AU2013306458A1 - Pharmaceutical compositions containing ipidacrine and use thereof to treat potency disorders and other sexual activity disorders - Google Patents

Pharmaceutical compositions containing ipidacrine and use thereof to treat potency disorders and other sexual activity disorders Download PDF

Info

Publication number
AU2013306458A1
AU2013306458A1 AU2013306458A AU2013306458A AU2013306458A1 AU 2013306458 A1 AU2013306458 A1 AU 2013306458A1 AU 2013306458 A AU2013306458 A AU 2013306458A AU 2013306458 A AU2013306458 A AU 2013306458A AU 2013306458 A1 AU2013306458 A1 AU 2013306458A1
Authority
AU
Australia
Prior art keywords
disorders
ipidacrine
sexual
pharmaceutical formulation
potency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2013306458A
Other versions
AU2013306458B2 (en
Inventor
Vladimir Nikolaevich BYKOV
Galina Aleksandrovna KIM
Aleksandr Sergeevich NIKIFOROV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
"KONSORTSIUM-PIK" LLC
Original Assignee
KONSORTSIUM PIK LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49302826&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU2013306458(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KONSORTSIUM PIK LLC filed Critical KONSORTSIUM PIK LLC
Publication of AU2013306458A1 publication Critical patent/AU2013306458A1/en
Application granted granted Critical
Publication of AU2013306458B2 publication Critical patent/AU2013306458B2/en
Priority to AU2018200470A priority Critical patent/AU2018200470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/16Ring systems of three rings containing carbocyclic rings other than six-membered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The invention is based on the use of ipidacrine to treat potency disorders and can be used in clinics for treating potency disorders related to the reduced production of reproductive gland hormones, disorders caused by chronic, including physical, stress, and also associated with spontaneously reduced sexual function, including anorgasmia or delayed ejaculation, and other sexual activity disorders not limiting the scope of the invention.

Description

PHARMACEUTICAL FORMULATIONS CONTAINING IPIDACRINE AND THEIR USE FOR THE TREATMENT OF DISORDERS OF POTENCY AND DISORDERS OF OTHER FORMS OF SEXUAL ACTIVITY Field of the invention The invention relates to medicine, namely to endocrinology, andrology, in particular, the invention refers to the use of ipidacrine for the treatment of disorders of potency and other forms of sexual activity. Background of the invention Some pharmaceutical formulations containing ipidacrine (Axamon, Amiridine, Neyromidin) are well known, but these formulations are intended for the use as drug products for the treatment of other diseases, namely diseases of the peripheral nervous system (PNS) including (mono-and polyneuropathy) polyradiculopaty, myasthenia and Eaton-Lambert syndrome of various etiologies); diseases of the central nervous system (CNS), including bulbar paralysis and paresis; for the use in the recovery period in case of organic lesions of the central nervous system accompanied by motor and/or cognitive impairment); intestinal atony (treatment and prevention). Therefore, the use of pharmaceutical formulations containing ipidacrine for the treatment of disorders of potency and other forms of sexual activity is proposed by the authors for the first time. Objects of the invention The invention can be applied in the clinic for the treatment of potency disorders associated with the decreased production of hormones by the sex glands; disorders caused by chronic (including physical) stress as well as against the background of spontaneously reduced sexual function including manifested anorgasmia or delayed ejaculation, other disorders of sexual activity which do not limit the scope of the invention. The object of the present invention is to extend the use of ipidacrine for the treatment of sexual dysfunction associated with the decreased production of hormones by the sex glands, chronic stress as well as manifested anorgasmia or delayed ejaculation as well as the creation of a new pharmaceutical formulation containing ipidacrine which would expand the use of ipidacrine in pharmaceutical formulations and provide the use of ipidacrine in pharmaceutical formulations for the treatment of sexual activity disorders associated with reduced production of hormones by the sex glands; disorders caused by chronic (including physical) stress as well as against the background of the spontaneously reduced sexual function including manifested anorgasmia or 1 delayed ejaculation. Summary of the invention Ipidacrine is a reversible cholinesterase inhibitor. Four classes of cholinesterase inhibitors are known (aminopyridines, organophosphates, carbamates and all the rest). Ipidacrine is an aminopyridine that possesses the structural similarity with the other known aminopyridine, namely tacrine, but is superior to the last in relation to the efficacy and safety (Kojima et al., 1998). Cholinesterases are enzymes that carry out the inactivation of acetylcholine. In turn, acetylcholine is the main neurotransmitter responsible for the conduction of excitement in the peripheral nervous system, maintenance of neuromuscular transmission, increased contractility and tone of smooth muscle organs; it also produces a stimulating effect on the central nervous system. Thus, the inhibition of cholinesterase activity leads to the maintenance of the acetylcholine level and corresponding activity of neuroregulatory functions. It is known that the sexual function is controlled by neuronal, neuroendocrine, endocrine and neurotransmitter systems. The cholinergic system is involved in the sexual behavior via the M cholinergic mechanism that transmits non-specific information to the neocortex from subcortical structures (reticular formation, hypothalamus) and in the functioning of the cortical "awakening" system. The cholinesterase inhibitors affect the neuroregulatory processes including those accompanying sexual behavior. For example, in vivo experiments demonstrated that the introduction of the cholinesterase inhibitor (eserine) into the lateral ventricle in the brain increases the lordosis in ovariectomized, hypoestrogenic rats (Clemens et al., 1989). The authors also demonstrate the influence of the other cholinesterase inhibitor, acetylcholine, to enhance the sexual receptivity of the animals. The performed experiments prove that sexual behavior is regulated, among others, via endogenous cholinergic activity. Similar effects of enhancing sexual behavior in animals when administering cholinesterase inhibitors are demonstrated in a number of other experiments (Clemens et al., 1980; Dohanich et al., 1990; Menard & Dohanich, 1994; Dohanich & Clemens, 1981). In vivo studies showed that against the background of different external stimuli, such as memorizing or learning, stress, any research, and other exposures that directly or indirectly affect the brain activity, the increase in the acetylcholine level is observed, and its level may vary depending on the type of external exposure. (Mitsushima, 2010). The experiment demonstrated that against the background of sexual exposure, an increase in the level of acetylcholine occurs, therefore, this neurotransmitter performs one of the most important neuroregulatory functions influencing the sexual behavior and functions. It can be concluded that the inhibitors of cholinesterase (which negates the action 2 of acetylcholine) are advisable to use for improvement of all components providing the neuroregulatory basis of sexual activity. The indirect indication of the effect of cholinesterase inhibitors on the enhancement of sexual behavior is also side effects of the use of the drugs of this class in the treatment of patients with dementia. For example, when the drug donepezil (cholinesterase inhibitor) is given to patients in the treatment of Alzheimer's disease, an increase in the sexual behavior in these patients, even to the manifestation of sexual aggression is observed (Bianchetti et al., 2003; Bouman & Pinner, 1998; Lo Coco & Cannizzaro , 2010). Thus, the regulation of the sexual behavior via cholinergic mechanisms is carried out in the central level. The clinical forms of sexual dysfunction are psychogenic and stressor disorders of the sexual function as well as disorders associated with the damage of the central and peripheral nervous system and associated with decreased levels of sex hormones. For this reason, the drugs from the group of cholinesterase inhibitors may be used in the treatment of the specified disorders. Brief description of drawings Fig. 1 shows the effect of the drugs to be compared on the sexual activity (mean number of ejaculations) of hemigonadectomized rats when administering the drugs in mean therapeutic doses in the course of treatment. Fig. 2 presents the effect of ipidacrine on the sexual activity of male rats using the model of chronic stress caused by electrical current exposure. Fig. 3 shows the effect of ipidacrine on the sexual activity of rats using the model of spontaneous sexual dysfunction (by criterion of the number of ejaculations) Description of the preferred embodiments Definitions The term "pharmaceutical formulation" means a formulation in tablet or capsule form (as an example but not limited to hard gelatin capsules), including that of prolonged action, containing ipidacrine as a main biologically active substance in an effective amount from 3 to 300 mg per dose and additionally containing the pharmaceutically acceptable excipients. The term "pharmaceutically acceptable excipient" means a substance needed to improve tableting, such as, but not limited to, hydroxypropyl methylcellulose, microcrystalline cellulose, colloidal silicon dioxide, magnesium stearate and other conventional pharmaceutical excipients which do not limit the scope of the invention. 3 Embodiments of invention To illustrate the effects of pharmaceutical formulations based on ipidacrine, here in are the following examples which do not limit the scope of the invention. Example 1: Preparation of pharmaceutical formulations containing ipidacrine. The pharmaceutical tableted formulations (including those of prolonged action) on the basis of ipidacrine are made in a standard way of direct compression. All the ingredients (except magnesium stearate) are stirred to obtain a homogeneous powder mixture using a Y-shaped mixer or similar equipment. Then magnesium stearate is added, and the resulting mixture is stirred for 2 minutes. The obtained tablet mass is subjected to a tableting process (tablet diameter of 10 mm or 11 mm in accordance with industry standard OST 64-072-89, with a scoreline and bevel edge) at a pressing force of 9 - 10 kN. Pharmaceutical formulations in capsules are made using standard processing methods by mixing active ingredients and excipients in the correct proportion and further encapsulation. Pharmaceutical formulation 1 (content for 1 tablet of 100mg): Active substance: Ipidacrine 3mg Pharmaceutically acceptable excipients: hydroxypropyl methylcellulose 35mg microcrystalline cellulose 60mg colloidal silicon dioxide 1mg magnesium stearate 1mg Pharmaceutical formulation 2 (content for 1 tablet of 250mg): Active substance: Ipidacrine 40mg Pharmaceutically acceptable excipients: hydroxypropyl methylcellulose 75mg microcrystalline cellulose 128.74mg colloidal silicon dioxide 3.13mg magnesium stearate 3.13mg Pharmaceutical formulation 3 (content for 1 tablet of 600mg): Active substance: Ipidacrine 150mg Pharmaceutically acceptable excipients: hydroxypropyl methylcellulose 188mg 4 microcrystalline cellulose 250mg colloidal silicon dioxide 6mg magnesium stearate 6mg Pharmaceutical formulation 3 (content for 1 tablet of 1000mg): Active substance: Ipidacrine 300mg Pharmaceutically acceptable excipients: hydroxypropyl methylcellulose 280mg microcrystalline cellulose 400mg colloidal silicon dioxide 10mg magnesium stearate 10mg Pharmaceutical formulation 4 (content for 1 tablet of 230mg): Active substance: Ipidacrine 40mg Pharmaceutically acceptable excipients: microcrystalline cellulose 140mg colloidal silicon dioxide 2mg magnesium stearate 2mg Pharmaceutical formulation 6 (content for 1 prolonged action tablet of 600mg) Active substance: Ipidacrine 60mg Pharmaceutically acceptable excipients: microcrystalline cellulose 216mg colloidal silicon dioxide 2mg hydroxypropyl methylcellulose 120mg magnesium stearate 2mg Example 2. Evaluation of the effects of ipidacrine pharmaceutical formulation in rats with the reduced sexual activity caused by hemigonadectomy. The hemigonadectomy is similar to the pathological processes observed in the clinical picture and associated with the decrease in hormone production by the sex glands. The model of hypogonadal state in rats induced by the hemigonadectomy corresponds to the pathological processes observed in the clinical picture and associated with the decreased hormone production of the sex glands. The study of the ipidacrine pharmacological activity was conducted in albino male rats. The following six groups of animals were formed: 1 - intact, 2 - treated with sildenafil, 3 5 galantamine, 4 - ipidacrine, 5 - gonadectomized, 6 - control. 30 days before the start of the main study, the experiment was performed (3 times a week for 2 weeks), namely introduction of a receptive female to the male rat. The number of ejaculations was recorded. Those animals whose level of sexual activity was characterized by stable performance of 1-2 ejaculations during the period of the test were selected. The selected male rats underwent the hemigonadectomy (at the right) performed under ether anesthesia. Then, during 7 and 14 days prior to the course administration of the drugs, daily testing of sexual activity of the hemigonadectomized animals was carried out. The latency period and the number of mounts, intromissions and ejaculations in different groups of the animals were considered. Administration of ipidacrine at a dose of 1.7 mg/kg once daily for 7 days to hemigonadectomized rats eliminates fluctuations in the level of the sexual activity due to external stressor effects throughout the whole course of the therapy and contributes to the increase of central motivation and ejaculatory components. Ipidacrine in the course therapy of 2 times a day for 14 days in hemigonadectomized rats at a dose range of 0.85 to 5.1 mg/kg produces a dose-dependent increase in the sexual activity of the animals, with a maximum manifestation in 3 to 5 days at a dose of 5.1 mg/kg, and in 11 to 14 days at a dose of 0.85 to 1.7 mg/kg (Fig. 1). Example 3. Evaluation of the effects of an ipidacrine pharmaceutical formulation at reduced sexual activity in rats caused by physical stress. The most appropriate model (in terms of the ease of implementation) is the model of psychogenic sexual dysfunction caused by exposure to physical factors (electrical current) in rats. The pre-experiment with the animals was performed similar to that described in Example 2. The two groups of the animals similar in the sexual activity level were formed: control (administration of distilled water), pharmaceutical formulation (on ipidacrine basis at a dose of 1.7 mg/kg). The animals of the control and experimental groups were daily exposed to current with a voltage of 30V for 30 min once a minute with an impulse with duration of 1 sec. The drug was administered 30 minutes before the stress, the testing was performed 60 min after the stress. The administration of ipidacrine at a dose of 1.7 mg/kg once a day prior the stress contributed to a slower formation of sexual dysfunction in the rats. In an initial period (1 to 3 days), the parameters of activity were comparable to the parameters in the group nonsusceptible to the stress. Starting from the 5h day, a significant increase in the latency period of mounts and 6 intromissions compared to the animals nonsusceptible to stress (in the group without treatment, such changes were observed from the 1" day of the experiment) was registered. Significant differences from the group without treatment on a number of indicators were observed on the 7 day (latency period of intromissions) and on the 10th day (latency period of intromissions and mounts). When comparing the sexual activity of the stressed animals without treatment and against the background of the ipidacrine therapy at a dose of 1.7 mg/kg, the period from the 3 rd to 10h day of the experiment was the most significant. The administration of ipidacrine provided the maintenance of the frequency of ejaculations at a level of 60-100%, while in the comparison group, this figure reduced to 20%. In the same period, a higher rate of renewal of activity after the first ejaculation was recorded in the animals of the ipidacrine group. By the end of the 14 day exposure to stress, the number of ejaculations remained at a level of 0.4-0.6 (on the 10th and 14th day) in the animals of the treatment group, while in the group without treatment, this parameter was not greater than 0.2 ( 7 th andl4th day) (Fig. 2). Example 4. The evaluation of effects of ipidacrine pharmaceutical formulation on a model of initially hypoactive male rats with spontaneously reduced sexual function. This model is associated with the clinical conditions of anorgasmia or delayed ejaculation in humans. According to the results of the five-fold testing of the intact animals, the groups of hypoactive male rats were formed. The criterion for selection was average number of ejaculations of less than 0.5 according to the results of the five-fold testing. To assess the effect of ipidacrine on sexual function of rats with the reduced sexual activity, the groups of the animals with initially low manifestations of copulatory and ejaculatory components of behavior were formed. This model reflects the clinical conditions of anorgasmia and delayed ejaculation. The effect of the drug on the integral indicator of the sexual function (number of ejaculations) at a dose of 0.85 to 5.1mg/kg when administered daily is shown in Fig. 3. In hypoactive animals undergoing daily course therapy with the pharmaceutical composition (ipidacrine content of 0.85 mg/kg), an increase in the sexual activity (starting with the 2 week) was registered. It was manifested in the reduction of the latency period of mounts and intromissions (significant differences from the background were registered on the 7 to 14h day of observation). These data allow us to characterize the effect of the drug (0.85 mg/kg) on the trend level as similar changes of indicators were observed in the control group. An increase in the average number of ejaculations in the group up to 0.6-0.8 and increase of the rate of occurrence of ejaculations to 80% were noted. In some animals, the renewal of sexual activity 7 was observed after the first ejaculation (on the average in 4-6 minutes) in contrast to the control group. While administering the pharmaceutical formulation with ipidacrine at a dose of 1.7 mg/kg (considering interspecies dose conversion), an increased central motivational component (2 to 4 -fold reduction in the latency time of mounts and intromissions) after the first administration of the drug was revealed. In the subsequent periods, a slight decrease in the sexual activity (on the 3 d or 5th day) with an increase of indicators of sexual behavior on the 7 th, 10th and 14 day of the administration of the drug was observed. This was accompanied by an increase of the ejaculatory component in comparison with the control throughout the course of administration of the drug in the test dose. The number of animals able to ejaculate also increased (up to 80%). The administration of ipidacrine at a higher dose (5.1 mg/kg) increased the sexual activity in the animals during the first 5 days of observation, which was manifested by an increase in central motivational and ejaculatory components. The latency period of mounts reduced from 33.0±5.35 to 9.3±1.93 s (p <0.05), and the latency period of intromissions from 59.8 ±11.34 to 10.5 ± 1.76 (p <0.05) in 3 days of observation. Subsequent administration of the drug at this dose produced a negative effect on the manifestation of the sexual activity while in 10, 14 days of the experiment the values of indicators were comparable to the control. Therefore, the administration of ipidacrine in the animals with the spontaneous sexual hypoactivity leads to an increase of copulatory and ejaculatory components when administered at doses of 1.7 and 5.1 mg/kg. The drug at a dose of 5.1 mg/kg is effective only when administered for 5 days. Ipidacrine at a dose of 1.7 mg/kg showed an activating effect on the sexual function throughout the whole observation period (14 days). References: * Clemens LG, Barr P, Dohanich GP. Cholinergic regulation of female sexual behavior in rats demonstrated by manipulation of endogenous acetylcholine. Physiol Behav. 1989 Feb;45(2):437-42 * Dohanich GP, McMullan DM, Brazier MM. Cholinergic regulation of sexual behavior in female hamsters. Physiol Behav. 1990 Jan;47(1):127-31. * Menard CS, Dohanich GP. Estrogen dependence of cholinergic systems that regulate lordosis in cycling female rats. Pharmacol Biochem Behav. 1994 Jun;48(2):417-21. * Clemens LG, Humphrys RR, Dohanich GP. Cholinergic brain mechanisms and the hormonal regulation of female sexual behavior in the rat. Pharmacol Biochem Behav. 1980 8 Jul;13(1):81-8 * Dohanich GP, Clemens LG. Brain areas implicated in cholinergic regulation of sexual behavior. Horm Behav. 1981 Jun;15(2):157-67. * Mitsushima D. Sex steroids and acetylcholine release in the hippocampus. Vitam Horm. 2010;82:263-77 * OCT64-072-89. CpeAcTBa JleKapcTBeHHbIe. Ta6n1eTKr. TH1nb1 H pa3MepbI * Bianchetti A, Trabucchi M, Cipriani G. Aggressive behaviour associated with donepezil treatment: a case report. Int J Geriatr Psychiatry. 2003 Jul;18(7):657-8. * Bouman WP, Pinner G. Violent behavior-associated with donepezil. Am J Psychiatry. 1998 Nov;155(11):1626-7. * Lo Coco D, Cannizzaro E. Inappropriate sexual behaviors associated with donepezil treatment: a case report. J Clin Psychopharmacol. 2010 Apr;30(2):221-2. * Kojima J, Onodera K, Ozeki M, Nakayama M. Ipidacrine (NIK-247): A Review of Multiple Mechanisms as an Antidementia Agent CNS Drug Reviews 1998, Vol. 4, No. 3, pp. 247.259 9

Claims (5)

1. The use of ipidacrine as a drug for the treatment of potency disorders.
2. The use according to claim 1 where potency disorders are selected from the group of disorders of sexual activity: disorders associated with the decreased production of hormones by the sex glands, disorders caused by chronic stress (including physical one), disorders that are manifested against the background of spontaneously reduced sexual function, including manifested anorgasmia or delayed ejaculation.
3. Pharmaceutical formulation for the treatment of potency disorders containing at least ipidacrine in the effective amount of 3 to 300 mg per dose as an active ingredient.
4. Pharmaceutical formulation according to claim 3 additionally containing pharmaceutically acceptable excipients selected from the following group: hydroxypropyl methylcellulose, microcrystalline cellulose, colloidal silicon dioxide, magnesium stearate or their combinations.
5. Pharmaceutical formulation according to claim 3 characterized in that it is a tablet or prolonged action tablet or a hard gelatin capsule. 10
AU2013306458A 2012-08-20 2013-08-15 Pharmaceutical compositions containing ipidacrine and use thereof to treat potency disorders and other sexual activity disorders Active AU2013306458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018200470A AU2018200470B2 (en) 2012-08-20 2018-01-19 Pharmaceutical Compositions Containing Ipidacrine and Use Thereof to Treat Potency Disorders and Other Sexual Activity Disorders

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2012135579 2012-08-20
RU2012135579/15A RU2494739C1 (en) 2012-08-20 2012-08-20 Pharmaceutical compositions containing ipidacrine and using them for treating disturbed potency and other forms of sexual activity
PCT/RU2013/000707 WO2014031034A1 (en) 2012-08-20 2013-08-15 Pharmaceutical compositions containing ipidacrine and use thereof to treat potency disorders and other sexual activity disorders

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2018200470A Division AU2018200470B2 (en) 2012-08-20 2018-01-19 Pharmaceutical Compositions Containing Ipidacrine and Use Thereof to Treat Potency Disorders and Other Sexual Activity Disorders

Publications (2)

Publication Number Publication Date
AU2013306458A1 true AU2013306458A1 (en) 2015-03-12
AU2013306458B2 AU2013306458B2 (en) 2017-10-19

Family

ID=49302826

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2013306458A Active AU2013306458B2 (en) 2012-08-20 2013-08-15 Pharmaceutical compositions containing ipidacrine and use thereof to treat potency disorders and other sexual activity disorders
AU2018200470A Active AU2018200470B2 (en) 2012-08-20 2018-01-19 Pharmaceutical Compositions Containing Ipidacrine and Use Thereof to Treat Potency Disorders and Other Sexual Activity Disorders

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2018200470A Active AU2018200470B2 (en) 2012-08-20 2018-01-19 Pharmaceutical Compositions Containing Ipidacrine and Use Thereof to Treat Potency Disorders and Other Sexual Activity Disorders

Country Status (13)

Country Link
US (3) US20150216852A1 (en)
EP (1) EP2886119B1 (en)
KR (1) KR101695680B1 (en)
AU (2) AU2013306458B2 (en)
CA (2) CA2998599A1 (en)
CL (1) CL2015000310A1 (en)
EA (1) EA028003B1 (en)
ES (1) ES2608554T3 (en)
LT (1) LT2886119T (en)
MX (1) MX353587B (en)
NZ (1) NZ705229A (en)
RU (1) RU2494739C1 (en)
WO (1) WO2014031034A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542659A (en) * 2019-08-06 2022-10-06 カタリスト ファーマシューティカルズ, インコーポレイテッド Methods for treating sexual dysfunction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2379030A1 (en) * 1999-07-09 2001-01-18 Nikken Chemicals Co., Ltd. Processes for the preparation of ipidacrine or ipidacrine hydrochloride hydrate
JP2004292316A (en) * 2000-12-25 2004-10-21 Nikken Chem Co Ltd Improving agent for activity of daily living of alzheimer's dementia
JP2002255820A (en) * 2000-12-25 2002-09-11 Nikken Chem Co Ltd Monoaminergic nerve-activating agent

Also Published As

Publication number Publication date
EA028003B1 (en) 2017-09-29
US20150368203A1 (en) 2015-12-24
EP2886119B1 (en) 2016-11-02
KR20150044953A (en) 2015-04-27
US20190135760A1 (en) 2019-05-09
LT2886119T (en) 2017-03-27
ES2608554T3 (en) 2017-04-12
NZ705229A (en) 2018-02-23
EA201500155A1 (en) 2015-08-31
CA2882144C (en) 2018-05-15
EP2886119A4 (en) 2015-06-24
US20150216852A1 (en) 2015-08-06
KR101695680B1 (en) 2017-01-12
CL2015000310A1 (en) 2015-05-08
AU2018200470B2 (en) 2019-01-03
CA2998599A1 (en) 2014-02-27
MX2015002247A (en) 2015-07-06
CA2882144A1 (en) 2014-02-27
AU2013306458B2 (en) 2017-10-19
EP2886119A1 (en) 2015-06-24
WO2014031034A8 (en) 2015-01-29
MX353587B (en) 2018-01-19
AU2018200470A1 (en) 2018-02-08
RU2494739C1 (en) 2013-10-10
WO2014031034A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
Mimica et al. Side effects of approved antidementives
EP3038614B1 (en) Composition comprising torasemide and baclofen for treating neurological disorders
US8420624B2 (en) Methods for treating or preventing symptoms of hormonal variations
EP1971344B1 (en) A method of treating an acute vascular disorder
SG192970A1 (en) New compositions for treating neurological disorders
RU2327480C1 (en) Active ingredient of medicinal agent, medicinal agent, pharmaceutical conposition and method of dement syndrome treatment
RU2016143979A (en) S1P MODULATOR DOSING SCHEME WITH IMMEDIATE RELEASE
WO2008148303A1 (en) A composition for treating vegetative dystonine syndrome and pharmaceutical preparation and application thereof
EP2705841A1 (en) Combinations of nootropic agents for treating cognitive dysfunctions
AU2018200470B2 (en) Pharmaceutical Compositions Containing Ipidacrine and Use Thereof to Treat Potency Disorders and Other Sexual Activity Disorders
Guo et al. Protective effect and mechanism of nicotinamide adenine dinucleotide against optic neuritis in mice with experimental autoimmune encephalomyelitis
RU2706001C2 (en) Method for treating motor neuron diseases
WO2014148951A1 (en) Novel therapeutic mirtazapine combinations for use in pain disorders
Rosenbach et al. Dermatologic therapeutics: thalidomide. A practical guide
JP2019504101A (en) Novel combination therapy for neuropathy
RU2782133C2 (en) USE OF PHARMACEUTICAL COMPOSITION OF β-CYCLODEXTRIN WITH 9-PHENYL-2,3,4,5,6,7,8,9-OCTAHYDRO-1H-SELENOXANTHENE FOR INCREASING/RESTORING LIBIDO
CN114848619B (en) Application of sertraline in preparing medicine for preventing and treating iron death related diseases
CN104706639B (en) A kind of medical composition and its use for treating Male erectile dysfunction
US20230372364A1 (en) Method of treating gaba mediated disorders
JP4747579B2 (en) Preventive / therapeutic agent for atopic dermatitis
Yaari et al. Cognitive enhancers and treatments for Alzheimer's disease
WO2024023441A1 (en) Pharmaceutical composition for the treatment of post-traumatic stress syndrome
JP2022096696A (en) Dysuria-alleviating agent
US20010053781A1 (en) Pharmaceutical composition for enhancing cognition
IT202000003964A1 (en) PHARMACEUTICAL COMPOSITION FOR USE IN THE TREATMENT OF DYSMENORREA AND / OR PREMESTRUAL SYNDROME

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)