AU2014203794B2 - Biodegradable intraocular tyrosine kinase inhibitor implants - Google Patents
Biodegradable intraocular tyrosine kinase inhibitor implants Download PDFInfo
- Publication number
- AU2014203794B2 AU2014203794B2 AU2014203794A AU2014203794A AU2014203794B2 AU 2014203794 B2 AU2014203794 B2 AU 2014203794B2 AU 2014203794 A AU2014203794 A AU 2014203794A AU 2014203794 A AU2014203794 A AU 2014203794A AU 2014203794 B2 AU2014203794 B2 AU 2014203794B2
- Authority
- AU
- Australia
- Prior art keywords
- implant
- implants
- tyrosine kinase
- kinase inhibitor
- tki
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
BIODEGRADABLE INTRAVITREAL TYROSINE KINASE INHIBITOR Abstract Biocompatible intraocular implants include a tyrosine kinase inhibitor and a biodegradable polymer that is effective to facilitate release of the tyrosine kinase inhibitor into the vitreous of an eye for an extended period of time. The therapeutic agents of the implants may be associated with a biodegradable polymer matrix, such as a matrix that is substantially free of a polyvinyl alcohol. The implants can be placed in an eye to treat or reduce the occurrence of one or more ocular conditions, such as posterior ocular conditions.
Description
BIODEGRADABLE INTRAOCULAR TYROSINE KINASE INHIBITOR IMPLANTS by
Jeffrey L. Edelman, Patrick M. Hughes, Thomas C. Malone, Gerald DeVries, Joan-En Chang-Lin, Jane Guo Shiah, Thierry Nivaggloll, Lon T. Spada and
Wendy M. Blanda
CROSS REFERENCE
This application is a continuation m part of application serial number 10/637,361 filed April 30,2004, the entire content of which is Incorporated herein by reference.
BACKGROUND
The present Invention generally relatee to devices and methods to treat an eye of a patient, and more specifically to intraocular implants that provide extended release of a therapeutic agent to an eye in which the Implant is placed, and to methods of making and using such implants, for example, to treat or reduce one or more symptoms of an ocular condition.
Delivery of drugs to the retina, vitreous and uveal tract is typically achieved by high systemic dosing, intra-ocular injections or other heroic measures. Penetration of systemically administered drugs into the retina is severely restricted by the blood-retinal banters (BRB) far most compounds. Although Intraocular Injection, such as intravitreai Injections, resolves some constraints posed by the BRB and significantly reduces fire risk of systemic toxicity,
Intraocular Injection techniques may result In retinal detachment, physical damage to the lens, exogenous endophthalmitis, and also may resuK In high pulsed concentrations of drug at the tens and other intraocular tissues.
Compounds are eliminated from the vitreous by diffusion to the retro-zonular space with clearance via the aqueous humor or by trans-retinal elimination. Most oompounds utilize the former pathway while lipophilic compounds and those with trans-retinal transport mechanisms will utilize the latter. Unfortunately, compounds that are eliminated across the retina have extremely short half-lives. Hence, for these compounds it is difficult to maintain therapeutic concentrations by direct intraocular injection, and therefore, frequent injection is often required.
Additionally, the rapid elimination of retinaly cleared compounds makes formulation of controlled delivery systems challenging. For example, tyrosine kinase inhibitors (TKIs) may possess extremely short intraocular half-lives, and thus, may pose a challenge to the formulation of controlled delivery systems.
The inventors are unaware of any small molecule TKIs given by intraocular administration, let alone, intraocular implants containing TKIs. U.S. Patent No. 6,713,081 discloses ocular implant devices made from polyvinyl alcohol and used for the delivery of a therapeutic agent to an aye in a controlled and sustained manner. The implants may be placed subconjunctivally or intravitreaiiy in an eye.
Biocompatible implants for placement in the eye have also been disclosed in a number of patents, such as U.S. Pat. Nos. 4,521,210; 4,853,224; 4,997,652; 5,164,188; 5,443,505; 5,501,856; 5,786,242; 5,824,072; 5,869,079; 6,074,861; 6,331,313; 6,369,116; and 6,699,493.
It would be advantageous to provide eye implantable drug delivery systems, such as Intraocular implants, and methods of using such systems, that are capable of releasing a therapeutic agent at a sustained or controlled rate for extended periods of time and in amounts with few or no negative side effects.
SUMMARY
The present invention provides new drug delivery systems, and methods of making and using such systems, for extended or sustained drug release into an eye, for example, to achieve one or more desired therapeutic effects. The drug delivery systems are in the form of implants or Implant elements that may be placed in an eye. The present systems and methods advantageously provide for extended release times of one or more therapeutic agents. Thus, the patient in whose eye the implant has been placed receives a therapeutic amount of an agent for a long or extended 16me period without requiring additional administrations of the agent. For example, the patient has a substantially consistent level of therapeutically active agent available for consistent treatment of the eye over a relatively long period of time, for example, on the order of at least about one week, such as between about one and about six months or even for more than one year after receiving an implant. Such extended release times facilitate obtaining successful treatment results. The implants allow for prolonged delivery of a therapeutic agent while reducing invasive procedures and reducing high transient concentrations associated with pulsed dosing.
Intraocular implants in accordance with the disclosure herein comprise a therapeutic component and a drug release sustaining component associated with ths therapeutic component. The implants may be solid, ssmisolid, or viscoelastic. In accordance with the present invention, the therapeutic component comprises, consists essentially of, or consists of, a tyrosine kinase Inhibitor (TKI), for example, an agent or compound that inhibits or reduces the activity of tyrosine kinase. The TKI may also be understood to be a small molecule TKI. The drug release sustaining component Is associated with the therapeutic component to sustain release of an amount of the TKI into an eye in which the implant Is placed. TKIs may be released from the implant by diffusion, erosion, dissolution or osmosis. The drug release sustaining component may comprise one or more biodegradable polymers or one or more non* biodegradable polymers. Examples of biodegradable polymers of the present implants may include poly-lactide-co-glycolide (PLGA and PLA), polyesters, poly (ortho ester), pofy(phosphazine), poly (phosphate ester), polycaprotactone, natural polymers such as gelatin or collagen, or polymeric blends. The amount of the TKI is released into the eye for a period of time greater than about one week after the implant is placed in the eye and is effective in reducing or treating an ocular condition.
In one embodiment, the Intraocular implants comprise a TKI and a biodegradable polymer matrix. The TKI is associated with a biodegradable polymer matrix that degrades at a rate effective to sustain release of an amount of the TKI from the implant effective to treat an ocular condition. The intraocular implant is biodegradable or bioerodible and provides a sustained release of the TKI in an eye for extended periods of time, such as for more than one week, for example for about one month or more and up to about six months or more. The implants may be configured to provide release of the therapeutic agent in substantially one direction, or the implants may provide release of the therapeutic agent from all surfaces of the implant.
In one aspect the invention provides a biodegradable intraocular implant comprising: a tyrosine kinase inhibitor and biodegradable polymer matrix, wherein the tyrosine kinase inhibitor is released from the implant for at least about one week after the implant is placed in an eye, and wherein the tyrosine kinase inhibitor has the formula:
In another aspect the invention provides use of a tyrosine kinase inhibitor and a biodegradable polymer matrix in the manufacture of an implant element structured for placement in an eye, wherein the implant has a release rate such that upon placement of the implant in the eye the tyrosine kinase inhibitor is released from the implant for at least about one week, and wherein the tyrosine kinase inhibitor has the formula:
The biodegradable polymer matrix of the foregoing implants may be a mixture of biodegradable polymers or the matrix may comprise a single type of biodegradable polymer. For example, the matrix may comprise a polymer selected from the group consisting of polylactides, poly (lactide-co-glycolides), polycaprolactones, and combinations thereof.
In another embodiment, intraocular implants comprise a therapeutic component that comprises a TKI, and a polymeric outer layer covering the therapeutic component. The polymeric outer layer includes one or more orifices or openings or holes that are effective to allow a liquid to pass into the implant, and to allow the TKI to pass out of the implant. The therapeutic component is provided in a core or interior portion of the implant, and the polymeric outer layer covers or coats the core. The polymeric outer layer may include one or more non-biodegradable portions. The implant can provide an extended release of the TKI for more than about two months, and for more than about one year, and even for more than about five or about ten years. One example of such a polymeric outer layer covering is disclosed in U.S. Patent No. 6,331,313.
Advantageously, the present implants provide a sustained or controlled delivery of therapeutic agents at a maintained level despite the rapid elimination of the TKIs from the eye. For example, the present implants are capable of delivering therapeutic amounts of a TKI for a period of at least about 30 days to about a year despite the short intraocular half-lives associated with TKIs. Plasma TKI levels obtained after implantation are extremely low, thereby reducing issues or risks of systemic toxicity. The controlled delivery of the TKIs from the present implants permits the TKIs to be administered into an eye with reduced toxicity or deterioration of the blood-aqueous and blood-retinal barriers, which may be associated with intraocular injection of liquid formulations containing TKIs. A method of making the present implants involves combining or mixing the TKI with a biodegradable polymer or polymers. The mixture may then be extruded or compressed to form a single composition. The single composition may then be processed to form individual implants suitable for placement in an eye of a patient.
Another method of making the present implants involves providing a polymeric coating around a core portion containing a TKI, wherein the polymeric coating has one or more holes.
The implants may be placed in an ocular region to treat a variety of ocular conditions, such as treating, preventing, or reducing at least one symptom associated with non-exudative age related macular degeneration, exudative age related macular degeneration, choroidal neovascularization, acute macular neuroretinopathy, cystoid macular edema, diabetic macular edema, Behcet's disease, diabetic retinopathy, retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, trauma, conditions caused by laser treatment, conditions caused by photodynamic therapy, photocoagulation, radiation retinopathy, epiretina! membranes, proliferative diabetic retinopathy, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, ocular tumors, ocular neoplasms, and the Hke.
Kits in accordance with the present invention may comprise one or more of the present implants, and instructions for using the implants. For example, the instructions may explain how to administer the implants to a patient, and types of conditions that may be treated with the implants.
Our invention also encompasses a biodegradable intravitreal implant comprising a tyrosine kinase inhibitor (TKI) and a biodegradable polymer. The implant can release the TKI at a rate effective to sustain release of the TKI from the Implant for at least about one week after the Implant Is placed in the vitreous of an eye. The polymer can be a polylactide, poly (lactide-co-glycolide), polycaprolactone, or a derivative thereof, or a mixture thereof. The polymer can release the TKI at a rate effective to sustain release of an amount of the TKI from the implant for more than one month from the time the implant is placed in the vitreous of tire eye. Tire TKI can be provided in an amount from about 30% by weight to about 70% by weight of the implant, and the biodegradable polymer matrix can comprise a poly (lactide-co-glycolide) in an amount from about 30% by weight to about 70% by weight of the implant. More preferably, the TKI can be provided in an amount from about 40% by weight to about 60% by weight of the implant, and the biodegradable polymer matrix can comprise a poly (lactide-co-glycolide) in an amount from about 40% by weight to about 60% by weight of the implant. The implant can be made by an extrusion process. A detailed embodiment of our invention can be a method of making a biodegradable intravitreal implant, comprising the step of: extruding a mixture of a TKI and a biodegradable polymer to form a biodegradable implant that degrades at a rate effective to sustain release of an amount of the TKI from the implant for at least about one week after the implant Is placed In the vitreous of an eye. The mixture can consist essentially of the TKI and the biodegradable polymer.
Our invention also encompasses a method of treating an ocular condition of an eye of a patient, comprising the step of placing a biodegradable intraocular implant into the vitreous of an eye of the patient, the implant comprising a TKI and a biodegradable polymer, wherein the implant degrades at a rate effective to sustain release of an amount of the TKI from the implant effective to treat the ocular condition. This method can be effective to treat, for example, a retinal ocular condition, glaucoma or a proliferative vitreoretinopathy.
The TKI used in the implant can have, for example, one of the following five possible structures:
Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually Inconsistent, in addition, any feature or combination of features may be specifically excluded from any embodiment of the present Invention.
Additional aspects and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings.
DRAWINGS
Figure 1 is a graph showing the vitreous humor concentration of two TKIs as a function of time.
Figure 2 is a graph similar to Figure 1 for two different TKIs.
Figure 3 is a graph of the cumulative release profile for AGN 200954 as a function of time.
Figure 4 is a graph of the cumulative release profile for AGN 202314 as a function of time.
Figure 5 is a graph similar to Figure 4 for different formulations of AGN 202314.
Figure 6 is a graph of the TTL release for AGN 201634 as a function of time.
Figure 7 is a graph similar to Figure 6 with implants containing 30% AGN 201634.
Figure 8 Is a graph similar to Figure 6 for AGN 201634 in different solutions.
Figure 9 is a graph of the percent of TKI released as a function of time in different a Tween 80/saline solution.
Figure 10 is a graph similar to Figure 9 except in a phosphate buffer solution.
Figure 11 is a graph of the cumulative release profile for TKI AGN 201634 of Formulation 1 in saline and PBS.
Figure 12 is a graph of the cumulative release profile for TKI AGN 201634 release of Formulation 3 in media of a pH of 6.0 (with 0.1 % CTAB), 7.4 (PBS) or 8.5 (with 0.5% SDS).
Figure 13 ie a graph of the cumulative release profile for TKIAGN 201634 release of Formulation 4 In media of a pH of 6.0 {with 0.1% CTAB), 7.4 (PBS) or B.5 (with 0.5% SDS).
Figure 14 Is an illustration of a biodegradable implant comprising a drugreleasing active layer and a barrier layer.
Figure 15 is a graph of the cumulative release profile for a TKI-containing implant and Dexamethasone-containing implants, in which the biodegradable polymer is polycaprolactone.
Figure 16 is a graph of the cumulative release profile for three different formulations of TKI (AGN208639) containing implants in phosphate buffered saline release medium, pH 7.4.
Figure 17 is a graph of the cumulative release profile for five further and different formulations of TKI (AGN206639) containing implants in phosphate buffered saline release medium, pH 7.4.
Figure 18 is a graph of the cumulative release profile for three different formulations of TKI (AGN205558) containing Implants in phosphate buffered saline release medium, pH 7.4.
Figure 19 is a graph of the cumulative release profile for eight different formulations of TKI (AGN206320) containing implants in phosphate buffered saline release medium, pH 7.4.
Figure 20 is a graph of the cumulative release profile for eight different formulations of TKI (AGN206784) containing implants in phosphate buffered saline release medium, pH 7.4.
Figure 21 is a graph of the cumulative release profile for seven different formulations of TKI (AGN206316) containing implants in phosphate buffered saline release medium, pH 7.4.
Figure 22 is a bar graph showing on the X axis time (14 days and 28 days) after intravitrea! implantation into rabbit eyes (N = 7) of either a PLGA placebo implant or a TKI (AGN208639) PLGA implant, and on the Y axis vitreoretinal fluorescence (as determined by a scanning ocular fluorophotometry area under the curve [AUC] method after intravenous injection of sodium fluorescein).
DESCRIPTION
As described herein, controlled and sustained administration of a therapeutic agent through the use of one or more intraocular implants may improve treatment of undesirable ocular conditions. The implants comprise a pharmaceutically acceptable polymeric composition and are formulated to release one or more pharmaceutically active agents, such as tyrosine kinase inhibitors (TKIs), over an extended period of time. The implants are effective to provide a therapeutically effective dosage of the agent or agents directly to a region of the eye to treat, prevent, and/or reduce one or more symptoms of one or more undesirable ocular conditions. Thus, with a single administration, therapeutic agents will be made, available at the site where they are needed and will be maintained for an extended period of time, rather than subjecting the patient to repeated injections or, in the case of self-administered drops, ineffective treatment with only limited bursts of exposure to the active agent or agents.
An intraocular implant in accordance with the disclosure herein comprises a therapeutic component and a drug release sustaining component associated with the therapeutic component. In accordance with the present invention, the therapeutic component comprises, consists essentially of, or consists of, a TKI. The drug release sustaining component is associated with the therapeutic component to sustain release of an effective amount of the therapeutic component into an eye in which the implant is placed. The amount of the therapeutic component is released into the eye for a period of time greater than about one week after the implant Is placed in the eye, and is effective in treating ancf/or reducing at least one symptom of one or more ocular conditions, such as conditions wherein migration or proliferation of retinal pigment epithelium or glial cells causes or contributes to the cause of the condition. Some examples of ocular conditions that may be treated with the implants of the present invention include, without limitation, non-exudative age related macular degeneration, exudative age related macular degeneration, choroidal neovascularization, acute macular neuroretinopathy, cystoid macular edema, diabetic macular edema, Behcefs disease, diabetic retinopathy, retinopathy of prematurity, retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, trauma, conditions caused by laser treatment, conditions caused by photodynamic therapy, photocoagulation, radiation retinopathy, epiretinal membranes, proliferative diabetic retinopathy, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, ocular tumors, ocular neoplasms, and the like.
Definitions
The following terms as defined as follows, unless the context of the word indicates a different meaning.
As used herein, an "intraocular implant" refers to a device or element that is structured, sized, or otherwise configured to be placed in an eye. Intraocular implants are generally biocompatible with physiological conditions of an eye and do not cause adverse side effects. Intraocular implants may be placed in an eye without disrupting vision of the eye.
As used herein, a "therapeutic component" refers to a portion of an intraocular implant comprising one or more therapeutic agents or substances used to treat a medical condition of the eye. The therapeutic component may be a discrete region of an intraocular implant, or it may be homogenously distributed throughout the implant. The therapeutic agents of the therapeutic component are typically ophthalmicatiy acceptable, and are provided in a form that does not cause adverse reactions when the implant Is placed in an eye.
As used herein, a "drug release sustaining component" refers to a portion of the intraocular implant that is effective to provide a sustained release of the therapeutic agents of the implant. A drug release sustaining component may be a biodegradable polymer matrix, or it may be a coating covering a core region of the implant that comprises a therapeutic component.
As used herein, "associated with11 means mixed with, dispersed within, coupled to, covering, or surrounding.
As used herein, an "ocular region" or "ocular site" refers generally to any area of the eyeball, Including the anterior and posterior segment cl the eye, and which generally includes, but is not limited to, any functional (e.g., tor vision) or structural tissues found in the eyeball, or tissues or cellular layers that partly or completely line the interior or exterior of the eyeball. Specific examples of areas of the eyeball in an ocular region include the anterior diamber, the posterior chamber, the vitreous cavity, the choroid, the suprachoroidal space, the conjunctiva, the subconjunctival space, the episcleral space, the intracorneal space, the epicomeal space, the sclera, the pars plana, surgically-induced avascular regions, the macula, and the retina.
As used herein, an "ocular condition" is a disease, ailment or condition which affects or Involves the eye or one of the parts or regions of the eye. Broadly speaking the eye includes the eyeball and the tissues and fluids which constitute the eyeball, the periocular muscles (such as the oblique and rectus muscles) and the portion of the optic nerve which is within or adjacent to the eyeball.
An "anterior ocular condition" Is a disease, ailment or condition which affects or which involves an anterior (i.e. front of the eye) ocular region or site, such as a periocular muscle, an eye lid or an eye ball tissue or fluid which is located anterior to the posterior wall of the lens capsule or ciliary muscles. Thus, an anterior ocular condition primarily affects or involves toe conjunctiva, the cornea, the anterior chamber, the iris, the posterior chamber (behind the retina but in front of the posterior wall of the lens capsule), the lens or the lens capsule and blood vessels and nerve which vascularize or innervate an anterior ocular region or site.
Thus, an anterior ocular condition can include a disease, ailment or condition, such as for example, aphakia; pseudophakia; astigmatism; blepharospasm; cataract; conjunctival diseases; conjunctivitis; comeal diseases;, comeal ulcer; dry eye syndromes; eyelid diseases; lacrimal apparatus diseases; lacrimal duct obstruction; myopia; presbyopia; pupil disorders; refractive disorders and strabismus. Glaucoma can also be considered to be an anterior ocular condition because a clinical goal of glaucoma treatment can be to reduce a hypertension of aqueous fluid in the anterior chamber of the eye (i.e. reduce intraocular pressure). A "posterior ocular condition" is a disease, ailment or condition which primarily affects or involves a posterior ocular region or site such as choroid or sclera (in a position posterior to a plane through the posterior wall of the lens capsule), vitreous, vitreous chamber, retina, optic nerve (i.e. the optic disc), and blood vessels and nerves which vascularize or innervate a posterior ocufar region or site.
Thus, a posterior ocular condition can include a disease, ailment or condition, such as for example, acute macular neuroretinopathy; Behcet's disease; choroidal neovascularization; diabetic uveitis; histoplasmosis; infections, such as fungal or viral-caused infections; macular degeneration, such as acute macular degeneration, non>exudative age related macular degeneration and exudative age related macular degeneration; edema, such as macular edema, cystoid macular edema and diabetic macular edema; multifocal choroiditis; ocular trauma which affects a posterior ocular site or location; ocular tumors; retinal disorders, such as central retinal vein occlusion, diabetic retinopathy (including proliferative diabetic retinopathy), proliferative vitreoretinopathy (PVR), retinal arterial occlusive disease, retinal detachment, uveltic retinal disease; sympathetic opthalmra; Vogt Koyanagi-Harada (VKH) syndrome; uveal diffusion; a posterior ocular condition caused by or influenced by an ocular laser treatment; posterior ocular conditions caused by or influenced by a photodynamic therapy, photocoagulation, radiation retinopathy, epiretinal membrane disorders, branch retina! vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, and glaucoma. Glaucoma can be considered a posterior ocular condition because the therapeutic goal is to prevent the loss of or reduce the occurrence of loss of vision due to damage to or loss of retinal cells or optic nerve cells (t.e. neuroprolection).
The term "biodegradable polymer" refers to a polymer or polymers which degrade in vivo, and wherein erosion of the polymer or polymers over time occurs concurrent with or subsequent to release of the therapeutic agent. Specifically, hydrogels such as methylcellulose which act to release drug through polymer swelling are specifically excluded from the term "biodegradable polymer". The terms "biodegradable" and "bioerodible" are equivalent and are used interchangeably herein. A biodegradable polymer may be a homopoiymer, a copolymer, or a polymer oomprislng more than two different polymeric units.
The term "treat", "treating", or "treatment" as used herein, refers to reduction or resolution or prevention of an ocular condition, ocular injury or damage, or to promote healing of injured or damaged ocular tissue.
The term "therapeutically effective amount' as used herein, refers to the level or amount of agent needed to treat an ocular condition, or reduce or prevent ocular injury or damage without causing significant negative or adverse side effects to the eye or a region of the eye.
Intraocular implants have been developed which can release drug loads over various' time periods. These implants, which when inserted into an eye, such as the vitreous of an eye, provide therapeutic levels of a TKI, for extended periods of time (e.g., for about 1 week or more). The disclosed implants are effective in treating ocular conditions, such as non-exudative age related macular degeneration, exudative age related macular degeneration, choroidal neovascularization, acute macular neuroretinopathy, cystold macular edema, diabetic macular edema, Behcet's disease, diabetic retinopathy, retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, trauma, conditions caused by laser treatment, conditions caused by photodynamic therapy, photocoagulation, radiation retinopathy, epiratinal membranes, proliferative diabetic retinopathy, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, ocular tumors, ocular neoplasms, and the like.
In one embodiment of the present invention, an intraocular Implant comprises a biodegradable polymer matrix. The biodegradable polymer matrix is one type of a drug release sustaining component. The biodegradable polymer matrix is effective in forming a biodegradable intraocular implant. The biodegradable intraocular implant comprises a TKI associated with the biodegradable polymer matrix. The matrix degrades at a rate effective to sustain release of an amount of the TKI for a time greater than about one week from the time in which the implant Is placed in ocular region or ocular site, such as the vitreous of an eye.
The TKI of the implant is typically an agent that inhibits or reduces the activity of a tyrosine kinase. The TKI may inhibit tyrosine kinase activity by directly acting on a tyrosine kinase molecule, or It may cooperate with one or more other factors or agents to achieve the desired inhbitbn. Examples of TKIs useful in the present implants are described in U.S. Patent App Nos. 10/256,879 (U.S. Pub. No. 20030199478) and 10/259,703 (U.S. Pub. No. 20030225152).
In short, a TKI of the present implants include organic molecules capable of modulating, regulating and/or inhibiting tyrosine kinase signal transduction. Some compounds useful in the present implants are represented by the following formula
wherein R1 is selected from the group consisting of halogen, NO2, CN, C1 to C4 alkyl and aryl, e.g. phenyl; R2 is selected from the group consisting of hydrogen, Ci to Ce alkyl, COCH3, CH2CH20H,CH2CH2CH20H and phenyl; R is selected from the group consisting of D, halogen, Ci to Ce alkyl, CFa, OCF3i OCFjH, CH2CN, CN, SR2, (CR7R8)cC(0)0R2, C(0)N(R2)2, (CR7 R8)cOR2, HNC(0)R2, HN -C(0)0R2, (CR7R8)cN(R2)2, S02 (CR7R8)cN(R2)2, OPiOJtOR^, OC(O)0R2, OCHaO, HN-CH=CH, -N(COR2)CH2CH2, HC=N-NH, N=CH-S, 0(CR7R8)d-Re and (CR7R8)c-Re. -NR2(CR7RB)dR8 wherein R® is selected from the group consisting of halogen, 3-fluoropyrrolidlnyl, 3-fluoropiperidinyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyI, 3-pyrrolinyl, pyrrolicfinyl, methyl isonipecotate, N-(2-methoxyethyl)-N-methylamyl, 1,2,3,6-tetrahydropyridinyl, morpholinyl, hexamethyteneiminyl, piperazinyl-2-one, piperazinyl, N-(2-methoxyethyl)ethylaminyl, thiomorphoRnyl, heptamethyleneiminyl, 1-piperazinylcarboxaldehyde, 2,3,6,7-tetrahydro-(1 H)-114<iia2epmyI-5(4H>-one) N-methylhomopiperazinyl, (3-dimethylamino)pyrrolidlnyl, N-(2-methoxyethyl)-N-propylaminyl, isoindolinyl, nipecotamidinyl, isonipecotamidinyl, 1-acetylpiperazinyl, 3-acetamidopyrrolidinyf, trans-decahydroisoquinolinyl, cis-decahydroisoquinolinyl, N-acetylhomopiperazinyl, 3-(diethylamino)pyrrolidinyl, 1 .‘t'dtoxa-e-azaspiro^.Sldecaninyi, 1 -(2-methoxyethyt)-piperazinyl, 2-pyrrolidin-3-ylpyridinyl, 4-pyrrolidin-3-ylpyridinyl, 3-(methylsuifonyl)pyrrolidinyi, 3-picolylmethylaminyl, 2-(2-methylaminoethyl)pyrldiny1, 1 -(2-pyranidyl)-piperazinyt, 1 -(2-pyrazinyl)-piperazinyl, 2-methylaminomethyl-1,3-dioxolane,2-(N-rnethyl-2-aminoethyl)-1,3-dioxolane, 3-(lSFacetyf-N-methylamino)pyrrolidinyl, 2-methoxyethyfaminyl, tetrahydrofurfurylaminyl, 4-aminotetrahydropyran, 2-amino-1 -methoxybutane, 2-methoxyisopropylaminyl, 1 -(3-aminopropyl)irnidazole, histamyl, N.N-diisopropylethylenediaminyl, l-benzyl-3-aminopyrrolidyl 2-(aminomethyl)'5-methylpyrazlnyl( 2,2-dimethyM ,3-dioxolane*4-m0thanaminyl, (R)-3-amino-1-N-BOC-pyrrolidinyl, 4-amino-1 ,2,2,6,6-pentamethylpiperidfnyl, 4-aminomethyltetrahyd ropyran, ethanolamine and alkyl-substituted derivatives thereof and wherein when c is 1 said CH2 may be
and CH2CH2CH2; provided said alkyl or phenyl radicals may be substituted with one or two halo, hydroxy or lower alkyl amino radicals wherein R7 and R8 may be selected from the group consisting of H, F and C1-C4 alkyl or CR7R8 may represent a carbocyclic ring of from 3 to 6 carbons» preferably R7 and Re are H or CKU; b is 0 or an integer of from 1 to 3; a is 0 or an integer of from 1 to 5, preferably 1 to 3; c is 0 or an Integer of from 1 to 4, d is an integer of from 2 to 5; the wavy line represents a E or Z bond and pharmaceutically acceptable salts thereof.
In certain implants, the TKI is a compound having the foregoing formula, wherein R1 is selected from the group consisting of H, i.e. b is 0; CH3, F, Cl and phenyl.
Preferably, R is selected from the group consisting of CH3, CH2CH3, OCH3, OH, t-butyl, F, CN, C(0)NH2, HIM C(0)CH3, CHZC(0)OH, SQ2NH2, C(0)0H, OCF2H, isopropyl, C2H6OH, C(0)OCH3, CH2OH, NH-CH=CH, HC=N-N-H, N=CH-S, 0(CR7RB)dR6, (CR7Re)0Re and -NR2(CR7Re)dRe, wherein R6 is selected from the group consisting of 3-fluoropyrrolldinylt 3-fluoropiperldinyl, 2-pyrldinyl, 3-pyrldinyi, 4-pyridinyl, 3-pyrralinyl, pyrrolidlnyl, methyl i9onipecotate, N-(2-methoxyethyl)-N-methylamyl, 1,2,3,6-tetrahydropyridinyl, morpholinyl, hexamethyleneiminyl, piperazinyl-2-one, piperazinyl, N-(2-methoxyethyljethylaminyl, thiomorpholinyl, heptamethyleneiminyl, 1-plperazinylcarboxaidehyde, 2,3,6,7-tetrahydro-(1 H)-1,4-diazepinyl-5(4H)-one, N-methylhomopiperazinyl, (3-dimethylamino)pyrrolldinyl, N-(2-methoxyethyl)-N-propylaminyl, isoindoiinyl, nipecotamidlnyl, isonipecotamidinyl, 1· acetylpiperazinyl, 3-acetamidopyrrolidlnyl, trans-decahydroisoquinolinyl, cis-decahydroisoquinolinyl, N-acetylhomopiperazinyl, 3-(diethylamino)pyrrolidinyl, 1,4-dioxa-8-azaspiro[4.5]decaninyl, 1 -^-methoxyethylj-piperazinyl, 2-pyrrolidin-3-ylpyridinyl, 4>pynrolidirv>3>ylpyridinylT 3-{methylsulfonyl)pyrrolidinyl, 3-picolylmethylaminyl, 2-(2-methylaminoethyl)pyridinyl, 1 -(2-pyrimidyl)-piperazinyl, 1 -(2-pyrazinyl)-piperazinyl, 2-methyiaminomethyl-1,3-dioxolane, 2-(N-methyl-2-aminoethyl)-f,3-drox0lane, 3-(N-acetyhN-rnethytentino)pyrrolidinyl, 2-methoxyathylaminyl, tetrahydrofurfurylaminyl, 4-amlnotetrahydropyran, 2-amino-1-methoxybutar>e, 2-methoxyisopropylaminyI, 1 -(3-aminopropyl)irnidazole, histamyl, Ν,Ν-diisopropylethylenediaminyl, 1 -benzyl-3-aminopyrrolidyl 2-(aminomethyl)-5-methylpyrazinyl, 2,2-dlmathyl-1)3-dioxolane-4-nnethanaminyl> (R)-3-amino-1-N-BOC-pyrrolidinyl, 4-amlno-1,2,2,6,6-pentamethylpiperidinyl, 4-aminomathyltetrahydropyranyl, ethanolamine and alkyl-substituted derivatives thereof, e.g. R® is morpholinyt or CHfeNiCHbfe.
More preferably, R is selected from the group consisting of m-ethyl, p-methooty, p-hydroxy, m-hydroxy, p-cyano, m-C(0)NH2, p-HNC(0)CH3l p-CH2C(0)0H, p-SOzNHz, p-CHgOH, m-methoxy, p-CHaCHgOH, HNCH=CH, HC=N-NH, p-moipholinyl, N=CH-S, p-OCHFji, p-COOH, p-CHs, p-OCH3, m-F, m-CH2N(C2H3)Z, (CR7R®)0R® , 0{CR7R8)tjRe and NR2(CR7RB)dRs.
It is noted that R may represent a condensed ring that is attached to the above phenyl ring at two positions. For example, CH2CH2CH2 may be attached at the 3 and 4 (or m and p) positions of the phenyl ring.
Still more preferably, R is selected from the group consisting of fluoro, methyl, (CR7R8)cR® 0(CR7R®)dRe and NR2(CR7Ra)dRe wherein R® is selected from dimethylamino, diethylamino, 3-fJuoropyrrolidinyl, 3-fluoropiperidinyl, 3-pyridinyl, 4-pyridinyl, pyrrolidinyl, morpholinyl, piperazinyl, heptamethyleneiminyl, tetrahydrofurfurylaminyl, 4-aminotetrahydropyranyl, N,N-diisopropylethylenediaminyl and 4-aminomethyltetrahydropyran.
In particular, the compounds of the present implants may be selected from the compounds of the tables below. TABLE 1
Unsubstituted 4-Methyl & 5-Ch!oro 3-[(Substituted Phenylamino)-methylene]-!,3-dihydro-indol-2-ones.
Unsubstituted, 4-methyl & 5-Chloro ^(Substituted Phenylamino)-methyiene]-1,3-dihydra-indol-2-ones.
Unsubstituted, 4-methyl & 5-Chloro 3-i(Substituted Phenylamino)-methylene]-1,3-dihydro-lndot-2-ones.
Unsubstituted, 4-methyl & 5-Chloro ^(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-methyl, 5-Chloro &5-Fluoro 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-methyl, 5-Chloro &5-Fluoro 3-[(Substituted Phenylamino)-methylene]-1 ^-dihydro-indol-S-ones.
Unsubstituted, 4-methyl, 5-Chloro &5-Fluoro 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2'One9.
/
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 6-Cyano, 5-Fluoro, 5-Nitro, 6-Ffuoro & 6-Aryl 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 5-Cyano, 5-Fluoro, 5-Nitro, 6-Fluoro & 6-Aryl 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 5-Cyano, 5-Fiuoro, 5-Nitro, 6-Fluoro & 6-Aryl 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-FIuoro, 4-methyl, 5-Chloro, 5-Cyano, 5-Fluoro, 5-Nitro, 6-Fluoro & 6-Aryl 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 5-Cyano, 5-Fluoro, 5-Nitro, 6-Fluoro & 6-Aryl 3-[(Substltuted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-FIuoro, 4-methyl, 5-Chloro, 5-Cyano, 5-Fluoro, 5-Nitro, 6-Fluoro & 6-Aryl 3-[(Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
.
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 5-Fluoro &6*Fluoro 3-[(Substituted Phenylamino)-methyleneI-1,3-dihydro-indol-2-ones.
Unsubstituted, 4-Fluoro, 4-methyl, 5-Chloro, 5-Fluoro &6-Fluoro 3-[{Substituted Phenylamino)-methylene]-1,3-dihydro-indol-2-ones.
The present implants may also comprise a TKI or a combination of TKIs represented by the following formulas
AGN 200954
AGN 202314
AGN 202560
AGN 201634
Additional TKIs that may be used in the present implants include those compounds disclosed in Goel et al., "Tyrosine Kinase Inhibitors: A Clinioal Perspective", Current Oncology Reports, 4:9-19 (2002); Haluska etal., "Receptor tyrosine kinase inhibitors", Current Opinion In investigational Drugs, 2(2):280-286 (2001); Hubbard et al., "Protein tyrosine kinase structure and function", Annu. Rev. Biochem., 69:373-98 (2000); Busse et al., "Tyrosine kinase inhibitors: rationale, mechanisms of action, and implications for drug resistance", Semin Oncol 28(suppl 16) 47-55 (2001); and Fabbro et al., "Protein tyrosine kinase inhibitors: new treatment modalities?", Current Opinion in Pharmacology, 2:374-381 (2002).
The foregoing compounds may be synthesized using routine chemical technologies and methods including those disclosed In U.S. Patent App Nos. 10/256,879 (U.S. Pub. No. 20030199478) and 10/259,703 (U.S. Pub. No. 20030225152) and the other above-identified references.
The present implants may also include salts of the TKIs. Pharmaceutically acceptable acid addition salts of the compounds of the invention are those formed from acids which form non-toxic addition salts containing pharmaceutically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, sulfate, or bisulfate, phosphate or acid phosphate, acetate, maleate, fumarate, oxalate, lactate, tartrate, citrate, gluconate, saccharate and p-toluene sulphonate salts.
Thus, the implant may comprise a therapeutic component which comprises, consists essentially of, or consists of a TK1, salts thereof, and mixtures thereof. The biodegradable polymer matrix of such implants may be substantially free of polyvinyl alcohol, or in other words, includes no polyvinyl alcohol.
Additional TKls may be obtained or synthesized using conventional methods, such as by routine chemical synthesis methods known to persons of ordinary skill in the art. Therapeutically effective TKls may be screened and identified using conventional screening technologies used for the TKls described herein.
The TKls may be in a particulate or powder form and entrapped by the biodegradable polymer matrix. Usually, TKI particles in intraocular implants will have an effective average size less than about 3000 nanometers. In certain implants, the particles may have an effective average particle size about an order of magnitude smaller than 3000 nanometers. For example, the particles may have an effective average particle size of less than about 500 nanometers. In additional Implants, the particles may have an effective average particle size of less than about 400 nanometers, and In still further embodiments, a size less than about 200 nanometers.
The TKI of the implant Is preferably from about 10% to 90% by weight of the implant. More preferably, the TKI is from about 20% to about 80% by weight of the implant. In a preferred embodiment, the TKI comprises about 40% by weight of the implant (e.g., 30%*50%). In another embodiment, the TKI comprises about 60% by weight of the implant.
Suitable polymeric materials or compositions for use in the implant include those materials which are compatible, that Is biocompatible, with the eye so as to cause no substantial interference with the functioning or physiology of the eye.
Such materials preferably are at least partially and more preferably substantially completely biodegradable or bioerodible.
Examples of useful polymeric materials include, without limitation, such materials derived from and/or including organic esters and organic ethers, which when degraded result in physiologically acceptable degradation products, including the monomers. Also, polymeric materials derived from and/or including, anhydrides, amides, orthoesters and the like, by themselves or in combination with other monomers, may also find use. The polymeric materials may be addition or condensation polymers, advantageously condensation polymers. The polymeric materials may be cross-linked or non-cross-finked, for example not more than lightly cross-linked, such as less than about 5%, or less than about 1% of the polymeric material being cross-linked. For the most part, besides carbon and hydrogen, the polymers will include at least one of oxygen and nitrogen, advantageously oxygen. The oxygen may be present as oxy, e.g. hydroxy or ether, carbonyl, e.g. non-oxo-carbonyl, such as caiboxylic acid ester, and the like. The nitrogen may be present as amide, cyano and amino. The polymers set forth in Heller, Biodegradable Polymers in Controled Drug Delivery, In: CRC Critical Reviews in Therapeutic Dmg Carrier Systems, Vol. 1, CRC Press, Boca Raton, FL1987, pp 39-90, which describes encapsulation for controlled drug delivery, may find use in the present implants.
Of additional interest are polymers of hydroxyaliphatic carboxylic adds, either homopolymers or copolymers, and polysaccharides. Polyesters of interest include polymers of D-lactic add, L-lactic add, racemic lactic acid, glycolic add, polycaprolactone, and combinations thereof. Generally, by employing the L-lactate or D-lactate, a slowly eroding polymer or polymeric material is achieved, while erosion is substantially enhanced with the lactate racemate.
Among the useful polysaccharides are, without limitation, calcium alginate, and functionalized celluloses, particularly carboxymethylcellulose esters characterized by being water insoluble, a molecular weight of about 5 kD to 500 kD, for example.
Other polymers of interest include, without limitation, polyesters, polyethers and combinations thereof which are biocompatible and may be biodegradable and/or bioerodible.
Some preferred characteristics of the polymers or polymeric materials for use in the present invention may include biocompatibility, compatibility with the therapeutic component, ease of use of the polymer in making the drug delivery systems of the present Invention, a half-life in the physiological environment of at least about 6 hours, preferably greater than about one day, not significantly increasing the viscosity of the vitreous, and water insolubility.
The biodegradable polymeric materials which are included to form the matrix are desirably subject to enzymatic or hydrolytic instability. Water soluble polymers may be cross-linked with hydrolytic or biodegradable unstable crosslinks to provide useful water insoluble polymers, the degree of stability can be varied widely, depending upon the choice of monomer, whether a homopolymer or copolymer is employed, employing mixtures of polymers, and whether the polymer includes terminal acid groups.
Equally important to controlling the biodegradation of the polymer and hence the extended release profile of the implant is the relative average molecular weight of the polymeric composition employed in the implant. Different molecular weights of the same or different polymeric compositions may be included in the implant to modulate the release profile, in certain implants, the relative average molecular weight of the polymer will range from about 9 to about 64 kD, usually from about 10 to about 54 kD, and more usually from about 12 to about 45 kD.
In some implants, copolymers of glycolic acid and lactic acid are used, where the rate of biodegradation Is controlled by the ratio of glycolic acid to lactic acid. The most rapidly degraded copolymer has roughly equal amounts of glycolic acid and lactic acid. Homopolymers, or copolymers having ratios other than equal, are more resistant to degradation. The ratio of glycolic acid to lactic acid will also affect the brittleness of the implant, where a more flexible implant is desirable for larger geometries. The % of polylactic acid in the polylactic acid polyglycollc acid (PLGA) copolymer can be 0-100%, preferably about 15-85%, more preferably about 35-65%. In some Implants, a 50/50 PLGA copolymer is used.
The biodegradable polymer matrix of the Intraocular Implant may comprise a mixture of two or more biodegradable polymers. For example, the implant may comprise a mixture of a first biodegradable polymer and a different second biodegradable polymer. One or more of the biodegradable polymers may have terminal acid groups.
Release of a drug from an erodible polymer is the consequence of several mechanisms or combinations of mechanisms. Some of these mechanisms include desorption from the implants surface, dissolution, diffusion through porous channels of the hydrated polymer and erosion. Erosion can be bulk or surface or a combination of both. As discussed herein, the matrix of the intraocular Implant may release drug at a rate effective to sustain release of an amount of the TKI for.more than one week after implantation into an eye. In certain implants, therapeutic amounts of the TKI are released for more than about one month, and even for about six months or more.
One example of the biodegradable intraocular implant comprises a TKI with a biodegradable polymer matrix that comprises a poly (lactide-co-glycolide) or a poly (D,L-lactide-co-glycolide). The implant may have an amount of the TKI from about 20% to about 60% by weight of the implant Such a mixture is effective in sustaining release of a therapeutically effective amount of the TKI for a time period from about one month to about six months from the time the implant is placed in an eye.
Another example of the biodegradable intraocular implant comprises a TKI with a biodegradable polymer matrix that comprises a single type of polymer. For example, the biodegradable polymer matrix may consist essentially of a polycaprolactone. The poiycaprolactone may have a molecular weight between about 10 and about 20 kilodaltons, such as about 15 kilodaltons. These implants are capable of providing a nearly linear release rate for at least about 70 days.
The release of the TKI(s) from ihe intraocular implant comprising a biodegradable polymer matrix may include an initial burst of release followed by a gradual increase in the amount of the TKI released, or the release may include an initial delay in release of the TKI followed by an Increase in release. When the implant is substantially completely degraded, the percent of the TKI(s) that has been released is about one hundred. Compared to existing implants, the implants disclosed herein do not completely release, or release about 100% of the TKI(s), until after about one week of being placed in an eye.
It may be desirable to provide a relatively constant rate of release of the TK!(s) from the implant over the life of the implant. For example, it may be desirable for the TKI(s) to be released in amounts from about 0.01 μ$ to about 2 //g per day for the life of the implant. However, foe release rate may change to either increase or decrease depending on the formulation of the biodegradable polymer matrix. In addition, foe release profile of the TKI(s) may include one or more linear portions and/or one or more non-linear portions. Preferably, foe release rate is greater than zero once the Implant has begun to degrade or erode.
The implants may be monolithic, i.e. having foe active agent or agents homogenously distributed through foe polymeric matrix, or encapsulated, where a reservoir of active agent is encapsulated by the polymeric matrix. Due to ease of manufacture, monolithic implants are usually preferred over encapsulated forms. However, foe greater control afforded by the encapsulated, reservoir-type implant may be of benefit In some circumstances, where the therapeutic level of the drug falls within a narrow window. In addition, the therapeutic component, including foe TKl(s), may be distributed in a non-homogenous pattern in the matrix. For example, the Implant may include a portion that has a greater concentration of foe TKI(s) relative to a second portion of the implant.
One such implant 100 is Illustrated in FIG. 14. The implant 100 maybe understood to be a unidirectional drug delivery device. The implant 100 is characterized by comprising a first portion 110 and a second portion 120. First portion 110 comprises a mixture of a therapeutic agent, such as TKI, and a biodegradable polymer matrix, such as a matrix of PLGA, PLA. or a combination thereof. Second portion 120 comprises a polymer, such as a biodegradable polymer, and is substantially free of the therapeutic agent. The polymeric component of the first portion 110 and the second portion 120 may comprise the same polymer material, e.g„ both components may be made from a PLGA polymer. Although the therapeutic agent is a TKI, other implants may include other therapeutic agents, including those described herein. First portion 110 may be understood to be an active layer, and second portion 120 may be understood to be a barrier layer, which is effective to prevent or reduce diffusion of the therapeutic agent from one side of the implant. The layers may be separately formed as films and pressed together using a Carver press, for example. Or the layers may be co-extruded using conventional extrusion techniques or injection molded using injection molding techniques. The implant 110 is effective to control the flow or release of a therapeutic agent in a specific direction, such as one direction. The implant can be applied to a diseased location, such as in an eye, that needs the release of the therapeutic agent in a specific and controlled manner, such as for subconjunctival applications.
The present implants may also comprise a combination of a TKI and polycaprolactone, as described herein. Such implants may provide a single order release rate for about 70 days or more after placement in an eye. The polycaprolactone may have a molecular weight of about 15 kilodaltons. Thus, one embodiment of the present implants, comprises a poorly soluble drug or therapeutic agent and a single polymeric component that releases the drug at a substantially linear release rate (e.g., a zero order rate).
The present implants may also include a non-biodegradable polymer component, as described herein. The release of a therapeutic agent, suoh as TKI, may be achieved by movement of the therapeutic agent through one or more openings, orifices, or holes. An example of such an implant is disclosed in U.S*. Pat. No. 6,331,313.
The intraocular implants disclosed herein may have a size of between about 5 pm and about 2 mm, or between about 10 pm and about 1 mm for administration with a needle, greater than 1 mm, or greater than 2 mm, such as 3 mm or up to 10 mm, for administration by surgical implantation. The vitreous chamber in humans is able to accommodate relatively large implants of varying geometries, having lengths of, for example, 1 to 10 mm. The implant may be a cylindrical pellet (e. g„ rod) with dimensions of about 2 mm x 0.75 mm diameter. Or the implant may be a cylindrical pellet with a length of about 7 mm to about 10 mm, and a diameter of about 0.75 mm to about 1.5 mm.
The implants may also be at least somewhat flexible so as to facilitate both insertion of the implant in the eye, such as in the vitreous, and accommodation of the implant. The total weight of the implant Is usually about 250-5000^g, more preferably about 500-1000//g. For example, an implant may be about 500 μ{}, or about 1000 /ig. For non-human individuals, the dimensions and total weight of the implant(s) may be larger or smaller, depending on the type of individual. For example, humans have a vitreous volume of approximately 3.8 ml, compared with approximately 30 ml for horses, and approximately 60-100 ml for elephants. An implant sized for use in a human may be scaled up or down accordingly for other animals, for example, about 8 times larger for an implant for a horse, or about, for example, 26 times larger for an implant for an elephant.
Thus, implants can be prepared where the center may be of one material and the surface may have one or more layers of the same or a different composition, where the layers may be cross-linked, or of a different molecular weight, different density or porosity, or the like. For example, where It is desirable to quickly release an Initial bolus of drug, the center may be a polylactate coated with a polylactate-polyglycofate copolymer, so as to enhance the rate of initial degradation. Alternatively, the center may be polyvinyl alcohol coated with polylactate, so that upon degradation of the polylactate exterior the center would dissolve and be rapidly washed out of the eye.
The implants may be of any geometry including fibers, sheets, films, microspheres, spheres, circular discs, plaques and the like. The upper limit for the Implant size will be determined by factors such as toleration for the Implant, size limitations on insertion, ease of handling, etc. Where sheets or films are employed, the sheets or films wilt be in the range of at least about 0.5 mm x 0.5 mm, usually about 3-10 mm x 5-10 mm with a thickness of about 0.1-1.0 mm for ease of handling. Where fibers are employed, the fiber diameter will generally be in the range of about 0.05 to 3 mm and the fiber length will generally be in the range of about 0.5-10 mm. Spheres may be in the range of about 0.5 jr/m to 4 mm in diameter, with comparable volumes for other shaped particles.
The size and form of the implant can also be used to control the rate of release, period of treatment, and drug concentration at the site of implantation. Larger implants will deliver a proportionately larger dose, but depending on the surface to mass ratio, may have a slower release rate. The particular size and geometry of the implant are chosen to suit the site of implantation.
The proportions of TKI(s), polymer, and any other modifiers may be empirically determined by formulating several implants with varying proportions. A USP approved method for dissolution or release test can be used to measure the rate of release (USP 23; NF18 (1995) pp. 1790-1798). For example, using the infinite sink method, a weighed sample of the implant is added to a measured volume of a solution containing 0.9% Nad In water, where the solution volume will be such that the drug concentration is after release is less than 5% of saturation. The mixture Is maintained at 37eC and stirred slowly to maintain the implants in suspension. The appearance of the dissolved drug as a function of time may be followed by various methods known in the art, such as spectrophotometrically, HPLC, mass spectroscopy, etc. until the absorbance becomes constant or until greater than 90% of the drug has been released.
In addition to the TKI(s) included in the intraocular implants disclosed herein, the intraocular implants may also include one or more additional ophthalmically acceptable therapeutic agents. For example, the implant may include one or more antihistamines, one or more antibiotics, one or more beta blockers, one or more steroids, one or more antlneoplastic agents, one or more
Immunosuppressive agents, one or more antiviral agents, one or more antioxidant agents, and mixtures thereof.
Pharmacologic or therapeutic agents which may find use in the present systems, include, without limitation, those disclosed in U.S. Pat, Nos. 4,474,451, columns 4-6 and 4,327,725, columns 7-8.
Examples of antihistamines include, and are not limited to, ioradatine, hydroxyzine, diphenhydramine, chlorpheniramine, brompheniramine, cyproheptadine, terfenadlne, clemastine, triprolidine, carbinoxamine, diphenytpyraline, phenindamine, azatadine, tripelennamine, dexchlorpheniramine, dexbrompheniramine, methdilazine, and trimprazine doxylamine, pheniramine, pyrilamine, chiorcyclizine, thonzyiamine, and derivatives thereof.
Examples of antibiotics include without limitation, cefazolin, cephradine, cefaclor, cephapirin, ceftizoxime, cefoperazone, cefotetan, cafutoxime, cefotaxime, cefadroxii, ceftazidime, cephalexin, oephalothin,, cefamandole, cefoxitin, cefonicrd, ceforanide, ceftriaxone, cefadroxii, cephradine, cefuroxime, cyclosporine, ampicillin, amoxicillin, cyciacillin, ampicillin, penicillin G, penicillin V potassium, piperacillin, oxacillin, bacampicillin, cloxacillin, ticarcillin, azlociliin, carbenteiilin, methiciilin, nafcillin, erythromycin, tetracycline, doxycydine, minocycline, aztreonam, chloramphenicol, ciprofloxacin hydrochloride, clindamycin, metronidazole, gentamicin, lincomycin, tobramycin, vancomycin, polymyxin B sulfate, colistimethate, colistin, azithromycin, augmentin, sulfamethoxazole, trimethoprim, gatifloxacin, oftoxacin, and derivatives thereof.
Examples of beta blockers include acebutolol, atenolol, iabetaloi, metoprolol, propranolol, timolol, and derivatives thereof.
Examples of steroids Include corticosteroids, such as cortisone, prednisolone, flurometholone, dexamethasone, medrysone, ioteprednol, fiuazacort, hydrocortisone, prednisone, betamethasone, prednisone, methylprednlsolone, riamcinolone hexacatonide, paramethasona acetate, diflorasone, fluocinonide, fluocinolone, triamcinolone, derivatives thereof, and mixtures thereof.
Examples of antineoplastic agents include adriamycin, cyclophosphamide, actinomydn, bleomycin, duanorubicin, doxorubicin, epirubicin, mitomycin, methotrexate, fiuorouracii, carboplatin, carmustine (BCNU), methyl-CCNU, cisplatin, etoposide, interferons, camptothecin and derivatives thereof, phenesterine, taxol and derivatives thereof, laxotere and derivatives thereof, vinblastine, vincristine, tamoxifen, etoposide, piposulfan, cyclophosphamide, and flutamide, and derivatives thereof.
Examples of immunosuppressive agents include cyclosporine, azathioprine, tacrolimus, and derivatives thereof.
Examples of antiviral agents include interferon gamma, zidovudine, amantadine hydrochloride, ribavirin, acyclovir, valcidovir, dideoxycytidine, phosphonoformic acid, ganciclovir and derivatives thereof.
Examples of antioxidant agents include ascorbate, alpha-tocopherol, mannitol, reduced glutathione, various carotenoids, cysteine, uric acid, taurine, tyrosine, superoxide dismutase, lutein, zeaxanthin, cryotpxanthin, astazanthin, lycopene, N-acetyl-cysteine, carnosine, gamma-glutamyicysteffie, quercitin, lactoferrin, dihydrolipoic acid, citrate, Ginkgo BHoba extract, tea catechins, bilberry extract, vitamins E or esters of vitamin E, retinyl palmitate, and derivatives thereof.
Other therapeutic agents include squalamine, carbonic anhydrase inhibitors, alpha agonists, prostamides, prostaglandins, antiparasitics, antifungais, and derivatives thereof.
The amount of active agent or agents employed in the implant, individually or in combination, will vary widely depending on the effective dosage required and the desired rate of release from the implant. As indicated herein, the agent will be at least about 1, more usually at (east about 10 weight percent of the implant, and usually not more than about 80, more usually not more than about 40 weight percent of the implant.
In addition to the therapeutic component, the intraocular Implants disclosed herein may include effective amounts of buffering agents, preservatives and the like. Suitable water soluble buffering agents include, without limitation, alkali and alkaline earth carbonates, phosphates, bicarbonates, citrates, borates, acetates, succinates and the like, such as sodium phosphate, citrate, borate, acetate, bicarbonate, carbonate and the like. These agents advantageously present in amounts sufficient to maintain a pH of the system of between about 2 to about 9 and more preferably about 4 to about 8. As such the buffering agent may be as much as about 5% by weight of the total implant. Suitable water soluble preservatives include sodium bisulfite, sodium bisuifate, sodium thiosulfate, ascorbate, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate, phenylmercuric borate, phenylmercuric nitrate, parabens, methylparaben, polyvinyl alcohol, benzyl alcohol, phenylethanol and the like and mixtures thereof. These agents may be present in amounts of from 0.001 to about 5% by weight and preferably 0.01 to about 2% by weight.
In addition, the implants may include a solubility enhancing component provided in an amount effective to enhance the solubility of the TKl(s) relative to substantially identical implants without the solubility enhancing component. For example, an implant may indude a β-cydodextrln, which is effective in enhandng the solubility of the TKI. The β-cydodextrin may be provided In an amount from about 0.5% (w/w) to about 25% (w/w) of the implant. In certain implants, the β-cyclodextrin is provided in an amount from about 5% (w/w) to about 15% (w/w) of the implant in some situations mixtures of implants may be utilized employing the same or different pharmacological agents. In this way, a cocktail of release profiles, giving a biphasic or triphasic release with a single administration is achieved, where the pattern of release may be greatly varied. The implants may also have a sigmoidal release profife.
Additionally, release modulators such as those described in U. S. Patent No. 5,869,079 may be Included in the implants. The amount of release modulator employed will be dependent on the desired release profile, the activity of the modulator, and on the release profile of the TKI in the absence of modulator. Electrolytes such as sodium chloride and potassium chloride may also be included in the Implant. Where the buffering agent or enhancer is hydrophilic, it may also act as a release accelerator. Hydrophilic additives act to increase the release rates through faster dissolution of the material surrounding the drug particles, which increases the surface area of the drug exposed, thereby increasing the rate of drug bloerosion. Similarly, a hydrophobic buffering agent or enhancer dissolve more slowly, slowing the exposure of drug particles, and thereby slowing the rate of drug bloerosion.
Various techniques may ba employed to produce the implants described herein. Useful techniques include, but are not necessarily limited to, solvent evaporation methods, phase separation methods, interfacial methods, molding methods, injection molding methods, extrusion methods, co-extrusion methods, carver press method, die cutting methods, heat compression, combinations thereof and the like.
Specific methods are discussed in U.S. Pat. No. 4,997,652. Extrusion methods may be used to avoid the need for solvents in manufacturing. When using extrusion methods, the polymer and drug are chosen so as to be stable at the temperatures required for manufacturing, usually at least about 85 degrees Celsius. Extrusion methods use temperatures of about 25 degrees C to about 150 degrees C, more preferably about 65 degrees C to about 130 degrees C. An implant may be produced by bringing the temperature to about 60 degrees C to about 150 degrees C for drug/polymer mixing, such as about 130 degrees C, for a time period of about 0 to 1 hour, 0 to 30 minutes, or 5-15 minutes. For example, a time period may be about 10 minutes, preferably about 0 to 5 min.
The implants are then extruded at a temperature of about 60 degrees C to about 130 degrees C, such as about 75 degrees C.
In addition, the implant may be coextruded so that a coating is formed over a core region during tits manufacture of the implant
Compression methods may be used to make the implants, and typically yield implants with faster release rates than extrusion methods. Compression methods may use pressures of about 50-150 psi, more preferably about 70-80 psl, even more preferably about 76 psi, aid use temperatures of about 0 degrees C to about 115 degrees C, more preferably about 25 degrees C.
The implants of the present invention may be inserted into the eye, for example the vitreous chamber of the eye, by a variety of methods, including placement by forceps or by trocar following making a 2-3 mm incision in the sclera. One example of a device that may be used to insert the implants into an eye is disclosed in U.S. Patent Publication No. 2004/0054374. The method of placement may influence the therapeutic component or drug release kinetics.
For example, delivering the implant with a trocar may result in placement of the implant deeper within the vitreous than placement by forceps, which may result in the implant being closer to the edge of Vie vitreous. The location of the implant may influence the concentration gradients of therapeutic component or drug surrounding the element, and thus influence the release rates (e.g., an element placed closer to die edge of the vitreous may result in a slower release rate).
The present implants are configured to release an amount of the TKI(s) effective to treat or reduce a symptom of an ocular condition, such as a posterior ocular condition.
The implants disclosed herein may also be configured to release the TKI or additional therapeutic agents, as described above, which to prevent diseases or conditions, such as the following: MACULOPATHIES/RETINAL DEGENERATION: Non-Exudative Age Related Macular Degeneration (ARMD), Exudative Age Related Macular Degeneration (ARMD), Choroidal Neovascularization, Diabetic Retinopathy,
Acute Macular Neuroretinopathy, Central Serous Chorioretinopathy, CystokJ Macular Edema, Diabetic Macular Edema. UVEITIS/RETINITIS/CHOROIDITIS: Acute Multifocal Placoid Pigment Epitheliopathy, Behcet's Disease, Birdshot Retinochoroidopathy, Infectious (Syphilis, Lyme, Tuberculosis, Toxoplasmosis), Intermediate Uveitis (Pars Planltis), Multifocal Choroiditis, Multiple Evanescent White Dot Syndrome (MEWDS), Ocular Sarcoidosis, Posterior Scieritis, Serpiginous Choroiditis, Subretina! Fibrosis and Uveitis Syndrome, Vogt-Koyanagi-Harada Syndrome. VASCULAR DISEASES/EXUDATIVE DISEASES: Coat's Disease, Parafoveal Telangiectasis, Papitlophiebitis, Frosted Branch Angitis, Sickle Cell Retinopathy and other Hemoglobinopathies, Angioid Streaks, Familial Exudative Vitreoretinopathy. TRAUMATIC/SURGICAL: Sympathetic Ophthalmia, Uveitic Retinal Disease, Retinat Detachment, Trauma, Laser, PDT, Photocoagulation, Hypoperfusion During Surgery, Radiation Retinopathy, Bone Marrow Transplant Retinopathy. PROLIFERATIVE DISORDERS: Proliferative Vitreal Retinopathy and Epiretinal Membranes, Proliferative Diabetic Retinopathy, Retinopathy of Prematurity (retrolentai fibroplastic). INFECTIOUS DISORDERS: Ocular Histoplasmosis, Ocular Toxocariasis, Presumed Ocular Histoplasmosis Syndrome (POHS), Endophthalmitis, Toxoplasmosis, Retina) Diseases Associated with HIV Infection, Choroidal Disease Associated with HIV Infection, Uveitic Disease Associated with HIV Infection, Viral Retinitis, Acute Retinal Necrosis, Progressive Outer Retinal Necrosis, Fungal Retinal Diseases, Ocular Syphilis, Ocular Tuberculosis, Diffuse Unilateral Subacute Neuroretinitis, Myiasis. GENETIC DISORDERS: Systemic Disorders with Associated Retinal Dystrophies, Congenital Stationary Night Blindness, Cone Dystrophies, Fundus
Flavimaculatus, Best’s Disease, Pattern Dystrophy of the Retinal Pigmented Epithelium, X-Linked Retinoschlsis, Sorsby's Fundus Dystrophy, Benign Concentric Macuiopathy, Bietti's Crystalline Dystrophy, pseudoxanthoma elasticum, Osier Weber syndrome. RETINAL TEARS/HOLES: Retinal Detachment, Macular Hole, Giant Retinal Tear. TUMORS: Retinal Disease Associated with Tumors, Solid Tumors, Tumor Metastasis, Benign Tumors, for example, hemangiomas, neurofibromas, trachomas, and pyogenic granulomas, Congenital Hypertrophy of the RPE, Posterior Uveal Melanoma, Choroidal Hemangioma, Choroidal Osteoma, Choroidal Metastasis, Combined Hamartoma of the Retina and Retinal Pigmented Epithelium, Retinoblastoma, Vasoproliferative Tumors of the Ocular Fundus, Retinal Astrocytoma, Intraocular Lymphoid Tumors. MISCELLANEOUS: Punctate inner Choroidopathy, Acute Posterior Multifocal Placoid Pigment Epitheliopathy, Myopic Retinal Degeneration, Acute Retinal Pigment Epithelitis, Ocular inflammatory and immune disorders, ocular vascular malfunctions, Cornea! Graft Rejection, Neovascular Glaucoma and the like.
In one embodiment, an implant, such as the implants disclosed herein, is administered to a posterior segment of an eye of a human or animal patient, and preferably, a living human or animal. In at least one embodiment, an implant is administered without accessing the subretinal space of the eye. For example, a method of treating a patient may include placing the implant directly into the posterior chamber of the eye. In other embodiments, a method of treating a patient may comprise administering an implant to the patient by at least one of intravitreal injection, subconjuctival injection, sub-tenon injections, retrobulbar injection, and suprachoroidal injection.
In at least one embodiment, a method of improving vision or maintaining vision in a patient comprises administering one or more implants containing one or mote TKIs, as disclosed herein to a patient by at least one of intravitreal injection, subconjuctlval injection, sub-tent»! injection, retrobulbar injection, and suprachoroidal injection. A syringe apparatus including an appropriately sized needle, for example, a 22 gauge needle, a 27 gauge needle or a 30 gauge needle, can be effectively used to inject the composition with the posterior segment of an eye of a human or animal. Repeat injections are often not necessary due to the extended release of the TKI from the implants.
In another aspect of the invention, kits for treating an ocular condition of the eye are provided, comprising: a) a container comprising an extended release implant comprising a therapeutic component including a TKI, and a drug release sustaining component; and b) instructions for use. Instructions may Include steps of how to handle the implants, how to insert the implants into an ocular region, and what to expect from using the implants.
Example 1
Intravitreal Pharmacokinetics of TKIs In Fluid Compositions
The ocular pharmacokinetics of AQN199639, AGN 200954, AGN 201088 and AGN 201666 following single intravitreal injections into female albino rabbit eyes was determined. The animals were dosed with a 50 pL intravitreal injection of 242 ng AGN 201088,128 ng AGN 201666,114 ng AGN 199659 or 222 ng of AGN 200954 per eye. Vitreous humor samples (n=4 eyes per timepoint) were collected at 0.5,1,2,4,8, and 12 hr postdose. The TKi concentration in the vitreous humor was determined using a liquid chromatography tandem mass spectrometry method (LC-MS/MS).
All compounds were eliminated fairly rapidly horn the rabbit eye. This indicates a transretinal route of elimination. There was no bias to compound nucleus. However, even though elimination was extremely rapid it was determined that local sustained delivery was feasible. Based on the vitreal clearance determined in this study for 3-[(4-Morpholin-4-yl-phenylamino)-methylene]-1,3-dihydro-indol-2-one, 3-(6-Amino-3H-isobenzofuran-1-ylidene)-5-chloro-1,3-dihydro-indol-2-one, AGN 201088 and AGN 201666, and assuming steady stats efficacious concentration at twice the EC50 values (determined by In vitro receptor binding and intracellular Ca2+ assay) all the tyrosine kinase inhibitors tested could be formulated into 1 mg implants that would maintain the desired steady state drug vitreal concentrations for a duration of about six months. This data le summarized in Table 1 and Figures 1 and 2.
Table 1. TKI Pharmacokinetic Parameters after a Single Intravitreal Injection
Example 2 TKI Biodegradable Implants
Tyrosine kinase inheritors were incorporated into PLGA or PLA implants by extrusion. The TKIs were milled with the polymers at certain ratios then extruded into filaments. These filaments were subsequently cut into implants weighing approximately 1 mg. Several TKIs were formulated in the PLGA and PLA implants based on their potencies and physicochemical properties as shown in Table 2.
Table 2. Tyrosine Kinase inhibitors Formulated in PLGA Implants
TK1 release from the implants was assessed in vitro. Implants were placed into vials containing release medium and shaken at 37 *0. At the appropriate time points a sample was taken from the release medium for analysis and the medium totally replaced to maintain sink condifione. Drug in the sample was assayed by HPLC and the cumulative percent release of drug from the implant noted as a function of time, The in vitro release profiles of AGN 200954, AGN 202314, ΑΘΝ 201635 and AGN 202564 are depicted in Figures 3 through 10, respectively.
From the formulation release data depicted in Figures 3 through 10 it is evident that TKis over a wide range of physicochemical properties can be engineered to release drug in vitro over a period of weeks to a year.
Example 3
In Vivo Pharmacokinetic Properties of TKi-Containing Implants implants containing AGN 202314 were placed rntravitreally or subconjunctivally in an eye. The implants released AGN 202314 in-vitro over a 14 day period (Figure 3.). The intent of this study was to achieve an intravitieal in-viva/ in-vitro correlation with the intravitreal Implants and assess the feasibility of periocular delivery.
Intravitreal Implants, PLGA (400 pg AGN 202314 dose, 1 mg total implant weight), were implanted by surgical incision into the mid vitreous of albino rabbits. At days 8,15,31 and 61 rabbits were sacrificed and the vitreous humor, lens, aqueous humor and plasma assayed for AGN 202314.
Subconjunctival implants, PLGA (1200 pg AGN 202314 dose; three implants) and PLA microspheres (300 pg AGN 202314) were implanted subconjunctivally. At days 8,15,31 and 61 rabbits were sacrificed and the vitreous humor, lens, aqueous humor and plasma assayed for AGN 202314.
The data are summarized in Tables 3 through 6
Table 3. PK Results from 2 Month Intravitreal Implantation AGN 202314 implant (400 pg rod)
Below the limit of quantitation (BLQ): Retina and lens: < 5 ng/g. VH: < 30 ng/g, AH: < 0.5 ng/mL, Plasma: < 0.5 ng/mL
Above the limit of quantitation (ALQ):Retlna and lens: > 2000 ng/g, VH: > 3000 ng/g, AH: > 30 ng/mL, Plasma: > 200 ng/mL
Table 4. PK Results from 2 Mo Subconjunctival Implantation of AGN 202314 Microspheres
BLQ = Retina (<5 ng/g), VH (<30 ng/g), tens (<5 ng/g), AH (<0.5 ng/rnL), plasma (<0.5 ng/mL)
Table 5. Month Subconjunctival Implantation (3 rods with a total of 1.2 mg AGN 202314) BLQ: Retina and lens: < 5 ng/g, VH: < 30 ng/g,
AH: < 0.5 ng/mL, Plasma: < 0.5 ng/mL
The data from this study indicates that a good In vitro in vivo correlation was established for AGN 202314. The AGN 202314 Implant released drug over a two week period both in vitro and in vivo. It is also important that plasma levels remain BLQ or extremely low for all time points. This shows that even in a worst case scenario of intravitreal delivery over two weeks systemic exposure is negligible. It was also noted that periocular delivery was unsuccessful at delivering AGN 202314 to the vitreous and retina. A foilow-on two-month ocular pharmacokinetic study of AGN 202314 following a single intravitreal implantation into albino rabbit eyes was initiated.
The formulations delivered AGN 202314 over a period of four months in-vitro.
The following 1 mg implants were evaluated: 30% AGN 202314/ 70% Purac PLA; Lot# JS493028 (FIG. 4), 50% AGN 201634/50% Purac PLA; Lot # JS493034 (FIG 6.). Two rabbits (4 eyes and 2 plasma) were used per timepoint. Implants were administered by a bilateral surgical intravitreal placement by sclerotomy without vitrectomy. The vitreous humor and retina AGN 202314 concentrations were assayed at days 8,15,31 and 61. The data are displayed in Table 6.
Table 6. One Month Data from the AGN 202314 Intravitreal Study
Analytical range: Retina BLQ < 5ng/g; VH BLQ < 30 ng/g
The retinal levels achieved from this study approach therapeutic levels by the first week and are maintained over the first thirty days. This data shows that actual in vivo sustained delivery of a TKI locally is feasible. A six month pharmacokinetic study was initiated with intravitreal and subconjunctival AGN 200954 implants. The implants released AGN 200954 in-vitro over a 180 day period (Figure 3). Intravitreal Implants, PLGA (500 pg AGN 200954 dose, 1 mg total Implant weight, Purac polymer) and PLGA (500 pg AGN 200954 dose, 1 mg total Implant weight, RG503H polymer), were Implanted by surgical incision into the mid vitreous of albino rabbits. At days 8,15,31 and 61 rabbits were sacrificed and the vitreous humor, lens, aqueous humor and plasma assayed for AGN 200954. Subconjunctival implants, PLGA implant (500 vtg AGN 200954 dose, 1 mg total implant weight, Purac polymer) and PLGA microspheres (370 pg and 740 pg AGN 200954), were administered. At days 8,15,31 and 61 rabbits were sacrificed and the vitreous humor, lens, aqueous humor and plasma assayed for AGN 200954. AGN 200954 Pharmacokinetics after Intravitreal Administration
BLQ s Retina (5 ng/g), VH (30 ngfg), lens (5 ng/g), AH (0.05 ng/mL), plasma (0.05 ng/lmL)
It is evident from the data that a considerable in-vivo lag time exists for the first formulation not seen in vitro. Neither formulation exhibits measurable plasma concentrations.
Example 4
In vitro release of a TKI (AGN 201634) from an implant TKI release was examined for implants made from poly (D.L-lactide-co-glycolide) (PDLG) or poly (D,L-lactide) (PDL) in different media with or without addition of detergent at 37°C in a shaking water bath. AGN 201634 was obtained from Allergan, and its chemical structure is shown below. It was used as received without further purification. PDLG/PDL polymer materials were obtained from Purac America Inc.
TKI release was examined in various medium, Including saline, phosphate buffer saline of pH 7.4,50mM bicarbonate buffer of pH 6.0 ± 0.1 with 0.1 % cetyltrimethylammonium bromide (CTA8), and 50mM borate buffer of pH 8.5 ± 0.1 with 0.5% sodium dodecyl sulfate (SDS) in a shaking water bath (Precision) at 37°C. Sample was incubated in 10 mL of medium, and was totally replaced with fresh medium at each sampling time. Drug concentration was determined by HPLC using a Waters 2690 Separation Module equipped with a Waters XTerra RP8 column (3.9x150 mm, 5jc/m, equilibrated at ambient) and a Waters 996 photodiode array detector (set at 238 nm) using 0.1% acetic acid in acetonitrite/waler (40/60 by volume) as the mobile phase under a flow rate of 1.2 mL/rnin. The column was equilibrated with mobile phase for at least 30 min before Initiating any sample injection.
The characteristics of formulations, including formulation identification, Lot number, drug loading, inherent viscosity of polymer, and extrusion temperature are summarized in the following table. The drug load is from 20 to 50%. The formulations were extruded from a 750 //m nozzle to form cylindrical DDS.
Table 8. Characteristics of TKI formulations.
Note: i.v.: tnnerent viscosity of polymer material.
The stability of AGN 201634 standard solution in deionized water/acetonitrile (75%/25%) was examined at 4°C, and the results are summarized in the following table. The concentration of standard solution was from 0.0695 //g/mL to 8.693 jwg/mL, and was analyzed on day 14, 21, and 35. The results show that the recovery was ail greater than 95%, indicating a good stability of AGN 201634 in deionized water/acetonitrile (75%/25%) at 4°C for up to 35 days even the concentration was up to 8.7 //g/mL.
Stability of AGN 201634 standard solution of various concentrations In Dl water/acetonitrile (75%/25%) at 4 °C (Table 9).
Stability of AGN 201634 standard solution of various concentrations in Dl water/acetonitrile (75%/25%) at 4 °C (Table 9).
To examine the stability of TKI in formulation, Formulations 3 and 4 were prepared to various concentration in a medium of pH 6.0,7.4 or 8.5, respectively, and subjected to an incubation condition of either 7 days under ambient condition or 14 days at 4°C, and the results are summarized in the following table. The results show that the recovery was all better than 98%, indicating that AGN 201634 was stable in media of pH 6.0,7.4 and 8.5, and lasted for 7 days in ambient or 14 days at 4°C.
Table 10: Stability of TKI in Formulations 3 and 4 in media under various incubation conditions.
TKI releases of Formulation 1 in 20 mL of saline or 20-30 mL of PBS are demonstrated In Figure 11. The DDS was incubated in a vial of either 40 or 20 mL, and 10 mL sample solution was replaced by same volume of fresh medium, respectively, at eaoh sampling time. The release profiles in saline and PBS were obviously different. Less than 5% of TKI was released in saline during the first 70 days. In contrast, less than 5% of AON 201634 was released at the first 3 weeks when DDS was Incubated in PBS, the same as in saline, but more than 80% of AGN 201634 was released after 70 days. However, no significantly difference in release profile was found when DDS was incubated in 20 or.30 mL of PBS in a 20 or 40 mL vial. It seems that release medium plans an important role in the variation of release profile instead of Incubation volume. Due to the slow and diverged release profile, the release profile of Formulation 2 was not performed since its formulation was based on the same polymer with a lower drug loading. TKI releases of Formulations 3 and 4 in 10 mL media of a pH of 6.0 (with 0.1% CTAB}, 7.4 (PBS) or 8.5 (with 0.5% SDS) at 37°C are demonstrated in Figures 12 and 13, respectively. For F3, more than 50%, 45%, and 75% TKI we» released at the first 3,7, and 2 weeks, when DDS was incubated in a medium of pH 6.0 (with 0.1% CTAB), 7.4 (PBS) and 8.5 (with 0.5% SDS), respectively, On the other hand, approximately 47%, 6%, and 68% of TKI was released from F4 when DDS was incubated in media as described above. It seems that TKI release In different pH medium is pH 8.5 > pH 6.0 > pH 7.4, with or without the assistant from detergent in the medium. No large standard deviations are found in all media for both formulations.
To monitor the appearance of DDS during dissolution, the images of F3 and F4 formulations incubated in 10 mL media of a pH of 6.0 (with 0.1% CTAB), 7.4 (PBS) or 8.5 (with 0.5% SDS) at 37°C were. All formulations experienced swelling followed by matrix degradation, resulting in drug release. No complete disintegration of formulation matrix was observed within 153 days at 37 °C.
In summary, tyrosine kinase inhibitor (AQN 201634) DDS were formulated using various PLGA or PLA at various drug loading. The stability of AGN 201634 solution in Dl water/acetonitrite (75%/25%) at 4°C was more than 35 days, and DDS solution in various pH medium was more than 7 days under ambient condition or 14 days at 4°C. Different drug release profiles were found when DDS was tested in PBS or saNne. Drug burst effect was found only in Formulation 3 when incubating in a medium of pH 6.0. Controlled AGN 201634 release in vitro was more than 4 weeks in a medium of pH 8.5, and more than 5 months in media of pH 7.4 and pH 6.0.
Example 5
Biodegradable implants with a linear release profile
Biodegradable implants are made by combining a TKI with a biodegradable polymer composition in a stainless steel mortar. The biodegradable polymer composition comprises a single type of biodegradable polymer. The combination is mixed via a Turbula shaker set at 96 RPM for 15 minutes. The powder blend is scraped off the wall of the mortar and then remixed for an additional 15 minutes. The mixed powder blend is heated to a semi-molten state at specified temperature for a total of 30 minutes, forming a potymer/drug melt.
Rods are manufactured by pelletizing the polymer/drug melt using a 9 gauge polytetrafiuoroethylene (PTFE) tubing, loading the pellet into the barrel and extruding the material at the specified core extrusion temperature into filaments. The filaments are then cut into about 1 mg size implants or drug delivery systems. The rods have dimensions of about 2 mm long x 0.72 mm diameter. The rod implants weigh between about 900 jug and 1100 jug.
Wafers are formed by flattening the polymer melt with a Carver press at a specified temperature and cutting the flattened material into wafers, each weighing about 1 mg. The wafers have a diameter of about 2.5 mm and a thickness of about 0.13 mm. The wafer implants weigh between about 000 //g and 1100 //g.
In-vitro release testing can be performed on each lot of implant (rod or wafer). Each implant may be placed Into a 24 mL screw cap vial with 10 mL of Phosphate Buffered Saline solution at 37°C and 1 mL aliquots are removed and replaced with equal volume of fresh medium on day 1,4,7,14,28, and every two weeks thereafter.
Drug assays may be performed by HPLC, which consists of a Waters 2690 Separation Module (or 2696), and a Waters 2996 Photodiode Array Detector. An Ultrasphere, C-18 (2), 5 pm; 4.6 x 150 mm column heated at 30 0 C can be used for separation and the detector can be set at 264 nm. The mobile phase can be (10:90) MeOH - buffered mobile phase with a flow rate of 1 mL/min and a total run time of 12 min per sample. The buffered mobile phase may comprise (68:0.75:0.25:31) 13 mM 1-Heptane Sulfonic Acid, sodium salt - glacial acetic acid - triethylamine - Methanol. The release rates can be determined by calculating the amount of drug being released in a given volume of medium over time in jig/day.
The single polymer chosen for the implant was po)y(caprolactone). Rod and wafer implants were formulated at a ratio of 50:50 (poly(caprolactone):TKI). Thue, a 1 mg implant comprises about 500/rg poly(caprotactone) and 500/rg TKI. AGN 200954 was used as the TKI.
As shown in FIG. 15, implants formed from a poorly soluble drug (TKI) and a single type of a biodegradable polymer (poly(caprolactone)) released TKI at nearly zero-order rate for at least about 70 days. The particular poly(caprolactone) had a molecular weight of about 15 kilodaltons. The nearly linear release rate is extremely hard to achieve with other biodegradable implants based on a single polymeric component, as shown for the dexamethasone containing implants in FIG. 15.
Example 6
Manufacture and testing of implants containing an TKI and a biodegradable polymer matrix
Additional biodegradable Implants are made by combining a TKI with a biodegradable polymer composition as described in Example 5. The polymers chosen for the implants can be obtained from Boehringer Ingelheim or Purac America, for example. Examples of polymers include: RG502, RG752, R202H, R203 and R206, and Purac PDLG (50/50). RG502 is (50:50) poly(D,L-lactide-co-glycolide), RG752 is (75:25) poly(D,L-laetide-co-glycollde), R202H is 100% poly(D, L-lactide) with acid end group or terminal acid groups, R203 and R206 are both 100% poly(D, L-lactide). Purac PDLG (50/50) is (50:50) poty(D,L-lactide-co-glycolide). The inherent viscosity of RG502, RG752, R202H, Feo3, R206, and Purac PDLG are 0.2,0.2,0.2,0.3,1.0, and 0.2 dL/g, respectively.
The average molecular weight of RG502, RG752, R202H, R203, R206, and Purac PDLG are, 11700,11200,6500,14000,63300, and 9700 daltons, respectively.
Example 7
In Vitro Evaluation of Various TKI Implants
Summary TKIs can inhibit the Intrinsic tyrosine kinase activity necessary for activation of vascular endothelial growth factor receptors (VEGFR). VEGF and VEGF signaling pathways can induce angiogenesis and Increase vascular permeability, activities required for neovascularization. Thus, TKIs can have utility to prevent or to treat choroidal neovascularization (CNV), such as CNV that can result from or be a symptom of, for example, age-related macular degeneration (AMD) and diabetic retinopathy (DRO).
In this experiment implants containing one of five different TKIs (receptor-mediated tyrosine kinase inhibitors) with antiangiogenic activity were made and evaluated. The implants were formulated as TKI, sustained release, biodegradable polymer Implants with different po!y(D,L-lactide-co-glycolids) and poiy(D-L-lactide) polymers, made by a melt extrusion process. These implants are suitable for intraocular (such as intravitrea!) use to treat one or more ocular disorders. Specifically, we made and evaluated controlled release intravitreaJ implants for the TKis AGN206639, AGN205558, AGN206320, AGN206784, and AGN206316, showing that such implants can consistently release a TKI over a period of from about three to about six months. The implant formulations were evaluated in vitro in two different release media (phosphate buffered saline and citrate phosphate buffer with 0.1 % cetyltrimethylammonium bromide). The effects of the elevated temperature storage and of gamma sterilization on potency were also examined.
Although the implants were made by melt extrusion with poly (lactide) or poly (lactide-co-glycolide) polymers various implant formulations were made with or under different drug (TKI) load, lactide-glycolide ratio, intrinsic viscosity, and extrusion temperature. The polymer implant drug delivery systems (DDSs) made were assayed by HPLC for potency initially, post-sterilization, and after exposure to accelerated conditions. The TKI release from the DDS was assayed by HPLC after incubation in two different release media at 37°C: (1) phosphate buffered saline (pH 7.4), and; (2) citrate phosphate buffer with 0.1 % cetyltrimethylammonium bromide (pH 5.4). Generally, release rates were higher for similar polymer systems with higher drug (TKI) loading.
Table 11 sets forth the five different TKIs formulated into drug delivery systems (i.e. implants).
Table 11: Chemical properties of the TKis AGN206639, AGN205558, AGN206320, AGN206784, and AGN206316.
The polymers used to formulate the TKI drug delivery systems were:
Purasorb PDL, Poly(D,L-laclide), Purac Corp. lot #DG676GA (Inherent viscosity [iv] Is up to 6 dl/g, molecular weight [mw In Daltons] Is up to 700K).
Resomer RG502,50:50 Polyp.L-lactlde-co-glycollde), Boehringer Ingelheim Corp. Lot #R02M002(iv is 0.16 to 0.24 dl/g).
Resomer RG502S, 50:50 Poly(D,L-lactlde-co-glycolide), Boehringer Ingelheim Corp. Lot #Res-0354 (iv is 0.16 to 0.24 dl/g).
Resomer RG504,50:50 Poly(D,L-lactlde-co-glycolide), Boehringer Ingelheim Corp. Lot #1009731 (Iv is 0.45 to 0.60 dl/g).
Resomer RG505,50:50 Poly(D,L-lactide-co>gtycolide)l Boehringer Ingelheim Corp. Lot #223799 (iv is 0.61 to 0.74 dl/g).
Resomer RG506,50:50 PotytD.L-lactide-co-glycolide), Boehringer Ingelheim Corp. Lot #34034 (iv is 0.75 to 0.95 dl/g).
Resomer RG752,75:25 Polyp,L-lactlde-co-glycolide), Boehringer Ingelheim Corp. Lot #R02A005 (Iv is 0.16 to 0.24 dl/g).
Resomer RG755,75:25 Poly(D,L-laotide-co-glycolide), Boehringer Ingelheim Corp. Lot #1009232 (Iv is 0.50 to 0.70 dl/g).
Resomer R104, Poly(D,L-lactide), Boehringer Ingelheim Corp. Lot #290588 (mw is determined by the presence in the polymer of between about 1,500 and about 2,250 of the repeating monomer unit C3H402).
Resomer R207, Poly(D,L-lactide), Boehringer Ingelheim Corp. Lot #260911 (iv is 1.3 to 1.7 dl/g).
Citrate phosphate buffer (CTAB) solution used was prepared by adding 27.56 g sodium dibasic phosphate heptahydrate, 9.32 g citric acid, and 2 g (1%) cetyltrimethylammonium bromide (CTAB, JT Baker) to a 2-L volumetric flask and filling with deionized water.
Phosphate buffered saline (PBS) solution used was prepared by adding two packets of PBS (Sigma catalog #P-3813) granules to a 2-L volumetric flask and adding deionized water.
Release Profile Standards
For stock standard preparation for compounds other than AGN206784,5 mg was added into a 50-mL volumetric fiask and acetonitrile was added to the mark. Working standards were prepared by adding 5 mL of stock standard to a 50-mL volumetric flask and adding a blend of 60:40 acetonitrite:water. For AGN206784 stock standard preparation, 5 mg of compound was added into a 50-mL volumetric flask and a solution of 80% acetonitrile and 20% water was added until full. For working standard preparation, 5 mL of stock standard was added to a 50-mL volumetric flask and a solution of 40:60 acatonltrilaiwater was added until full.
Release profile mobile phase
Acetonitrile (ACN) was manufactured by Burdick and Jackson. Trifiuoroacetic acid (TFA) was manufactured by Burdick and Jackson. A blend of 75:24.5:0.5 ACN:water:acetic acid with 5 mM hexanesulfonlc acid was used for all analyses except for AGN206748 formulations where a blend of 60:40:1 ACN:WatenTFA was used as the mobile phase.
Equipment:
Powder blending: a Glenn Mills Inc. Turbuta shaker type T2F, ID number 990720 was used. In addition, an F. Kurt Retsch GmbH& Co model MM200 ball mill was used.
Powder compaction; A modified Janesville Tool and Manufacturing Inc. pneumatic drive powder compactor, model A-1024 was used.
Piston Extrusion: A custom built piston extruder produced by APS Engineering Inc. was used with a Watlow 93 temperature controller and thermocouple.
Weighing: A Mettler Toledo MT6 balance, S/N 1118481643 was used.
Sample incubation: A Precision Inc. Reciprocal Shaking Bath with water was used. HPLC: A Waters LC module 1 plus, S/N M98LCJ242M with a Supelco HSF5 pm, 4.6x150mm column and Waters 2487 dual wavelength absorbance detector was used. Data was analyzed using Peak Pro software, version 9.1b.
Powder blending
The drug (TKI) was stored at room temperature with minimal light exposure, and polymers were stored at 5°C and allowed to equilibrate to room temperature prior to use. Both materials were used as received. Formulations, listed in Table 12, were blended in a stainless steel mixing capsule with two stainless steel balls and placed in a Reflsch mill at 30 cps or Turbula blender at 96 rpm for 5 to 15 minutes. Depending on the starting materials, formulations underwent four to six blending cycles at five to fifteen minutes each. Between blending cycles, a stainless steel spatula was used to dislodge material from the inside surfaces of the mixing vessel. Formulation ratios and extrusion temperatures for all formulations are listed in Table 2.
Powder compaction A die with a 720 pm opening was attached to a stainless steel barrel. The powder compactor was set to 50 psi. The barrel was inserted into the powder compactor assembly. A stainless steel powder funnel was used to add a small amount of powder into the barrel and then the pneumatic compactor was actuated. This process was repeated until the barrel was full or no more powder remained.
Extrusion A piston extruder was set to temperature and allowed to equilibrate. The extrusion temperature was chosen based on drug load and polymer, The extrusion temperature was adjusted for each formulation to produce smooth, uniform looking filaments. After the extruder temperature equilibrated, the piston extrusion barrel was inserted into the extruder, and a thermocouple was Inserted to measure the temperature at the surface of the barrel. After the barrel temperature equilibrated, the piston was inserted into tee barrel and the piston speed was set at 0.0025 in/min. The first 2-4 inches of extrudate was discarded. Afterwards, 3-5-inch pieces were cut directly into a centrifuge tube. Samples were labeled and stored In a sealed foil pouch containing desiccant.
Formulations with higher drug load required higher extrusion temperatures. Polymers with higher intrinsic viscosities required higher extrusion temperatures than polymers with lower intrinsic viscosities. Lactide-glycoltde co-polymers with a higher lactide percentage (75:25) required a lower processing temperature than polymers with a lower lactide percentage (50:50). Formulation information and extrusion temperatures are listed in Table 12.
Content uniformity analysis
Ten samples of 1 mg (+/-10%) were cut from each formulation. Each was weighted and placed individually into 50-mL volumetric flasks. For AGN206784, a 40:60 ACN:Water or 100% acetonitrile was added and samples were sonicated. Samples were analyzed according to the HPLC method used for release profile analysis, below. For the other TKIs, a 60:40 ACN:Water was added to each 50-mL volumetric flask. Basks were sonicated and samples were tested according to the same HPLC method that is used for in-vivo release (below).
Gamma sterilization
Samples were weighed and packaged in vials, and each vial was sealed in a foil pouch with desiccant and labeled. All samples were sterilized with 25-40 kGy of gamma radiation.
Stability testing:
Filaments were cut into 1 mg (+/-10%) samples and packaged together in screw-top vials. Formulations were then placed in an oven at 40°C and ambient humidity. After 14 days, samples were tested for percent TKI content
In Vitro Release Profile Analysis
Twelve samples of 1 mg (+/-10%) were cut from each formulation. Each sample was then weighed and placed individually into 60-mL sample vials. Fifty milliliters of citrate phosphate buffer solution was added to six vials and fifty milliliters of phosphate buffered saline release media was added to six vials. All vials were placed into a shaking water bath set at 37°C and 50 RPM. At each time point 2 mL was taken from each vial for analysis, the remaining solution was disposed of, and 50 mL of new release media was added to the vial.
Table 12: Formulation conditions for TKIs AGN206639, AGN205558, AGN206320, AGN206784, and AGN206316 Implants.
•Purac PDL = Purac 50:50 Polyp. L-laclIcte-co-gtycoBdc) '•Resomer RG502, RG6Q2S - Boehringer Ingelheim S0;50 Poly(D, L4actIde-co-glycoHcte), fV=0.19-024(d!/g) •Roomer RG504 - Boehringer Ingelheim 50:80 Polyp, L-lacWe-oo-glyooicfB), l\M>.45O.60(dl/g) -Roomer RG5Q5 = Boehringer Ingelheim 50-.60 Poly(D, L-laclide-co-gtycoWe). IV=0,7(cll/g) •Resomer RG5Q5=Boehringer ingetielm 50:50 Polyp, L-iactlde-co-glycoftJe). lv=04((Wg) eReeomer HG752= Boehringer Ingelheim 7525 Polyp, L-teoride-co-glycoUde), lV=Q2(cU!g) fResomer RG755=Boehringer Ingtfielm 50:90 PotyP> Uactfde-co-glycoSde). tV=0.5(dlto) tlflesomer R104=Poly(L-lactide), MW = 2000 fResomer R207=Poly(L-lac1kte), IV=1.e
In Table 12 the API (active pharmaceutical ingredient [i.e. the TKI] value is a weight percent value. HPLC Assay
The HPLC was conditioned until stable at 1 mL per minute flow rate at 280nm. Samples were transferred to auto sampler vials with added samples for system suitability and standardization. Total run time was 10 minutes, temperature was ambient and injection volume was 20 pL. Samples were taken on day 1,4,7, and at 7 day intervals after that until the studies were ended or 100% release was achieved. The total TKI present was calculated from the height of the peak at 280 nm compared to the height of the standard peak. Percent of drug released, total micrograms released, and standard deviations within formulations were calculated from the amount of drug detected.
Results
The content uniformity analysis carried showed that most formulations tested at 100% label strength plus or minus 20%.
Figures 16 to 21 are graphs which provide examples of in vitro release data (in either pH 5.4 citrate phosphate buffer release medium or in pH 7.4 phosphate buffer saline release medium) for the five TKI used in implants with varying polymer formulations. Figures 16 to 21 show that TKIs with higher solubilities had the tendency to release at a faster rate than TKIs wilh lower solubilities. Additionally, Figures 16 to 21 show that TKI Implant formulations with lower drug (TKI) loading released at a slower rate than those with a higher drug loading.
Thus, a number of different sustained release biodegradable polymeric formulations (implants) were made for five different tyrosine kinase Inhibitor compounds. The results show that the release of TKIs from PLGA polymer implants can be modified by changing polymer matrices and extrusion conditions. Notably, sustained release was achieved for all five TKI compounds in phosphate buffered saline release medium (pH 7.4) and CTAB media and the results show that TKI release from the polymer matrix can last from about one to over six months, depending on the formulation. Significantly, linear, consistent drug release profiles were obtained achieved from for each of the five TKIs in phosphate buffered saline (see formulations 7409-024,7409-009,7409-022, 7409-032, and 7409-071).
Examples
In Viva Evaluation of a TKI Implant
An experiment was carried out to evaluate effects of an intravitreal TKI implant upon mammalian vision. Thus, either a PLGA placebo implant or a TKI PLGA implant was inserted into the vitreous of rabbit eyes. It was determined that an intravitreal TKI PLGA implant can be used to effectively improve and maintain vision by effectively treating conditions such as, or common to, for example, rettoal vasodilation, retinal vessel tortuosity (blood flow Increase), blood-retinal barrier breakdown, retinal edema and macula edema.
We used as a model system for determination of vision improvement, rabbits with VEGF induced retinal damage. It is known that intravitreal injection of recombinant human VEGF-tes in rabbits can cause robust vasodilation and vessel tortuosity (blood flow Increase), blood-retinal barrier breakdown, and retinal edema. See e.g. Edelman, J.L et at., Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retina! and blood-aqueous barrier breakdown. Experimental Eye Research, 80:249-258 (2005) These VEGF induced ocular effects are believed to be mediated by activation of VEGF receptor-1 and VEGF receptor-2.
In this experiment we found that such VEGF induced retinal injuries can be treated (that is inhibited, alleviated, reversed and/or prevented) by use of a TKI intravitreal implant. Presumably, the tyrosine kinase inhibitor released (in therapeutic levels from the intravitreal implant) inhibits receptor phosphorylation at the target tissue, thereby blocking the VEGF-mediated responses. Thus, we determined that a 2 mg AGN-206639 (TKI) PLGA can for at least about one month after vitreal implantation provide significant inhibition of the VEGF induced effects, such as blood-retinal barrier breakdown.
In this experiment seven female Dutch Belt rabbits (2.1 to 2.6 kg body weight) were used. A1 mg PLGA placebo implant (made as set forth in Example 7) was Inserted into either the right or left eye (the control) of six rabbits (N=6). In the remaining eight eyes, a 2 mg TKI PLGA implant (made as set forth in Example 7. See Table 12; Formulation 7409-041 was used as the TKI implant) was inserted (N = 8). Table 1 sets forth characteristics of the implants used
Table 1. Implant composition, size, and in vitro release rates
The implants were intravltreally inserted as follows. At T0 (day zero) the rabbits (N =7) were anesthetized with ketamine/xylazine (subcutaneous), and the ocular surface was anesthetized with 2 drops of 1% proparacaine, irrigated with ophthalmic grade Betadine, and the conjunctiva was incised and retracted from the underlying sclera in Ore superotemporal quadrant of the eye. A 20G MVR knife was used to perforate the sclera at the pars plana (about 3 mm posterior to the limbus) adjacent to the temporal insertion of the superior rectus muscle. One implant (placebo or active) was inserted through the sclerotomy into the vitreous with sterile forceps. The scleral and conjunctival incisions were closed with 8-0 coated Vicryl suture. The implanted eyes was then instilled With topical ketarolac (Acular) and gentamicin ti.d. immediately following surgery and continuing for at least 3 days.
At days 12 and 26, the implanted rabbits (N = 7) were anesthetized with intravenous ketamine/xylazine and 1% proparacaine and Betadine were topically applied to the ocular surface. Immediately thereafter (on days 12 and 26) 500 ng VEGFies was injected intravltreally in 100 uL of sterile PBS via a 28G needle inserted about 3 mm posterior to the limbus into each eye of each rabbit which had received an Implant (placebo or active).
The Implanted eyes were evaluated at several time points after implantation by: (1) fundus evaluation and angiography, and; (2) fluorophotometric measurement.
Fundus evaluation and angiography was carried out at 14 days and at 28 days post-implant insertion. Thus, using a Zeiss retinal camera, late phase angiograms were acquired 5 to 10 min. after intravenous injection of sodium fluorescein (10 mg/kg) via the margin ear vein. All images were masked and then graded by three examiners for severity of retinal fluorescein leakage (normal = 1; severe - 5). Statistical significance was determined using the Kruskal-Waliis non-parametric ANOVA test, the Dunn’s multiple comparisons test, and the Mann-Whitney test (two-tailed). It was determined, for example, that at 14 days post Implantation a placebo implant eye scored as high as a 4.6 grade, while a TKI implant eye scored as low as 1.0. Additionally, it was determined, for example, that at 26 days post implantation multiple placebo eyes scored as high as a 5.0 grade, while multiple TKI implant eyes scored as tow as about 1.0.
These results clearly demonstrate that compared to placebo, the 2 mg TKI (AGN206639) implant significantly inhibited VEGF-induced angiographic fluorescein leakage at both 14 days and 28 days after surgical insertion of the TKI implant in rabbit eyes.
Fluorophotometric measurement was also carried out at 14 days and at 28 days post-implant insertion. Thus, fifty minutes after intravenous injection of sodium fluorescein, blood-retinal barrier integrity was assessed using scanning ocular fluorophotometry. The area under the curve (AUC) for vitreoretinal fluorescence was calculated using Kaleidagraph software. Statistical significance was determined using the single factor parametric ANOVA test and the two-tailed unpaired t-test. As shown by Figure 22, compared to placebo, the 2 mg AGN-206639 implant signiffcanfiy inhibited VEGF-induced blood-retinal barrier breakdown, as measured by scanning ocular fluorophotometry at 14 days and at 28 days after surgical insertion of the implant in rabbits.
This experiment demonstrated that for at least about one month after vltreal implantation, a TKI PLGA intravitreal implant can be used to provide significant vision improvement, as determined by, for example, inhibition of experimental blood-retinal barrier breakdown in rabbits. These results therefore show that an intravitreal TKl implant can be used to treat a variety of ocular conditions, including ocular vasculopathies including diabetic macular edema, proliferative diabetic retinopathy, and choroidal neovascularization associated with age-related macular degeneration.
All references, articles, publications and patents and patent applications cited herein are incorporated by reference in their entireties.
While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises” or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
Claims (18)
- The claims defining the invention are as follows:1. A biodegradable intraocular implant comprising: a tyrosine kinase inhibitor and biodegradable polymer matrix, wherein the tyrosine kinase inhibitor is released from the implant for at least about one week after the implant is placed in an eye, and wherein the tyrosine kinase inhibitor has the formula:
- 2. The implant of claim 1, wherein the tyrosine kinase inhibitor is present in an amount from about 30% by weight to about 70% by weight of the implant element.
- 3. The implant of claim 1 or claim 2, wherein the implant element is an extruded mixture of the tyrosine kinase inhibitor and the polymer matrix.
- 4. The implant of any one of claims 1 to 3 which consists essentially of the tyrosine kinase inhibitor and the polymer matrix.
- 5. The implant of any one of claims 1 to 3, further comprising an additional ophthalmically acceptable therapeutic agent.
- 6. The implant of any one of claims 1 to 5, wherein the tyrosine kinase inhibitor is dispersed within the biodegradable polymer matrix.
- 7. The implant of any one of claims 1 to 6, wherein the polymer matrix comprises at least one polymer selected from the group consisting of polylactides, poly(lactide-co-glycolides), polycaprolactones, and mixtures thereof.
- 8. The implant of any one of claims 1 to 7, wherein the implant comprises a first portion comprising a mixture of the tyrosine kinase inhibitor and a biodegradable polymer, and a different second portion comprising a biodegradable polymer substantially free of the tyrosine kinase inhibitor.
- 9. The implant of any one of claims 1 to 8, wherein the matrix comprises a single type of polymer, and the implant releases the tyrosine kinase inhibitor for about 70 days at a substantially linear rate.
- 10. The implant of any one of claims 1 to 9, wherein the matrix releases drug at a rate effective to sustain release of an amount of the tyrosine kinase inhibitor from the implant for more than one month from the time the implant is placed in the eye.
- 11. The implant of any one of claims 1 to 10 provided in a trocar or syringe.
- 12. A medicament comprising the implant of any one of claims 1 to 11.
- 13. Use of the implant of any one of claims 1 to 11 for the preparation of a medicament for treating an ocular condition.
- 14. The use according to claim 13, wherein the ocular condition is selected from the group consisting of non-exudative age related macular degeneration, exudative age related macular degeneration, acute macular degeneration, choroidal neovascularization, acute macular neuroretinopathy, macular edema, diabetic macular edema, cystoid macular edema, diabetic macular edema, Behcet's disease, diabetic retinopathy, retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, trauma, a condition caused by laser treatment, a condition caused by photodynamic therapy, photocoagulation, radiation retinopathy, an epiretinal membrane disorder, proliferative diabetic retinopathy, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction, retinitis pigmentosa, an ocular tumor, an ocular neoplasm, glaucoma, diabetic uveitis, histoplasmosis, infections such as fungal or viral-caused infections, multifocal choroiditis, proliferative vitreoretinopathy, sympathetic opthalmia, Vogt-Koyanagi-Harada (VKH) syndrome, and uveal diffusion.
- 15. The use according to claim 13, wherein the ocular condition is selected from the group consisting of glaucoma and proliferative vitreoretinopathy.
- 16. Use of a tyrosine kinase inhibitor and a biodegradable polymer matrix in the manufacture of an implant element structured for placement in an eye, wherein the implant has a release rate such that upon placement of the implant in the eye the tyrosine kinase inhibitor is released from the implant for at least about one week, and wherein the tyrosine kinase inhibitor has the formula:
- 17. The use according to claim 16, wherein the tyrosine kinase inhibitor is present in an amount from about 30% by weight to about 70% by weight of the implant element.
- 18. A method for the treatment of an ocular condition in a subject, the method comprising implanting into an eye of the subject an implant according to any one of claims 1 to 11 or a medicament according to claim 12.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2014203794A AU2014203794B2 (en) | 2004-04-30 | 2014-07-10 | Biodegradable intraocular tyrosine kinase inhibitor implants |
AU2016269432A AU2016269432A1 (en) | 2004-04-30 | 2016-12-06 | Biodegradable introcular tyrosine kinase inhibitor implants |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/837,361 | 2004-04-30 | ||
AU2011211380A AU2011211380B9 (en) | 2004-04-30 | 2011-08-11 | Biodegradable intravitreal tyrosine kinase inhibitor implants |
AU2014203794A AU2014203794B2 (en) | 2004-04-30 | 2014-07-10 | Biodegradable intraocular tyrosine kinase inhibitor implants |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011211380A Division AU2011211380B9 (en) | 2004-04-30 | 2011-08-11 | Biodegradable intravitreal tyrosine kinase inhibitor implants |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016269432A Division AU2016269432A1 (en) | 2004-04-30 | 2016-12-06 | Biodegradable introcular tyrosine kinase inhibitor implants |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2014203794A1 AU2014203794A1 (en) | 2014-07-31 |
AU2014203794B2 true AU2014203794B2 (en) | 2016-09-08 |
Family
ID=45421110
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011211380A Active AU2011211380B9 (en) | 2004-04-30 | 2011-08-11 | Biodegradable intravitreal tyrosine kinase inhibitor implants |
AU2014203794A Active AU2014203794B2 (en) | 2004-04-30 | 2014-07-10 | Biodegradable intraocular tyrosine kinase inhibitor implants |
AU2016269432A Abandoned AU2016269432A1 (en) | 2004-04-30 | 2016-12-06 | Biodegradable introcular tyrosine kinase inhibitor implants |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2011211380A Active AU2011211380B9 (en) | 2004-04-30 | 2011-08-11 | Biodegradable intravitreal tyrosine kinase inhibitor implants |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2016269432A Abandoned AU2016269432A1 (en) | 2004-04-30 | 2016-12-06 | Biodegradable introcular tyrosine kinase inhibitor implants |
Country Status (1)
Country | Link |
---|---|
AU (3) | AU2011211380B9 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2020283135A1 (en) | 2019-05-31 | 2022-01-06 | Dose Medical Corporation | Bioerodible polyester polymer implants and related methods of use |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034920A1 (en) * | 1996-03-21 | 1997-09-25 | Sugen, Inc. | Assays for kdr/flk-1 receptor tyrosine kinase inhibitors |
WO2002085248A2 (en) * | 2001-04-23 | 2002-10-31 | Board Of Regents The University Of Texas System | Prostanoids augment ocular drug penetration |
WO2004112748A2 (en) * | 2003-06-16 | 2004-12-29 | Bausch & Lomb Incorporated | Rate controlled release of a pharmaceutical agent in a biodegradable device |
WO2005011741A2 (en) * | 2003-07-10 | 2005-02-10 | Allergan, Inc. | Delivery of a drug via subconjuctival or periocular delivery of a prodrug in a polymeric microparticle |
-
2011
- 2011-08-11 AU AU2011211380A patent/AU2011211380B9/en active Active
-
2014
- 2014-07-10 AU AU2014203794A patent/AU2014203794B2/en active Active
-
2016
- 2016-12-06 AU AU2016269432A patent/AU2016269432A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034920A1 (en) * | 1996-03-21 | 1997-09-25 | Sugen, Inc. | Assays for kdr/flk-1 receptor tyrosine kinase inhibitors |
WO2002085248A2 (en) * | 2001-04-23 | 2002-10-31 | Board Of Regents The University Of Texas System | Prostanoids augment ocular drug penetration |
WO2004112748A2 (en) * | 2003-06-16 | 2004-12-29 | Bausch & Lomb Incorporated | Rate controlled release of a pharmaceutical agent in a biodegradable device |
WO2005011741A2 (en) * | 2003-07-10 | 2005-02-10 | Allergan, Inc. | Delivery of a drug via subconjuctival or periocular delivery of a prodrug in a polymeric microparticle |
Also Published As
Publication number | Publication date |
---|---|
AU2011211380B2 (en) | 2014-04-10 |
AU2014203794A1 (en) | 2014-07-31 |
AU2016269432A1 (en) | 2016-12-22 |
AU2011211380B9 (en) | 2014-05-08 |
AU2011211380A1 (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210121397A1 (en) | Biodegradable intravitreal tyrosine kinase implants | |
EP1750665B1 (en) | Biodegradable intravitreal tyrosine kinase inhibitors implants | |
AU2014203794B2 (en) | Biodegradable intraocular tyrosine kinase inhibitor implants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |