AU2013200027B2 - Scaleable Capacity Indirect Evaporative Cooler - Google Patents

Scaleable Capacity Indirect Evaporative Cooler Download PDF

Info

Publication number
AU2013200027B2
AU2013200027B2 AU2013200027A AU2013200027A AU2013200027B2 AU 2013200027 B2 AU2013200027 B2 AU 2013200027B2 AU 2013200027 A AU2013200027 A AU 2013200027A AU 2013200027 A AU2013200027 A AU 2013200027A AU 2013200027 B2 AU2013200027 B2 AU 2013200027B2
Authority
AU
Australia
Prior art keywords
air
passages
dry
wet
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2013200027A
Other versions
AU2013200027A1 (en
Inventor
Robert Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seeley Interational Pty Ltd
Original Assignee
Seeley Interational Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012900026A external-priority patent/AU2012900026A0/en
Application filed by Seeley Interational Pty Ltd filed Critical Seeley Interational Pty Ltd
Priority to AU2013200027A priority Critical patent/AU2013200027B2/en
Priority to US13/935,982 priority patent/US9234705B2/en
Publication of AU2013200027A1 publication Critical patent/AU2013200027A1/en
Application granted granted Critical
Publication of AU2013200027B2 publication Critical patent/AU2013200027B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

5 A scaleable indirect evaporative cooler system (10) fitted within a container incorporates a plurality of dry and wet passage heat exchangers (30) where the dry passages of the plurality of heat exchangers feed into a common space (32) from which conditioned air is delivered via a delivery fan (40) downstream of the dry passages of the heat exchangers. An exhaust fan 22 draws air from the common space 10 (32) through the wet passages of the heat exchanger to a common exhaust space (34) before being exhausted to atmosphere via the exhaust fan (22). - 6-

