AU2012200223B2 - Internally rotating nozzle for facilitating drilling through a subterranean formation - Google Patents

Internally rotating nozzle for facilitating drilling through a subterranean formation Download PDF

Info

Publication number
AU2012200223B2
AU2012200223B2 AU2012200223A AU2012200223A AU2012200223B2 AU 2012200223 B2 AU2012200223 B2 AU 2012200223B2 AU 2012200223 A AU2012200223 A AU 2012200223A AU 2012200223 A AU2012200223 A AU 2012200223A AU 2012200223 B2 AU2012200223 B2 AU 2012200223B2
Authority
AU
Australia
Prior art keywords
rotor
hose
shoe
housing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2012200223A
Other versions
AU2012200223A1 (en
Inventor
Barry Belew
David Belew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V2h International Pty Ltd
Original Assignee
V2h Int Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006302331A external-priority patent/AU2006302331B2/en
Application filed by V2h Int Pty Ltd filed Critical V2h Int Pty Ltd
Priority to AU2012200223A priority Critical patent/AU2012200223B2/en
Publication of AU2012200223A1 publication Critical patent/AU2012200223A1/en
Application granted granted Critical
Publication of AU2012200223B2 publication Critical patent/AU2012200223B2/en
Assigned to V2H International Pty Ltd reassignment V2H International Pty Ltd Request for Assignment Assignors: BELEW, DAVID
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

Internally Rotating Nozzle for Facilitating Drilling Through a Subterranean Formation Abstract A method for facilitating horizontal drilling through a well casing (12) into a subterranean formation (16) is provided. The method comprising the step of positioning in the well casing (12) a shoe (18) defining a passageway (24) extending from an upper opening (26) in the shoe (18) through the shoe (18) to a side opening in the shoe (18). The method also comprising the step of inserting a rod (30) and casing mill assembly (32) into the well casing (12) and through the passageway (24) in the shoe (18) until a casing mill end (48a) of the casing mill assembly (32) substantially abuts the well casing (12). The method further comprising the step of rotating the rod (30) and casing mill assembly (32) until the casing mill end (48a) substantially forms a perforation (52) in the well casing (12). The method further comprising the step of attaching a hose fitting (72) of a housing (74) of an internally rotating nozzle (64) to an end of a hose (62) for facilitating fluid communication between the hose (62) and an interior portion of the housing (74). The internally rotating nozzle (64) including a rotor (84) rotatably mounted within the housing (74) so that the entire rotor (84) is contained within the interior portion of the housing (74). The rotor (84) including at least two tangential jets (84d) oriented off-center to generate torque to rotate the rotor (84). The rotor (84) further defining passageways for providing fluid communication between the interior portion of the housing (74) and the jets (84d). The method further comprising the step of extending the internally rotating nozzle (64) attached to the end of the hose (62) through the passageway (24) and the perforation (52) into the subterranean formation (16), and ejecting fluid from the nozzle (64) into the subterranean formation (16). 5886664-1:EEB

Description

S&F Ref: 857725D1 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address David Belew, of 2314 South County Road 1120, of Applicant: Midland, Texas, 79706, United States of America Actual Inventor(s): David Belew Barry Belew Address for Service: Spruson & Ferguson St Martins Tower Level 35 31 Market Street Sydney NSW 2000 (CCN 3710000177) Invention Title: Internally rotating nozzle for facilitating drilling through a subterranean formation The following statement is a full description of this invention, including the best method of performing it known to me/us: 5845c(5895686_1) 1 Internally Rotating Nozzle for Facilitating Drilling Through a Subterranean Formation Technical Field The present invention relates generally to a method and system for facilitating s horizontal (also referred to as "lateral") drilling into a subterranean formation surrounding a well casing. More particularly, the invention relates to an internally rotating nozzle that may be used to facilitate substantially horizontal drilling into a subterranean formation surrounding a well casing. Background 10 The rate at which hydrocarbons are produced from wellbores in subterranean formations is often limited by wellbore damage caused by drilling, cementing, stimulating, and producing. As a result, the hydrocarbon drainage area of wellbores is often limited, and hydrocarbon reserves become uneconomical to produce sooner than they would have otherwise, and are therefore not fully recovered. Similarly, increased 15 power is required to inject fluids, such as water and CO 2 , and to dispose of waste water, into wellbores when a wellbore is damaged. Formations may be fractured to stimulate hydrocarbon production and drainage from wells, but fracturing is often difficult to control and results in further formation damage and/or breakthrough to other formations. 20 Tight formations are particularly susceptible to formation damage. To better control damage to tight formations, lateral (namely, horizontal) completion technology has been developed. For example, guided rotary drilling with a flexible drill string and a decoupled downhole guide mechanism has been used to drill laterally into a formation, to thereby stimulate hydrocarbon production and drainage. However, a 25 significant limitation of this approach has been severe drag and wear on drill pipe since an entire drill string must be rotated as it moves through a curve going from vertical to horizontal drilling. Coiled tubing drilling (CTD) has been used to drill lateral drainage holes, but is expensive and typically requires about a 60 to 70 foot radius to maneuver into a lateral 30 orientation. High pressure jet systems, utilizing non-rotating nozzles and externally rotating nozzles with fluid bearings have been developed to drill laterally to bore tunnels (also referred to as holes or boreholes) through subterranean formations. Such jet systems, 5886664-1:EBB 2 however, have failed due to the turbulent dissipation of jets in a deep, fluid-filled borehole, due to the high pressure required to erode deep formations, and, with respect to externally rotating nozzles, due to impairment of the rotation of the nozzle from friction encountered in the formation. s Accordingly, there is a need for methods and systems by which wellbore damage may be minimized and/or bypassed, so that hydrocarbon drainage areas and drainage rates may be increased, and the power required to inject fluids and dispose of waste water into wellbores may be reduced. Object of the Invention 10 It is the object of the present invention to substantially achieve the above need, or to at least provide a useful alternative. Summary of the Invention In a first aspect, the present invention provides a method for facilitating horizontal drilling through a well casing into a subterranean formation, the method is comprising steps of: positioning in said well casing a shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side opening in said shoe; inserting a rod and casing mill assembly into said well casing and 20 through said passageway in said shoe until a casing mill end of said casing mill assembly substantially abuts said well casing; rotating said rod and casing mill assembly until said casing mill end substantially forms a perforation in said well casing; attaching a hose fitting of a housing of an internally rotating nozzle to 25 an end of a hose for facilitating fluid communication between said hose and an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented off center to generate torque to rotate said rotor, said rotor further defining passageways for 30 providing fluid communication between said interior portion of said housing and said jets; 5886664-1: ZEB 3 extending said internally rotating nozzle attached to the end of said hose through said passageway and said perforation into said subterranean formation; and ejecting fluid from said nozzle into said subterranean formation 5 In a second aspect, the present invention provides a method for facilitating horizontal drilling through a perforation in a well casing and into a subterranean formation, the method comprising the steps of: positioning and anchoring in said well casing a shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side 1o opening in said shoe aligned with said perforation; extending through said passageway to said perforation an internally rotating nozzle having a housing including a hose fitting attached to an end of a hose for facilitating fluid communication between said hose and an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said is housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented off-center to generate torque to rotate said rotor, said rotor further defining passageways for providing fluid communication between said interior portion of said housing and said jets; ejecting fluid from said internally rotating nozzle; and 20 extending said internally rotating nozzle through said perforation into said subterranean formation. In a third aspect, the present invention provides a system for facilitating horizontal drilling through a well casing and into a subterranean formation, the system comprising: 25 a shoe positioned at a selected depth in said well casing, said shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side opening in said shoe; a rod connected to a casing mill assembly for insertion into and through said well casing and through said passageway in said shoe until a casing mill 30 end of said casing mill assembly abuts said well casing; a motor coupled to said rod for rotating said rod and casing mill assembly until said casing mill end forms a perforation in said well casing; and an internally rotating nozzle having a housing including a hose fitting attached to an end of a hose for facilitating fluid communication between said hose and 5886664-1: E B 4 an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented off-center to generate torque to rotate said rotor, said rotor further defining passageways s for providing fluid communication between said interior portion of said housing and said jets. Brief Description of the Drawings For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying 10 drawings, in which: Figure 1 is a cross-sectional elevation view of a well having a drilling shoe positioned therein; Figure 2 is a cross-sectional elevation view of the well of FIG. I having a perforation mechanism positioned within the drilling shoe; 15 Figure 3 is a cross-sectional elevation view of the well of FIG. 2 showing the well casing perforated by the perforation mechanism; Figure 4 is a cross-sectional elevation view of the well of FIG. 3 with the perforation mechanism removed; Figure 5 is a cross-sectional elevation view of the well of FIG. 4 showing a 20 hydraulic drilling device extended through the casing of the well; Figure 6 is a cross-sectional elevation view of the nozzle of FIG. 5; Figure 7 is a elevation view taken along the line 7-7 of FIG. 6; Figure 8 is a cross-sectional elevation view of an alternative embodiment of the nozzle of FIG. 6 with brakes; 25 Figure 9 is a cross-sectional elevation view taken along the line 9-9 of FIG. 8; Figure 10 is a cross-sectional elevation view of an alternative embodiment of the nozzle of FIG. 8 that further includes a center nozzle; and Figure 11 is a elevation view taken along the line 11-11 of FIG. 10. Detailed Description of the Preferred Embodiment 30 In the discussion of the FIGURES the same reference numerals will be used throughout to refer to the same or similar components. In the interest of conciseness, various other components known to the art, such as wellheads, drilling components, 5886664-1 :EEB 5 motors, and the like necessary for the operation of the wells, have not been shown or discussed except insofar as necessary to describe the present invention. Referring to Figure 1 of the drawings, the reference numeral 10 generally designates an existing well encased by a well casing 12 and cement 14. The well 10 5 passes through a subterranean formation 16 from which petroleum is drawn. A drilling shoe 18 is securely attached to a tubing 20 via a tapered threaded fitting 22 formed between the tubing 20 and the shoe 18. The shoe 18 and tubing 20 are defined by an outside diameter approximately equal to the inside diameter of the well casing 12 less sufficient margin to preclude jamming of the shoe 18 and tubing 20 as they are lowered 1o through the casing 12. The shoe 18 further defines a passageway 24 which extends longitudinally through the shoe, and which includes an upper opening 26 and a lower opening 28. The passageway 24 defines a curved portion having a radius of preferably at least three inches. The upper opening 26 preferably includes a limit chamfer 27 and an angle guide chamfer 29, for receiving a casing mill, described below. is As shown in FIG. 1, the shoe 18 is lowered in the well 10 to a depth suitable for tapping into a hydrocarbon deposit (not shown), and is angularly oriented in the well 10 using well-known techniques so that the opening 28 of the shoe 18 is directed toward the hydrocarbon deposit. The shoe 18 is fixed in place by an anchoring device 25, such as a conventional packer positioned proximate to a lower end 18a of the shoe 18. While 20 the anchoring device 25 is shown in FIG. I as positioned proximate to the lower end 18a of the show 18, the anchoring device is preferably positioned above, or alternatively, below the shoe. Figure 2 depicts the insertion of a rod 30 and casing mill assembly 32 as a single unit through the tubing 20 and into the passageway 24 of the shoe 18 for 25 perforation of the well casing 12. The rod 30 preferably includes an annular collar 34 sized and positioned for seating in the chamfer 27 upon entry of the casing mill 32 in the cement 14, as described below with respect to FIG. 3. The rod 30 further preferably includes, threadingly connected at the lower end of the rod 30, a yoke adapter 37 connected to a substantially barrel-shaped (e. g. , semi-spherical or semi-elliptical) yoke 30 36 via a substantially straight yoke 38 and two conventional block and pin assemblies 39 operative as universal joints. The barrel-shaped yoke 36 is connected to a similar substantially barrel-shaped yoke 40 via a substantially straight yoke 42 and two conventional block and pin assemblies 43 operative as universal joints. Similarly, the barrel-shaped yoke 40 is connected to a substantially barrel-shaped yoke 44 via a 5886664-1:EEB 6 substantially straight yoke 46 and two conventional block and pin assemblies 47 operative as universal joints. Similarly, the barrel-shaped yoke 44 is connected to a substantially barrel-shaped "half' yoke 48 via a conventional block and pin assembly 49 operative as a universal joint. The surfaces of the yokes 36, 40, 44, and 48 are 5 preferably barrel-shaped so that they may be axially rotated as they are passed through the passageway 24 of the shoe 18. The yoke 48 includes a casing mill end 48a preferably having, for example, a single large triangular-shaped cutting tooth (shown), a plurality of cutting teeth, or the like, effective upon axial rotation for milling through the well casing 12 and into the cement 14. The milling end 48a is preferably fabricated 10 from a hardened, high strength, stainless steel, such as 17-4 stainless steel with tungsten carbides inserts, tungsten carbide, or the like, having a relatively high tensile strength of, for example, at least 100,000 pounds per square inch, and, preferably, at least 150,000 pounds per square inch. While four substantially barrel-shaped yokes 36, 40, 44, and 48, and three substantially straight yokes 38, 42, 46, are shown and described is with respect to FIG. 2, more or fewer yokes may be used to constitute the casing mill assembly 32. The rod 30 is preferably connected at the wellhead of the well 10 to a rotating device, such as a motor 51, effective for generating and transmitting torque to the rod 30 to thereby impart rotation to the rod. The torque transmitted to the rod 30 is, by way of 20 example, from about 25 to about 1000 foot-pounds of torque and, typically, from about 100 to about 500 foot-pounds of torque and, preferably, is about 200 to about 400 foot pounds of torque. The casing mill assembly 32 is preferably effective for transmitting the torque and rotation from the rod 30 through the passageway 24 to the casing mill end 48. 25 In operation, the tubing 20 and shoe 18 are lowered into the well casing 12 and secured in position by an anchoring device 25, as described above. The rod 30 and casing mill assembly 32 are then preferably lowered as a single unit through the tubing 20 and guided via the angle guide chamfer 29 into the shoe 18. The motor 51 is then coupled at the well-head to the rod 30 for generating and transmitting preferably from 30 about 100 to about 400 foot-pounds of torque to the rod 30, causing the rod 30 to rotate. As the rod 30 rotates, it imparts torque and rotation to and through the casing mill assembly 32 to rotate the casing mill end 48. The weight of the rod 30 also exerts downward axial force in the direction of the arrow 50, and the axial force is transmitted through the casing mill assembly 32 to 5886664-1:EEB 7 the casing mill end 48. The amount of weight transmitted through the casing mill assembly 32 to the casing mill end 48 may optionally be more carefully controlled to maintain substantially constant weight on the casing mill end 48 by using weight bars and bumper subs (not shown). As axial force is applied to move the casing mill end 48 s into the well casing 12 and cement 14, and torque is applied to rotate the casing mill end 48, the well casing 12 is perforated, and the cement 14 is penetrated, as depicted in Figure 3. The weight bars are thus suitably sized for efficiently perforating the well casing 12 and penetrating the cement 14 and, to that end, may, by way of example, be sized at 150 pounds each, it being understood that other weights may be preferable io depending on the well. Weight bars and bumper subs, and the sizing thereof, are considered to be well known in the art and, therefore, will not be discussed in further detail herein. As the casing mill end 48 penetrates the cement 14, the collar 34 seats in the chamfer 27, and the perforation of the well casing is terminated. The rod 30 and casing is mill assembly 32 are then withdrawn from the shoe 18, leaving a perforation 52, which remains in the well casing 12, as depicted in Figure 4. Notably, the cement 14 is preferably not completely penetrated. To obtain fluid communication with the petroleum reservoir/deposit of interest, a horizontal extension of the perforation 52 is used, as discussed below with respect to FIG. 5. 20 Figure 5 depicts a horizontal extension technique that may be implemented for extending the perforation 52 (FIG. 4) laterally into the formation 16 in accordance with present invention. The shoe 18 and tubing 20 are maintained in place. A flexible hose 62, having a nozzle 64 affixed to a lower end thereof, is extended through the tubing 20, the guide chamfer 29 and passageway 24 of the shoe 18, and the perforation 52 into the 25 cement 14. The flexible hose 62 is preferably a high-pressure (e.g., tested for a capacity of 20,000 PSI or more) flexible hose, such as a Polymide 2400 Series hose, preferably capable of passing through a curve having a radius of three inches. The hose 62 is preferably circumscribed by a spring 66 preferably comprising spiral wire having a square cross-section which abuts the nozzle 64 for facilitating "pushing" the hose 62 30 downwardly through the tubing 20. The spring 66 may alternatively comprise spiral wire having a round cross-section. The nozzle 64 is a high-pressure rotating nozzle, as described in further detail with respect to FIGS. 6-10. A plurality of annular guides, referred to herein as centralizers, 68 are preferably positioned about the spring 66 and suitably spaced apart for inhibiting bending and kinking of the hose 62 within the tubing 5886664-1:E EB 8 20. Each centralizer 68 has a diameter that is substantially equal to or less than the inside diameter of the tubing 20, and preferably also defines a plurality of slots and/or holes 68a for facilitating the flow of fluid through the tubing 20. The centralizers 68 are preferably also configured to slide along the spring 66 and rest and accumulate at the 5 top of the shoe 18 as the hose 62 is pushed through the passageway 24 and perforation 52 into the formation 16. Drilling fluid is then pumped at high pressure through the hose 62 to the nozzle 64 using conventional equipment 67 (e.g., a compressor, a pump, and/or the like) at the surface of the well 10. The drilling fluid used may be any of a number of different 10 fluids effective for eroding subterranean formation, such fluids comprising liquids, solids, and/or gases including, by way of example but not limitation, one or a mixture of two or more of fresh water, produced water, polymers, water with silica polymer additives, surfactants, carbon dioxide, gas, light oil, methane, methanol, diesel, nitrogen, acid, and the like, which fluids may be volatile or non-volatile, compressible or non is compressible, and/or optionally may be utilized at supercritical temperatures and pressures. The drilling fluid is preferably injected through the hose 62 and ejected from the nozzle 64, as indicated schematically by the arrows 66, to impinge subterranean formation material. The drilling fluid loosens, dissolves, and erodes portions of the earth's subterranean formation 16 around the nozzle 64. The excess drilling fluid flows 20 into and up the well casing 12 and tubing 20, and may be continually pumped away and stored. As the earth 16 is eroded away from the frontal proximity of the nozzle 64, a tunnel (also referred to as an opening or hole) 70 is created, and the hose 62 is extended into the tunnel. The tunnel 70 may generally be extended laterally 200 feet or more to insure that a passageway extends and facilitates fluid communication between the well 25 10 and the desired petroleum formation in the earth's formation 16. After a sufficient tunnel 70 has been created, additional tunnels may optionally be created, fanning out in different directions at substantially the same level as the tunnel 70 and/or different levels. If no additional tunnels need to be created, then the flexible hose 62 is withdrawn upwardly from the shoe 18 and tubing 20. The tubing 20 30 is then pulled upwardly from the well 10 and, with it, the shoe 18. Excess drilling fluid is then pumped from the well 10, after which petroleum product may be pumped from the formation. Figure 6 depicts one preferred embodiment of the nozzle 64 in greater detail positioned in the tunnel 70, the tunnel having an aft portion 70a and a fore portion 70b. 5886664-1:EEiB 9 As shown therein, the nozzle 64 includes a hose fitting 72 configured for being received by the hose 62. In a preferred embodiment, the hose fitting 72 also includes circumferential barbs 72a and a conventional band 73 clamped about the periphery of the hose 62 for securing the hose 62 onto the hose fitting 72 and barbs 72a. 5 The hose fitting 72 is threadingly secured to a housing 74 of the nozzle 64 via threads 75, and defines a passageway 72b for providing fluid communication between the hose 62 and the interior of the housing 74. A seal 76, such as an O-ring seal, is positioned between the hose fitting 72 and the housing 74 to secure the housing 74 against leakage of fluid received from the hose 62 via the hose fitting 72. The housing 10 74 is preferably fabricated from a stainless steel, and preferably includes a first section 74a having a first diameter, and a second section 74b having a second diameter of about 2-20% larger than the first diameter, and preferably about 10% larger than the first diameter. While the actual first and second diameters of the housing 74 are scalable, by way of example and not limitation, in one preferred embodiment, the second diameter is is about 1-1.5 inches in diameter, and preferably about 1.2 inches in diameter. About eight drain holes 74c are preferably defined between the first and second sections 74a and 74b of the housing 74, for facilitating fluid communication between the aft portion 70a and the fore portion 70b of the tunnel 70. The number of drain holes 74c may vary from eight, and accordingly may be more or less than eight drain holes. 20 A rotor 84 is rotatably mounted within the interior of the housing 74, and includes a substantially conical portion 84a and a cylindrical portion 84b. The conical portion 84a includes a vertex 84a' directed toward the hose fitting 72. The cylindrical portion 84b includes an outside diameter approximately equal to the inside diameter of the housing 74 less a margin sufficient to avoid any substantial friction between the 25 rotor 84 and the housing 74. The cylindrical portion 84b abuts a bearing 78, preferably configured as a thrust bearing, and race 88, which seat against an end of the housing 74 opposed to the hose fitting 72. The thrust bearing 78 is preferably a carbide ball bearing, and the race 88 is preferably fabricated from carbide as well. A radial clearance seal (not shown) may optionally be positioned between the rotor 84 and the 30 bearing race 88 to minimize fluid leakage through the bearing 78. A center extension portion 84c of the rotor 84 extends from the cylindrical portion 84b through the thrust bearings 78 and race 88, and two tangential jets 84d are formed on the rotor center extension portion 84c. Each jet 84d is configured to generate ajet stream having a diameter of about 0.025 to 0.075 inches, and preferably about 0.050". Passageways 84e 5886664-1: E B 10 are defined in the rotor 84 for facilitating fluid communication between the interior of the housing 74 and the jets 84d. As shown most clearly in FIG. 7, the tangential jets 84d are offset from a center point 84f and are directed in substantially opposing directions, radially spaced 5 from, and tangential to, the center point 84f. Referring back to FIG. 6, the jets 84d are preferably further directed at an angle 91 of about 450 from a centerline 84g extending through the rotor 84 from the vertex 84a through the center point 84f. Further to the operation described above with respect to FIGS. 1-5, and with reference to FIGS. 6 and 7, fluid is pumped down and through the hose 62 at a flow rate 1o of about 15 to 25 gallons per minute (GPM), preferably about 20 GPM, and a pressure of about 10,000 to 20,000 pounds per square inch (PSI), preferably about 15,000 PSI. The fluid passes through the passageway 72b into the interior of the housing 74. The fluid then passes into and through the passageways 84e to the jets 84d, and is ejected as a coherent jet stream of fluid 90 from the jets 84c at an angle 91 from the centerline is 84g. The jet stream of fluid 90 impinges and erodes earth in the fore portion 70b of the tunnel 70. A tangential component of the stream of fluid 90 (FIG. 7) causes the rotor 84 to rotate in the direction of an arrow 85 at a speed of about 40,000 to 60,000 revolutions per minute (RPM), though a lower RPM are generally preferred, as discussed in further detail below with respect to FIGS. 8-11. As the rotor 84 rotates, the stream of fluid 90 20 rotates, further impinging and eroding a cylindrical portion of earth in the fore portion 70b of the tunnel 70, thereby extending longitudinally the tunnel 70. As earth is eroded, it mixes with the fluid, drains away through the holes 74c, passes through the aft portion 70a of the tunnel 70, and then flows upwardly through and out of the well 10. The nozzle 64 is then urged via the hose 62 toward the fore portion 70b of the tunnel 70 to 25 extend the tunnel 70 as a substantially horizontal portion of the well 10. Figures 8 and 9 depict the details of a nozzle 100 according to an alternate embodiment of the present invention. Since the nozzle 100 contains many components that are identical to those of the previous embodiment (FIGS. 6-7), these components are referred to by the same reference numerals, and will not be described in any further 30 detail. According to the embodiment of Figures 8 and 9, a brake lining 102 extends along, and is substantially affixed to, the interior peripheral surface of the housing 74. The brake lining 102 is preferably fabricated from a relatively hard material, such as hardened carbide steel. Two or more brake pads 104, likewise fabricated from a relatively hard material, such as hardened carbide steel, are positioned within mating 5886664-1:EEB 11 pockets defined between the rotor 84 and the brake lining 102, wherein the pockets are sized for matingly retaining the brake pads 104 proximate to the brake lining 102 so that, in response to centrifugal force, the brake pads 104 are urged and moved radially outwardly to frictionally engage the brake lining 102 as the rotor 64 rotates. 5 Operation of the nozzle 100 is similar to the operation of the nozzle 64, but for a braking effect imparted by the brake lining 102 and brake pads 104. More specifically, as the rotor 84 rotates, centrifugal force is generated which is applied onto the brake pads 104, urging and pushing the brake pads 104 outwardly until they frictionally engage the brake lining 102. It should be appreciated that as the rotor 84 1o rotates at an increasing speed, or RPM, the centrifugal force exerted on the brake pads 104 increases in proportion to the square of the RPM, and resistance to the rotation thus increases exponentially, thereby limiting the maximum speed of the rotor 84, without significantly impeding rotation at lower RPM's. Accordingly, in a preferred embodiment, the maximum speed of the rotor will be limited to the range of about 1,000 is RPM to about 50,000 RPM, and preferably closer to 1,000 RPM (or even lower) than to 50,000 RPM. It is understood that the centrifugal force generated is, more specifically, a function of the product of the RPM squared, the mass of the brake pads, and radial distance of the brake pads from the centerline 84g. The braking effect that the brake pads 104 exert on the brake lining 102 is a function of the centrifugal force and the 20 friction between the brake pads 104 and the brake lining 102, and, furthermore, is considered to be well known in the art and, therefore, will not be discussed in further detail herein. Figure 10 depicts the details of a nozzle 110 according to an alternate embodiment of the present invention. Since the nozzle 110 contains many, components 25 that are identical to those of the previous embodiments (FIGS. 6-9), these components are referred to by the same reference numerals, and will not be described in any further detail. According to the embodiment of Figure 10, and with reference also to Figure 1 1, an additional center jet 84h, preferably smaller than (e. g., half the diameter of) the tangential jets 84d, is configured in the center extension portion 84c of the rotor 84, 30 interposed between the two tangential jets 84d for ejecting a jet stream 112 of fluid along the centerline 84g. Operation of the nozzle 110 is similar to the operation of the nozzle 100, but for providing an additional jet stream of fluid from the center jet 84h, effective for cutting the center of the tunnel 70. 5886664-1:EEB 12 By the use of the present invention, a tunnel may be cut in a subterranean formation in a shorter radius than is possible using conventional drilling techniques, such as a slim hole drilling system, a coiled tube drilling system, or a rotary guided short radius lateral drilling system. Even compared to ultra-short radius lateral drilling s systems, namely, conventional water jet systems, the present invention generates ajet stream which is more coherent and effective for cutting a tunnel in a subterranean formation. Furthermore, by utilizing bearings, the present invention also has less pressure drop in the fluid than is possible using conventional water jet systems. It is understood that the present invention may take many forms and 10 embodiments. Accordingly, several variations may be made in the foregoing without departing from the spirit or the scope of the invention. For example, the conical portion 84a of the rotor 84, or a portion thereof, may be inverted to more efficiently capture fluid from the hose 62. The brake pads 104 (FIG. 9) may be tapered to reduce resistance from, and turbulence by, fluid in the interior of the housing 74 as the rotor 84 is is rotated. The thrust bearing 78 may comprise types of bearings other than ball bearings, such as fluid bearings. Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing 20 disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the disclosure herein be construed broadly and in a manner consistent 25 with the scope of the invention. 5886664- 1:EEB

Claims (28)

1. A method for facilitating horizontal drilling through a well casing into a subterranean formation, the method comprising steps of: positioning in said well casing a shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side opening in said shoe; inserting a rod and casing mill assembly into said well casing and through said passageway in said shoe until a casing mill end of said casing mill assembly substantially abuts said well casing; rotating said rod and casing mill assembly until said casing mill end substantially forms a perforation in said well casing; attaching a hose fitting of a housing of an internally rotating nozzle to an end of a hose for facilitating fluid communication between said hose and an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented off center to generate torque to rotate said rotor, said rotor further defining passageways for providing fluid communication between said interior portion of said housing and said jets; extending said internally rotating nozzle attached to the end of said hose through said passageway and said perforation into said subterranean formation; and ejecting fluid from said nozzle into said subterranean formation.
2. The method of claim 1, further comprising the step of mounting at least one bearing between said housing and said rotor for facilitating rotation of said rotor within said housing.
3. The method of claim 1, further comprising the step of mounting at least one thrust bearing between said housing and said rotor for facilitating rotation of said rotor within said housing.
5886664-1:EEB 14
4. The method of claim 1, further comprising the step of mounting at least two brake pads on said rotor proximate to said housing for frictionally engaging said housing from centrifugal force induced when said rotor is rotated.
5. The method of claim 1, further comprising the steps of positioning a brake lining within said interior of said housing, and mounting at least two brake pads on said rotor proximate to said brake lining for frictionally engaging said brake lining from centrifugal force induced when said rotor is rotated.
6. The method of claim 1, further comprising the steps of positioning a carbide brake lining within said interior of said housing, and mounting at least two carbide brake pads on said rotor proximate to said brake lining for frictionally engaging said brake lining from centrifugal force induced when said rotor is rotated.
7. The method of claim 1, wherein said rotor is configured to rotate about an axis, and said jets are directed at an angle skewed from said axis.
8. The method of claim 1, wherein said rotor further comprises a center jet interposed between said at least two tangential jets.
9. The method of claim 1, wherein said casing mill assembly comprises at least one block and pin assembly coupled together to substantially form a universal joint connecting said rod to said casing mill end of said casing mill assembly for facilitating the step of inserting said casing mill assembly into and through said passageway of said shoe.
10. The method of claim 1, wherein said casing mill assembly comprises at least one yoke interconnecting at least two block and pin assemblies coupled together to substantially form at least two universal joints coupling together said rod and said casing mill end of said casing mill assembly for facilitating the step of inserting said casing mill assembly into and through said passageway of said shoe. 5886664-1: EEB 15
11. The method of claim 1, wherein said casing mill assembly comprises at least one barrel-shaped yoke interconnecting at least two block and pin assemblies coupled together to substantially form at least two universal joints coupling together said rod and said casing mill end of said casing mill assembly for facilitating said step of inserting said casing mill assembly into and through said passageway of said shoe.
12. The method of claim 1, wherein the upper end of said shoe includes a chamfer and said rod includes a collar configured for seating in said chamfer and positioned on said rod so that said casing mill end of said casing mill assembly is substantially precluded from movement extending through cement surrounding said well casing.
13. The method of claim 1, wherein said casing mill end comprises a milling portion fabricated from stainless steel with carbide inserts.
14. The method of claim 1, wherein said fluid further comprises surfactant.
15. The method of claim 1, wherein the step of ejecting further comprises the step of ejecting said fluid from said nozzle so that said fluid impinges subterranean formation material.
16. The method of claim 1, wherein the step of positioning further comprises attaching said shoe to tubing, and lowering said shoe into said well casing using said tubing.
17. The method of claim 1, wherein said hose is circumscribed along its entire length by at least one spring, and said step of extending further comprises extending, via said spring circumscribing said hose, said internally rotating nozzle attached to the end of said hose through said passageway to said perforation. 5886664-1:EEB 16
18. The method of claim 1, wherein said hose is circumscribed along its entire length by at least one spring, said spring having a square cross-section, and said step of extending further comprises extending, via said spring circumscribing said hose, said internally rotating nozzle attached to the end of said hose through said passageway to said perforation.
19. The method of claim 1, wherein the step of extending further comprises applying force to hold said nozzle against said subterranean formation.
20. The method of claim 1, wherein said hose is circumscribed along its entire length by at least one spring, said spring having a square cross-section, and said step of extending further comprises applying force through said at least one spring to extend said internally rotating nozzle through said passageway and said perforation into said subterranean formation.
21. A method for facilitating horizontal drilling through a perforation in a well casing and into a subterranean formation, the method comprising the steps of: positioning and anchoring in said well casing a shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side opening in said shoe aligned with said perforation; extending through said passageway to said perforation an internally rotating nozzle having a housing including a hose fitting attached to an end of a hose for facilitating fluid communication between said hose and an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented off-center to generate torque to rotate said rotor, said rotor further defining passageways for providing fluid communication between said interior portion of said housing and said jets; ejecting fluid from said internally rotating nozzle; and extending said internally rotating nozzle through said perforation into said subterranean formation. 5886664-1:EEB 17
22. The method of claim 21, wherein said hose is circumscribed along its entire length by at least one spring, and said step of extending further comprises extending said internally rotating nozzle, via said spring circumscribing said hose, through said passageway to said perforation.
23. The method of claim 21, wherein said hose is circumscribed along its entire length by at least one spring, said spring having a square cross-section, and said step of extending further comprises extending said internally rotating nozzle, via said spring circumscribing said hose, through said passageway to said perforation.
24. The method of claim 21, wherein the step of extending further comprises applying force to hold said nozzle against said subterranean formation.
25. The method of claim 21, wherein said hose is circumscribed along its entire length by at least one spring, said spring having a square cross-section, and said step of extending further comprises applying force through said at least one spring to extend said internally rotating nozzle through said passageway and said perforation into said subterranean formation.
26. A system for facilitating horizontal drilling through a well casing and into a subterranean formation, the system comprising: a shoe positioned at a selected depth in said well casing, said shoe defining a passageway extending from an upper opening in said shoe through said shoe to a side opening in said shoe; a rod connected to a casing mill assembly for insertion into and through said well casing and through said passageway in said shoe until a casing mill end of said casing mill assembly abuts said well casing; a motor coupled to said rod for rotating said rod and casing mill assembly until said casing mill end forms a perforation in said well casing; and an internally rotating nozzle having a housing including a hose fitting attached to an end of a hose for facilitating fluid communication between said hose and an interior portion of said housing, said internally rotating nozzle including a rotor rotatably mounted within said housing so that said entire rotor is contained within said interior portion of said housing, said rotor including at least two tangential jets oriented 5886664- 1: 18 off-center to generate torque to rotate said rotor, said rotor further defining passageways for providing fluid communication between said interior portion of said housing and said jets.
27. The system of claim 26, further comprising at least one spring circumscribing said hose along the entire length of said hose.
28. The system of claim 26, further comprising at least one spring circumscribing said hose along the entire length of said hose, said spring having a square cross-section. Dated 11 January 2012 David Belew Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON 5886664- 1:
AU2012200223A 2005-10-07 2012-01-13 Internally rotating nozzle for facilitating drilling through a subterranean formation Ceased AU2012200223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012200223A AU2012200223B2 (en) 2005-10-07 2012-01-13 Internally rotating nozzle for facilitating drilling through a subterranean formation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/246,896 2005-10-07
AU2006302331A AU2006302331B2 (en) 2005-10-07 2006-10-06 Method and System for Laterally Drilling Through a Subterranean Formation
AU2012200223A AU2012200223B2 (en) 2005-10-07 2012-01-13 Internally rotating nozzle for facilitating drilling through a subterranean formation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2006302331A Division AU2006302331B2 (en) 2005-10-07 2006-10-06 Method and System for Laterally Drilling Through a Subterranean Formation

Publications (2)

Publication Number Publication Date
AU2012200223A1 AU2012200223A1 (en) 2012-02-02
AU2012200223B2 true AU2012200223B2 (en) 2013-07-18

Family

ID=46639870

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012200223A Ceased AU2012200223B2 (en) 2005-10-07 2012-01-13 Internally rotating nozzle for facilitating drilling through a subterranean formation

Country Status (1)

Country Link
AU (1) AU2012200223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111255425A (en) * 2018-11-30 2020-06-09 中国石油化工股份有限公司 Nozzle for hydraulic jet fracturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007797A (en) * 1974-06-04 1977-02-15 Texas Dynamatics, Inc. Device for drilling a hole in the side wall of a bore hole
US6708769B2 (en) * 2000-05-05 2004-03-23 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US20050109541A1 (en) * 2003-11-17 2005-05-26 Marvin Mark H. Low friction face sealed reaction turbine rotors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007797A (en) * 1974-06-04 1977-02-15 Texas Dynamatics, Inc. Device for drilling a hole in the side wall of a bore hole
US6708769B2 (en) * 2000-05-05 2004-03-23 Weatherford/Lamb, Inc. Apparatus and methods for forming a lateral wellbore
US20050109541A1 (en) * 2003-11-17 2005-05-26 Marvin Mark H. Low friction face sealed reaction turbine rotors

Also Published As

Publication number Publication date
AU2012200223A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US9845641B2 (en) Method and system for laterally drilling through a subterranean formation
US6920945B1 (en) Method and system for facilitating horizontal drilling
US7934563B2 (en) Inverted drainholes and the method for producing from inverted drainholes
US6263984B1 (en) Method and apparatus for jet drilling drainholes from wells
US8267198B2 (en) Perforating and jet drilling method and apparatus
US8074744B2 (en) Horizontal waterjet drilling method
CA2390466A1 (en) Method and apparatus for jet drilling drainholes from wells
RU2638601C1 (en) Gravimetric means and method for orientation of casing strings
CN104379864B (en) Wellbore completion system with reaming tool
US11598171B2 (en) Tubing string with agitator, tubing drift hammer tool, and related methods
AU2006321380B2 (en) Method and apparatus for installing deflecting conductor pipe
AU2006302331B2 (en) Method and System for Laterally Drilling Through a Subterranean Formation
US7690444B1 (en) Horizontal waterjet drilling method
AU2012200223B2 (en) Internally rotating nozzle for facilitating drilling through a subterranean formation
GB2561072A (en) Lateral drilling system
US20080050180A1 (en) Method for increasing bit load
AU2012370478B2 (en) Protection of casing lowside while milling casing exit
US20130146362A1 (en) Oil and Gas Enhancement System - Radial Drilling Method
US11566471B2 (en) Selectively openable communication port for a wellbore drilling system
RU61773U1 (en) DRILLING HYDROMECHANICAL DRILL
RU2313636C2 (en) Method for pipeline pulling through horizontal hole under water and other natural and artificial obstacles

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: V2H INTERNATIONAL PTY LTD

Free format text: FORMER OWNER(S): BELEW, DAVID

MK14 Patent ceased section 143(a) (annual fees not paid) or expired