The process of claim 1, wherein said expanding of said PPX composite structure occurs at a temperature from: about 220QC to about 450°C.
  6. 6. The process of claim 1, wherein said fibrils comprise polymer chains and said polymer chains are oriented along a fibril axis.
  7. 7. The process of claim 1, wherein said depositing comprises vapor depositing said poiyparaxylyiene onto said first side and said second side of said substrate.
  8. 8 The process of claim 1, wherein said substrate comprises a deformable substrate.
  9. 9. The process of claim 8, wherein said substrate is a member selected from the group consisting of a polytetrafluoroethylene (PTFE) tape and a PTFE membrane.
    WO 2017/132077
    PCT/US2017/014490
  10. 10. The process of claim 8, wherein said expanding of said PPX composite structure occurs at temperatures from about 80°C to about 450°C,
  11. 11. The process of claim 10, wherein said expanding of said PPX composite structure occurs at temperatures from about 220°C to about 45O':'C.
  12. 12. A porous polyparaxyiylene (PPX) polymer article comprising; a substrate having a first side and a second side;
    a first expanded PPX polymer film; on said first side of said substrate; and a second expanded PPX polymer film on said second side of said substrate, wherein said porous PPX polymer article comprises nodes and fibrils,
  13. 13. The PPX polymer article of claim 12, wherein said first and second expanded PPX polymer films have a thickness less than about 50 microns,
  14. 14. The PPX polymer article of claim 12, wherein said substrate comprises a deformable substrate.
  15. 15. The PPX polymer article of claim 12, wherein substrate comprises a member selected from the group consisting of an expanded polytetrafluoroethyiene (ePTFE) membrane, a polytetrafluoroethyiene (PTFE) tape, a PTFE membrane, an expanded pofytetrafluorethylene (ePTFE) tape, polyimide, polyamide-imide, silicon, glass and zinc.
  16. 16. The PPX polymer article of claim 12, wherein said fibrils comprise polymer chains and said polymer chains are oriented along a fibril axis.
  17. 17. The PPX polymer article of claim 12, wherein said PPX polymer film contains one or more comonomer.
  18. 18. A process for forming a porous polyparaxyiylene article comprising; forming a polyparaxyiylene (PPX) composite article by:
    WO 2017/132077
    PCT/US2017/014490 depositing a first polyparaxyiylene (PPX) film on a first side of a substrate; and depositing a second PPX film on a second side of said substrate; and expanding said PPX composite article to form a porous PPX polymer article having a node and fibril structure.
  19. 19. The process of claim 18, wherein said first and second PPX films have a thickness less than about 50 microns,
  20. 20. The process of claim 18, wherein said first PPX film has a first microstructure and said second PPX film has a second microstructure and said first microstructure is different from said second microstructure.
  21. 21. The process of claim 18, wherein said first PPX film has a first microstructure and said second PPX film: has a second microstructure and said first microstructure Is substantially the same as said second microstructure.
    WO 2017/132077
    PCT/US2017/014490
    1/18 ! i ! S ! i S ! ! ; S
    3.0kV 13.1mm xS.OOk Sfc(UL) 4/23/2014 lO.Oum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    3,0kV 19,1mm xS.OOk SE(UL) 4/24/2014 lO.Oum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490 s wws . '· s ύ,\\\Xj.\v''1 ' . . S^AWSsVA. s •'‘❖'S wX-.-.- -ΆΆ X-XA S .. 'AW \\ s «. \\χ, x w s s .
    v ·· ’·'· S ssw?·*·.·. ' s ·./ s««·S s * ' S AX S S s \s ¢¢.-.-. SS . ς S SS s ''X S S
    '.'λ·,:.·:·.
    .V\v. yt, V. ,,,,,^,^., JwfcsW'iMP· , , ·. ' „„<,,,, -JA» <Λ\ *· ^ΑΧ-ΧΑ W
    S\\\<s ςς •AW* sXXXXX-,ν. sXXXXX^X
    - «Λ»,,,, 'T,,.·,, ζ;
    AAW»W, s , , S .·.·.
    XA.XXXXXXXXX a?x $S^Wfc\v^^x*!s
    •.v.XsXXXXsssss\-^s-^-,\v
    W^SSW.S-.’.W.-X-.’.
    7, ’'-'“λ AwSii^xM.' ,, w,
    -. xxxxxxx -.·.·.·.-.
    S -Λ A'-W-X-Xs'· A
    XX\XXXXXXXXXXXXXXX'
    A.<*-XX<XAX^-Xi-XAX-X<XX' ftxto’SwxAXAXAXXXAXA ^Wa...,. Λ.. s xxvWXx·
    -.-v.
    x-xxxxxx^-^xNaYS:·
    2.0kV 12,1mm xSO.Ok SE(UL) 4/23/2014
    8 S S £ 8
    l.OOum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    3,0kV 10,9mm xll.Ok SE(UL) 4/24/2014
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    5/18 β
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    7/18
    2.0kV 12.2mm x20.0k SE(UL) 6/16/2014 2.00um
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    8/18 i S i i 8 § ί i ! i i
    2.0kV 12.2mm x5.00k SE(UL) 6/16/2014 lO.Oum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    S i 8 8 8 ί 8 ί ! ! ί
    2,0kV 12.3mm x20,0k SE(UL) 6/16/2014 2,O0um
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    2,0kV 12,0mm x45.0k SE(UL
    l.OOum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490 i S ! S i ! ) t S 8 8
    2.0kV 11,1mm x20,0k SE(UL) 4/29/2014 2,00um
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    12/18
    S.OkV 9,7mm x4,00k SEf UL) 9/17/2013 lO.Oum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    13/18
    Comparative Example 1 £
    o
    LL.
    «3
    X > a<w if j>a j>a e«>a<«i|»>a t ί a t»>E««a t j>a««|t»>a
    200 225 250 275 300 325 350 375 400 425
    Temperature (deg C)
    FIG. 12
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    14/1
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    15/18 i ί 8 8 ί i I E ί i S
    2.0kV 12,6mm x40,Ok Sfc(UL) 1/6/2014 l.OOum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    16/18 ^\WCA>*^WWV.'.\V.V.-.V.V.V.\SWAV.V.,.V.VWW»V.V.,.S'>V.··.·.'.·, ν.\\\ν.ν\\·.·.’Λ·.·.·.·??ι»ΛΐΛ\·.ν.·.'.·.·.·ν.ν.·*,·Λ\\ν.·.·ι ·Λ·.·. .•.VAWWWtf.V/.’.V.'.'.W.V.W.V.W?.· ··.·.'
    I i 8 i i ! I S 8 8 ί
    2.0kV 11.7mm x3.00k SE(UL) 1/6/2014 lO.Oum
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    17/18
    SUBSTITUTE SHEET (RULE 26)
    WO 2017/132077
    PCT/US2017/014490
    18/18 i 8 ! !
    100um
    l.OkV 10.8mm x500 SE(UL) 1/20/2016
    SUBSTITUTE SHEET (RULE 26)
AU2017212317A 2016-01-27 2017-01-23 Porous articles formed from polyparaxylylene and processes for forming the same Active AU2017212317B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/007,319 2016-01-27
US15/007,319 US20160136914A1 (en) 2014-07-29 2016-01-27 Porous Articles Formed From Polyparaxylylene and Processes For Forming The Same
PCT/US2017/014490 WO2017132077A1 (en) 2016-01-27 2017-01-23 Porous articles formed from polyparaxylylene and processes for forming the same

Publications (2)

Publication Number Publication Date
AU2017212317A1 true AU2017212317A1 (en) 2018-05-24
AU2017212317B2 AU2017212317B2 (en) 2019-08-15

Family

ID=58098665

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2017212317A Active AU2017212317B2 (en) 2016-01-27 2017-01-23 Porous articles formed from polyparaxylylene and processes for forming the same

Country Status (7)

Country Link
EP (1) EP3408316A1 (en)
JP (1) JP6767487B2 (en)
KR (1) KR102134982B1 (en)
CN (2) CN112239556B (en)
AU (1) AU2017212317B2 (en)
CA (1) CA3005270C (en)
WO (1) WO2017132077A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234077A3 (en) 2018-04-11 2023-10-25 W. L. Gore & Associates, Inc. Metal supported powder catalyst matrix and processes for multiphase chemical reactions
JP7343567B2 (en) * 2018-07-19 2023-09-12 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド High flow liquid filtration devices comprising porous polyparaxylylene membranes or porous polyparaxylylene/polytetrafluoroethylene composite membranes
US20230043997A1 (en) * 2020-01-17 2023-02-09 W. L. Gore & Associates, Inc. Composite membrane with nanoselective surface for organic solvent nanofiltration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666517A (en) * 1966-11-16 1972-05-30 Celanese Corp Porous article
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
NL8801524A (en) * 1988-06-15 1990-01-02 Union Carbide Corp PROCESS FOR MANUFACTURING HIGH TENSILE POLYMERIC PRODUCTS
WO2003045666A1 (en) * 2001-11-21 2003-06-05 Atrium Medical Corporation Method for treating expandable polymer materials and products produced therefrom
JP4716773B2 (en) * 2005-04-06 2011-07-06 富士フイルム株式会社 Gas barrier film and organic device using the same
JP2010030295A (en) * 2008-07-04 2010-02-12 Fujifilm Corp Barrier laminated body, gas barrier film, device, and optical member
JP5490131B2 (en) * 2008-11-26 2014-05-14 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such films, and use of such films as battery separator films
US20160032069A1 (en) * 2014-07-29 2016-02-04 W. L. Gore & Associates, Inc. Porous Articles Formed From Polyparaxylylene and Processes For Forming The Same
US20160136914A1 (en) * 2014-07-29 2016-05-19 W. L. Gore & Associates, Inc. Porous Articles Formed From Polyparaxylylene and Processes For Forming The Same

Also Published As

Publication number Publication date
CA3005270C (en) 2021-01-26
CN112239556A (en) 2021-01-19
CN108699263A (en) 2018-10-23
EP3408316A1 (en) 2018-12-05
JP6767487B2 (en) 2020-10-14
JP2018538403A (en) 2018-12-27
CN112239556B (en) 2022-12-20
WO2017132077A1 (en) 2017-08-03
KR20180104705A (en) 2018-09-21
CN108699263B (en) 2021-09-07
KR102134982B1 (en) 2020-07-16
CA3005270A1 (en) 2017-08-03
AU2017212317B2 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
AU2015296583B2 (en) Porous articles formed from polyparaxylylene and processes for forming the same
US20160136914A1 (en) Porous Articles Formed From Polyparaxylylene and Processes For Forming The Same
US6179132B1 (en) Surface modified polymeric substrate and process
AU2017212317B2 (en) Porous articles formed from polyparaxylylene and processes for forming the same
TWI447161B (en) Microporous material
AU2015296586A1 (en) Method for producing porous articles from alternating poly(ethylene tetrafluoroethylene) and articles produced therefrom
JP2010094579A (en) Method of manufacturing porous fluororesin thin film and porous fluororesin thin film
US7416761B2 (en) Composite membrane and method for forming the same
TW201912237A (en) Treated membrane for fragrance delivery
EP2808075B1 (en) Microporous modified-polytetrafluoroethylene membrane, porous-modified-polytetrafluoroethylene-membrane composite and production process thereof, and separation membrane element
KR20190060586A (en) Preparation method of porous fluorine resin sheet
TWI682956B (en) Porous fluorine resin film, preparation method thereof and automotive vent filter
JP2023521039A (en) Article comprising oriented poly(tetramethyl-p-silphenylene siloxane) and method of making same
KR20210061777A (en) Porous fluorine resin sheet and method for prepararing the same
WO2022201761A1 (en) Separator for battery and method for producing same
WO2023139868A1 (en) Porous membrane, porous membrane laminate, and production method for porous membrane
JPH03258532A (en) Multi-layered semibaked substance of polytetra-fluoroethylene
CN114901384A (en) Porous polytetrafluoroethylene film with macroscopically textured surface and method of making same

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)