Description

Scaleable Capacity Indirect Evaporative Cooler
Technical Field
This invention relates to evaporatively cooled heat exchangers utilised in the cooling of air for the comfort cooling of buildings. These heat exchangers are generally constructed from adjacent wet and dry passages arranged such that air through the adjacent passages flows in relative counter flow. The present invention is applicable to the cooling of a large range of spaces from relatively small to, say, such as commercial or industrial buildings. In particular the present invention relates to a method and means for varying output capacity of an evaporative cooler by being readily scaleable.
Background Art
Throughout this description and the claims which follow, unless the context requires otherwise, the word “comprise’, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that that prior art forms part of the common general knowledge in Australia.
An indirect evaporative cooler is described in our co-pending Australian patent application 2012900025, the contents of which are incorporated herein by reference.
In the specification of that co-pending application there is shown a cooler using a known evaporative heat exchanger but employing separately controllable fans for the dry passage inlet or supply air ducts and the exhaust air duct. The advantages of the Figure 4 embodiment thereof are to provide a more compact indirect evaporative cooler in which there is less wastage of energy in the driving of the air flows required for its operation, and ready controllability over a range of operating conditions by means of a controller controlling one or both of the fans. The invention described in AU 2012900025 builds upon earlier developments in the construction of a heat exchanger as disclosed in W02006074508.
The Figure 4 embodiment described in our aforementioned co-pending Australian patent application presents an opportunity to combine a plurality of indirect evaporative heat exchangers into a single unit, with manifolded supply air and exhaust air to form large scale coolers capable of supplying indirectly evaporatively cooled air in relatively large quantities for a range of cooling loads up to such as for commercial or industrial buildings.
Disclosure of Invention
In accordance with a first aspect of the present invention there is provided an indirect evaporative cooler system in which air flow in interspersed wet and dry passages of each of a plurality of evaporative heat exchangers is in respective counter flow, said plurality of evaporative heat exchangers being incorporated in a container and combining for the delivery of relatively large volumes of cool conditioned air, and wherein the air flow through the dry passages is controlled by means of interconnected first cavity spaces downstream of the dry passages held at a required pressure by shared delivery fans in said first cavity spaces and the air flow through the wet passages is controlled by interconnected second cavity spaces held at a predetermined pressure by shared exhaust fans in said second cavity spaces.
In a second aspect the present invention provides a method of delivering varying quantities of cool conditioned air via a plurality of evaporative heat exchangers in which air flow in interspersed wet and dry passages of each of the plurality is in respective counter flow, said method comprising drawing air to be cooled through the dry passages of the plurality via a first fan downstream of the dry passages which then delivers a portion of that dry passage air as supply air, drawing the remainder of the dry passage air through the wet passages of each of the plurality via a second fan downstream of the wet passages and delivering the exiting wet passage air to exhaust.
Brief Description of Drawings
The present invention will now be described by way of example with reference to the accompanying drawings, in which:-
Figure 1 is an isometric view of a multi-unit indirect evaporative cooler formed by combining multiple heat exchangers to provide a single manifold carrying air supply output;
Figure 2 is a side elevation view of the indirect evaporative cooler of Figure 1; and Figure 3 is a cross-sectional view A-A of Figure 2.
Best Modes
Figure 1 shows the overall construction of a multi-unit indirect evaporative cooler 10 in accordance with an embodiment of the present invention where multiple indirect evaporative heat exchanger units sized to fit within the confines of a typical contained space, say, for example a shipping container. The lengths of edges 12, 14 and 15 may be those typical of a standard shipping container, although the design is not restricted to incorporation into such a container as other containers may be more suitable depending upon the application.
In the drawings, the depicted indirect cooler is arranged such that outside ambient air is taken in through louvres 16, typically along the long side face of the container. There may also be a similar arrangement of louvres along the opposite side of the container, provided the overall dimensions of the container are such as to allow the inclusion of a double row of indirect cooler heat exchangers. Air which has been cooled and conditioned by the indirect cooler 10 is typically delivered through outlet 20, although other arrangements for discharge of cooled air are possible. Exhaust fans 22 draw warm, humid exhaust air from each indirect evaporative heat exchanger (as described in our AU 2012900025) and discharge same to atmosphere. A compartment 24 on the end of the container is provided for the inclusion of electrical connections and controllers, and for water pumping equipment for the heat exchangers.
The section view of Figure 3 shows the interior details of a typical embodiment of this invention. Indirect evaporative heat exchangers 30 are arranged close to the long side face defined by edge 12 of the container, with a heat exchanger associated with each intake louvre 16. From a practical point to view, sufficient space must be allowed between heat exchangers to facilitate removal for servicing and for ease of assembly. Heat exchangers may also be stacked vertically as shown provided sufficient space is allowed around each heat exchange module for the collection and discharge of the warm, humid exhaust.
Outside, ambient air enters the heat exchangers through louvres 16. An optional air filter cartridge 17 may also be included to ensure the cleanliness of air finally delivered to a space to be conditioned. Air flows through the dry passages of heat exchangers 30 into cavity space or plenum 32, held at a pressure below atmospheric pressure by air supply delivery fan(s) 40. Cavity space 34 is connected to the outlets of the wet air passages of heat exchangers 30. Exhaust fan(s) 22 keep cavity space 34 at a low pressure sufficient to provide a pressure differential between cavity space 32 and the outside ambient such that a required air flow rate is achieved from space 32 through the wet passages of the heat exchangers 30 to space 34 and then to exhaust to external ambient via fans 22.
Where the container size for cooler 10 is sufficient, a symmetric row of heat exchangers may also be arranged on the opposite side of the container, discharging into shared cavity spaces 32 as depicted by the embodiment of Figures 1-3.
Delivery fan(s) 40 draws off that proportion of air not directed to the wet passages, and exhausted to atmosphere via fans 22, to the outlet plenum or cavity 36, from where it can be delivered through opening 20 as cool, conditioned air to a space to be conditioned, or alternatively the conditioned air can be delivered via opening 18 on one or both ends of the container.
As shown, it is not necessary that there be a single delivery fan 40 or a single exhaust fan 22 associated with each heat exchange unit as each fan 40 may be associated with the operation of a plurality of heat exchangers 30 and similarly for exhaust fans 22 as shown in the embodiment. This further aids in design flexibility and potential capital cost savings.
The basic arrangement of multiple heat exchange units as depicted can be scaled up or down to fill almost any size of container. A typical shipping container may, for example, require up to eight sets of side-by-side heat exchangers on each of the long sides of the container, thereby delivering large quantities of cooled conditioned air to suit the cooling load of a relatively large space to be conditioned.
The basic principles of this arrangement of components of an indirect evaporative cooling system may be applied to a wide range of container sizes to match specific cooling requirements. The result can be a compact, self contained and readily transportable indirect evaporative cooling system customised to achieve the cooling load to be met.
By providing a plurality of stand alone modular heat exchange units they can be readily adapted to fit a range of containers almost on a plug-in basis. The ease of fitting out such as a shipping container and having it readily transportable to where it is needed provides a level of flexibility in conditioning relatively large remote spaces that has not previously been available.

Claims (6)

  1. CLAIMS:
    1. An indirect evaporative cooler system in which air flow in interspersed wet and dry passages of each of a plurality of evaporative heat exchangers is in respective counter flow, said plurality of evaporative heat exchangers being incorporated in a container and combining for the delivery of relatively large volumes of cool conditioned air, and wherein the air flow through the dry passages is controlled by means of interconnected first cavity spaces downstream of the dry passages held at a required pressure by at least one shared delivery fan in said first cavity spaces and the air flow through the wet passages is controlled by interconnected second cavity spaces held at a predetermined pressure by at least one shared exhaust fan in said second cavity spaces.
  2. 2. A cooler system as claimed in claim 1, including louvred inlets in the side of the container via which inlet air, to be conditioned, feeds into an adjacent heat exchanger associated with each louvred inlet.
  3. 3. A cooler system as claimed in claim 1 or 2, wherein the container is a shipping container.
  4. 4. A cooler system as claimed in any one of the preceding claims, comprising side-byside heat exchangers mounted within said container extending across opposite long sides of the container.
  5. 5. A method of delivering varying quantities of cool conditioned air via a plurality of evaporative heat exchangers in which air flow in interspersed wet and dry passages of each of the plurality is in respective counter flow, said method comprising drawing air to be cooled through the dry passages of the plurality via at least first fan downstream of the dry passages which then delivers a portion of that dry passage air as supply air, drawing the remainder of the dry passage air through the wet passages of each of the plurality via at least a second fan downstream of the wet passages and delivering the exiting wet passage air to exhaust.
  6. 6. A method as claimed in 5, including filtering external ambient inlet air prior to entry thereof into the dry passages.
AU2013200027A 2012-01-04 2013-01-03 Scaleable Capacity Indirect Evaporative Cooler Ceased AU2013200027B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2013200027A AU2013200027B2 (en) 2012-01-04 2013-01-03 Scaleable Capacity Indirect Evaporative Cooler
US13/935,982 US9234705B2 (en) 2013-01-03 2013-07-05 Scaleable capacity indirect evaporative cooler

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012900026A AU2012900026A0 (en) 2012-01-04 Large Scale Indirect Evaporative Cooler
AU2012900026 2012-01-04
AU2013200027A AU2013200027B2 (en) 2012-01-04 2013-01-03 Scaleable Capacity Indirect Evaporative Cooler

Publications (2)

Publication Number Publication Date
AU2013200027A1 AU2013200027A1 (en) 2013-07-18
AU2013200027B2 true AU2013200027B2 (en) 2016-09-08

Family

ID=48782686

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2013200027A Ceased AU2013200027B2 (en) 2012-01-04 2013-01-03 Scaleable Capacity Indirect Evaporative Cooler

Country Status (1)

Country Link
AU (1) AU2013200027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344484A (en) * 2013-08-02 2015-02-11 Ff西里·诺明西斯有限公司 Indirect evaporative cooler with retractable capacity
CN113566325A (en) * 2021-07-07 2021-10-29 深圳市缔息云联科技有限公司 Two-stage evaporation cooling heat dissipation tower

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132738A1 (en) * 2003-12-18 2005-06-23 Davis Energy Group, Inc Two stage indirect evaporative cooling system
US20090126913A1 (en) * 2007-11-16 2009-05-21 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US20110302946A1 (en) * 2008-11-13 2011-12-15 F F Seeley Nominees Pty Ltd Indirect evaporative cooler construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050132738A1 (en) * 2003-12-18 2005-06-23 Davis Energy Group, Inc Two stage indirect evaporative cooling system
US20090126913A1 (en) * 2007-11-16 2009-05-21 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US20110302946A1 (en) * 2008-11-13 2011-12-15 F F Seeley Nominees Pty Ltd Indirect evaporative cooler construction

Also Published As

Publication number Publication date
AU2013200027A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP4263740B2 (en) Modular rooftop air conditioning system configuration
ES2550655T3 (en) A pre-conditioned air unit with autonomous cooling modules
ES2663706T3 (en) Pre-conditioned air unit with variable frequency drive
US20110011115A1 (en) Evaporator air management system for trailer refrigeration
US20190154283A1 (en) Compact air handler with multiple fans
KR101609051B1 (en) Heat source apparatus
AU2013200027B2 (en) Scaleable Capacity Indirect Evaporative Cooler
US9763363B2 (en) Climate control system for data center
EP2821746A1 (en) Indirect evaporative cooler system with scaleable capacity
US9234705B2 (en) Scaleable capacity indirect evaporative cooler
CN102759971A (en) Container type data center assembly
CN206890684U (en) A kind of air conditioner for the humidification that can cool
CN203757933U (en) Hot and cold partition and evaporative cooling and precision air conditioning linkage type unit machine room air conditioning
US7886555B2 (en) Mobile communications shelter with air distribution assembly
CN203928213U (en) A kind of multi partition purification air-conditioning unit peculiar to vessel
US10365027B2 (en) Simplified and energy efficient multi temperature unit
US9777882B2 (en) Skeleton base for a compressor system
CN214670270U (en) Temperature control device
MY137074A (en) Evaporator section for a modular bus air conditioner
CN202993406U (en) Air conditioner outdoor unit with double-fan system and air conditioner with outdoor unit
CN201926043U (en) Special vertical-type air conditioner for modularized electric room
CN101922772B (en) Multistage countercurrent flow heat exchange-evaporation-refrigeration device
CN207716587U (en) A kind of power distribution station fresh air conditioner device
EP3252385B1 (en) Air conditioner
CN104132408A (en) System used for controlling evaporative cooling temperature and evaporative cooling humidity independently and applied to variable-frequency machine room of power plant

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired