AU2012218100A1 - Charge equalization systems and methods - Google Patents
Charge equalization systems and methodsInfo
- Publication number
- AU2012218100A1 AU2012218100A1 AU2012218100A AU2012218100A AU2012218100A1 AU 2012218100 A1 AU2012218100 A1 AU 2012218100A1 AU 2012218100 A AU2012218100 A AU 2012218100A AU 2012218100 A AU2012218100 A AU 2012218100A AU 2012218100 A1 AU2012218100 A1 AU 2012218100A1
- Authority
- AU
- Australia
- Prior art keywords
- battery
- batteries
- charge
- relay matrix
- equalization circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
CHARGE EQUALIZATION SYSTEMS AND METHODS
RELATED APPLICATIONS
This application claims benefit of U.S. Provisional Patent
Application Serial No. 61/435,298 filed January 22, 2011.
The contents of the related application(s) listed above are incorporated herein by reference.
TECHNICAL FIELD
The present invention relates to the charging of batteries in strings of series connected batteries and, more specifically, to the charging of batteries used in uninterruptible power supply systems.
BACKGROUND
Uninterruptible power supplies (UPS's) have long been used to provide at least temporary auxiliary power to electronic devices. Typically, a UPS is configured to switch between a primary power source and a standby power source as necessary to maintain constant power to a load.
For example, the primary power source may be a utility power supply, and the standby power source may take the form of a battery system. The UPS will normally operate in a line mode in which the utility power signal is passed to the load when the utility power signal is within predefined parameters. In the line mode, the UPS will typically also charge the battery system. When the utility power falls outside of the predefined parameters, the UPS will switch to standby mode in which an
AC signal is generated based on the energy stored in the battery system.
A battery system for use in a UPS is typically specified by the nature of the UPS system, a load voltage level required for proper operation of the load, and a length of time the UPS operates in standby mode. Commonly, a number of batteries are connected in series in a string to provide a desired battery voltage level necessary for generation of the load voltage level, and a number of strings are connected in parallel to increase the storage capacity of the battery system. Accordingly, it is not uncommon for a UPS system to be provided with two to four strings comprising three or four batteries each.
In line mode, the UPS system includes a charging system for generating a charge signal that is applied to the battery system to maintain a full charge on the batteries so that the battery system operates to specification when in standby mode.
An object of the present invention is to provide improved battery charge systems for strings of series connected batteries and methods in general and improved battery charge systems specifically designed for use on any battery charger as generally described above.
SUMMARY
The present invention may be embodied as a battery system comprising at least one battery string comprising more than two batteries connected in series, a charge equalization circuit, a relay matrix, and a balance controller. The charge equalization circuit is capable of equalizing the charge on any pair of series connected batteries in the at least one battery string. The relay matrix is operatively connected between the charge equalization circuit and the at least one battery string. The balance controller controls the relay matrix such that at least one battery
characteristic of at least one battery is sensed. Based on at least one
sensed battery characteristic, the balance controller controls the relay matrix such that the charge equalization circuit is connected across at least one pair of series connected batteries in the at least one battery string.
The present invention may also be embodied as a UPS system for supplying power to a load based on a power signal provided by a power source, comprising at least one battery string comprising more than two batteries connected in series, an inverter/charger circuit, a charge equalization circuit, a relay matrix, and a balance controller. The inverter/charger circuit operatively connected between the power source and the at least one battery string and between the at least one battery string and the load. The charge equalization circuit is capable of equalizing the charge on any pair of series connected batteries in the at least one battery string. The relay matrix operatively connected between the charge equalization circuit and the at least one battery string. The balance controller controls the relay matrix such that at least one characteristic of at least one battery is sensed. Based on at least one sensed battery characteristic, the balance controller controls the relay matrix such that the charge equalization circuit is connected across at least one pair of series connected batteries in the at least one battery string.
The present invention may further be embodied as a battery system comprising a plurality of battery strings, at least one charge equalization circuit, a relay matrix, and a balance controller. Each battery string comprises more than two batteries connected in series, and the battery strings are connected in parallel. The at least one charge equalization circuit capable of equalizing the charge on any pair of series connected batteries. The relay matrix operatively connected between the charge equalization circuit and the plurality of battery strings. The balance controller for controlling the relay matrix such that battery characteristics of
plurality of batteries are sensed. Based on the at least one sensed battery characteristic, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across at least one pair of series connected batteries in the plurality of battery strings.
The present invention may be embodied as a UPS system for supplying power to a load based on a power signal provided by a power source, comprising a plurality of battery strings, an inverter/charger circuit, at least one charge equalization circuit, and a relay matrix. Each battery string comprises more than two batteries connected in series, and the battery strings are connected in parallel. The inverter/charger circuit operatively connected between the power source and the at least one battery string and between the at least one battery string and the load. The at least one charge equalization circuit is capable of equalizing the charge on any pair of series connected batteries. The relay matrix operatively connected between the charge equalization circuit and the at least one battery string. The balance controller controls the relay matrix such that battery characteristics of the batteries are sensed. Based on the sensed battery characteristics, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across pairs of series connected batteries in the plurality of battery strings to equalize charges on the batteries.
The present invention may also be embodied as a UPS system for supplying power to a load based on a power signal provided by a power source, comprising a plurality of battery strings, an inverter/charger circuit, at least one charge equalization circuit, a relay matrix, and a balance controller. Each battery string comprises more than two batteries connected in series, and the battery strings are connected in parallel. The inverter/charger circuit is operatively connected between the power source and the at least one battery string and between the at least one battery string and the load. The at least one charge equalization circuit is capable
of equalizing the charge on any pair of series connected batteries. The relay matrix is operatively connected between the charge equalization circuit and the at least one battery string. The balance controller controls the relay matrix such that battery characteristics of the batteries are sensed. Based on the sensed battery characteristics, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across pairs of series connected batteries in the plurality of battery strings to equalize charges on the batteries. DESCRIPTION OF THE DRAWINGS
FIG. 1 is a simplified block diagram of a first embodiment of an uninterruptible power supply system using a battery balance module constructed in accordance with, and embodying, the principles of the present invention;
FIG. 2 is a schematic view of a first example battery balance module and example battery system forming part of the UPS system depicted in FIG. 1 ;
FIG. 3 is a somewhat schematic view of a first example battery wire harness connector and first example relay matrix used by the example battery balance module of FIG. 1 ;
FIG. 4 is a somewhat schematic view of the first example battery wire harness connector used by the battery balance module of FIG. 1 ;
FIG. 5 is a somewhat schematic view of the connection between the first example battery wire harness connector and the battery module of FIG. 1 ;
FIG. 6 is a schematic view of a second example battery balance module of the present invention;
FIG. 7 is a schematic view of a third example battery balance module of the present invention;
FIG. 8 is a schematic view of a fourth example battery balance module of the present invention;
FIG. 9 is a schematic view of a fifth example battery balance module of the present invention;
FIG. 10 is a schematic view of a sixth example battery balance module of the present invention;
FIG. 11 is a schematic view of a seventh example battery balance module of the present invention;
FIG. 12 is a schematic view of an eighth example battery balance module of the present invention;
FIG. 13 is a schematic view of a ninth example battery balance module of the present invention;
FIG. 14 is a schematic view of a tenth example battery balance module of the present invention;
FIG. 15 is a schematic view of an eleventh example battery balance module of the present invention;
FIG. 16 is a schematic view of a twelfth example battery balance module of the present invention;
FIG. 17 is a somewhat schematic view of a second example battery wire harness connector and second example relay matrix of another example battery balance module of the present invention;
FIG. 8 is a somewhat schematic view of the connection between a third example battery wire harness connector and a second example battery module; and
FIG. 19 is a somewhat schematic view of an example charge equalization circuit that may be used by the power supply systems of the present invention.
DETAILED DESCRIPTION
Referring initially to FIG. 1 of the drawing, depicted therein is a first example of an example power supply system 20 constructed in
accordance with, and embodying, the principles of the present invention. The example power supply system 20 is an uninterruptible power supply (UPS) system, but the principles of the present invention may be used by other types of power supply systems.
In line mode, the example UPS system 20 generates a primary AC power signal for powering a load 22 based on a utility AC power signal present on an AC line 24. The example UPS system 20 comprises a power module 30 and a battery system 32. In standby mode, the power module 30 of the UPS system 20 generates a secondary AC power signal based on power stored by the battery system 32. The example UPS system 20 may further incorporate additional power sources, such as generators, fuel cells, solar cells, and the like.
The example UPS module 20 comprises a transformer module 40, an inverter/charger circuit 42, a balance module 44, and a system controller 46. The AC power line 24 is connected to the transformer module 40. The transformer module 40 is in turn connected to the load 22 and the inverter/charger circuit 42. The inverter charger circuit 42 is connected to the battery system 32. The balance module 44 is connected to the battery system 32. The system controller 46 is connected to the inverter charge circuit 42 and to the balance module 44.
In line mode, the transformer 40 generates a primary AC power signal based on the utility AC power signal flowing through the AC line 24. The transformer module 40 further generates a charge AC power signal that is input to the inverter/charger circuit 42. Based on the charge AC power signal, the example inverter/charger circuit 42 is capable of generating one or more of a plurality of charge DC power signals.
In standby mode, the battery system 32 generates a DC standby battery signal that flows to the inverter/charger circuit 42. The
inverter/charger circuit 42 generates a switched power signal based on the DC standby battery signal, and the transformer module 40 generates the secondary AC power signal based on the switched power signal.
With the foregoing general understanding of the principles of the present invention in mind, the details of the first example UPS system 20 will now be described.
The example transformer module 40 comprises a ferroresonant transformer and related circuitry capable of isolating the load 22 from the AC line 24 and regulating the primary AC power signal in line mode. A ferroresonant transformer also provides certain advantages when converting the switched power signal generated by the inverter/charger circuit 42 into the standby AC power signal. An example of an appropriate ferroresonant transformer and related circuitry that may be used as the transformer module 40 is disclosed, for example, in U.S. Patent No.
5,760,495 and U.S. Patent Application Serial Nos. 60/305,926 and 12/803,787. The '495 patent and the '926 and '787 applications are incorporated herein by reference. The principles of the present invention may, however, be applied to UPS systems that do not use a ferroresonant transformer. And as described above, the principles of the present invention may be applied to battery systems that are not part of a conventional UPS system.
The example inverter/charger circuit 42 may be implemented as any inverter capable of operating in an inverter mode to generate the switched power signal when the UPS system is in standby mode and, when the UPS system is in line mode, operating in a charge mode to
generate one or more of the plurality of charge DC power signals.
Alternatively, the principles of the present invention may be implemented using an inverter circuit capable of performing the inverter mode function and a separate charge circuit capable of performing the charge mode function.
In its charge mode, the example inverter/charger circuit 42 may be implemented in a form that generates the plurality of charge DC power signals simultaneously. Alternatively, the inverter/charger circuit 42 may be implemented to generate any one of the plurality of charge DC power signals when in its charge mode.
Referring now to FIG. 2 of the invention, the example battery system 32 and balance module 44 will now be described in further detail.
The example battery system 32 comprises a first battery string 50, a second battery string 52, a third battery string 54, and a fourth battery string 56. As will be explained in further detail below, each of these example battery strings 50, 52, 54, and 56 is a 36 volt battery string comprising three 12 volt batteries connected in series.
FIG. 2 further shows that the example balance module 44 comprises a relay matrix 60, a battery wire harness connector 62, a balance controller 64, a module controller interface 66, and a charge equalization circuit 68. The relay matrix 60 comprises a plurality of relays configured to allow the balance controller 64 to determine how the charge equalization circuit 68 is connected to one or more of the batteries in the battery strings 50, 52, 54, and 56. The battery wire harness connector 62 physically interconnects the relay matrix 60 to the batteries in the battery strings 50, 52, 54, and 56. The battery wire harness connector 62 also physically connects the balance controller 64 to any one or more of the batteries in the battery strings 50, 52, 54, and 56.
The balance controller 64 controls the relay matrix 60 and the charge equalization circuit 68 to measure voltage across any one or more
of the batteries in the battery strings 50, 52, 54, and 56 and to apply any one or more of the charge DC power signals across any one or more of the batteries in the battery strings 50, 52, 54, and 56.
The example balance module 44 may thus be programmed to measure the voltage across individual batteries, groups of individual batteries within battery strings, and/or across entire battery strings and apply the charge DC power signals across any single battery or group of batteries to maintain proper charge of individual batteries within any one of the battery strings 50, 52, 54, and/or 56.
Referring now to FIG. 3, the example relay matrix 60 and battery wire harness connector 62 are depicted in further detail. The example relay matrix 60 comprises an input connector 70, ten relays 72a-j, and an output connector 74. Each of the relays 72a-j has an associated relay coil; the ten relay coils associated with the relays 72a-j are schematically represented by a single block 76 in FIG. 3. The balance controller 64 is connected to the relay coils 76 such that the balance controller 64 can operate any of the relays 72a-j; in particular, the balance controller 64 can operate any individual relay or any group of relays as necessary to charge any single battery or group of batteries as desired. The example output connector 74 defines first through tenth output sockets S1-S10 as depicted in FIG. 3.
The example battery wire harness connector 62 is depicted in FIGS. 3-5. In particular, the example wire harness connector 62 comprises a main connector 80 that is connected to the relay matrix 60 and a plurality of secondary connectors 82a-j that are connected at nodes within the battery strings 50, 52, 54, and 56 as shown in FIG. 5. The example main connector 80 defines first through tenth main pins P1-P10 as depicted in FIGS. 3-5. As is conventional, the output sockets S1-S10 are configured to engage the main pins P1 -P10 to form an appropriate electrical connection.
FIG. 5 illustrates that each of the battery strings 50, 52, 54, and 56 comprises three series connected batteries: the first battery string 50 comprises batteries 50a, 50b, and 50c, the second battery string 52 comprises batteries 52a, 52b, and 52c, the third battery string 54 comprises batteries 54a, 54b, and 54c, and the fourth battery string 56 comprises batteries 56a, 56b, and 56c.
FIG. 5 further illustrates that the secondary connectors 82a-j are connected to each of the nodes within the battery system 32. Accordingly, in a measurement mode as depicted in FIG. 3, the balance controller 64 can measure the voltage across and/or current sourced from each of the batteries 50a-c, 52a-c, 54a-c, and 56a-c, and/or across or from
combinations of these batteries connected in series, at the input connector 70 by arranging the relays 72a-j in appropriate configurations. In a charge mode, each of the individual batteries 50a-c, 52a-c, 54a-c, and 56a-c, and/or across combinations of these batteries connected in series, can be charged by arranging the relays 72a-j in appropriate configurations and operating the charge equalization circuit 68 to apply appropriate DC power signals at the input connector 70.
In particular, in the example balance module 44, the example input connector 70 comprises first, second, third, and fourth input terminals 70a, 70b, 70c, and 70d connected to first (0V), second (12V), third (24V), and fourth (36V) voltages, respectively. The first input terminal 70a is connected to the second relay 72b, the second input terminal 70b is connected to the seventh, eighth, ninth, and tenth relays 72g, 72h, 72i, and 72j, the third input terminal 70c is connected to the third, fourth, fifth, and sixth relays 72c, 72d, 72e, and 72f, and the fourth input is connected to the first relay 72a.
In turn, the first switch 72a is connected to the ninth main pin P9, the second switch 72b is connected to the fifth main pin P5, the third switch 72c is connected to the fourth main pin P4, the fourth switch 72d is
connected to the eighth main pin P8, the fifth switch 72e is connected to the seventh main pin P7, the sixth switch 72f is connected to the sixth main pin P6, seventh switch 72g is connected to the tenth main pin P10, the eighth switch 72h is connected to the third main pin P3, the ninth switch 72i is connected to the second main pin P2, and the tenth switch 72j is connected to the first main pin P1.
In turn, the first main pin P1 is connected to the first secondary connector 82a, the second main pin P2 is connected to the second secondary connector 82b, the third main pin P3 is connected to the third secondary connector 82c, the fourth main pin P4 is connected to the fourth secondary connector 82d, the fifth main pin P5 is connected to the fifth secondary connector 82e, the sixth main pin P6 is connected to the sixth secondary connector 82f, the seventh main pin P7 is connected to the seventh secondary connector 82g, the eighth main pin P8 is connected to the eighth secondary connector 82h, the ninth main pin P9 is connected to the ninth secondary connector 82i, and the tenth main pin P10 is connected to the tenth secondary connector 82j.
The balance controller 64 of the balance module 44 may be provided with logic to determine when and how to charge individual batteries and/or combination of these batteries. The exact charge logic implemented using the balance module 44 is not part of the present invention and may be implemented according to the requirements of a particular operator of the UPS system 20. The balance module 44 provides enhanced diagnostic information and charge control, thereby optimizing the operation of the overall UPS system 20.
Referring now to FIG. 6 of the drawing, depicted at 120 therein is a second example balance module constructed in accordance with, and embodying, the principles of the present invention. The example balance module 120 operatively connects a charge equalization circuit 122 to a battery system 124. The balance module 120 comprises a relay matrix
130 and a battery wire harness connector 132 in addition to the charge equalization circuit 122.
Depicted in FIG. 7 is a third example balance module 140 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 140 operatively connects a charge equalization circuit 42 to a battery system 1 4. The balance module 140 comprises, in addition to the charge equalization circuit 142, a relay matrix 150, a battery wire harness connector 152, and a balance controller 154. In the third example balance module 140, the functions of measuring voltage and/or current and balancing charge on the batteries in the battery system 144 are implemented in software within the balance controller 154.
Depicted in FIG. 8 is a fourth example balance module 160 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 160 operatively connects a charge equalization circuit 162 to a battery system 64. The balance module 160 comprises a relay matrix 170 and a battery wire harness connector 172. In the fourth example balance module 160, the charge equalization circuit 162 and the balance module 160 are combined to form a power module 174. In the fourth example balance module 160, the functions of measuring voltage and/or current and balancing the charge on the batteries in the battery system 164 are implemented in hardware within the balance module 160.
Depicted in FIG. 9 is a fifth example balance module 180 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 180 operatively connects a charge equalization circuit 182 to a battery system 184. The balance module 180 further comprises a relay matrix 190, a battery wire harness connector 192, and a balance controller 194. In the fifth example balance module 180, the charge equalization circuit 182 and the balance module
180 are combined to form a power module 196. The functions of measuring voltage and/or balancing the charge on the batteries in the battery system 184 are implemented in software executed by the balance controller 194.
Depicted in FIG. 10 is a sixth example balance module 220 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 220 operatively connects a charge equalization circuit 222 to a battery system 224. The balance module 220 further comprises a relay matrix 230, a battery wire harness connector 232, a balance controller 234, and a module controller interface 236. In the sixth example balance module 220, the charge equalization circuit 222 and the balance module 220 are combined to form a power module 240. In addition, the power module 240 is in communication through the module controller interface 236 with a system controller 242 of a larger UPS system 244. The functions of measuring voltage and/or current and balancing the charge on the batteries in the battery system 224 are implemented in software executed by the balance controller 234.
Depicted in FIG. 11 is a seventh example balance module 250 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 250 operatively connects a charge equalization circuit 252 to a battery system 254. The balance module 250 further comprises a relay matrix 260, a battery wire harness connector 262, a balance controller 264, a module controller interface 266, and a battery sense connector 268. The charge equalization circuit 252 and the balance module 250 are combined to form a power module 270. In addition, the power module 270 is in communication with a system controller 272 of a larger UPS system 274. The functions of measuring voltage and/or current and balancing charge on the batteries in the battery system 254 are implemented in software executed by the balance controller 264. The battery sense connector 268 allows the balance
controller 264 to measure other factors, such as ambient temperature, relevant to battery diagnostics and take these other factors into account when charging the batteries in the battery system 254.
Depicted in FIG. 12 is an eighth example balance module 320 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 320 operatively connects a charge equalization circuit 322 to a battery system 324. The balance module 320 further comprises a relay matrix 330, a battery wire harness connector 332, a balance controller 334, and a module controller interface 336. The charge equalization circuit 322 and the balance module 320 are combined to form a power module 340. In addition, the power module 340 is in communication with a system controller 342 of a larger UPS system 344. The functions of measuring voltage and/or current and balancing charges across the batteries in the battery system 324 are implemented in software executed by the balance controller 334 through the charge equalization circuit 322. The system controller 342 is further in direct communication with the battery system 324; the system controller 342 thus may measure other factors, such as ambient temperature, relevant to battery diagnostics and communicate these factors to the balance controller 334.
Depicted in FIG. 13 is a ninth example balance module 350 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 350 operatively connects a charge equalization circuit 352 to a battery system 354. The balance module 350 further comprises a relay matrix 360, a battery wire harness connector 362, a balance controller 364, and a module controller interface 366. The charge equalization circuit 352 and the balance module 350 are combined to form a charge module 370, but the balance module 350 does not control the charge equalization circuit 352. In addition, the charge module 370 is in communication with a system controller 372 of a larger
UPS system 374. The functions of measuring voltage and/or current and balancing the charge across the batteries in the battery system 354 are implemented in software executed by the balance controller 364.
Depicted in FIG. 14 is a tenth example balance module 420 constructed in accordance with, and embodying, the principles of the present invention. The example balance module 420 operatively connects a charge equalization circuit 422 to a battery system 424. The balance module 420 further comprises a relay matrix 430, a battery wire harness connector 432, a balance controller 434, and a module controller interface 436. The power module 440 is in communication with a system controller 442 of a larger UPS system 444. The functions of measuring voltage and/or current and balancing voltages across the batteries in the battery system 424 are implemented in software executed by the balance controller 434.
Depicted in FIG. 5 is an eleventh example charge system 450 constructed in accordance with, and embodying, the principles of the present invention. The example charge system 450 comprises first and second balance modules 452 and 454. The first and second balance modules 452 and 454 operatively connect a charge equalization circuit 456 to first and second battery systems 460 and 462, respectively. The example balance modules 452 and 454 are identical, and each of the modules 452 and 454 comprises a relay matrix 470, a battery wire harness connector 472, a balance controller 474, and a module controller interface 476. The functions of measuring voltage and/or current and balancing the charges on the batteries in the first and second battery systems 460 and 462 are implemented in software executed by the balance controllers 474 of the first and second balance modules 452 and 454, respectively. In the eleventh example charge system 450, a single charge equalization circuit 456 is provided for both of the first and second balance modules 452 and 454. In addition, the balance modules 452 and 454 are in communication
with a system controller 480 of a larger UPS system 482 including the charge equalization circuit 456.
Depicted in FIG. 16 is a twelfth example charge system 520 constructed in accordance with, and embodying, the principles of the present invention. The example charge system 520 comprises a balance module 522 that comprises a charge equalization circuit 526 operatively connected to first and second battery systems 530 and 532, respectively. In particular, the example balance module 522 comprises first and second relay matrixes 540 and 542, first and second battery wire harness connectors 544 and 546, a balance controller 550, and a module controller interface 552. The functions of measuring voltage and/or current and balancing the charge across the batteries in the first and second battery systems 530 and 532 are implemented in software executed by the balance controller 550. In the twelfth example charge system 520, a single balance controller 550 is provided for both of the first and second relay matrixes 540 and 542 and the first and second battery wire harness connectors 544 and 546. Similarly, a single charge equalization circuit 526 is provided for both of the first and second relay matrixes 540 and 542 and the first and second battery wire harness connectors 544 and 546. The charge system 520 is in communication with a system controller 560 of a larger UPS system 562 through the module controller interface 552.
Depicted in FIG. 17 is a second example relay matrix 620 and second example battery wire harness connector 622 that may be substituted for the first example relay matrix 60 and first example battery wire harness connector 62 in the first example power module 30 described above.
The example relay matrix 620 comprises an input connector 630 and sixteen relays 632a-p. Each of the relays 632a-p has an associated relay coil; the sixteen relay coils associated with the sixteen relays 632a-p are schematically represented by a single block 634 in FIG. 17. The
balance controller 64 is connected to the relay coils 634 such that the balance controller 64 can operate any of the relays 632a-p; in particular, the balance controller 64 can operate any individual relay or any group of relays as necessary to charge any single battery or group of batteries as desired.
The example wire harness connector 622 comprises a main connector 640 that is connected to the relay matrix 620 and sixteen secondary connectors 642a-p that are connected at nodes within the battery strings 50, 52, 54, and 56.
In a measurement mode, the balance controller 64 can measure the voltage across and/or current sourced from each of the batteries 50a-c, 52a-c, 54a-c, and 56a-c (Figure 5), and/or across or from combinations of these batteries connected in series, at the input connector 630 by arranging the relays 632a-p in appropriate configurations. Further, the use of sixteen relays 632a-p and sixteen secondary connectors 642a-p allow the voltage across individual strings of batteries to be measured.
In a charge mode, each of the individual batteries 50a-c, 52a-c, 54a-c, and 56a-c, and/or across combinations of these batteries connected in series, can be charged by arranging the relays 632a-p in appropriate configurations and operating the charge equalization circuit 68 (Figure 3) to apply appropriate DC power signals at the input connector 630. Further, each of the individual strings of batteries may be charged separately using the relay matrix 620 and battery wire harness connector 622.
The use of additional relays of the second example relay matrix 620 and connectors of the battery wire harness connector 622 allows finer control over the measurement and charging functions performed by the first example power module 30.
Turning now to FIG. 18, depicted therein is a third example battery wire harness connector 650 that may be used by a power module of the
present invention adapted to charge a battery system 652 comprising first and second strings 654 and 656 each comprising three series-connected batteries 658. The third example wire harness connector 650 comprises a main connector 660 adapted to be connected to a relay matrix and six secondary connectors 662a-f that are connected at nodes within the battery strings 654 and 656.
The third example wire harness connector 650 illustrates that the principles of the present invention can be scaled to accommodate differing numbers of battery strings. The principles of the present invention may also be scaled up or down to accommodate battery strings having fewer or more than three batteries.
Referring now to FIG. 19 of the drawing, depicted therein is an example battery equalization circuit 720 that may be used by any of the charge systems described above. The example battery equalization circuit 720 defines first, second, third, and fourth connection points 722a, 722b, 722c, and 722d for connection to the relay matrix of the charge system. The example battery equalization circuit 720 comprises a transformer 730, a PWM circuit 732, a switch portion 734, a filter portion 736, and a transfer portion 738.
The example transformer 730 comprises first and second input windings 740 and 742, a plurality of first output windings 744a, 744b, and 744c, and a plurality of second output windings 746a, 746b, and 746c. The first and second input windings 740 and 742 are operatively connected to the PWM circuit 732, and the output windings 744 and 746 are operatively connected to the switch portion 734. The switch portion 734 comprises a plurality of first and second switch circuits 750 and 752 each comprising a resistor 754 and a transistor 756 (MOSFET). The example filter portion 736 comprises first, second, and third filter capacitors 760a, 760b, and 760c, and the example transfer portion 738 comprises first and second flying capacitors 770a and 770b.
The PWM control signal allows the PWM circuit 732 to be operated in a free-running state and an off state. In the free-running state, the example PWM circuit 732 generates a PWM control signal having a frequency of 800 kHz and a 50% duty cycle. In this free-running state, the PWM control signal is transmitted to the switch portion 734 through the transformer 730 such that the first switch circuits 750 are open while the second switch circuits 752 are closed and such that the first switch circuits 750 are closed while the second switch circuits 752 are open. In the first half of the period, the PWM control signal is transmitted to the switch portion 734 through the transformer 730 such that the first switch circuits 750 is closed and the second switch circuits 752 is open. In the second half of the period, the PWM control signal is transmitted to the switch portion 734 through the transformer 730 such that the first switch circuits 750 is open and the second switch circuits 752 is closed.
In use, the example battery equalization circuit 720 operates to connect two adjacent or connected batteries in any string of batteries as defined by a relay matrix to equalize the voltages on the adjacent batteries. Alternative battery equalization circuits that may be configured to operate in the same manner as the example battery equalization circuit 720 are described in the following U.S. Patents, which are incorporated herein by reference: 5,710,504 and 6,841 ,971.
Given the foregoing, it should be apparent that the principles of the present invention may be embodied in forms other than those described above. The scope of the present invention should thus be determined by the claims to be appended hereto and not the foregoing detailed description of the invention.
Claims (18)
1. A battery system comprising:
at least one battery string comprising more than two batteries
connected in series;
a charge equalization circuit capable of equalizing the charge on any pair of series connected batteries in the at least one battery string;
a relay matrix operatively connected between the charge
equalization circuit and the at least one battery string; and a balance controller for controlling the relay matrix; wherein the balance controller controls the relay matrix such that at least one battery characteristic of at least one battery is sensed; and
based on at least one sensed battery characteristic, the balance controller controls the relay matrix such that the charge equalization circuit is connected across at least one pair of series connected batteries in the at least one battery string.
2. A battery system as recited in claim 1 , in which the balance controller controls the relay matrix such that the charge equalization circuit is connected across a plurality of pairs of series connected batteries in the at least one battery string.
3. A system as recited in claim 1 , further comprising a plurality of battery strings connected in parallel.
4. A system as recited in claim 1 , further comprising a wire harness connected between the relay matrix and the at least one battery string.
5. A UPS system for supplying power to a load based on a power signal provided by a power source, comprising:
at least one battery string comprising more than two batteries
connected in series;
an inverter/charger circuit operatively connected between
the power source and the at least one battery string, and the at least one battery string and the load;
a charge equalization circuit capable of equalizing the charge on any pair of series connected batteries in the at least one battery string; and
a relay matrix operatively connected between the charge
equalization circuit and the at least one battery string;
a balance controller for controlling the relay matrix; wherein the balance controller controls the relay matrix such that at least one characteristic of at least one battery is sensed; and based on at least one sensed battery characteristic, the balance controller controls the relay matrix such that the charge equalization circuit is connected across at least one pair of series connected batteries in the at least one battery string.
6. A battery system as recited in claim 5, in which the balance controller controls the relay matrix such that the charge equalization circuit is connected across a plurality of pairs of series connected batteries in the at least one battery string.
7. A system as recited in claim 5, further comprising a plurality of battery strings connected in parallel.
8. A system as recited in claim 5, further comprising a wire hamess connected between the relay matrix and the at least one battery string.
9. A UPS system as recited in claim 5, further comprising a transformer module operatively connected between:
the power source and the load; and
the inverter/charge circuit and the load.
10. A battery system comprising:
a plurality of battery strings, where
each battery string comprises more than two batteries
connected in series, and
the battery strings are connected in parallel;
at least one charge equalization circuit capable of equalizing the charge on any pair of series connected batteries; a relay matrix operatively connected between the charge
equalization circuit and the plurality of battery strings; and a balance controller for controlling the relay matrix; wherein the balance controller controls the relay matrix such that battery characteristics of plurality of batteries are sensed; and based on the at least one sensed battery characteristic, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across at least one pair of series connected batteries in the plurality of battery strings.
11 . A battery system as recited in claim 0, in which the balance controller controls the relay matrix such that the charge equalization circuit is connected across a plurality of pairs of series connected batteries in the plurality of battery strings.
12. A system as recited in claim 10, further comprising a wire harness connected between the relay matrix and the at least one battery string.
13. A UPS system for supplying power to a load based on a power signal provided by a power source, comprising:
a plurality of battery strings, where
each battery string comprises more than two batteries
connected in series, and
the battery strings are connected in parallel;
an inverter/charger circuit operatively connected between
the power source and the at least one battery string, and the at least one battery string and the load;
at least one charge equalization circuit capable of equalizing the charge on any pair of series connected batteries; a relay matrix operatively connected between the charge
equalization circuit and the at least one battery string;
a balance controller for controlling the relay matrix; wherein the balance controller controls the relay matrix such that battery characteristics of the batteries are sensed; and based on the sensed battery characteristics, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across pairs of series connected batteries in the plurality of battery strings to equalize charges on the batteries.
14. A system as recited in claim 13, further comprising a wire harness connected between the relay matrix and the at least one battery string.
15. A UPS system as recited in claim 13, further comprising a transformer module operatively connected between:
the power source and the load; and
the inverter/charge circuit and the load.
16. A UPS system for supplying power to a load based on a power signal provided by a power source, comprising:
a plurality of battery strings, where
each battery string comprises more than two batteries
connected in series, and
the battery strings are connected in parallel; an inverter/charger circuit operatively connected between
the power source and the at least one battery string, and the at least one battery string and the load;
at least one charge equalization circuit capable of equalizing the charge on any pair of series connected batteries;
a relay matrix operatively connected between the charge
equalization circuit and the at least one battery string;
a balance controller for controlling the relay matrix; wherein the balance controller controls the relay matrix such that battery characteristics of the batteries are sensed; and based on the sensed battery characteristics, the balance controller controls the relay matrix such that at least one charge equalization circuit is connected across pairs of series connected batteries in the plurality of battery strings to equalize charges on the batteries.
17. A system as recited in claim 16, further comprising a wire harness connected between the relay matrix and the at least one battery string.
18. A UPS system as recited in claim 16, further comprising a transformer module operatively connected between:
the power source and the load; and
the inverter/charge circuit and the load.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161435298P | 2011-01-22 | 2011-01-22 | |
US61/435,298 | 2011-01-22 | ||
PCT/US2012/021383 WO2012112252A2 (en) | 2011-01-22 | 2012-01-13 | Charge equalization systems and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2012218100A1 true AU2012218100A1 (en) | 2013-08-08 |
AU2012218100B2 AU2012218100B2 (en) | 2016-05-19 |
Family
ID=46673082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012218100A Active AU2012218100B2 (en) | 2011-01-22 | 2012-01-13 | Charge equalization systems and methods |
Country Status (8)
Country | Link |
---|---|
US (4) | US9397509B2 (en) |
EP (1) | EP2666228B1 (en) |
AU (1) | AU2012218100B2 (en) |
BR (1) | BR112013018549A2 (en) |
CA (1) | CA2825481C (en) |
MX (1) | MX339881B (en) |
TW (1) | TWI568133B (en) |
WO (1) | WO2012112252A2 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8575779B2 (en) | 2010-02-18 | 2013-11-05 | Alpha Technologies Inc. | Ferroresonant transformer for use in uninterruptible power supplies |
MX339881B (en) | 2011-01-22 | 2016-06-14 | Alpha Tech Inc | Charge equalization systems and methods. |
AU2012207388B2 (en) | 2011-01-23 | 2016-05-19 | Alpha Technologies Services, Inc. | Uninterruptible power supplies for use in a distributed network |
CA2825483C (en) | 2011-01-23 | 2019-11-12 | Alpha Technologies Inc. | Switching systems and methods for use in uninterruptible power supplies |
WO2012144674A1 (en) * | 2011-04-22 | 2012-10-26 | Sk 이노베이션 주식회사 | Detachable battery module, and method and apparatus for the charge equalization of a battery string using same |
CN104247240B (en) * | 2012-02-29 | 2018-02-09 | 施耐德电气It公司 | Band is used as the UPS of the incremental transducer of the input electric power adjuster in double transformation systems |
US9234916B2 (en) | 2012-05-11 | 2016-01-12 | Alpha Technologies Inc. | Status monitoring cables for generators |
CN103683364A (en) * | 2012-09-26 | 2014-03-26 | 天宇通讯科技(昆山)有限公司 | Circuit control system of back-up power supply |
CN103683367A (en) * | 2012-09-26 | 2014-03-26 | 研勤科技股份有限公司 | Vehicle-used charger with backup power source |
CN104124726B (en) | 2013-04-25 | 2016-08-31 | 财团法人工业技术研究院 | Charging device and charging method |
CN104348199B (en) * | 2013-08-01 | 2017-03-01 | 通用电气公司 | Battery management system and method |
US9827865B2 (en) | 2014-12-30 | 2017-11-28 | General Electric Company | Systems and methods for recharging vehicle-mounted energy storage devices |
US10300804B2 (en) | 2015-04-29 | 2019-05-28 | General Electric Company | Apparatus and method for automated positioning of a vehicle |
BR112018004887A2 (en) | 2015-09-13 | 2018-10-09 | Alpha Tech Inc | power control systems and methods. |
TWI565187B (en) * | 2015-09-15 | 2017-01-01 | 至美科技股份有限公司 | Llc charger and controlling method thereof, and tx-rx transformer |
US10381867B1 (en) | 2015-10-16 | 2019-08-13 | Alpha Technologeis Services, Inc. | Ferroresonant transformer systems and methods with selectable input and output voltages for use in uninterruptible power supplies |
US9987938B2 (en) | 2015-12-04 | 2018-06-05 | General Electric Company | Energy storage device, exchange apparatus, and method for exchanging an energy storage device |
DE102016012228A1 (en) * | 2016-10-13 | 2018-04-19 | Man Truck & Bus Ag | Traction energy storage system for a vehicle |
CA3069966A1 (en) | 2017-07-14 | 2019-01-17 | Alpha Technologies Services, Inc. | Voltage regulated ac power supply systems and methods |
US11876394B2 (en) | 2017-12-21 | 2024-01-16 | Eric Paul Grasshoff | Active cell balancing in batteries using switch mode dividers |
US10910847B2 (en) | 2017-12-21 | 2021-02-02 | Eric Paul Grasshoff | Active cell balancing in batteries using switch mode dividers |
WO2019147244A1 (en) * | 2018-01-25 | 2019-08-01 | Volvo Construction Equipment Ab | Equalizer overload management |
CN109572484A (en) * | 2018-12-04 | 2019-04-05 | 深圳市国新动力科技有限公司 | A kind of Multi-function compatible type active equalization circuit and method |
JP7477910B2 (en) | 2019-10-30 | 2024-05-02 | インダクトイーブイ インク. | Contactless replaceable battery system |
CN111342152A (en) * | 2020-03-06 | 2020-06-26 | 温州大学 | Composite battery pack equalization circuit |
CN113002365B (en) * | 2021-02-01 | 2023-07-07 | 国网浙江省电力有限公司杭州供电公司 | Single-to-multiple equalizing charge method for collaborative charge with direct current charging pile |
US11862987B2 (en) * | 2021-12-07 | 2024-01-02 | Inductev Inc. | Contactless swappable battery system |
TWI842119B (en) * | 2022-10-07 | 2024-05-11 | 順達科技股份有限公司 | Charging system, voltage control device and method of voltage control the same |
TWI836705B (en) * | 2022-11-07 | 2024-03-21 | 和碩聯合科技股份有限公司 | Power system |
Family Cites Families (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4079303A (en) | 1976-07-28 | 1978-03-14 | The United States Of America As Represented By The United States Department Of Energy | Charging system and method for multicell storage batteries |
US4184197A (en) | 1977-09-28 | 1980-01-15 | California Institute Of Technology | DC-to-DC switching converter |
US4186437A (en) | 1978-05-03 | 1980-01-29 | California Institute Of Technology | Push-pull switching power amplifier |
US4479083B1 (en) | 1982-09-30 | 1998-09-01 | Vanner Weldon Inc | DC power system having battery voltage equalizer circuit |
US4502000A (en) | 1983-07-19 | 1985-02-26 | Energy Development Associates, Inc. | Device for balancing parallel strings |
US4502001A (en) | 1983-07-19 | 1985-02-26 | Energy Development Associates, Inc. | Current balancing for battery strings |
US4684814A (en) | 1986-07-03 | 1987-08-04 | General Motors Corporation | Motor vehicle electrical system including a combined starter/generator |
US4733223A (en) | 1987-03-26 | 1988-03-22 | Gilbert William C | Apparatus for monitoring a communications system |
US4943763A (en) | 1988-09-08 | 1990-07-24 | Albar, Inc. | Ferroresonant transformer with dual outputs |
US4949028A (en) | 1988-10-18 | 1990-08-14 | Sure Power, Inc. | Multiple voltage battery charge balancing and load protecting device |
US5003244A (en) | 1989-05-09 | 1991-03-26 | Digital Equipment Corporation | Battery charger for charging a plurality of batteries |
US4967136A (en) | 1989-09-25 | 1990-10-30 | Prestolite Electric Incorporated | Battery equalization circuit for a dual voltage charging system |
US4975649A (en) | 1989-12-18 | 1990-12-04 | Albar, Inc. | Method and apparatus for sensing loss of regulation in a ferroresonant transformer |
US5029285A (en) | 1990-04-20 | 1991-07-02 | Albar, Inc. | Power back feed protection device |
US5010469A (en) | 1990-05-09 | 1991-04-23 | Albar | Uninterruptible power supply with dual level voltage input |
US5302858A (en) | 1991-12-11 | 1994-04-12 | Best Power Technology, Incorporated | Method and apparatus for providing battery charging in a backup power system |
CA2086897A1 (en) | 1992-01-13 | 1993-07-14 | Howard H. Bobry | Toroidal transformer and method for making |
FI96370C (en) | 1992-10-01 | 1996-06-10 | Fps Power Systems Oy Ab | Method for checking the internal impedance of a backup power supply battery and a backup power supply |
US5410720A (en) | 1992-10-28 | 1995-04-25 | Alpha Technologies | Apparatus and methods for generating an AC power signal for cable TV distribution systems |
US5739595A (en) | 1992-10-28 | 1998-04-14 | Alpha Technologies, Inc. | Apparatus and methods for generating an AC power signal for cable tv distribution systems |
US5479083A (en) | 1993-06-21 | 1995-12-26 | Ast Research, Inc. | Non-dissipative battery charger equalizer |
US5642002A (en) | 1993-10-29 | 1997-06-24 | Alpha Technologies | Apparatus and methods for generating uninterruptible AC power signals |
US5504415A (en) * | 1993-12-03 | 1996-04-02 | Electronic Power Technology, Inc. | Method and apparatus for automatic equalization of series-connected batteries |
US5532525A (en) | 1994-06-02 | 1996-07-02 | Albar, Inc. | Congeneration power system |
US5594320A (en) | 1994-09-09 | 1997-01-14 | Rayovac Corporation | Charge equalization of series connected cells or batteries |
US5528122A (en) * | 1994-11-29 | 1996-06-18 | Ventron Corporation | Battery voltage equalizer circuit |
CA2168520C (en) | 1995-02-22 | 2003-04-08 | Fereydoun Mekanik | Inverter/charger circuit for uninterruptible power supplies |
AU6176096A (en) | 1995-06-16 | 1997-01-15 | Tollgrade Communications, Inc. | Coaxial testing and provisioning network interface device |
US5631534A (en) * | 1995-08-21 | 1997-05-20 | Delco Electronics Corp. | Bidirectional current pump for battery charge balancing |
US5956241A (en) | 1996-02-26 | 1999-09-21 | Micro Linear Corporation | Battery cell equalization circuit |
US5710504A (en) * | 1996-05-20 | 1998-01-20 | The Board Of Trustees Of The University Of Illinois | Switched capacitor system for automatic battery equalization |
US5886503A (en) * | 1996-05-29 | 1999-03-23 | Peco Ii, Inc. | Back-up battery management apparatus for charging and testing individual battery cells in a string of battery cells |
US5666041A (en) | 1996-08-27 | 1997-09-09 | The University Of Toledo | Battery equalization circuit with ramp converter |
US5982143A (en) | 1996-08-27 | 1999-11-09 | The University Of Toledo | Battery equalization circuit with ramp converter and selective outputs |
US5892431A (en) | 1997-05-20 | 1999-04-06 | Alpha Technologies, Inc. | Power multiplexer for broadband communications systems |
US5961604A (en) | 1997-06-03 | 1999-10-05 | Alpha Technologies, Inc. | Status monitoring systems for cable television signal distribution networks |
AU8696998A (en) | 1997-08-08 | 1999-03-01 | Alpha Technologies, Inc. | Electrical generator employing rotary engine |
AU9675898A (en) | 1997-09-29 | 1999-04-23 | Tollgrade Communications, Inc. | Frequency agile transponder |
US5994793A (en) | 1998-05-11 | 1999-11-30 | Multipower, Inc. | Uninterruptible power supply with plurality of inverters |
US5982142A (en) | 1998-05-22 | 1999-11-09 | Vanner, Inc. | Storage battery equalizer with improved, constant current output filter, overload protection, temperature compensation and error signal feedback |
US6348782B1 (en) | 1998-10-02 | 2002-02-19 | Powerware Corporation | Uninterruptible power supply systems, voltage regulators and operating methods employing controlled ferroresonant transformer circuits |
TW502900U (en) | 1998-11-30 | 2002-09-11 | Ind Tech Res Inst | Battery charging equalizing device |
US6140800A (en) | 1999-05-27 | 2000-10-31 | Peterson; William Anders | Autonomous battery equalization circuit |
US6288916B1 (en) | 1999-10-15 | 2001-09-11 | Alpha Technologies, Inc. | Multiple output uninterruptible alternating current power supplies for communications system |
US6738435B1 (en) | 1999-10-15 | 2004-05-18 | Tollgrade Communications, Inc. | Matched-filter frequency-shift-keyed receiver using degenerate digital signal processing techniques |
US6222344B1 (en) | 1999-12-06 | 2001-04-24 | Bae Systems Controls, Inc. | Magnetically coupled autonomous battery equalization circuit |
US6518725B2 (en) | 2000-01-28 | 2003-02-11 | Semtech Corporation | Charge balancing system |
WO2001071885A1 (en) | 2000-03-20 | 2001-09-27 | Alpha Technologies, Inc. | Uninterruptible power supplies employing fuel cells |
TW552759B (en) * | 2001-02-15 | 2003-09-11 | Seiko Instr Inc | Battery state monitoring circuit |
JP2004524793A (en) * | 2001-03-30 | 2004-08-12 | デザインライン・リミテッド | Battery management unit, system, and method |
US6933626B2 (en) | 2001-04-24 | 2005-08-23 | Alphatec Ltd. | Ferroelectric transformer-free uninterruptible power supply (UPS) systems and methods for communications signal distribution systems |
US6486399B1 (en) | 2001-05-08 | 2002-11-26 | Powerware Corporation | Pole mount cabinet and method for assembling the same |
US6624612B1 (en) * | 2001-10-30 | 2003-09-23 | Symbol Technologies, Inc. | System and method to facilitate voltage balancing in a multi-cell battery |
US6841971B1 (en) | 2002-05-29 | 2005-01-11 | Alpha Technologies, Inc. | Charge balancing systems and methods |
US7378818B2 (en) * | 2002-11-25 | 2008-05-27 | Tiax Llc | Bidirectional power converter for balancing state of charge among series connected electrical energy storage units |
CA2504101C (en) | 2003-06-06 | 2010-05-11 | Alpha Technologies Inc. | Connection systems and methods for utility meters |
US7567520B2 (en) | 2004-11-17 | 2009-07-28 | Tollgrade Communications, Inc. | Apparatus and method of remotely enabling a special mode of operation of an endpoint in a VoIP network |
JP4627489B2 (en) * | 2005-11-29 | 2011-02-09 | 日立コンピュータ機器株式会社 | Uninterruptible power supply system and battery charging method |
JP4591416B2 (en) * | 2006-07-06 | 2010-12-01 | 三菱電機株式会社 | Uninterruptible power system |
KR100778414B1 (en) * | 2006-10-12 | 2007-11-22 | 삼성에스디아이 주식회사 | Battery management system and driving method thereof |
JP2009011022A (en) * | 2007-06-26 | 2009-01-15 | Nissan Motor Co Ltd | Capacity adjusting device and capacity adjusting method of battery pack |
JP4858378B2 (en) * | 2007-09-14 | 2012-01-18 | 日本テキサス・インスツルメンツ株式会社 | Cell voltage monitoring device for multi-cell series batteries |
KR20100075913A (en) * | 2007-09-14 | 2010-07-05 | 에이일이삼 시스템즈 인코포레이티드 | Lithium rechargeable cell with reference electrode for state of health monitoring |
CA2713017A1 (en) | 2008-01-23 | 2009-07-30 | Alpha Technologies, Inc. | Simplified maximum power point control utilizing the pv array voltage at the maximum power point |
JP2010063198A (en) * | 2008-09-01 | 2010-03-18 | Toyota Industries Corp | Power supply unit and method for charging power storage means |
KR101076786B1 (en) * | 2009-01-30 | 2011-10-25 | 한국과학기술원 | Charge Equalization Apparatus for Series-Connected Battery String and Charge Equalization Method Thereof |
EP2425515A2 (en) | 2009-05-01 | 2012-03-07 | Alpha Technologies Inc. | Solar power systems optimized for use in cold weather conditions |
CN101764421B (en) * | 2010-01-15 | 2013-05-15 | 中国科学院电工研究所 | Equalizing equipment for battery units of electric automobile |
US8575779B2 (en) | 2010-02-18 | 2013-11-05 | Alpha Technologies Inc. | Ferroresonant transformer for use in uninterruptible power supplies |
WO2012054406A1 (en) | 2010-10-18 | 2012-04-26 | Alpha Technologies, Inc. | Uninterruptible power supply systems and methods for communications systems |
TWM414756U (en) | 2011-01-14 | 2011-10-21 | Ta Hwa Inst Technology | Active balancing circuit for battery set having a plurality of battery units |
MX339881B (en) | 2011-01-22 | 2016-06-14 | Alpha Tech Inc | Charge equalization systems and methods. |
AU2012207388B2 (en) | 2011-01-23 | 2016-05-19 | Alpha Technologies Services, Inc. | Uninterruptible power supplies for use in a distributed network |
CA2825483C (en) | 2011-01-23 | 2019-11-12 | Alpha Technologies Inc. | Switching systems and methods for use in uninterruptible power supplies |
US20120217800A1 (en) | 2011-02-11 | 2012-08-30 | Alpha Technologies Inc. | Solar power systems optimized for use in communications networks |
EP2751903A4 (en) * | 2011-09-02 | 2015-09-09 | Boston Power Inc | Method for balancing cells in batteries |
US9037443B1 (en) | 2011-10-16 | 2015-05-19 | Alpha Technologies Inc. | Systems and methods for solar power equipment |
US9234916B2 (en) | 2012-05-11 | 2016-01-12 | Alpha Technologies Inc. | Status monitoring cables for generators |
US20140362714A1 (en) | 2013-06-10 | 2014-12-11 | Cheetah Technologies, L.P. | Network-selecting hybrid fiber coaxial monitor, system including same and method of employing |
BR112018004887A2 (en) | 2015-09-13 | 2018-10-09 | Alpha Tech Inc | power control systems and methods. |
WO2018201085A1 (en) | 2017-04-28 | 2018-11-01 | Alpha Technologies Inc. | Packaging systems and methods for batteries |
-
2012
- 2012-01-13 MX MX2013008461A patent/MX339881B/en active IP Right Grant
- 2012-01-13 BR BR112013018549A patent/BR112013018549A2/en not_active Application Discontinuation
- 2012-01-13 EP EP12747375.9A patent/EP2666228B1/en active Active
- 2012-01-13 CA CA2825481A patent/CA2825481C/en active Active
- 2012-01-13 AU AU2012218100A patent/AU2012218100B2/en active Active
- 2012-01-13 WO PCT/US2012/021383 patent/WO2012112252A2/en active Application Filing
- 2012-01-13 US US13/350,706 patent/US9397509B2/en active Active
- 2012-01-18 TW TW101101904A patent/TWI568133B/en active
-
2016
- 2016-07-18 US US15/213,333 patent/US9853497B2/en active Active
-
2017
- 2017-12-21 US US15/851,001 patent/US10312728B2/en active Active
-
2019
- 2019-06-04 US US16/431,501 patent/US10873207B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2825481C (en) | Charge equalization systems and methods | |
AU2012218100A1 (en) | Charge equalization systems and methods | |
JP7432292B2 (en) | load test system | |
JP5767873B2 (en) | Power storage device and power storage system | |
US20110234165A1 (en) | Modular Charging System for Multi-Cell Series-Connected Battery Packs | |
US20130038289A1 (en) | Battery-cell converter systems | |
CN103904725B (en) | Battery system | |
WO2011096430A1 (en) | Power supply device | |
CN103329390B (en) | Chargeable cell system and rechargeable battery system operational | |
CN102823104B (en) | For the charge balancing system of battery | |
US20120299545A1 (en) | Rechargeable battery power supply starter and cell balancing apparatus | |
JP2013520947A (en) | Battery cell converter management system | |
CA2782351A1 (en) | System and method of integrated battery charging and balancing | |
EP2797205B1 (en) | Matrix charger apparatus and charging method | |
CN104953692B (en) | Power supply system | |
KR20180051786A (en) | Inter-Cell Balancing Method and System for Battery Charging using the Combined Method of Serial Whole Charging and Selective Supplementary Charging | |
US20110155494A1 (en) | Electrical power supply unit and method for charging accumulators of an electric power supply unit and light electric vehicle with electric power supply unit | |
KR20210022418A (en) | Battery system and operating method thereof | |
KR20140119531A (en) | An energy storage system using bidirectional pwm inverter | |
JP2001268815A (en) | Charge circuit | |
US20190067959A1 (en) | Battery pack balancing system | |
KR20180102996A (en) | Energy level conversion circuit for portable energy storage apparatus | |
KR20130125704A (en) | Power accumulation system and method for controlling storage module | |
CN116865316B (en) | Modularized energy-storage bidirectional converter | |
Yildirim | Design and control of bidirectional DC-DC converters for modular battery energy storage systems |