AU2014326411B2 - Odour trap with check valve and air admittance valve - Google Patents

Odour trap with check valve and air admittance valve Download PDF

Info

Publication number
AU2014326411B2
AU2014326411B2 AU2014326411A AU2014326411A AU2014326411B2 AU 2014326411 B2 AU2014326411 B2 AU 2014326411B2 AU 2014326411 A AU2014326411 A AU 2014326411A AU 2014326411 A AU2014326411 A AU 2014326411A AU 2014326411 B2 AU2014326411 B2 AU 2014326411B2
Authority
AU
Australia
Prior art keywords
pressure valve
outlet
trap
inlet
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2014326411A
Other versions
AU2014326411A2 (en
AU2014326411A1 (en
Inventor
James Edward Mcalpine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McAlpine and Co Ltd
Original Assignee
McAlpine and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McAlpine and Co Ltd filed Critical McAlpine and Co Ltd
Publication of AU2014326411A1 publication Critical patent/AU2014326411A1/en
Publication of AU2014326411A2 publication Critical patent/AU2014326411A2/en
Application granted granted Critical
Publication of AU2014326411B2 publication Critical patent/AU2014326411B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/28Odour seals
    • E03C1/284Odour seals having U-shaped trap
    • E03C1/288Odour seals having U-shaped trap having non-return valves against return of waste water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/122Pipe-line systems for waste water in building
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/122Pipe-line systems for waste water in building
    • E03C1/1222Arrangements of devices in domestic waste water pipe-line systems
    • E03C1/1225Arrangements of devices in domestic waste water pipe-line systems of air admittance valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Structural Engineering (AREA)
  • Sink And Installation For Waste Water (AREA)
  • Check Valves (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Float Valves (AREA)
  • Ladders (AREA)

Abstract

A trap for a waste outlet for use in drainage facilities is described which provides a water seal. The trap comprises a one-way valve (23) at the trap inlet (14) and a pressure one-way valve (24) at the trap outlet (16) such that, in addition to prevent ingress of animals from the soil pipe to the buildings, prevents ingress of odours and the water seal being sucked away. The pressure valve (24) allows in the presence of a negative pressure differential across the outlet one-way pressure valve that air can pass through the pressure valve (24) to relieve the pressure differential but in the event of a positive pressure differential, air is prevented from passing through the oneway pressure valve (24).

