AU2011248859A1 - Self pumping oil film bearing - Google Patents

Self pumping oil film bearing

Info

Publication number
AU2011248859A1
AU2011248859A1 AU2011248859A AU2011248859A AU2011248859A1 AU 2011248859 A1 AU2011248859 A1 AU 2011248859A1 AU 2011248859 A AU2011248859 A AU 2011248859A AU 2011248859 A AU2011248859 A AU 2011248859A AU 2011248859 A1 AU2011248859 A1 AU 2011248859A1
Authority
AU
Australia
Prior art keywords
oil
sleeve
chamber
impellers
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011248859A
Other versions
AU2011248859B2 (en
Inventor
Peter N. Osgood
Thomas C. Wojtkowski Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies USA LLC
Original Assignee
Primetals Technologies USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/774,241 external-priority patent/US8500332B2/en
Application filed by Primetals Technologies USA LLC filed Critical Primetals Technologies USA LLC
Publication of AU2011248859A1 publication Critical patent/AU2011248859A1/en
Application granted granted Critical
Publication of AU2011248859B2 publication Critical patent/AU2011248859B2/en
Assigned to Primetals Technologies USA LLC reassignment Primetals Technologies USA LLC Request for Assignment Assignors: SIEMENS INDUSTRY, INC.
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

SELF PUMPING OIL FILM BEARING
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a system for use in a rolling mill oil film bearing to remove a laminar flow of oil exiting tangentially from between a rotating sleeve and a stationary bushing surrounding the sleeve.
2. Description of the Prior Art
In a typical rolling mill oil film bearing, a sleeve surrounds and is rotatable with a roll neck. The sleeve is journalled for rotation within a fixed bushing contained in a chock. The sleeve and bushing are dimensioned to define a gap therebetween. During operation, oil is introduced continuously into the gap where it is rotatably urged into a hydrodynamically maintained film between the sleeve and bushing at the load zone of the bearing. Laminar flows of oil exit tangentially from each end of the bearing into sumps from which the oil is removed by gravity for filtering and cooling before being recirculated back to the bearings.
A drawback of this arrangement is that large diameter drain lines are required to accommodate the gravity flow of oil exiting from the bearings. These drain lines occupy an inordinate amount of exterior space and thus contribute disadvantageously to the overall size of the bearing. Care must also be taken to insure that the drain lines are properly installed with pitches designed to prevent oil from backing up into and flooding the bearing sumps.
SUMMARY OF THE INVENTION
Broadly stated, the objective of the present invention is to employ the kinetic energy of rotating bearing components to pump oil out of the bearings. Because the oil is forcibly expelled, smaller drain lines may be employed to handle the exiting oil flow, without the need to maintain the drain pitches required to accommodate gravity flow.
These and other features and advantages of the present invention will now be described in further detail with reference to the accompanying drawings, wherein:
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a cross sectional view through a rolling mill oil film bearing embodying systems in accordance with the present invention;
Figure 2 is an enlarged view of the circled area marked "A" in Figure 1;
Figure 3 is a perspective view of the neck seal shown in Figures 1 and 2;
Figure 4 is a cross sectional view taken through the seal end plate extension;
Figure 5 is an enlarged view of the circled area marked "B" in Figure 1;
Figure 6 is a cross sectional view schematically depicting the rotating sleeve surrounded by the fixed bushing;
Figure 6A is an enlarged view of the circled portion shown in Figure 6 diagrammatically illustrating the velocity profile of the laminar flow of oil exiting from between the sleeve and the bushing; and
Figure 7 is a sectional view taken along line 7-7 of Figure 2 diagrammatically illustrating the velocity profile of the oil being pumped out of the bearing by the rotating impellers of the present invention.
DETAILED DESCRIPTION
With reference initially to Figure 1, a rolling mill oil film bearing is generally indicated at 10. The bearing includes a sleeve 12 fixed to the tapered neck 14 of a roll 16. The sleeve is journalled for rotation in a fixed bushing 18 contained within a chock 20. The sleeve and bushing are dimensioned to define a gap "G" therebetween. During operation, oil is introduced continuously into the gap where it is rotationally urged by the sleeve into a hydrodynamically maintained film between the sleeve and bushing at the load zone of the bearing. Laminar flows of oil exit tangentially from opposite ends of the bearing.
Seal assemblies 22a, 22b are located respectively at the inboard and outboard ends of the bearing. With additional reference to Figure 2, it will be seen that the inboard seal assembly 22a includes a flexible and resilient neck seal 24 mounted on the tapered roll neck section 14 for rotation therewith along with the sleeve 12. The neck seal is surrounded by a seal end plate 26 fixed to the chock 20.
In conventional bearings, the laminar flow of oil escaping tangentially from between the sleeve and bushing is received in a sump 28a, from which it is drained by gravity. As can be seen from Figures 6 and 6A, the oil escaping from gap G has the velocity Vs of the sleeve at the sleeve surface, and a zero velocity V0 at the bushing surface. This velocity profile yields an average velocity of Vs 12 .
With the present invention, however, a circular extension 30 spans a gap between the seal end plate 26 and the chock 20. Flanges 32 on the neck seal sealingly contact shoulders 34 on the seal end plate, and a flinger 36 on the neck seal sealing contacts a circular shoulder 38 on extension 30. Confinement surfaces provided by the flinger 36, extension 30 and chock 20 cooperate with the sleeve 12 and bushing 18 to define an annular inboard chamber 40a isolated from the sump 28a and arranged to receive the laminar flow of oil exiting tangentially from the gap G between the sleeve and bushing. Impellers 42 project into the chamber 40a. As can be best seen by additional reference to Figure 3, the impellers 42 are carried by and are spaced around the circumference of neck seal 24. As shown in Figure 4, the extension 30 includes an outlet 44 communicating tangentially with the annular chamber 40a. A hose 46 is connected to the outlet 44 and leads to the exterior of the bearing for connection to a conventional mill lubrication system (not shown).
The outlet 44 is sized with respect to the volume of oil being received in the annular chamber 40a such that during steady state operation, that chamber remains filled with oil. As noted previously, both the seal 24 and sleeve 12 are mounted on and rotate with the roll neck 14. Thus, the impellers 42 carried by the seal 24 rotate with and at the velocity of the sleeve. As shown diagrammatically in Figure 7, in the cross sectional area of the annular chamber 40a spanned by the impellers 42, the velocity of the thus propelled oil is maintained at the velocity Vs of the sleeve. In comparison to the relatively modest level of energy derived from the velocity profile of the conventional arrangement depicted in Figure 6A, the enhanced velocity profile of the present invention provides a significantly increased level of energy serving to efficiently pump the oil around chamber 40a and out through the outlet 44.
With reference to Figure 5, it will be seen that a similar arrangement is provided by the seal assembly 22b at the outboard end of the bearing. Here, an annular outboard chamber 40b is defined by confinement surfaces on an extension 48 extending between the bushing 18 and chock 20, a ring 50 secured to the sleeve 12, and a lip seal 52 carried by the extension 48. The impellers 42 are secured to and project radially from the sleeve 12 into the chamber 40b.
Although not illustrated, it is to be understood that extension 48 includes an onboard outlet similar to the inboard outlet shown at 44 in Figure 4. The outboard outlet communicates tangentially with outboard chamber 40b and is connected to a second hose 58 (shown in Figure 1). It thus will be seen that the impellers 42 serve to harness the rotating kinetic energy of selected bearing components (for example, the neck seal 24 at the inboard end and the sleeve 18 at the outboard end) to exert a pumping action which forcibly ejects oil from the annular chambers 40a, 40b. As noted above, by forcibly ejecting oil rather than relying on gravity flow, smaller diameter drain lines may be employed and strategically positioned without regard to the maintenance of gravity pitches.

Claims (13)

We claim:
1. A system for use in a rolling mill oil film bearing to remove a laminar flow of oil exiting tangentially from between a rotating sleeve and a fixed bushing surrounding the sleeve, said system comprising:
confinement surfaces cooperating with said sleeve and said bushing to define an
annular chamber arranged to receive said laminar flow of oil;
impellers projecting into said chamber, said impellers being rotatable with and at
the velocity of said sleeve to thereby propel said oil around said chamber;
and
an outlet communicating tangentially with said chamber for removing oil being
propelled around said chamber by the rotation of said impellers, the size of
said outlet in relation to the volume of oil received in said chamber being
such that said chamber remains filled with oil during rotation of said impellers.
2. The system of claim 1 wherein said sleeve is mounted on a roll neck and wherein said confinement surfaces are defined in part by a resilient seal also mounted on the roll neck for rotation therewith.
3. The system of claim 2 wherein said bushing is fixed within a chock, and said confinement surfaces are defined in part by a seal end plate surrounding said seal and fixed to said chock.
4. The system as claimed in claim 3 wherein said confinement surfaces are defined in part by a circular extension spanning a gap between said seal end plate and said chock.
5. The system of claim 4 wherein said outlet is formed in said circular extension.
6. The system of claims 4 or 5 wherein said impellers are carried on said seal for rotation therewith.
7. The system of claim 1 wherein said confinement surfaces are defined in part by a circular seal ring secured to said sleeve for rotation therewith.
8. The system of claim 7 wherein said confinement surfaces are defined in part by a circular extension fixed to said bushing, said circular extension being spaced radially from said seal ring to define a gap therebetween.
9. The system of claim 7 wherein said confinement surfaces are defined in part by a flexible seal spanning said gap and fixed to said extension.
10. The system of claim 9 wherein said exit means is formed in said circular extension.
11. The system of claims 7-10 wherein said impellers are carried on said sleeve for rotation therewith.
12. A system for use in a rolling mill oil film bearing in which oil is introduced between a rotating sleeve and a fixed bushing surrounding the sleeve, and in which the thus introduced oil exits tangentially from the inboard and outboard ends of said bearing in the form of laminar flows, said system comprising:
confinement surfaces cooperating with said sleeve and said bushing to define annular inboard and outboard chambers arranged respectively to receive
the tangentially exiting laminar flows of oil from the inboard and outboard
ends of said bearing;
impellers projecting into said chambers, said propellers being rotatable with and
at the speed of said sleeve to thereby propel oil received in said chambers
around said chambers; and
outlets communicating tangentially with said chambers for removing oil being propelled around said chambers by the rotation of said impellers, the size
of said outlet in relation to the volume of oil received in said chamber being such that said chamber remains filled with oil during rotation of said
impellers.
13. In a rolling mill oil film bearing, a method of removing a laminar flow of oil exiting tangentially from between a rotating sleeve and a fixed bushing surrounding the sleeve, said method comprising:
receiving the laminar flow of oil in an annular chamber;
rotatively propelling the oil around said chamber at the velocity of said rotating
sleeve; and
simultaneously removing the oil tangentially from said chamber at a rate such that
said chamber remains filled with oil.
AU2011248859A 2010-05-05 2011-04-07 Self pumping oil film bearing Ceased AU2011248859B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/774,241 US8500332B2 (en) 2010-05-05 2010-05-05 Self pumping oil film bearing
US12/774,241 2010-05-05
PCT/US2011/031495 WO2011139471A1 (en) 2010-05-05 2011-04-07 Self pumping oil film bearing

Publications (2)

Publication Number Publication Date
AU2011248859A1 true AU2011248859A1 (en) 2012-11-22
AU2011248859B2 AU2011248859B2 (en) 2014-08-28

Family

ID=44080447

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011248859A Ceased AU2011248859B2 (en) 2010-05-05 2011-04-07 Self pumping oil film bearing

Country Status (17)

Country Link
US (1) US8500332B2 (en)
EP (1) EP2567110B1 (en)
JP (1) JP5675964B2 (en)
KR (1) KR101445015B1 (en)
CN (1) CN102893040B (en)
AR (1) AR085175A1 (en)
AU (1) AU2011248859B2 (en)
BR (1) BR112012027862B1 (en)
CA (1) CA2798248C (en)
ES (1) ES2528367T3 (en)
MX (1) MX2012012814A (en)
MY (1) MY179726A (en)
PL (1) PL2567110T3 (en)
RU (1) RU2544245C2 (en)
TW (1) TWI491811B (en)
UA (1) UA108375C2 (en)
WO (1) WO2011139471A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600850B1 (en) * 2002-08-20 2006-07-14 삼성에스디아이 주식회사 Thin film silicon solar cell and method for fabricating the same
US8342753B2 (en) * 2010-06-08 2013-01-01 Siemens Industry, Inc. Venturi drain for self-pumping bearing rolling mills
JP6407169B2 (en) * 2013-01-25 2018-10-17 プライメタルズ テクノロジーズ ユーエスエー エルエルシーPrimetals Technologies USA LLC Seal assembly and neck seal for rolling mill
DE102015209637A1 (en) * 2015-05-26 2016-12-01 Sms Group Gmbh roll arrangement
DE102015223676A1 (en) * 2015-07-31 2017-02-02 Sms Group Gmbh Roll stand for rolling rolling stock

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929663A (en) 1957-05-28 1960-03-22 Gen Motors Corp Bearing oil scavenger
US2848284A (en) 1957-06-20 1958-08-19 Gen Motors Corp Bearing oil scavenger
SU801918A1 (en) * 1979-03-19 1981-02-07 Предприятие П/Я В-2869 Rolling mill roll hydrodynamic support
JPS57195918A (en) * 1981-05-29 1982-12-01 Hitachi Ltd Bearing for neck of roll
EP0123991B1 (en) 1983-04-29 1986-11-20 BBC Brown Boveri AG Self-priming centrifugal lubrication pump for a turbo charger
DE3542316A1 (en) 1985-09-09 1987-03-12 Kraftwerk Union Ag DEVICE FOR LEAK OIL-FREE BEARING OIL EXTRACTION ON SLIDING BEARINGS FOR CIRCULAR SHAFTS OF HIGH-TOURED MACHINES
US4772137A (en) * 1987-03-30 1988-09-20 Morgan Construction Company Oil film bearing and bushing
DE3721264A1 (en) * 1987-06-27 1989-01-12 Schloemann Siemag Ag SEALING DEVICE FOR ROLLER BEARINGS
US5489190A (en) 1994-07-29 1996-02-06 Alliedsignal Inc. Dynamic oil scavenge system
US6086255A (en) * 1998-07-28 2000-07-11 Thompson Industries, Inc. Hydrostatic bearing and fluid collection system
US6146020A (en) 1999-02-26 2000-11-14 Morgan Construction Company Seal assembly for rolling mill oil film bearing
US6851676B2 (en) * 2002-12-17 2005-02-08 Morgan Construction Company Inner seal ring for rolling mill oil film bearing
DE10302271B4 (en) * 2003-01-22 2014-06-18 Sms Siemag Aktiengesellschaft Chock for receiving a roll neck
US6783131B2 (en) * 2003-01-31 2004-08-31 Morgan Construction Company Neck seal
US6802511B1 (en) 2003-02-12 2004-10-12 Morgan Construction Company Seal end plate
DE10316316A1 (en) * 2003-04-10 2004-10-21 Sms Demag Ag Device for returning oil in roller bearings
US20050073110A1 (en) * 2003-10-07 2005-04-07 James Armour Neck seal for rolling mill oil film bearing
US6996968B2 (en) 2003-12-17 2006-02-14 United Technologies Corporation Bifurcated oil scavenge system for a gas turbine engine
US20050281499A1 (en) * 2004-06-22 2005-12-22 Wojtkowski Thomas Jr Oil outlet for rolling mill oil film bearing
GB0414619D0 (en) 2004-06-30 2004-08-04 Rolls Royce Plc A bearing housing
US7334982B2 (en) 2005-05-06 2008-02-26 General Electric Company Apparatus for scavenging lubricating oil
CN2931952Y (en) * 2005-09-30 2007-08-08 太原重型机械集团有限公司 One-way limb sealing device of rolling mill film lubrication bearing
DE102006016714A1 (en) 2006-04-08 2007-10-11 Sms Demag Ag Chock for receiving a roll neck
US20110278801A1 (en) * 2010-05-11 2011-11-17 Morgan Construction Company Neck seal
US8342753B2 (en) * 2010-06-08 2013-01-01 Siemens Industry, Inc. Venturi drain for self-pumping bearing rolling mills

Similar Documents

Publication Publication Date Title
EP2569105B1 (en) Neck seal and bearing for a rolling mill oil film bearing with spaced impellers for propelling oil coming out from the bearing's sleeve and bushing ; use of such seal in a rolling mill oil film bearing
EP2567110B1 (en) Self pumping oil film bearing
AU2011248859A1 (en) Self pumping oil film bearing
EP1609542A1 (en) Oil outlet for rolling mill oil film bearing
CA2801892C (en) Venturi drain for self-pumping bearing rolling mills
KR100560032B1 (en) Seal end plate
JP2013529547A5 (en) System used in rolling mill oil film bearings
CN212149260U (en) Shaftless rim propeller lubricating and cooling device
AU2011253343A1 (en) Neck seal for a rolling mill oil film bearing with spaced impellers for propelling oil coming out from the bearing's sleeve and bushing
KR101599514B1 (en) Propulsion apparatus and ship including the same