AU2013204417A1 - Oral Product - Google Patents
Oral ProductInfo
- Publication number
- AU2013204417A1 AU2013204417A1 AU2013204417A AU2013204417A AU2013204417A1 AU 2013204417 A1 AU2013204417 A1 AU 2013204417A1 AU 2013204417 A AU2013204417 A AU 2013204417A AU 2013204417 A AU2013204417 A AU 2013204417A AU 2013204417 A1 AU2013204417 A1 AU 2013204417A1
- Authority
- AU
- Australia
- Prior art keywords
- oral product
- mouth
- nicotine
- oral
- soluble polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
ORAL PRODUCT
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority to U.S. Provisional Application Serial No. 61/588,890 filed January 20, 2012, which is incorporated by reference in its entirety.
TECHNICAL FIELD
This document relates to oral products including mouth-soluble polymers, cellulosic fibers, and nicotine.
BACKGROUND
Tobacco can be enjoyed by adult tobacco consumers in a variety of forms. Smoking tobacco is combusted and the aerosol either tasted or inhaled (e.g., in a cigarette, cigar, or pipe). Smokeless tobacco products are not combusted and include: chewing tobacco, moist smokeless tobacco, snus, and dry snuff. Chewing tobacco is coarsely divided tobacco leaf that is typically packaged in a large pouch-like package and used in a plug or twist. Moist smokeless tobacco is a moist, more finely divided tobacco that is provided in loose form or in pouch form and is typically packaged in round cans and used as a pinch or in a pouch placed between an adult tobacco consumer's cheek and gum. Snus is a heat treated smokeless tobacco. Dry snuff is finely ground tobacco that is placed in the mouth or used nasally.
A growing number of governments are now implementing restrictions on smoking in public places, such as restaurants and transport facilities. In some countries, such as the United States, some workplaces are also covered by public restrictions. Smokeless products may also be banned by certain governments or workplaces.
Trans-buccal systems such as nicotine-containing chewing gum as well as transdermal nicotine delivery systems are well known in the art. These systems, however, do not consistently provide a suitable tobacco-like experience for some adult tobacco consumers.
SUMMARY
This specification describes an oral product that provides a satisfying tactile and/or flavor experience. The oral product includes a body that is at least partially receivable in an oral cavity of an adult consumer. In some embodiments, the body includes a mouth-soluble polymer matrix,
cellulosic fibers embedded in the polymer matrix, and nicotine or a derivative thereof dispersed in the body such that it is released when the body is received within the oral cavity and exposed to saliva.
The oral product can provide a tobacco-like flavor experience and favorable tactile experience. Other embodiments of the oral product can include other additives, such as flavorants, sweeteners, vitamins, minerals, therapeutic agents, nutraceuticals, energizing agents, soothing agents, coloring agents, amino acids, chemsthetic agents, antioxidants, food grade emulsifiers, pH modifiers, botanicals, teeth whitening agents, and/or non-nicotine alkaloids (e.g., caffeine). Combinations of additives (e.g., sweeteners, flavorants, and nicotine) can be combined to provide a favorable tactile and flavor experience.
These and other embodiments can each optionally include one or more of the following features. In some embodiments, the oral product's body includes at least 10 weight percent of the mouth-soluble polymer. The oral product can also include a plasticizer dispersed in the mouth-soluble polymer matrix. For example, the plasticizer can be propylene glycol, glycerin, vegetable oil, triglycerides, or a combination thereof. The oral product can also include a sweetener dispersed in the body. The sweetener can be saccharine, sucralose, aspartame, acesulfame potassium, or a combination thereof.
The oral product, according to certain embodiments, is substantially free of tobacco plant tissue. Nicotine added to the oral product can be either synthetic or derived from tobacco. In some embodiments, the oral product includes between 0.1 mg and 6 mg nicotine. In addition to or as an alternative to nicotine, the oral products can include an additive selected from the group consisting of minerals, vitamins, dietary supplements, nutraceuticals, energizing agents, soothing agents, amino acids, chemsthetic agents, antioxidants, botanicals, teeth whitening agents, therapeutic agents, or a combination thereof. The nicotine and/or other additives can be absorbed into the cellulosic fibers and polymer matrix.
The oral product's body can have at least 10 weight percent cellulosic fibers. The cellulosic fibers can be derived from plant tissue. In some embodiments, the cellulosic fibers includes cellulose. The cellulosic fibers can further include lignin and/or lipids. The cellulosic fibers can be non-tobacco cellulosic fibers. For example, the cellulosic fibers can be selected from the following: sugar beet fiber, wood pulp fiber, cotton fiber, bran fiber, citrus pulp fiber, grass fiber, willow fiber, poplar fiber, and combinations thereof. The non-tobacco cellulosic
fibers may also be chemically treated prior to use. For example, the cellulosic fibers can be CMC, HPMC, HPC, or other treated cellulosic material.
The oral product can include flavorants. The flavorants can be natural or artificial.
Flavorants can be selected from the following: licorice, wintergreen, cherry and berry type flavorants, Drambuie, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cinnamon, cardamon, apium graveolents, clove, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, Japanese mint, cassia, caraway, cognac, jasmin, chamomile, menthol, ylang ylang, sage, fennel, pimenta, ginger, anise, coriander, coffee, mint oils from a species of the genus Mentha, cocoa, and combinations thereof. Synthetic flavorants can also be used. In certain embodiments, a combination of flavorants can be combined to imitate a tobacco flavor. The particular combination of flavorants can be selected from the flavorants that are generally recognized as safe ("GRAS") in a particular country, such as the United States. Flavorants can also be included in the oral product as encapsulated flavorants.
The body of the oral product can have a variety of different shapes, some of which include disk, shield, rectangle, and square. According to certain embodiments, the body can have a length or width of between 5 mm and 25 mm and a thickness of between 1 mm and 10 mm.
The oral product's body can be compressible and springy. In some embodiments, the body has a compressibility @ 250 N of less than 95%, less than 90%>, less than 85%>, or less than 80%. In some embodiments, the body has a compressibility of @ 250 N of between 45% and 90%. The oral product's body can have a compressibility @ 425 N of less than 99%. For example, the body can have a compressibility @ 425 N of between 60% and 98%. The body can also have a percentage of springiness of at least 20%>, at least 30%>, at least 40%>, at least 50%>, at least 60%), at least 70%>, or at least 75%>. For example, the body can have a percentage of springiness of between 75%> and 90%>.
The oral product, in certain embodiments, is a coated stick. The coating on the stick can include a mouth-soluble polymer, cellulosic fibers in the polymer, and nicotine or a derivative thereof dispersed in the polymer/fiber matrix. The stick can be a wooden dowel.
In general, another aspect of the subject matter described in this specification is methods of making and using the oral product. The methods of making the oral product can include the
actions of extruding a mouth-soluble polymer having cellulosic fibers and/or one or more additives dispersed therein.
The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view of a pair of oral products.
Figures 2A-20 illustrate various exemplary shapes of oral products.
Figure 3A-3 J illustrate oral products having various rod, stick, or tube configurations. Figure 4 depicts a coated stick.
DETAILED DESCRIPTION
The oral products described herein include a mouth-soluble polymer matrix, cellulosic fibers, and one or more additives. The one or more additives can be dispersed in the mouth- soluble polymer matrix such that the one or more additives are released from the oral product when the oral product is received within the oral cavity and exposed to saliva. The oral products described herein can provide a favorable additive release profile and tactile experience.
Suitable mouth-soluble polymers include any polymer that is soluble when placed in an adult consumer's mouth and non-toxic. As used here, the term "mouth soluble" means that the polymer experiences significant degradation when exposed to saliva within an oral cavity and at the normal human body temperature (e.g., about 98.6 °F) over a period of four hours. In some embodiments, the mouth-soluble polymer will disintegrate within an oral cavity and exposed to saliva at the normal human body temperature for a period of at less than 1 hour, less than 30 minutes, less than 10 minutes, less than 5 minute, or less than 1 minute. Suitable polymers include as cellulosics (e.g., carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), and methyl cellulose (MC)), natural polymers (e.g., starches and modified starches, konjac, collagen, inulin, soy protein, whey protein, casein, and wheat gluten), seaweed-derived polymers (e.g., carrageenan (kappa, iota, and lambda), alginates, and propylene glycol alginate), microbial-derived polymers (e.g., xanthan, dextran, pullulan, curdlan, and gellan), extracts (e.g., locust bean gum, guar gum,
tara gum, gum tragacanth, pectin (e.g., low methoxy and amidated), agar, zein, karaya, gelatin, psyllium seed, chitin, and chitosan), exudates (e.g., gum acacia (arabic) and shellac), and synthetic polymers (e.g., polyvinyl pyrrolidone, polyethylene oxide, and polyvinyl alcohol). Other useful mouth-soluble polymers are known in the art, for example, see Krochta et al. Food Technology, 1997, 51 :61-74, Glicksman Food Hydrocolloids CRC 1982, Krochta Edible Coatings and Films to Improve Food Quality Technomic 1994, Industrial Gums Academic 1993, Nussinovitch Water-Soluble Polymer Applications in Foods Blackwell Science 2003.
One or more additives are included in the oral product and adapted to be released from the oral product when the oral product is placed in an oral cavity. The oral product, in some embodiments, includes nicotine. The oral product can include a combination of nicotine, sweeteners, and flavorants to mimic the flavor profile and tactile experience of certain tobacco products.
In some embodiments, a nicotine-containing oral product can be substantially free of tobacco plant tissue. As used herein, the term "tobacco plant tissue" refers to processed or non- processed cellulosic parts (e.g., leaves, stems) of a member of the genus Nicotiana, but does not include extracts of tobacco (e.g., tobacco-derived nicotine). For example, an oral product can include one or more organoleptic components extracted from raw or processed tobacco, yet be substantially free of tobacco plant tissue.
In addition to additives, sweeteners, and flavorants, the oral product can also include fibers, fillers, plasticizers, and/or processing aids. Fibers can help to provide access to the additives, sweeteners, and/or flavorants, even before the oral product disintegrates. Fibers can provide channels for additives, sweeteners, and/or flavorants to leach out of the mouth-soluble polymer matrix. The fiber-polymer matrix can absorb one or more additives and provide a pathway for one or more additives to be released from the oral product. The fiber-polymer matrix can be porous. In some embodiments, the fiber-polymer matrix can have a plurality of pores having a pore diameter of between 40 microns and 60 microns and a plurality of pores having a pore diameter of between 1 micron and 10 microns. During use, saliva can be absorbed into the fiber-polymer matrix to release the additives, sweeteners, and/or flavorants. The absorbed saliva can then cause the polymer matrix to further disintegrate from the inside, thus providing additional access to the additives in the matrix. Moreover, the fibers can swell to further provide increased access to the matrix. Mechanical action (e.g., chewing) of the oral
product can also facilitate the disintegration of the polymer matrix and the release of the additives, sweeteners, and/or flavorants.
Fillers can also be included in the mouth-soluble polymer matrix to alter the texture or pliability of the oral product. The mouth-soluble polymer matrix can also include plasticizers, which can increase the softness of the oral product. Processing aids can also be present in the oral product and be used to facilitate shaping processes.
Oral Product Shapes and Packaging
Figure 1 depicts an example of an oral product 110. The oral product 110 has a disk shape. For example, the oral product 110 can have a diameter of about 12 mm and a thickness of about 2.5 mm.
Referring now to FIGS. 2A-2N, the oral product 110 can be molded into any desired shape. For example, referring to Figures 2A-2L, the oral product 110A-L can be formed in a shape that promotes improved oral positioning in the oral cavity, improved packaging characteristics, or both. In some circumstances, the oral product 110A-L can be configured to be: (A) an elliptical-shaped oral product 110A ; (B) an elongated elliptical-shaped oral product HOB; (C) semi-circular oral product 1 IOC; (D) square or rectangular-shaped oral product HOD; (E) football-shaped oral product 110E; (F) elongated rectangular-shaped oral product 110F; (G) boomerang-shaped oral product HOG; (H) rounded-edge rectangular-shaped oral product 110H; (I) teardrop- or comma-shaped oral product 1101; (J) bowtie-shaped oral product 110 J; (K) peanut-shaped oral product 110K; and (L) shield-shaped oral product. Alternatively, the oral product can have different thicknesses or dimensionality, such that a beveled article (e.g., a wedge) is produced (see, for example, product 110M depicted in FIG. 2M) or a hemi-spherical shape is produced. In some embodiments, the oral product has a shield shape.
In addition or in the alternative to flavorants being included within the mouth-soluble polymer matrix, flavorants can be included on an exterior of the oral product 110. For example, referring to FIG. 2N, for example, some embodiments of an oral product 110N can be equipped with flavor strips 116.
Referring to FIG. 20, particular embodiments of the oral product 110 can be embossed or stamped with a design (e.g., a logo, an image, or the like). For example, the oral product 110O can be embossed or stamped with any type of design 117 including, but not limited to, a
trademark, a product name, or any type of image. The design 117 can be formed directly into the oral product, arranged along the exterior of the product 110O. The design 117 can also be embossed or stamped into those embodiments with a dissolvable film 116 applied thereto.
In some embodiments, the oral product 110 or products 1 lOA-0 can be wrapped or coated in an edible or dissolvable film, which may be opaque, substantially transparent, or translucent. The dissolvable film can readily dissipate when the oral product 110 is placed in an oral cavity. In some embodiments, the oral product 110 can be coated with a mouth-stable material. Exemplary coating materials include Beeswax, gelatin, acetylated monoglyceride, starch (e.g., native potato starch, high amylose starch, hydroxypropylated potato starch), Zein, Shellac, ethyl cellulose, methylcellulose, hydroxypropyl methylcellulose, carboxymethyl cellulose, and combinations thereof. For example, a coating can include a combination of gelatin and methylcellulose. In some embodiments, a coating material can include a plasticizer. In some case, a coating can include a colorant, a flavorant, and/or a one or more of the additives discussed above. For example, a coating can include nicotine to provide a user with an initial nicotine burst. In some cases, the matrix of mouth-stable polymer 120 can have surfaces roughened to improve the adherence of a coating. In some cases, a coating can provide a glossy or semi-glossy appearance, a smooth surface, and/or an appealing visual aesthetic (e.g., a nice color). In some embodiments, the coating (e.g., a Beeswax, Zein, acetylated monoglyceride, and/or hydroxypropylated potato starch coating) can provide a soft mouth feel. In some embodiments, the coating (e.g., a methylcellulose, hydroxypropyl methylcellulose,
carboxymethyl cellulose, ethyl cellulose, and/or gelatin coating) can provide a hard outer coating.
One or more oral products 110 can be packaged in a variety of conventional and non- conventional manners. For example, a plurality of oral products 110 can be packaged in a container having a lid. In other embodiments, a plurality of oral products 110 can be stacked and packaged in a paper, plastic, and/or aluminum foil tube. The packaging can have a child- resistant lid.
The oral product 110 can also include additional elements. In some embodiments, a mouth-soluble polymer matrix including nicotine or a derivative thereof can be attached to a rod, tube, or stick. For example, Figures 3A-3 J illustrate tubes attached to a mouth-soluble polymer matrix tips. Figure 3 A depicts an embodiment of an oral product having a tip piece 310 and a
tube piece 320. The tip piece 310 can include the mouth-soluble polymer matrix having fibers and/or one or more additives within the polymer matrix. The tip piece 310 can be sized and shaped to be at least partially received in an oral cavity. The tube piece 320 can be made of any conventional polymer. During use the tube piece 320 can act as holder for the tip piece 310. The tube piece 320 and the tip piece 310 can be attached by a snap-fit attachment feature 330, as shown in Figure 3B.
The tube piece 320 can be reusable. For example, multiple tip pieces 310 can be packaged with a single tube piece 320 and a user can replace the tip pieces 310 after using an initial tip piece. In other embodiments, the tube pieces 320 can be intended for a single use. In some embodiments, the tube pieces 320 can include flavorants within the tube. The flavorants can be adapted to be released when air is drawn through the tube 320. For example, Figure 3C depicts a tube including a flavor ribbon 322. Figure 3D depicts a tube 320 including a flavor strip 324 and a plurality of flavor beads 326. Figure 3E depicts a tube 320 including a compressed mass 328 of flavor beads 326. In some embodiments, the inside of the tube can have structure adapted to alter the flow pattern of air drawn into the tube. For example, Figure 3F depicts a tube 320F having a series of steps and constrictions 340 adapted to alter the flow pattern of air drawn into the tube. Figure 3F also depicts an alternative connection feature 330F.
Figure 3G depicts an embodiment having a recorder-like shape. As shown, a tip piece 310G is connected to the contoured tube piece 320. For example, the recorder-shaped tip 310G can be composed of a mouth-soluble polymer matrix that includes cellulosic fibers, nicotine, one or more sweeteners, and one or more flavorants. As shown, the tip piece 310G is sized and shaped to be at least partially received within an adult's oral cavity.
Figure 3H depicts a similarly shaped oral product having a plastic recorder-shaped tip 310H that includes a reusable plastic part 312 and a mouth- soluble polymer matrix part 315. Figures 31 and 3 J depict embodiments having alternatively shaped tip pieces 3101 and 310 J.
Figure 31 depicts an embodiment having a tapered tube 3201. Figure 3J depicts an embodiment having vent holes at the non-tip end of the tube piece 320J.
In some embodiments, a system or kit of different tubes and rods and/or different tips can be packaged together, each having the same type of attachment features. Embodiments having each of the combinations of tips and tubes or rods shown in FIGS. 3A-3J are contemplated.
Figure 4 depicts a coated stick 130. The stick can be a wooden dowel having a length of between 2 cm and 10 cm and a diameter of between 0.5 mm and 5 mm. In certain embodiments, one end of the stick is coated with a matrix of mouth-soluble polymer, cellulosic fiber, and nicotine. In some embodiments, at least 50% of the stick is coated. In other embodiments, the entire stick is coated.
Oral Product Properties
The oral product 110 can provide a favorable tactile experience (e.g., mouth feel). The oral product 110 can also retain its shape during processing, shipping, handling, and optionally use. In some embodiments, the oral product 110 can have an elasticity allowing an adult consumer to work the product within the mouth. In some embodiments, the oral product 110 has at least some shape memory and thus can return to shape after being squeezed between teeth in an oral cavity. Working of the oral product 110 within the oral cavity can accelerate the release of the additives, sweeteners, and/or flavorants within the mouth-soluble polymer matrix.
During use, the oral product 110 can absorb saliva into the polymer- fiber matrix. The saliva can cause the polymer-fiber matrix to swell, which can further increase access to different sections of the polymer-fiber matrix. As the product is worked in the mouth, saliva can access different sections of the polymer-fiber matrix. The oral product 110 can be worked in the mouth without significant instantaneous permanent plastic deformation. As the product is worked and begins to disintegrate, it becomes more pliable and additional additives can become available for release into the oral cavity. As the product is used, it can initially increase in both weight and volume before it disintegrates.
One way of characterizing the properties of the oral product is by measuring the compressibility and springiness of the product. The compressibility can be calculated as a percentage of reduction in thickness of the sample when the sample is compressed with a standardized probe with a particular force. As used herein, the term "compression @ 250 N test" defines a test of a sample where the sample is placed on a flat stationary surface and twice compressed with a lOmm-diameter-sphere-tipped probe with a force of 250 N with a hold time of 30 seconds between compressions. The "percentage of compression @ 250 N" is the maximum amount of reduction in thickness of the sample during the compression @250 N test. For example, if a 3mm thick sample is compressed to a minimum thickness of 1.5 mm during
either of the two compressions, the sample is said to have a 50% compression @ 250 N. As used herein, the term "compression @ 425 N test" defines a test of a sample where the sample is placed on a flat stationary surface and twice compressed with a lOmm-diameter-sphere-tipped probe with a force of 425 N with a hold time of 30 seconds between compressions. For comparison, a normal human bite force is typically between 400 and 500 N.
In some embodiments, the oral product 110 has a percentage of compression @ 250 N of less than 95%. In certain embodiments, the oral product 110 has a percentage of compression @ 250 N of less than 90%, less than 85%, or less than 80%. In certain embodiments, the oral product 110 has a percentage of compression @ 250 N of at least 10%>, at least 25%>, or at least 40%. For example, the oral product can have a percentage of compression @ 250 N of between 45%) and 80%>. In some embodiments, the oral product 110 has a percentage of compression @ 425 N of less than 99%. In certain embodiments, the oral product 110 has a percentage of compression @ 425 N of less than 98%>, less than 97%>, or less than 96%>. In certain
embodiments, the oral product 110 has a percentage of compression @ 425 N of at least 10%, at least 25%, at least 50%, or at least 60%. For example, the oral product can have a percentage of compression @ 425 N of between 65%> and 98%>.
The springiness of a sample can be measured by measuring the percenage of recovery after a sample is compressed. As used herein, the term "percentage of springiness" means the percentage of thickness recovery of the sample during a 30 second recovery time after being compressed by the compression @ 425 N test using the lOmm-diameter-sphere-tipped probe. For example, if a sample is compressed from an original thickness of 3.0mm to a thickness of 2.0mm and then recovers to 2.5mm after 30 seconds, the springiness of the sample would be 50%). In some embodiments, the oral product 110 has a percentage of springiness of at least 20%. In certain embodiments, the oral product 110 has a percentage of springiness of at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80%. In certain embodiments, the percentage of springiness is less than 95%>, less than 90%>, or less than 87%>. For example, the oral product can have a percentage of springiness of between 75%> and 90%>.
The particular materials used in the oral product 110 and the processing techniques discussed below can have an impact on the compressibility and springiness of the oral product. In addition to different materials have different compressibility and springiness properties, the incorporation of air bubbles or channels, or different fillers and/or fibers can also have an impact
on the elasticity and pliability of the oral product. Additionally, the material properties of the overall oral product 110 can change as additives are released. In some embodiments, fibers and/or fillers can also dissolve or disintegrate during use and thus alter the material properties of the oral product 110 during use.
The oral product 110 can have a variety of colors. In some embodiments, the oral product 110 has an off-white color. In other embodiments, natural and artificial coloring can be added to the mouth-soluble polymer before or during the molding process to form oral products 110 having a predetermined color. Encapsulated flavors can be added during the extrusion process to create speckles, patterns or dots within the oral product.
Polymers
The mouth-soluble polymer can be a variety of different biocompatible and dissolvable polymers. In some embodiments, the mouth-soluble polymer is a polymer generally recognized as safe. Suitable polymers include cellulosics (e.g., carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), and methyl cellulose (MC)), natural polymers (e.g., starches and modified starches, konjac, collagen, inulin, soy protein, whey protein, casein, and wheat gluten), seaweed-derived polymers (e.g., carrageenan (kappa, iota, and lambda), alginates, and propylene glycol alginate), microbial-derived polymers (e.g., xanthan, dextran, pullulan, curdlan, and gellan), extracts (e.g., locust bean gum, guar gum, tara gum, gum tragacanth, pectin (e.g., low methoxy and amidated), agar, zein, karaya, gelatin, psyllium seed, chitin, and chitosan), exudates (e.g., gum acacia (arabic) and shellac), and synthetic polymers (e.g., polyvinyl pyrrolidone, polyethylene oxide, and polyvinyl alcohol). Other useful mouth-soluble polymers are known in the art, for example, see Krochta et al. Food Technology, 1997, 51 :61-74, Glicksman Food HydrocoUoids CRC 1982, Krochta Edible Coatings and Films to Improve Food Quality Technomic 1994, Industrial Gums Academic 1993, Nussinovitch Water-Soluble Polymer Applications in Foods Blackwell Science 2003.
The mouth-soluble polymer forms the mouth-soluble polymer matrix of the oral product 110. In some embodiments, the oral product includes at least 10 weight percent of one or more mouth-soluble polymers. In certain embodiments, the oral product includes at least 20 weight percent, at least 30 weight percent, at least 40 weight percent, at least 50 weight percent, at least
60 weight percent, at least 70 weight percent, at least 80 weight percent, or at least 90 weight percent of one or more mouth-soluble polymers. In certain embodiments, the oral product includes between 10 and 90 weight percent of one or more mouth- soluble polymers.
Accordingly to some embodiments, the oral product includes between 40 and 80 weight percent of the mouth-soluble polymers. Some embodiments of the oral product have between 55 and 70 weight percent polymers.
The mouth-soluble polymer according to certain embodiments has a flexural modulus of at least 5 MPa when tested according to ASTM Testing Method D790 or ISO 178 at 23 degrees Celsius. In some embodiments, the flexural modulus is at least 10 MPa. For example, the flexural modulus can be between 10 MPa and 30 MPa. In some embodiments, the mouth- soluble polymer can have a shore Hardness of 50 Durometers or less, a melt flow index of 3g/10 min at 200°C/10kg, a tensile strength of 10 MPa or more (using ISO 37), and a ultimate elongation of less than 100% (using ISO 37). Additives
A variety of additives can be included in the oral product 110. The additives can include alkaloids (e.g., nicotine or caffeine), minerals, vitamins, dietary supplements, nutraceuticals, energizing agents, soothing agents, coloring agents, amino acids, chemsthetic agent, antioxidants, food grade emulsifiers, pH modifiers, botanicals (e.g., green tea), teeth whitening (e.g., SHRIMP), therapeutic agents, sweeteners, flavorants, and combinations thereof. In certain embodiments, the additives include nicotine, sweeteners, and flavorants. With certain combinations of nicotine, sweeteners, and flavorants, the oral product may provide a flavor profile and tactile experience similar to certain tobacco products.
Nicotine
Nicotine within the oral product can be tobacco-derived nicotine, synthetic nicotine, or a combination thereof. In certain embodiments, the oral product includes between 0.1 mg and 6.0 mg of nicotine. In some of these embodiments, the oral product includes between 1.0 mg and 3.0 mg of nicotine.
Tobacco-derived nicotine includes one or more other tobacco organoleptic components other than nicotine. The tobacco-derived nicotine can be extracted from raw (e.g., green leaf) tobacco and/or processed tobacco. Processed tobaccos can include fermented and unfermented
tobaccos, dark air-cured, dark fire cured, burley, flue cured, and cigar filler or wrapper, as well as the products from the whole leaf stemming operation. The tobacco can also be conditioned by heating, sweating and/or pasteurizing steps as described in U.S. Publication Nos. 2004/0118422 or 2005/0178398. Fermenting typically is characterized by high initial moisture content, heat generation, and a 10 to 20% loss of dry weight. See, e.g., U.S. Patent Nos. 4,528,993; 4,660,577; 4,848,373; and 5,372,149. By processing the tobacco prior to extracting nicotine and other organoleptic components, the tobacco-derived nicotine may include ingredients that provide a favorable experience.
The tobacco-derived nicotine can be obtained by mixing cured and fermented tobacco with water or another solvent (e.g., ethanol) followed by removing the insoluble tobacco material. The tobacco extract may be further concentrated or purified. In some embodiments, select tobacco constituents can be removed. Nicotine can also be extracted from tobacco in the methods described in the following patents: U.S. Patent Nos. 2,162,738; 3,139,436; 3,396,735; 4,153,063; 4,448,208; and 5,487,792.
The nicotine can also be purchased from commercial sources, whether tobacco-derived or synthetic. In other embodiments, the oral product can include a derivative of nicotine (e.g., a salt of nicotine).
Antioxidants
The oral product 110 can also include one or more antioxidants. In some embodiments, an oral product 110 can include a combination of nicotine and antioxidants. Antioxidants can result in a significant reduction in the conversion of nicotine into nicotine-N-oxide when compared to oral products without antioxidants. In some cases, an oral product can include 0.01 and 5.00 weight percent antioxidant, between 0.05 and 1.0 weight percent antioxidant, between 0.10 and 0.75 weigh percent antioxidant, or between 0.15 and 0.5 weight percent antioxidant. Suitable examples of antioxidants include ascorbyl palmitate (a vitamin C ester), BHT, ascorbic acid (Vitamin C), and sodium ascorbate (Vitamin C salt). In some embodiments, monosterol citrate, tocopherols, propyl gallate, tertiary butylhydroquinone (TBHQ), butylated
hydroxyanisole (BHA), Vitamin E, or a derivative thereof can be used as the antioxidant. For example, ascorbyl palmitate can be the antioxidant in the formulations listed in Table I.
Antioxidants can be incorporated into the polymer (e.g., polyurethane) during an extrusion process or after the polymer is extruded (e.g., during a post-extrusion flavoring process).
In some cases, the oral product 110 can have a conversion of less than 0.50 % of nicotine into nicotine-N-oxide after aging the oral product 110 for 2 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.20% of nicotine into nicotine-N-oxide after aging the oral product 110 for 2 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.70% of nicotine into nicotine-N-oxide after aging the oral product 110 for 4 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.30% of nicotine into nicotine-N-oxide after aging the oral product 110 for 4 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.80 % of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.40% of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.30% of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.85 % of nicotine into nicotine-N-oxide after aging the oral product 110 for 8 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.50% of nicotine into nicotine-N-oxide after aging the oral product 110 for 8 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.85 % of nicotine into nicotine-N-oxide after aging the oral product 110 for 10 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.55% of nicotine into nicotine-N-oxide after aging the oral product 110 for 10 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.95 % of nicotine into nicotine-N-oxide after aging the oral product 110 for 12 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.60% of nicotine into nicotine-N-oxide after aging the oral product 110 for 12 weeks at 25 °C and 65% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.0% of nicotine into nicotine-N-oxide after aging the oral product 110 for 2 weeks at 40 °C and 75%
relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.5% of nicotine into nicotine-N-oxide after aging the oral product 110 for 2 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.4% of nicotine into nicotine-N-oxide after aging the oral product 110 for 4 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.8% of nicotine into nicotine-N-oxide after aging the oral product 110 for 4 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.6% of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.2% of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 0.9% of nicotine into nicotine-N-oxide after aging the oral product 110 for 6 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.7% of nicotine into nicotine-N-oxide after aging the oral product 110 for 8 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.4% of nicotine into nicotine-N-oxide after aging the oral product 110 for 8 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.1% of nicotine into nicotine-N-oxide after aging the oral product 110 for 8 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.8% of nicotine into nicotine-N-oxide after aging the oral product 110 for 10 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.3% of nicotine into nicotine-N-oxide after aging the oral product 110 for 10 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.2% of nicotine into nicotine-N-oxide after aging the oral product 110 for 10 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.8% of nicotine into nicotine-N-oxide after aging the oral product 110 for 12 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.7% of nicotine into nicotine-N-oxide after aging the oral product 110 for 12 weeks at 40 °C and 75% relative humidity. In some cases, the oral product 110 can have a conversion of less than 1.5% of nicotine into nicotine-N-oxide after aging the oral product 110 for 12 weeks at 40 °C and 75%
relative humidity. The presence of antioxidant may also reduce the formation of other tobacco derived impurities, such as Cotinine and myosime.
Sweeteners
A variety of synthetic and/or natural sweeteners can be used as additives in the oral product 110. Suitable natural sweeteners include sugars, for example, monosaccharides, disaccharides, and/or polysaccharide sugars, and/or mixtures of two or more sugars. According to some embodiments, the oral product 110 includes one or more of the following: sucrose or table sugar; honey or a mixture of low molecular weight sugars not including sucrose; glucose or grape sugar or corn sugar or dextrose; molasses; corn sweetener; corn syrup or glucose syrup; fructose or fruit sugar; lactose or milk sugar; maltose or malt sugar or maltobiose; sorghum syrup; mannitol or manna sugar; sorbitol or d-sorbite or d-sobitol; fruit juice concentrate; and/or mixtures or blends of one or more of these ingredients. The oral product 110 can also include non-nutritive sweeteners. Suitable non-nutritive sweeteners include: stevia, saccharin;
Aspartame; sucralose; or acesulfame potassium.
Flavorants
The oral product 110 can optionally include one or more flavorants. The flavorants can be natural or artificial. For example, suitable flavorants include wintergreen, cherry and berry type flavorants, various liqueurs and liquors (such as Dramboui, bourbon, scotch, and whiskey) spearmint, peppermint, lavender, cinnamon, cardamon, apium graveolents, clove, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, Japanese mint, cassia, caraway, cognac, jasmin, chamomile, menthol, ylang ylang, sage, fennel, pimenta, ginger, anise, coriander, coffee, liquorish, and mint oils from a species of the genus Mentha, and encapsulated flavors. Mint oils useful in particular embodiments of the oral product 110 include spearmint and peppermint. Synthetic flavorants can also be used. In certain embodiments, a combination of flavorants can be combined to imitate a tobacco flavor. The particular combination of flavorants can be selected from the flavorants that are generally recognized as safe ("GRAS") in a particular country, such as the United States. Flavorants can also be included in the oral product as encapsulated flavorants.
In some embodiments, the flavorants in the oral product 110 are limited to less than 20 weight percent in sum. In some embodiments, the flavorants in the oral product 110 are limited
to be less than 10 weight percent in sum. For example, certain flavorants can be included in the oral product 110 in amounts of about 1 weight percent to 5 weight percent.
Other Additives
The oral product 110 may optionally include other additives. For example, these additives can include non-nicotine alkaloids (e.g., caffeine), dietary minerals, vitamins, dietary supplements, therapeutic agents, and fillers.
According to certain embodiments, the oral product 110 includes caffeine. A caffeinated oral product can include synthetic caffeine and/or coffee-bean-extracted caffeine. In some embodiments, a caffeinated oral product includes coffee flavors and sweeteners. According to some embodiments, an oral product can include between 10 and 200 mg of caffeine. Oral products 110 can also include vitamins, dietary minerals, other dietary supplements, and/or therapeutic agents. For example, suitable vitamins include vitamins A, Bl, B2, B6, C, D2, D3, E, F, K, and P. For example, an oral product 110 can include C-vitamins with or without the presence of nicotine or caffeine. Suitable dietary minerals include calcium (as carbonate, citrate, etc.) or magnesium (as oxide, etc.), chromium (usually as picolinate), and iron (as bis-glycinate). One or more dietary minerals could be included in an oral product with or without the use of other additives. Other dietary supplements and/or therapeutic agents can also be included as additives.
The oral product 110 can also include fillers such as starch, di-calcium phosphate, lactose, sorbitol, mannitol, and microcrystalline cellulose, calcium carbonate, dicalcium phosphate, calcium sulfate, clays, silica, glass particles, sodium lauryl sulfate (SLS), glyceryl palmitostearate, sodium benzoate, sodium stearyl fumarate, talc, and stearates (e.g., Mg or K), and waxes (e.g., glycerol monostearate, propylene glycol monostearate, and acetylated monoglycerides), stabilizers (e.g., ascorbic acid and monosterol citrate, BHT, or BHA), disintegrating agents (e.g., starch, sodium starch glycolate, cross caramellose, cross linked PVP), pH stabilizers, or preservatives. In some embodiments, the amount of filler in the oral product 110 is limited to less than 10 weight percent in sum. In some embodiments, the amount of filler in the oral product 110 is limited to be less than 5 weight percent in sum. In some embodiments, the fillers are mouth stable. In other embodiments, the fillers can dissolve or disintegrate during use and thus result in an oral product that becomes more pliable during use.
Fibers
The oral product can include fibers within the mouth-soluble polymer matrix. The fibers can be mixed with the mouth-soluble polymer prior to or during an extrusion process. The fibers provide passages in the mouth-soluble polymer matrix, which can permit certain additives within the mouth-soluble polymer matrix to be released into an oral cavity when the oral product is received in an oral cavity and exposed to saliva. The additives can be absorbed in fiber-polymer matrix and/or form pockets within the mouth-soluble polymer matrix, which can be accessed via the fibers. The oral product 110 can also include channels formed adjacent the fibers. In some embodiments, the fibers are hydrophilic such that water-soluble additives can be wicked by the fibers. In some embodiments, the fibers can dissolve to leave channels.
The fibers can be cellulosic fibers. The cellulosic fibers can be derived from plant tissue. Suitable sources for cellulosic fibers include wood pulp, cotton, sugar beets, bran, citrus pulp fiber, switch grass and other grasses, Salix (willow), tea, and Populus (poplar). In some embodiments, the cellulosic fibers can be plant tissue comprising various natural flavors, sweeteners, or active ingredients. In some embodiments, the oral product 110 can include nicotine as an additive (optionally with additional sweeteners and flavors) and non-tobacco cellulosic fiber, and thus be substantially free of tobacco plant tissue.
In some alternative embodiments, the cellulosic fiber can be derived from tobacco plant tissue. For example, the oral product can include exhausted tobacco fibers within the mouth- soluble polymer matrix. As used herein, "exhausted tobacco plant tissue" is tobacco plant tissue that has been treated to remove at least 10 percent of the tobacco's nicotine. In some
embodiments, the exhausted tobacco plant tissue can be treated to remove at least 25%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or 95% of the nicotine. For example, the tobacco plant tissue can be washed with water or another solvent to remove the nicotine.
The cellulosic fibers can have a variety of dimensions. The dimensions of the fibers (in addition to the amount) can impact the release characteristics of the additives. For example, cellulosic fibers can be hydrophilic, thus water soluble additives (e.g., nicotine) can
preferentially be absorbed in fiber-polymer matrix. In certain embodiments, the cellulosic fiber can be processed to have an average fiber size of less than 200 micrometers. In particular embodiments, the fibers are between 75 and 125 micrometers. In other embodiments, the fibers
are processed to have a size of 75 micrometers or less. Exemplary average sizes are in the range of 1 to 1000 .mu.m, e.g., about 800, 500, 250, 100, 80, 75, 50, 25, 20, 15, 10, 8, 6, 5, 3, 2, or 1 micrometers or less.
The oral product 110 can also include soluble fibers. The soluble fibers can be adapted to dissolve faster than the mouth-soluble polymer matrix when exposed to saliva when the oral product 110 is received in an oral cavity. In some embodiments, the soluble fiber can include maltodextrin. The maltodextrin can be derived from corn. For example, Soluble Dietary Fiber can be included in an oral product 110. Soluble fibers can be used alone or with cellulosic fibers to provide channels for additives to be released from the oral product 110. As the soluble fibers dissolve, the oral product 110 can become more flexible and the additional channels can open up to permit the release of additional additive deposits. Suitable soluble fibers include psyllium fibers. In other embodiments, the fibers can be partially soluble. For example, sugar beet fibers can partially dissolve during use.
In some embodiments, an oral product 110 can include a combination of soluble and insoluble fibers. The ratio of soluble to insoluble fiber can impact the softness of texture of the oral product 110. The ratio of soluble to insoluble fiber can also impact the compressibility of the oral product 110. In some embodiments, a ratio of soluble to insoluble fiber is between 1 :60 and 60: 1. In some embodiments, the ratio of soluble to insoluble fiber is greater than 1 :50, greater than 1 :40, greater than 1 :30, greater than 1 :20, greater than 1 : 10, or greater than 1 :5. In some embodiments, the ratio of soluble to insoluble fiber is less than 1 :1, less than 1 :2, less than 1 :5, less than 1 : 10, less than 1 :20, or less that 1 :30. In some case, an oral product having a mixture of soluble and insoluble fibers can have a percentage of compression @ 250 N of between 60 percent and 98 percent, between 65 percent and 95 percent, between 70 percent and 90 percent, or between 80 and 89 percent.
The inclusion of soluble fiber can increase the compressibility of the oral product, which can also be perceived as a softer mouth feel by an adult tobacco consumer. The soluble and the insoluble exhausted-tobacco fiber can be pre-mixed and added into the process via a single feeder. Separate fiber feeders can also be used to produce a desired ratio. In some cases, the inclusion of about 1-3 % of soluble fiber and about 25-35% insoluble fiber can result in a Compression @250N of between 70% and 90%.
Plasticizers
The oral product 110 can also include one or more plasticizers. Plasticizers can soften the final oral product and thus increase its flexibility. Plasticizers work by embedding themselves between the chains of polymers, spacing them apart (increasing the "free volume"), and thus significantly lowering the glass transition temperature for the plastic and making it softer. Suitable plasticizers include propylene glycol, glycerin, vegetable oil, and medium chain triglycerides. In some embodiments, the plasticizer can include phthalates. Esters of polycarboxylic acids with linear or branched aliphatic alcohols of moderate chain length can also be used as plasticizers. Moreover, plasticizers can facilitate the extrusion processes described below. In some embodiments, the oral product 110 can include up to 20 weight percent plasticizer. In some embodiments, the oral product 110 includes between 0.5 and 10 weight percent plasticizer, the oral product 110 can include between 1 and 8 weight percent plasticizer, or between 2 and 4 weight percent plasticizer. For example, an oral product comprising a polyurethane polymer matrix and include about 3 to 6.5 weight percent of propylene glycol.
Molding Processes
The oral product 110 can be produced by extruding a mouth-soluble polymer (e.g., starch) with fibers (e.g., cellulosic fiber) and/or additive (e.g., nicotine) to form a rod of a mouth- soluble polymer matrix including fibers and/or additives. The rod is cut into individual oral products 110.
In addition to extrusion, there are many methods for making and shaping the oral products. In some embodiments, extruded and cut pieces can be introduced into a compression mold to form a final oral product shape. In other embodiments, the oral product 110 can be injection molded, compression molded, or injection-compression molded. Blocks of polymer, fiber, and/or additive can also be formed and machined into a desired shape.
A coated stick oral product, such as shown in Figure 4, can be produced by forming a slurry of the mouth-soluble polymer, the cellulosic fibers, nicotine, and one or more additional additives; applying the slurry to the stick, and drying the coating. The slurry can be made by mixing the materials together with one or more solvents (e.g., water, ethanol). The slurry can be applied to the stick by dipping the stick into the slurry, either by hand or by machine. A dipping
procedure can include multiple dips with partial drying steps in between. One or more layers can be applied to obtain a coating having a thickness of between 0.1 mm and 2 mm on the stick. The coated stick can then be dried in a curing chamber to obtain a desired dryness. A plurality of coated sticks can be packaged together in a rectangular package.
Other Embodiments
It is to be understood that, while the invention has been described herein in conjunction with a number of different aspects, the foregoing description of the various aspects is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Disclosed are methods and compositions that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods and compositions. These and other materials are disclosed herein, and it is understood that combinations, subsets, interactions, groups, etc. of these methods and compositions are disclosed. That is, while specific reference to each various individual and collective combinations and permutations of these compositions and methods may not be explicitly disclosed, each is specifically
contemplated and described herein. For example, if a particular composition of matter or a particular method is disclosed and discussed and a number of compositions or methods are discussed, each and every combination and permutation of the compositions and the methods are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed.
What is claimed is:
Claims (35)
1. An oral product, comprising a body that is wholly receivable in an oral cavity, the body comprising:
a mouth-soluble polymer matrix;
cellulosic fibers embedded in the mouth-soluble polymer matrix; and nicotine or a derivative thereof dispersed in the mouth-soluble polymer matrix such that the nicotine or derivative thereof is released from the body when the body is at least partially received within the oral cavity and exposed to saliva.
2. An oral product, comprising:
a stick; and
a coating on the stick, the coating comprising:
a mouth-soluble polymer matrix;
cellulosic fibers embedded in the mouth-soluble polymer matrix; and nicotine or a derivative thereof dispersed in the mouth-soluble polymer matrix such that the nicotine or derivative thereof is released from the coating when the coating is at least partially received within the oral cavity and exposed to saliva.
3. The oral product of claim 1 or claim 2, wherein the mouth-soluble polymer matrix
comprises starch.
4. The oral product of one of the proceeding claims, further comprising a plasticizer
dispersed in the mouth-soluble polymer matrix.
5. The oral product of claim 4, wherein the plasticizer is selected from the group consisting of propylene glycol, glycerin, vegetable oil, triglycerides, and combinations thereof.
6. The oral product of one of the proceeding claims, further comprising a sweetener
dispersed in the mouth-soluble polymer matrix.
7. The oral product of claim 6, wherein the sweetener is selected from the group consisting of saccharine, sucralose, aspartame, acesulfame potassium, and combinations thereof.
8. The oral product of one of the proceeding claims, wherein the nicotine is tobacco-derived nicotine.
9. The oral product of one of claims 1-7, wherein the nicotine is synthetic nicotine.
10. The oral product of one of the proceeding claims, wherein the oral product is
substantially free of tobacco plant tissue.
11. The oral product of one of the proceeding claims, further comprising an additive selected from the group consisting of minerals, vitamins, dietary supplements, nutraceuticals, energizing agents, soothing agents, amino acids, chemsthetic agents, antioxidants, botanicals, teeth whitening agents, therapeutic agents, and combinations thereof, wherein the additive is dispersed in the body or cellulosic fibers such that the additive is released when the body is held within a mouth of an adult consumer.
12. The oral product of one of the proceeding claims, further comprising a flavorant
dispersed in the mouth-soluble polymer matrix or cellulosic fibers such that the flavorant is released when placed within a mouth of an adult consumer.
13. The oral product of claim 12, wherein the flavorant is selected from the group consisting of licorice, wintergreen, cherry and berry type flavorants, Dramboui, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cinnamon, cardamon, apium graveolents, clove, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, Japanese mint, cassia, caraway, cognac, jasmin, chamomile, menthol, ylang ylang, sage, fennel, pimenta, ginger, anise, coriander, coffee, mint oils from a species of the genus Mentha, and combinations thereof.
14. The oral product of one of claims 1 and 3-13, wherein the body is shield shaped.
15. The oral product of claim 14, wherein the body has a diameter of between 5 mm and 25 mm and a thickness of between 1 mm and 10 mm.
16. The oral product of claim 1, wherein the mouth-soluble polymer matrix comprises at least 10 weight percent cellulosic fibers.
17. The oral product of claim 2, wherein the coating comprises at least 10 weight percent cellulosic fibers.
18. The oral product of one of the proceeding claims, wherein the cellulosic fibers are non- tobacco cellulosic fibers.
19. The oral product of claim 18, wherein the cellulosic fibers are sugar beet fibers, wood pulp fiber, cotton fiber, bran fiber, citrus pulp fiber, grass fiber, willow fiber, and poplar fiber.
20. The oral product of claim 1, wherein the body comprises at least 10 weight percent of the mouth-soluble polymer.
21. The oral product of claim 2, wherein the coating comprises at least 10 weight percent of the mouth-soluble polymer.
22. The oral product of one of the proceeding claims, wherein the oral product comprises between 0.1 mg and 6 mg nicotine.
23. The oral product of claim 1, wherein the body has a compressibility @ 250 N of less than 95%.
24. The oral product of claim 1, wherein the body has a compressibility @ 250 N of less than 80%.
25. The oral product of claim 1, wherein the body has a compressibility @ 250 N of between 45% and 90%.
26. The oral product of claim 1, wherein the body has a compressibility @ 425 N of less than 99%.
27. The oral product of claim 1, wherein the body has a compressibility @ 425 N of between 60% and 98%.
28. The oral product of claim 1, wherein the body has a percentage of springiness of at least 20%.
29. The oral product of claim 1, wherein the body has a percentage of springiness of at least 70%.
30. The oral product of claim 1, wherein the body has a percentage of springiness of between 75% and 90%.
31. A method of forming an oral product comprising:
extruding a mouth-soluble polymer having cellulosic fibers dispersed therein; and dispersing nicotine or derivative thereof within the mouth-soluble polymer during or after the extruding step.
32. The method of claim 31 , further comprising cutting the extruded mixture of mouth- soluble polymer and cellulosic fibers into individual oral products sized to be at least partially received in an oral cavity of an adult consumer.
33. The method of claim 31 , further comprising cutting the extruded mixture into elongated rods having a length of between 2 cm and 10 cm.
34. A method of forming an oral product comprising:
forming a slurry of mouth-soluble polymer, cellulosic fibers, and nicotine or a derivative thereof;
applying the slurry to a stick; and
drying the slurry applied to the stick to form a coated stick.
35. The method of claim 34, wherein the stick is a wooden dowel.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261588890P | 2012-01-20 | 2012-01-20 | |
US61/588,890 | 2012-01-20 | ||
PCT/US2013/022204 WO2013109931A2 (en) | 2012-01-20 | 2013-01-18 | Oral product |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2013204417A1 true AU2013204417A1 (en) | 2013-08-08 |
AU2013204417B2 AU2013204417B2 (en) | 2016-07-21 |
Family
ID=47049750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013204417A Active AU2013204417B2 (en) | 2012-01-20 | 2013-01-18 | Oral Product |
Country Status (9)
Country | Link |
---|---|
US (5) | US9930909B2 (en) |
EP (3) | EP2804498B1 (en) |
JP (2) | JP6300733B2 (en) |
CN (2) | CN102754907B (en) |
AU (1) | AU2013204417B2 (en) |
CA (1) | CA2861992C (en) |
HK (1) | HK1204232A1 (en) |
RU (1) | RU2617262C2 (en) |
WO (1) | WO2013109931A2 (en) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103040090B (en) | 2012-01-20 | 2016-03-30 | 奥驰亚客户服务公司 | Remove the oral product of tobacco |
CN103039688B (en) | 2012-01-20 | 2016-01-06 | 奥驰亚客户服务公司 | Oral product |
CN102754907B (en) | 2012-01-20 | 2015-06-24 | 奥驰亚客户服务公司 | Oral product |
CN102754908B (en) | 2012-01-20 | 2015-06-10 | 奥驰亚客户服务公司 | Oral tobacco product |
US9854831B2 (en) | 2012-01-20 | 2018-01-02 | Altria Client Services Llc | Oral product |
US9386800B2 (en) | 2012-09-21 | 2016-07-12 | R.J. Reynolds Tobacco Company | Fibrous composite tobacco-containing materials |
US9591875B2 (en) | 2012-09-21 | 2017-03-14 | R. J. Reynolds Tobacco Company | Fibrous composite tobacco-containing materials |
CN103005680B (en) * | 2013-01-15 | 2015-03-25 | 陈孝忠 | Geranium scent type snuff |
WO2015009913A1 (en) | 2013-07-19 | 2015-01-22 | Altria Client Services Inc. | Methods and systems for incorporating nicotine into oral products |
US11771127B2 (en) * | 2013-10-03 | 2023-10-03 | Altria Client Services Llc | Chewable dissolvable nicotine tablet |
US10105320B2 (en) | 2013-10-03 | 2018-10-23 | Altria Client Services | Soluble fiber lozenge |
US10244786B2 (en) | 2013-10-03 | 2019-04-02 | Altria Client Services Llc | Tobacco lozenge |
US9351936B2 (en) | 2013-10-03 | 2016-05-31 | Altria Client Services Llc | Nicotine lozenge |
ES2842585T3 (en) * | 2013-10-03 | 2021-07-14 | Altria Client Services Llc | Lozenge to suck |
US11779045B2 (en) * | 2013-10-03 | 2023-10-10 | Altria Client Services Llc | Dissolvable-chewable exhausted-tobacco tablet |
WO2015051306A1 (en) * | 2013-10-03 | 2015-04-09 | Altria Client Services Inc. | Dissolvable chewable tablet |
US9999243B2 (en) | 2013-10-03 | 2018-06-19 | Altria Client Services Llc | Exhausted tobacco lozenge |
CN103494323A (en) * | 2013-10-08 | 2014-01-08 | 红塔烟草(集团)有限责任公司 | Smoke-free tobacco capable of reducing throat irritation and preparing method of smoke-free tobacco |
CN103494321A (en) * | 2013-10-08 | 2014-01-08 | 红塔烟草(集团)有限责任公司 | Smokeless tobacco product with jasmine tea scent |
CN103494324A (en) * | 2013-10-08 | 2014-01-08 | 红塔烟草(集团)有限责任公司 | Bagged snus and manufacturing method thereof |
US10357054B2 (en) | 2013-10-16 | 2019-07-23 | R.J. Reynolds Tobacco Company | Smokeless tobacco pastille |
CN104172461A (en) * | 2014-08-20 | 2014-12-03 | 云南中烟工业有限责任公司 | Method for using red wine to promote cigarette smoking quality |
US20160157515A1 (en) | 2014-12-05 | 2016-06-09 | R.J. Reynolds Tobacco Company | Smokeless tobacco pouch |
CN105077564B (en) * | 2015-07-10 | 2017-03-01 | 四川中烟工业有限责任公司 | Buccal cigarette with Rhizoma amorphophalli as substrate and preparation method thereof |
US10375984B2 (en) | 2016-07-18 | 2019-08-13 | R.J. Reynolds Tobacco Company | Nonwoven composite smokeless tobacco product |
US20180221611A1 (en) * | 2017-02-05 | 2018-08-09 | Terence Gilhuly | Better bite block |
WO2018154759A1 (en) * | 2017-02-27 | 2018-08-30 | 日本たばこ産業株式会社 | Oral tobacco product |
CA3085204C (en) | 2017-12-15 | 2023-01-17 | Swedish Match North Europe Ab | A flavoured moist oral pouched nicotine product comprising monoglyceride |
DK3773495T3 (en) | 2019-06-07 | 2023-01-16 | Philip Morris Products Sa | COMPOSITION OF NICOTINE POUCH |
TW202126192A (en) | 2019-11-15 | 2021-07-16 | 瑞士商傑太日煙國際股份有限公司 | Hot pressed tobacco substrate |
RU2745039C1 (en) * | 2019-11-22 | 2021-03-18 | Кирилл Вадимович Альтшуллер | Nicotine edible paper |
US11969502B2 (en) | 2019-12-09 | 2024-04-30 | Nicoventures Trading Limited | Oral products |
US11793230B2 (en) | 2019-12-09 | 2023-10-24 | Nicoventures Trading Limited | Oral products with improved binding of active ingredients |
US11872231B2 (en) | 2019-12-09 | 2024-01-16 | Nicoventures Trading Limited | Moist oral product comprising an active ingredient |
US11883527B2 (en) | 2019-12-09 | 2024-01-30 | Nicoventures Trading Limited | Oral composition and method of manufacture |
US11889856B2 (en) | 2019-12-09 | 2024-02-06 | Nicoventures Trading Limited | Oral foam composition |
CA3160750A1 (en) | 2019-12-09 | 2021-06-17 | Anthony Richard Gerardi | Oral product comprising a cannabinoid |
US11672862B2 (en) | 2019-12-09 | 2023-06-13 | Nicoventures Trading Limited | Oral products with reduced irritation |
US11826462B2 (en) | 2019-12-09 | 2023-11-28 | Nicoventures Trading Limited | Oral product with sustained flavor release |
US20210169786A1 (en) * | 2019-12-09 | 2021-06-10 | Nicoventures Trading Limited | Oral composition with beet material |
US11617744B2 (en) | 2019-12-09 | 2023-04-04 | Nico Ventures Trading Limited | Moist oral compositions |
US11712059B2 (en) | 2020-02-24 | 2023-08-01 | Nicoventures Trading Limited | Beaded tobacco material and related method of manufacture |
US12016369B2 (en) | 2020-04-14 | 2024-06-25 | Nicoventures Trading Limited | Regenerated cellulose substrate for aerosol delivery device |
SE544672C2 (en) * | 2020-05-07 | 2022-10-11 | Liw Innovation Ab | New compositions for oral or nasal use |
US11839602B2 (en) | 2020-11-25 | 2023-12-12 | Nicoventures Trading Limited | Oral cannabinoid product with lipid component |
US20220313679A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Controlled-release nicotine chewing gum |
US20220312826A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Liquid mixtures of triglyceride and liquid nicotine |
US20220313678A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Spray dried nicotine for inclusion in oral products |
US20220312825A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Oral pouch product |
US20220312822A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Encapsulated sweetener granules and methods of preparation thereof |
US20220313614A1 (en) | 2021-04-06 | 2022-10-06 | Altria Client Services Llc | Encapsulated nicotine granules and methods of preparation thereof |
CA3216265A1 (en) * | 2021-04-22 | 2022-10-27 | Michael Andrew Zawadzki | Orally dissolving films |
WO2023110984A1 (en) * | 2021-12-16 | 2023-06-22 | Philip Morris Products S.A. | Novel hollow oral nicotine product |
DK181399B1 (en) * | 2022-01-28 | 2023-10-06 | Mac Baren Tobacco Company As | Pouch composition with specific nicotine to solvent ratio |
WO2023152119A1 (en) * | 2022-02-09 | 2023-08-17 | Philip Morris Products S.A. | Oral nicotine product with chewable carrier element |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1977059A (en) | 1931-04-13 | 1934-10-16 | Frank A Garbutt | Method of making a chewing gum base |
US2162738A (en) | 1937-08-18 | 1939-06-20 | Clarence E Mccoy | Extracting nicotine from tobacco |
US3139436A (en) | 1958-06-09 | 1964-06-30 | Merck & Co Inc | Nu-2-benzothiazolylsulfonylbenzamide |
DE1517273B2 (en) | 1965-04-15 | 1976-06-24 | Eresta Warenhandelsgesellschaft mbH, 6052 Mühlheim | PROCESS FOR CONTINUOUS EXTRACTION OF NICOTINE FROM TOBACCO AND FOR THE OBTAINING PRE-CONCENTRATED NICOTINE SALT SOLUTIONS |
US4153063A (en) | 1970-09-02 | 1979-05-08 | Studiengesellschaft Kohle Mbh | Process for the extraction of nicotine from tobacco |
US4241090A (en) | 1978-12-21 | 1980-12-23 | Life Savers, Inc. | Non-adhesive chewing gums and method |
DE3101768A1 (en) | 1981-01-21 | 1982-08-26 | Fabriques de Tabac Réunies S.A., 2003 Neuchâtel | DEVICE FOR EXTRACTING LIQUID-SOLUBLE COMPONENTS FROM SMALL-CUT PLANT PRODUCTS |
US4660577A (en) | 1982-08-20 | 1987-04-28 | R.J. Reynolds Tobacco Company | Dry pre-mix for moist snuff |
US4528993A (en) | 1982-08-20 | 1985-07-16 | R. J. Reynolds Tobacco Company | Process for producing moist snuff |
US4516590A (en) | 1982-11-26 | 1985-05-14 | Philip Morris Incorporated | Air-cured bright tobacco filler, blends and smoking articles |
JPS59166073A (en) | 1983-03-10 | 1984-09-19 | 東レ株式会社 | Tobacco filter |
US4606357A (en) | 1984-11-19 | 1986-08-19 | Dusek Russell L | Tobacco composition |
ZA88128B (en) | 1987-01-30 | 1989-02-22 | Warner Lambert Co | Reduced and low-calorie sugar and sugarless chewing gum compositions containing fiber |
US4983405A (en) | 1987-01-30 | 1991-01-08 | Warner-Lambert Company | Reduced and low-calorie sugar and sugarless chewing gum compositions containing fiber |
US4848373A (en) | 1987-04-13 | 1989-07-18 | Helme Tobacco Company | Nicotine removal process and product produced thereby |
US4975270A (en) | 1987-04-21 | 1990-12-04 | Nabisco Brands, Inc. | Elastomer encased active ingredients |
US5176151A (en) | 1987-08-27 | 1993-01-05 | Harding Glen R | Oral prophylactics |
US4987907A (en) | 1988-06-29 | 1991-01-29 | Helme Tobacco Company | Chewing tobacco composition and process for producing same |
US4978537A (en) | 1989-04-19 | 1990-12-18 | Wm. Wrigley Jr. Company | Gradual release structures for chewing gum |
US5525351A (en) * | 1989-11-07 | 1996-06-11 | Dam; Anders | Nicotine containing stimulant unit |
US5144967A (en) | 1990-10-22 | 1992-09-08 | Kimberly-Clark Corporation | Flavor release material |
CN1033788C (en) | 1991-03-08 | 1997-01-15 | 不二制油株式会社 | Process for preparation of water-solubility vegetable fibres, biological decomposability membrane, paste, chewing-gum and low heat foods |
US5372149A (en) | 1992-03-25 | 1994-12-13 | Roth; David S. | Sterilization process in the manufacturing of snuff |
US5417229A (en) * | 1993-07-20 | 1995-05-23 | Summers; John K. | Organoleptic bite composition for human consumption |
DE4416752A1 (en) | 1994-05-13 | 1995-11-16 | Schloemann Siemag Ag | Process and production plant for the production of hot wide strip |
US5487792A (en) | 1994-06-13 | 1996-01-30 | Midwest Research Institute | Molecular assemblies as protective barriers and adhesion promotion interlayer |
US5656284A (en) * | 1995-04-24 | 1997-08-12 | Balkin; Michael S. | Oral transmucosal delivery tablet and method of making it |
US5906811A (en) | 1997-06-27 | 1999-05-25 | Thione International, Inc. | Intra-oral antioxidant preparations |
CN1207251A (en) | 1997-07-31 | 1999-02-10 | 彭泽良 | Betelnut chewing-gum and its producing process |
BR0016026A (en) | 1999-12-30 | 2002-11-26 | Wrigley W M Jun Co | Release of lipophilic active agents from chewing gum |
WO2002076230A1 (en) | 2001-03-23 | 2002-10-03 | Gumlink A/S | Degradable elastomers for chewing gum base |
JP4354700B2 (en) | 2001-03-23 | 2009-10-28 | ガムリンク エー/エス | Coated degradable chewing gum with improved shelf life and process for its preparation |
DK1370150T3 (en) | 2001-03-23 | 2008-03-25 | Gumlink As | t-step process for chewing gum |
US20060157072A1 (en) | 2001-06-08 | 2006-07-20 | Anthony Albino | Method of reducing the harmful effects of orally or transdermally delivered nicotine |
DE60105820D1 (en) | 2001-10-22 | 2004-10-28 | Pera Ivo E | Composition for reducing or weaning nicotine addiction |
US20040101543A1 (en) * | 2002-03-22 | 2004-05-27 | John Liu | Nicotine-containing oral dosage form |
AU2003261187B2 (en) | 2002-07-18 | 2009-10-22 | Phasex Corporation | Reduction of constituents in tobacco |
US20040118422A1 (en) | 2002-12-19 | 2004-06-24 | Swedish Match North Europe Ab | Tobacco dough and a method for its manufacture |
JP4708795B2 (en) | 2002-12-20 | 2011-06-22 | ニコノヴァム エービー | Physically and chemically stable nicotine-containing particulate matter |
US7913700B2 (en) * | 2002-12-31 | 2011-03-29 | Smokey Mountain Chew, Inc. | Nontobacco moist snuff composition |
US20060051455A1 (en) | 2003-02-04 | 2006-03-09 | Lone Andersen | Compressed chewing gum tablet |
US20040151771A1 (en) | 2003-02-04 | 2004-08-05 | Gin Jerry B. | Long-lasting, flavored dosage forms for sustained release of beneficial agents within the mouth |
ATE461681T1 (en) | 2003-04-29 | 2010-04-15 | Gen Hospital Corp | METHODS AND DEVICES FOR SUSTAINED RELEASE OF MULTIPLE DRUGS |
US20060112965A1 (en) * | 2003-08-11 | 2006-06-01 | Whalen William F | Chewing tobacco substitute containing cotinine |
JP4541785B2 (en) | 2003-09-01 | 2010-09-08 | キヤノン株式会社 | Vibration type actuator drive control device and vibration type actuator drive control method |
ATE422355T1 (en) * | 2003-09-08 | 2009-02-15 | Mcneil Ab | NICOTINE FORMULATIONS AND THEIR USE |
ZA200604406B (en) * | 2003-11-07 | 2008-12-31 | Us Smokeless Tobacco Co | Tobacco compositions |
AU2004289248B2 (en) | 2003-11-07 | 2012-05-03 | U.S. Smokeless Tobacco Company Llc | Tobacco compositions |
US8627828B2 (en) | 2003-11-07 | 2014-01-14 | U.S. Smokeless Tobacco Company Llc | Tobacco compositions |
AU2004308498A1 (en) | 2003-12-22 | 2005-07-14 | U.S. Smokeless Tobacco Company | Conditioning process for tobacco and/or snuff compositions |
US8067029B2 (en) * | 2004-01-13 | 2011-11-29 | Mcneil-Ppc, Inc. | Rapidly disintegrating gelatinous coated tablets |
CN2720557Y (en) | 2004-05-21 | 2005-08-24 | 上海海润影视制作有限公司 | Portable display device |
WO2006000233A1 (en) | 2004-06-29 | 2006-01-05 | Fertin Pharma A/S | Tobacco alkaloid containing chewing gum |
JP2006032246A (en) * | 2004-07-21 | 2006-02-02 | Sanyo Electric Co Ltd | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery |
US7594754B2 (en) * | 2004-07-26 | 2009-09-29 | Costello Steven D | Leaf collection apparatus |
US20060024833A1 (en) * | 2004-07-27 | 2006-02-02 | Molecular Probes, Inc. | Fluorescent metal ion indicators with large stokes shift |
WO2006037319A1 (en) * | 2004-10-08 | 2006-04-13 | Gumlink A/S | Confectionery product |
CA2589489C (en) | 2004-11-30 | 2014-04-22 | Fertin Pharma A/S | Method of providing fast relief to a user of a nicotine chewing gum |
US7759312B2 (en) | 2005-03-11 | 2010-07-20 | Endo Pharmaceuticals Solutions Inc. | Delivery of dry formulations of octreotide |
EP1895992A4 (en) | 2005-05-23 | 2012-03-28 | Kraft Foods Global Brands Llc | Compressible gum based delivery systems for the release of ingredients |
CN1903057A (en) | 2005-07-07 | 2007-01-31 | 陈�光 | Licorice root chewing gum, and prepn. method therefor |
RU2291642C1 (en) | 2005-08-04 | 2007-01-20 | Олег Иванович Квасенков | Method for manufacturing canned food "schi with cabbage and potatoes" of special indication (variants) |
US7819124B2 (en) | 2006-01-31 | 2010-10-26 | U.S. Smokeless Tobacco Company | Tobacco articles and methods |
RU2436565C2 (en) * | 2006-02-17 | 2011-12-20 | Новартис Аг | Disintegrating oral films |
CA2646942C (en) | 2006-03-16 | 2014-07-29 | Niconovum Ab | Improved snuff composition |
JP2009529343A (en) | 2006-03-16 | 2009-08-20 | ニコノヴァム エービー | Chewing gum composition providing rapid release of nicotine |
CN101437496A (en) * | 2006-03-16 | 2009-05-20 | 尼科诺瓦姆股份公司 | Chewing gum compositions providing rapid release of nicotine |
CN101528199B (en) * | 2006-03-16 | 2013-05-29 | 尼科诺瓦姆股份公司 | Improved snuff composition |
US8047209B2 (en) * | 2006-06-08 | 2011-11-01 | May Jr Lawrence Chester | Composition for tobacco substitute |
CN1961732A (en) | 2006-11-20 | 2007-05-16 | 王豪良 | Chewing food containing plant fiber |
GB0700889D0 (en) * | 2007-01-17 | 2007-02-21 | British American Tobacco Co | Tobacco, tobacco derivative and/or tobacco substitute products, preparation and uses thereof |
BRPI0807783A2 (en) * | 2007-02-23 | 2014-06-24 | Us Smokeless Tobacco Co | SMOKE-FREE TOBACCO COMPOSITION, METHODS FOR PRODUCING PLANT VARIETY AND FOR PREPARING TOBACCO WITH REDUCED AMARGOR, TOBACCO PLANT, AND CURED TOBACCO. |
US8616221B2 (en) | 2007-02-28 | 2013-12-31 | Philip Morris Usa Inc. | Oral pouch product with flavored wrapper |
US20080233234A1 (en) * | 2007-03-12 | 2008-09-25 | Wm. Wrigley Jr. Company | Chewing gum and gum bases containing polyolefin thermoplastic elastomers |
WO2008133982A2 (en) | 2007-04-27 | 2008-11-06 | Lectec Corporation | Adhesive patch with aversive agent |
WO2009007854A2 (en) | 2007-06-08 | 2009-01-15 | Philip Morris Products S.A. | Oral pouch product including soluble dietary fibers |
US20100260690A1 (en) | 2007-09-18 | 2010-10-14 | Arne Kristensen | Stable chewing gum compositions comprising maltitol and providing rapid release of nicotine |
CN107048483A (en) * | 2007-10-11 | 2017-08-18 | 菲利普莫里斯生产公司 | Smokeless tobacco product |
US8336557B2 (en) * | 2007-11-28 | 2012-12-25 | Philip Morris Usa Inc. | Smokeless compressed tobacco product for oral consumption |
CN101932416B (en) | 2007-12-21 | 2013-12-04 | 三菱化学株式会社 | Fiber composite |
US20120167901A1 (en) * | 2008-01-10 | 2012-07-05 | Gael Onno | Tobacco Product for Oral Use |
CN201156955Y (en) * | 2008-02-29 | 2008-12-03 | 中国烟草总公司郑州烟草研究院 | Buccal clubbed tobacco and sugar |
DE102008015101A1 (en) | 2008-03-19 | 2009-09-24 | Maria Clementine Martin Klosterfrau Vertriebsgesellschaft Mbh | Chewing composition and its use |
US8811339B2 (en) | 2008-07-07 | 2014-08-19 | Blackberry Limited | Handover schemes for wireless systems |
US8349900B2 (en) | 2008-08-07 | 2013-01-08 | Valeant International Bermuda | Bupropion hydrobromide polymorphs |
US20110053866A1 (en) | 2008-08-12 | 2011-03-03 | Biovail Laboratories International (Barbados) S.R.L. | Pharmaceutical compositions |
US20110139166A1 (en) * | 2008-08-21 | 2011-06-16 | Luzenberg Jr Robert S | Tobacco Substitute |
US20120031415A1 (en) * | 2008-11-05 | 2012-02-09 | Swedish Match North Europe Ab | Non-tobacco moist snuff composition and a method for its manufacture |
CN102325472B (en) * | 2008-12-19 | 2015-07-29 | 美国无烟烟草有限责任公司 | The method of tobacco particle and production tobacco particle |
BRPI0923851A2 (en) | 2008-12-31 | 2015-07-28 | Us Smokeless Tobacco Co | Tobacco article and method for producing a tobacco article. |
US20110013916A1 (en) * | 2009-07-20 | 2011-01-20 | Kabushiki Kaisha Toshiba | Image forming apparatus, process unit cartridge, and method of managing replacement life of process unit cartridge |
RU2533035C2 (en) | 2009-11-23 | 2014-11-20 | Вм. Ригли Дж. Компани | Chewing gum base (versions) and its manufacture method |
US20110139164A1 (en) * | 2009-12-15 | 2011-06-16 | R. J. Reynolds Tobacco Company | Tobacco Product And Method For Manufacture |
SE534627C2 (en) * | 2010-02-17 | 2011-11-01 | Swedish Match North Europe Ab | Oral smokeless tobacco products and oral smokeless non-tobacco snus products containing urea |
US8268370B2 (en) | 2010-03-26 | 2012-09-18 | Philip Morris Usa Inc. | Solid oral sensorial products including stain inhibitor |
EP2566344B1 (en) | 2010-05-03 | 2016-03-23 | Intercontinental Great Brands LLC | Natural chewing gum including cellulose materials |
US20110274628A1 (en) * | 2010-05-07 | 2011-11-10 | Borschke August J | Nicotine-containing pharmaceutical compositions |
US9587352B2 (en) | 2010-05-19 | 2017-03-07 | Suzanne M. DeVall | Textiles and process for making textiles and dyes from tobacco plants |
US8863756B2 (en) * | 2011-06-20 | 2014-10-21 | Okono A/S | Tobacco chewing gum formulation |
US9084439B2 (en) | 2011-09-22 | 2015-07-21 | R.J. Reynolds Tobacco Company | Translucent smokeless tobacco product |
CN103040090B (en) | 2012-01-20 | 2016-03-30 | 奥驰亚客户服务公司 | Remove the oral product of tobacco |
AU2013204701B2 (en) | 2012-01-20 | 2016-12-01 | Altria Client Services Llc | Oral product |
CN102754908B (en) | 2012-01-20 | 2015-06-10 | 奥驰亚客户服务公司 | Oral tobacco product |
CN102754907B (en) | 2012-01-20 | 2015-06-24 | 奥驰亚客户服务公司 | Oral product |
US9854831B2 (en) | 2012-01-20 | 2018-01-02 | Altria Client Services Llc | Oral product |
CN103039688B (en) | 2012-01-20 | 2016-01-06 | 奥驰亚客户服务公司 | Oral product |
US9674184B2 (en) | 2014-08-13 | 2017-06-06 | Qualcomm Incorporated | Systems and methods to generate authorization data based on biometric data and non-biometric data |
-
2012
- 2012-05-25 CN CN201210167332.XA patent/CN102754907B/en not_active Expired - Fee Related
-
2013
- 2013-01-18 AU AU2013204417A patent/AU2013204417B2/en active Active
- 2013-01-18 EP EP13703934.3A patent/EP2804498B1/en active Active
- 2013-01-18 CA CA2861992A patent/CA2861992C/en active Active
- 2013-01-18 US US13/744,973 patent/US9930909B2/en active Active
- 2013-01-18 EP EP21210759.3A patent/EP4042882A1/en active Pending
- 2013-01-18 WO PCT/US2013/022204 patent/WO2013109931A2/en active Application Filing
- 2013-01-18 EP EP18174632.2A patent/EP3440945B1/en active Active
- 2013-01-18 JP JP2014553467A patent/JP6300733B2/en active Active
- 2013-01-18 RU RU2014134073A patent/RU2617262C2/en not_active IP Right Cessation
- 2013-01-18 CN CN201380014655.8A patent/CN104168783B/en active Active
-
2015
- 2015-05-26 HK HK15104951.2A patent/HK1204232A1/en unknown
-
2018
- 2018-02-27 JP JP2018032700A patent/JP6660968B2/en active Active
- 2018-04-02 US US15/943,096 patent/US10631568B2/en active Active
-
2019
- 2019-10-04 US US16/592,978 patent/US10959454B2/en active Active
-
2021
- 2021-03-24 US US17/211,128 patent/US11864578B2/en active Active
-
2023
- 2023-12-08 US US18/534,105 patent/US20240099355A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11864578B2 (en) | Oral product | |
US11517566B2 (en) | Oral product | |
US11540554B2 (en) | Oral tobacco product | |
AU2013204417A1 (en) | Oral Product | |
US20220279834A1 (en) | Oral product | |
US9986756B2 (en) | Exhausted-tobacco oral product |