Description

ODOUR TRAP WITH CHECK VALVE AND AIR ADMITTANCE VALVE Field of the Invention
This invention relates to a trap for a waste outlet.
Background to the Invention
Water seal traps are widely used throughout the world in plumbing installations for buildings. A water trap is generally positioned between the outlet of a sink, basin, bath, shower etc., and the soil pipe to prevent odours, rodents and other undesirable entities which may be present in the soil pipe from entering the building through the outlet.
Various different types of trap exist and one well known and widely used trap is the bottle trap. Bottle traps are particularly popular because of their compact nature.
However, bottle traps have drawbacks. For example where there are a large number of installations on the same plumbing system, a negative pressure differential can exist between the inlet side of the bottle trap and the outlet side.
If this pressure differential is large enough, the water forming the trap can get sucked away, exposing the environment surrounding the trap inlet to the contents of the soil pipe.
This problem has been partially alleviated by use of a one way flow valve in the valve inlet, the one way flow valve providing a barrier between the trap inlet and the trap outlet in the event of the trap seal being sucked away. Whilst this barrier has proven to be successful at preventing the ingress of insects and the like, the one way flow valve has been known to allow the ingress of odours.
Summary of the Invention
According to the first aspect of the present invention there is provided a bottle trap for a waste outlet, the bottle trap comprising: a trap body defining an inlet and an outlet, the trap body including an insert tubular member, inserted via the inlet and being arranged relative to the inlet and outlet such that flow through the bottle trap is defined by a convoluted flow path between the trap inlet and the trap outlet such that, when sufficient water is present in use, a water seal exists between the trap inlet and the trap outlet, wherein a flow axis of the trap outlet oriented substantially perpendicular to a flow axis of the trap inlet; a one way duck bill valve located adjacent the trap inlet and housed and extending within the insert tubular member, wherein the diaphragm one-way duck bill comprises a tubular body, which is open at a first end adjacent the trap inlet and is normally closed at a second end, and wherein the normally closed second end is defined by a flattened form, wherein the second end opens only as fluid passes through the valve from inlet to outlet thereby permitting flow of fluid from the inlet to the outlet but preventing flow from the trap outlet to the trap inlet; and an outlet one way pressure valve located above and adjacent the outlet, wherein the outlet one-way pressure valve comprises a pressure valve inlet and a pressure valve outlet; wherein the trap outlet is displaced from the trap body by means of an outlet neck and wherein the outlet neck extends from the trap body and wherein the pressure valve outlet is connected in fluid communication to an outlet passageway defined by the outlet neck; and wherein, when in use, in the presence of a negative pressure differential across the outlet one-way pressure valve, the outlet one way pressure valve is operable to allow air to pass through the outlet one way pressure valve to relieve the pressure differential but in the event of a positive differential across the outlet oneway pressure valve, the outlet one way pressure valve is operable to prevent air passing through the outlet one way pressure valve.
In at least one embodiment of the present invention, there is provided a trap which, when connected to a soil stack, allows air into the trap outlet to relieve a negative pressure differential across the one-way pressure valve, that is when the pressure within the soil stack is less than the environmental pressure at the valve inlet. Generally for a trap, this environmental pressure will also be the pressure at the trap inlet. This arrangement therefore ensures the pressure differential does not reach a sufficient level to generate a force sufficient to suck the water seal out of the trap and into the soil stack. In the event of a positive pressure differential of sufficient magnitude, however, the water seal is prevented from being pushed through the trap inlet by the inlet one way flow valve.
For the avoidance of doubt, the phase “negative pressure differential" in this context means a pressure differential which would apply a pulling force to the water seal in a trap, which, in use, is such that the water seal experiences a force which, if the pressure differential reaches a sufficient magnitude, is strong enough to cause the water seal to flow through the trap outlet.
The trap inlet and the trap outlet may be perpendicular to one another.
The trap outlet and the trap inlet may define connecting portions adapted to permit the bottle trap to be connected, in use, to associated plumbing.
The connecting portions may define threaded connections.
The trap inlet and/or the trap outlet may be displaced from the trap body. The trap inlet or the trap outlet may be displaced from the trap body by means of an inlet neck and/or an outlet neck.
The inlet neck or outlet neck may extend from the trap body.
The inlet neck or outlet neck may extend from the trap body in a direction perpendicular to the respective inlet or outlet.
The inlet neck or outlet neck may be a short length of tube extending from the trap body.
The one-way pressure valve may be in fluid communication with the outlet neck.
The one way pressure valve may be mounted to the outlet neck.
Mounting the one way pressure valve to the outlet neck ensures the one way pressure valve is located where the negative pressure differential which may exist between the trap inlet and trap outlet be strongest.
The one way pressure valve may comprise a pressure valve inlet and a pressure valve outlet, the pressure valve outlet being in communication with the trap body.
Particularly, the pressure valve outlet may be connected to the trap outlet’s neck.
The pressure valve may comprise a pressure valve passage.
The pressure valve passage may define the pressure valve outlet.
The pressure valve passage may provide fluid communication between the pressure valve inlet body and the pressure valve outlet.
The pressure valve inlet body may comprise a pressure valve member.
The pressure valve member may be positioned with respect to the pressure valve outlet such that the pressure valve member is located above the body outlet.
The pressure valve outlet may be located on a surface of the trap outlet neck.
Particularly, the pressure valve outlet may be located on a side or upper surface of the trap outlet’s neck.
In a preferred embodiment the pressure valve outlet is located on an upper surface of the trap outlet’s neck. Such an arrangement permits the pressure valve to stay substantially free of contamination from fluids or waste which may be flowing through the bottle trap at any given moment.
The pressure valve member may be adapted to move between a pressure valve open position and a pressure valve closed position. In the pressure valve open position air is permitted to flow from the air inlet through the pressure valve body and the pressure valve passageway to the pressure valve outlet and, in use, into the bottle trap body.
The pressure valve member may be adapted to move from the pressure valve closed position to the pressure valve open position in the presence of a threshold pressure. In such an embodiment, the pressure valve member will not move until eye level of negative pressure differential between the pressure valve inlet and the pressure valve outlet is reached.
The pressure valve member may be adapted to move between the pressure valve open position and the pressure valve closed position in the presence of a negative pressure differential across the pressure valve member.
In some embodiments the pressure valve member may only move from the pressure valve closed position to the pressure valve open position when the negative pressure differential is such that the pressure differential can be with the pressure valve member. The pressure valve member may be adapted to move vertically between the pressure valve open position and the pressure valve closed position. In such an embodiment the pressure valve member may be biased to the pressure valve closed position by gravity. In this embodiment, to move the pressure valve member from the pressure valve open position to the pressure valve closed position, the threshold pressure is defined by the pressure differential required to overcome the gravity biasing effect.
Air may flow into the pressure valve inlet in an inlet direction and through the pressure valve outlet in an outlet direction.
The inlet direction and the outlet direction may be different.
The inlet direction and the outlet direction may be perpendicular. Additionally or alternatively, the inlet direction and the outlet direction are parallel.
In such an embodiment the pressure valve passage may be convoluted. A convoluted pressure valve passage allows for the pressure valve inlet and the pressure valve outlet to be offset from one another. In this way the pressure valve inlet size and the pressure valve outlet size can be maximised to allow for a large volume of air to pass through the pressure valve and into the trap body. Furthermore, an offset arrangement permits the height of the pressure valve to be minimised and allows for a larger pressure valve member to be utilised. Utilising a large pressure valve member allows for the threshold pressure to be adjusted to suit different circumstances and different installations.
The pressure valve inlet body may be located over the outlet connecting portion. Such an arrangement utilises redundant space, in use, underneath the sink or basin or the like. Additionally, the presence of the pressure valve inlet body may prevent the connection, in use, between the pressure valve outlet and the plumbing system from working loose.
The pressure valve inlet body may define a void between the pressure valve member and the passageway.
The void, in use, may contain an air pocket. The presence of the air pocket ensures that should the trap backup and water enter the pressure valve outlet, the presence of an air pocket in the void prevents the backup water or waste in the bottle trap from contaminating the seal member and preventing the pressure valve member from shutting properly.
The inlet flow valve may comprise a diaphragm valve.
The diaphragm valve may be a one way duck bill valve.
Brief Description of the Drawings
An embodiment of the present invention will now be described with reference to the accompanying drawings in which:
Figure 1 is a side view of a bottle trap for a waste outlet according to an embodiment of the present invention;
Figure 2 is a section view of the bottle trap of Figure 1 in an outlet pressure valve closed configuration;
Figure 3 is a section view through line A-A shown on Figure 2;
Figure 4 is a section of the bottle trap of Figure 1 shown in an outlet pressure valve open position;
Detailed Description of the Drawings
Reference is first made to Figure 1, a side view of a bottle trap, generally indicated by reference numeral 10 for a waste outlet (not shown) and, Figure 2, a section of the bottle trap of Figure 1 shown in an outlet pressure valve 24 closed position.
The bottle trap 10 comprises a trap body 12, defining a trap inlet 14 and a trap outlet 16. The body further includes an insert 18 for creating a convoluted flow path 20 between the trap inlet 14 and the trap outlet 16, such that a water seal 22, in use, exists between the trap inlet 14 and the trap outlet 16. The bottle trap 10 further comprises an inlet one way flow valve 23 located adjacent the trap inlet 14 and an outlet one way pressure valve 24 located on a neck 26 connecting the valve outlet 16 to the trap upper body 28.
The trap body 12 comprises an upper portion 28 and a lower portion 30, the lower portion being threadedly connected to the upper portion 28 by means of a threaded connection 32.
The inlet one way flow valve 23 comprises a polymer diaphragm valve adapted to permit the flow of fluid from the trap inlet 14 to the trap outlet 16.
The one way outlet pressure valve 24, comprises a pressure valve inlet 34, a pressure valve outlet 36 and a pressure valve member 38. The pressure valve inlet 34 and the pressure valve outlet 36 are connected by a flow path 40. The pressure valve member 38 rests on the pressure valve member support 42, a pressure valve member lower surface 44 forming a seal with a support upper surface 46.
The seal between the pressure valve member 38 and the pressure valve member support 44 is maintained, in the absence of a pressure differential, by gravity, gravity pulling on the pressure valve member 38 to pull it down to engagement with the pressure valve member support 44.
If a pressure differential is present across the pressure valve member 38, the pressure valve member 38 will, in the case where the pressure in the trap 16 in the region indicated by “X” adjacent the trap outlet 16 is lower than the external environment, indicated by Ύ” which is the environmental pressure present at the trap inlet 14 and the pressure valve inlet 34, lift away from the pressure valve member support 42, allowing air to flow through the passageway 40. This is shown more clearly in Figure 4, a section view of the bottle trap of Figure 1 shown in a pressure valve 24 open position.
If the pressure differential across the pressure valve member 38 is a positive pressure differential, that is the pressure at region “X” is greater than the external environment Ύ” then the pressure valve member 24 is pressed into engagement with the pressure valve member support 42. This prevents noxious fumes from escaping from the soil pipe (not shown) which will be connected to the trap outlet 16. The pressure such a situation applies to push the water seal towards the inlet 14 is resisted by the one way inlet flow valve 23 which prevents the flow of fluid from the trap body 12 out of the trap inlet 14.
Relieving the negative pressure differential prevents a pulling force being applied to the water seal 22, preventing it being sucked from the flow path 20 and down the soil pipe. This ensures the water seal is maintained preventing ingress of noxious fumes and the like from the soil pipe through the convoluted flow path 20 and out of the trap inlet 14.
As can be seen from Figures 1, 2 and 4, the pressure valve inlet 24 and the pressure valve outlet 36 lie on different vertical planes. That is to say the direction of flowthrough the pressure valve inlet 34 and the direction of flow through the pressure valve outlet 36 are parallel but displaced apart.
This permits the inlet 34 and the outlet to 36 be arranged in a more complex formation and allows for the inlet 34 to have a gravity driven pressure valve member 38 but be located above the trap outlet 16. Locating the pressure valve member 38 above the trap outlet 16 reduces the possibility of flow in the trap 10 which is flowing out of the trap outlet 16 from contaminating the pressure valve member 38. This possibility is further reduced by the inclusion of a void 44 immediately above the pressure valve member 38. The void 44 provides a region in which air can be trapped providing a barrier between the pressure valve outlet 36 and the pressure valve inlet 34, such that if the soil pipe blocks and the trap 10 fills with fluid, the fluid will not be able to displace the air within the pressure valve passageway and flow over onto the pressure valve member 38.
Various modifications and improvements can be made to the above described embodiments without departing from the scope of the invention. For example, although the trap shown is a split trap, a single bodied trap could be used.

Claims (9)

1. A bottle trap for a waste outlet, the bottle trap comprising: a trap body defining an inlet and an outlet, the trap body including an insert tubular member, inserted via the inlet and being arranged relative to the inlet and outlet such that flow through the bottle trap is defined by a convoluted flow path between the trap inlet and the trap outlet such that, when sufficient water is present in use, a water seal exists between the trap inlet and the trap outlet, wherein a flow axis of the trap outlet is oriented substantially perpendicular to a flow axis of the trap inlet; a one-way duck bill valve located adjacent the trap inlet and housed and extending within the insert tubular member, wherein the one-way duck bill valve comprises a tubular body, which is open at a first end adjacent the trap inlet and is normally closed at a second end, wherein the normally closed second end is defined by a flattened form, wherein the second end opens only as fluid passes through the valve from inlet to outlet thereby permitting flow of fluid from the trap inlet to the trap outlet but preventing flow from the trap outlet to the trap inlet; and an outlet one-way pressure valve located above and adjacent the outlet, wherein the outlet one-way pressure valve comprises a pressure valve inlet and a pressure valve outlet; wherein the outlet is displaced from the trap body by means of an outlet neck and wherein the outlet neck extends from the trap body and wherein the pressure valve is connected in fluid communication to an outlet passageway defined by the outlet neck; and wherein, when in use, in the presence of a negative pressure differential across the outlet one-way pressure valve, the outlet one-way pressure valve is operable to allow air to pass through the outlet one-way pressure valve to relieve the pressure differential but in the presence of a positive differential across the outlet one-way pressure valve, the outlet one-way pressure valve is operable to prevent air passing through the outlet one-way pressure valve.
2. A trap according to claim 1, wherein the pressure valve inlet comprises a pressure valve member.
3. A trap according to claim 2, wherein the pressure valve member is positioned with respect to the pressure valve outlet such that the pressure valve member is located above the trap body outlet.
4. A trap according to claim 2 or 3 wherein the pressure valve member is operable to move between a pressure valve open position and a pressure valve closed position and to move from a pressure valve closed position to a pressure valve open position in the presence of a threshold pressure.
5. A trap according to claim 4, wherein the pressure valve member is operable to move between the pressure valve open position and the pressure valve closed position in the presence of a negative pressure differential across the pressure valve member.
6. A trap according to any of claims 2 to 5, wherein, when in use, the pressure valve inlet and the pressure valve outlet lie on different vertical planes, wherein the direction of flow through the pressure valve inlet and the direction of flow through the pressure valve outlet are parallel but displaced apart.
7. The trap according to claim 6, comprising a gravity driven pressure valve member.
8. The trap according to any of claims 2 to 7, further comprising a void above the pressure valve member, wherein the void defines an air pocket, which provides a barrier between the pressure valve outlet and the pressure valve inlet, such that in the presence of the trap body filling with fluid, the ait pocket prevents fluid accessing the outlet one-way pressure valve via the pressure valve outlet.
9. The trap according to claim 1, wherein the outlet one-way pressure valve comprises a pressure valve member and a pressure valve member support adjacent the pressure valve inlet, wherein the pressure valve member is operable to rest on a pressure valve member support in a normally closed position.
AU2014326411A 2013-09-25 2014-09-22 Odour trap with check valve and air admittance valve Ceased AU2014326411B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1317021.2 2013-09-25
GBGB1317021.2A GB201317021D0 (en) 2013-09-25 2013-09-25 Improved trap
PCT/GB2014/052868 WO2015044650A1 (en) 2013-09-25 2014-09-22 Odour trap with check valve and air admittance valve

Publications (3)

Publication Number Publication Date
AU2014326411A1 AU2014326411A1 (en) 2016-04-28
AU2014326411A2 AU2014326411A2 (en) 2016-05-12
AU2014326411B2 true AU2014326411B2 (en) 2018-08-02

Family

ID=49553393

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014326411A Ceased AU2014326411B2 (en) 2013-09-25 2014-09-22 Odour trap with check valve and air admittance valve

Country Status (11)

Country Link
US (1) US20160230375A1 (en)
EP (1) EP3049584B1 (en)
AU (1) AU2014326411B2 (en)
CA (1) CA2925358A1 (en)
ES (1) ES2837973T3 (en)
GB (2) GB201317021D0 (en)
HU (1) HUE052974T2 (en)
PL (1) PL3049584T3 (en)
RU (1) RU2668333C2 (en)
SG (1) SG11201602327PA (en)
WO (1) WO2015044650A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2552659B (en) 2016-08-01 2019-06-12 Mcalpine & Co Ltd High flow drain control
FR3072983B3 (en) * 2017-11-02 2019-12-20 Wirquin Plastiques Sa SIPHON WITH FREE AIR
CN109931685B (en) * 2017-12-29 2021-04-13 上海克俐托机械有限公司 Automatic condensate water drainer for positive and negative pressure system of air conditioner
AU2020206188A1 (en) 2019-01-09 2021-08-26 Physiclean Ltd. Drain pipe connector system
RU191232U1 (en) * 2019-05-20 2019-07-30 Андрей Владимирович Казанин CONDENSATE DRAINAGE DEVICE
AT523236B1 (en) * 2019-12-06 2021-11-15 Andre Rathammer Drainage device
RU202786U1 (en) * 2020-10-27 2021-03-05 Андрей Владимирович Казанин SIPHON FOR AIR CONDITIONING

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US592690A (en) * 1897-10-26 bragger
US20070138327A1 (en) * 2005-12-16 2007-06-21 Emerson Electric Co. Waste line connector assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US208379A (en) * 1878-09-24 Improvement in vacuum-valves for stench-traps
US605202A (en) * 1898-06-07 Trap for sinks
US2352642A (en) * 1942-01-28 1944-07-04 Jesse D Langdon Check valve device
US3460168A (en) * 1965-09-22 1969-08-12 Gabriel Louis De Bruyne Drainage system for sinks,lavatories and the like
US3707986A (en) * 1971-02-19 1973-01-02 W Breen One-way diaphragm seal for drains
NL8200799A (en) * 1982-02-26 1983-09-16 Dipat Nv Aeration device.
US5261897A (en) * 1990-12-04 1993-11-16 Bioresearch, Inc. Portable suction system
GB2352496B (en) * 1996-12-04 2001-04-18 Hepworth Building Prod Non-return device
ES1043234Y (en) * 1999-06-11 2000-05-01 Jimten Sa AERATION VALVE ADAPTED TO AN EVACUATION NETWORK.
SE528964C2 (en) * 2004-12-03 2007-03-27 Sjoebo Bruk Ab odor Blocking
GB2421518B (en) * 2004-12-24 2007-03-28 Studor Sa Water trap for sanitary appliances
US20130048087A1 (en) * 2011-08-23 2013-02-28 Garry SATO Remote controlled graywater separation system and method for using the same
US20130071186A1 (en) * 2011-09-20 2013-03-21 Rod Ekern Foundation Stabilization System and Method of Use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US592690A (en) * 1897-10-26 bragger
US20070138327A1 (en) * 2005-12-16 2007-06-21 Emerson Electric Co. Waste line connector assembly

Also Published As

Publication number Publication date
US20160230375A1 (en) 2016-08-11
AU2014326411A2 (en) 2016-05-12
NZ718465A (en) 2020-11-27
RU2016115747A (en) 2017-10-30
RU2016115747A3 (en) 2018-04-27
AU2014326411A1 (en) 2016-04-28
PL3049584T3 (en) 2021-05-04
RU2668333C2 (en) 2018-09-28
HUE052974T2 (en) 2021-06-28
GB2534516A (en) 2016-07-27
ES2837973T3 (en) 2021-07-01
WO2015044650A1 (en) 2015-04-02
GB201317021D0 (en) 2013-11-06
CA2925358A1 (en) 2015-04-02
EP3049584A1 (en) 2016-08-03
EP3049584B1 (en) 2020-12-02
SG11201602327PA (en) 2016-04-28
GB2534516B (en) 2018-07-18

Similar Documents

Publication Publication Date Title
AU2014326411B2 (en) Odour trap with check valve and air admittance valve
AU2014270126B8 (en) Drainage fitting
WO2013178976A1 (en) Valve device for waste pipe
US11320057B2 (en) Anti-rat valve and flap therefor
EP2921644A1 (en) Valve
JP2011117229A (en) Overflow device
JP2015098702A (en) Drainage trap
US6092547A (en) Double funnel float valve
JP5443011B2 (en) Drainage pipe structure
CN204151897U (en) Dynamic drainage backflow preventing structure in underground between pond
NZ718465B2 (en) Odour trap with check valve and air admittance valve
KR20100110933A (en) The trap of drain pipe for blocking polluted air flow backward
KR20160068164A (en) Sewerage stink block apparatus
US20030196258A1 (en) Automatic toilet bowl overflow prevention device
US8850628B2 (en) Pressure relief device
US20060201088A1 (en) Sealed off building drainage and vent system
KR20140036804A (en) Offensive odor backflow prevention device
CN103912045A (en) Trap device with convenience in checking and dredging
EP2872703B1 (en) Bi-directional shut-off valve system, manhole assembly comprising such valve system and use of such valve system in a sewer network
KR101032155B1 (en) Manhole for drainage
WO2008050160A1 (en) Floor drain with odour seal
US20180087704A1 (en) Pipe Self Closing Device
CN205224242U (en) Deodorantly prevent stifled floor drain device
CN103416391A (en) Matched rat-proof device of sewer pipe network
JPH11303187A (en) Overpass of vacuum sewerage

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 01 APR 2016

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired