AU2011203336B2 - Markers for detection of gastric cancer - Google Patents

Markers for detection of gastric cancer Download PDF

Info

Publication number
AU2011203336B2
AU2011203336B2 AU2011203336A AU2011203336A AU2011203336B2 AU 2011203336 B2 AU2011203336 B2 AU 2011203336B2 AU 2011203336 A AU2011203336 A AU 2011203336A AU 2011203336 A AU2011203336 A AU 2011203336A AU 2011203336 B2 AU2011203336 B2 AU 2011203336B2
Authority
AU
Australia
Prior art keywords
gtm
expression
markers
protein
qpcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2011203336A
Other versions
AU2011203336A1 (en
Inventor
Parry John Guilford
Andrew John Holyoake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Edge Ltd
Original Assignee
Pacific Edge Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004260083A external-priority patent/AU2004260083B2/en
Application filed by Pacific Edge Ltd filed Critical Pacific Edge Ltd
Priority to AU2011203336A priority Critical patent/AU2011203336B2/en
Publication of AU2011203336A1 publication Critical patent/AU2011203336A1/en
Application granted granted Critical
Publication of AU2011203336B2 publication Critical patent/AU2011203336B2/en
Priority to AU2012216703A priority patent/AU2012216703B2/en
Assigned to PACIFIC EDGE LIMITED reassignment PACIFIC EDGE LIMITED Request to Amend Deed and Register Assignors: PACIFIC EDGE BIOTECHNOLOGY LIMITED
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

Early detection of tumors is a major determinant of survival of patients suffering from tumors, including gastric tumors. Members of the GTM gene family 5 can be over-expressed in gastric tumor tissue and other tumor tissue, and thus can be used as markers for gastric and other types of cancer. GTM proteins can be released from cancer cells, and can reach sufficiently high concentrations in the serum and/or other fluids to permit their detection. Thus, methods and test kits for detection and quantification of GTM can provide a valuable tool for diagnosis of gastric cancer.

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant(s): Pacific Edge Biotechnology, Ltd. Invention Title: MARKERS FOR DETECTION OF GASTRIC CANCER The following statement is a full description of this invention, including the best method for performing it known to us: -2 MARKERS FOR DETECTION OF GASTRIC CANCER Related Application This application claims priority under 35 U.S.C. 119 to United States 5 Provisional Patent Application Serial No: 60/487,906, filed July 17, 2003, titled "Markers for Detection of Gastric Cancer," listing Parry John Guilford as inventor. The above application is herein incorporated fully by reference. Field of the Invention 10 This invention relates to detection of cancer. Specifically, this invention relates to the use of genetic and/or protein markers for detection of cancer, and more particularly to the use of genetic and/or protein markers for detection of gastric cancer. 15 BACKGROUND It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country. 20 Survival of cancer patients is greatly enhanced when the cancer is detected and treated early. In the case of gastric cancer, patients diagnosed with early stage disease have 5-year survival rates of 90%, compared to approximately 10% for patients diagnosed with advanced disease. However, the vast majority of gastric cancer patients currently present with advanced disease. Therefore, developments that lead to 25 early diagnosis of gastric cancer can lead to an improved prognosis for the patients. Identification of specific cancer-associated markers in biological samples, including body fluids, for example, blood, urine, peritoneal washes and stool extracts can provide a valuable approach for the early diagnosis of cancer, leading to early treatment and improved prognosis. Specific cancer markers also can provide a means 30 for monitoring disease progression, enabling the efficacy of surgical, radiotherapeutic and chemotherapeutic treatments to be tracked. However, for a number of major cancers, the available markers suffer from insufficient sensitivity and specificity. For example, the most frequently used markers for gastric cancer, cal9-9, ca72-4 and chorioembryonic antigen (CEA) detect only about 15-50% of gastric tumors of any 117-t' i - .hdatri C77 -t I1 - 3 stage, declining to approximately 2-11% for early stage disease. Thus, there is a very high frequency of false negative tests that can lead patients and health care practitioners to believe that no disease exists, whereas in fact, the patient may have severe cancer that needs immediate attention. Moreover, these markers can give false 5 positive signals in up to 1/3 of individuals affected by benign gastric disease. SUMMARY OF THE INVENTION Thus, there is an acute need for better methods for detecting the presence of cancer. Aspects of this invention provide methods, compositions and devices that can 10 provide for detection of early stage cancer, and decreasing the frequency of false positives and false negative test results. In certain embodiments, molecular analysis can be used to identify genes that are over-expressed in gastric tumor tissue compared to non-malignant gastric tissue. Such analyses include microarray and quantitative polymerase chain reaction (qPCR) 15 methods. Cancer genes and proteins encoded by those genes are herein termed gastric tumor markers (GTM). It is to be understood that the term GTM does not require that the marker be specific only for gastric tumors. Rather, expression of GTM can be increased in other types of tumors, including malignant or non-malignant tumors, including gastric, bladder, colorectal, pancreatic, ovarian, skin (e.g., melanomas), 20 liver, esophageal, endometrial and brain cancers, among others. It should be understood, however that the term GTM does not include prior the art markers, cal9 9, ca72-4 and CEA. Some GTM are sufficiently over-expressed to be diagnostic of gastric cancer with a high degree of reliability, and in other cases, over-expression of two or more GTM can provide reliable diagnosis of gastric cancer. 25 In certain embodiments, microarray methods can be used to detect patterns of over-expression of one or more genes associated with cancer. In other embodiments, quantitative polymerase chain reaction (qPCR) can be used to identify the presence of markers over expressed in tumor or other biological samples. 30 Some of the embodiments of GTM detection disclosed herein are over expressed in a highly selective fashion in tumor cells and little, if at all, in non-tumor cells, permitting sensitive and accurate detection of cancer with measurement of only one over expressed GTM. In other embodiments, over-expression of two, three or more GTM can be detected in a sample and can provide greater certainty of diagnosis.
-4 Selected genes that encode proteins can be secreted by or cleaved from the cell. These proteins, either alone or in combination with each other, have utility as serum or body fluid markers for the diagnosis of gastric cancer or as markers for monitoring the progression of established disease. Detection of protein markers can 5 be carried out using methods known in the art, and include the use of monoclonal antibodies, polyclonal antisera and the like. BRIEF DESCRIPTION OF THE FIGURES This invention is described with reference to specific embodiments thereof and 10 with reference to the figures, in which: Figure 1 depicts a table of markers and oligonucleotide sequences of markers for gastric cancer of this invention. Figure 2 depicts a table of results obtained of studies carried out using microarray methods. 15 Figure 3 depicts a table of results obtained of studies carried out using quantitative PCR. Figures 4a - 4d depict relationships between log2 fold results obtained using array and qPCR methods, in which the data is centered on the median normal for four gastric cancer markers. Grey squares correspond to non-malignant ("normal") 20 samples and black triangles to tumor samples. Figure 4a: ASPN. Figure 4b: SPP1. Figure 4c: SPARC. Figure 4d: MMP12. Figures 5a-5w depict histograms showing the relative frequency vs. log2 fold change data obtained from quantitative PCR studies of various tumor markers. Figure 5a: ASPN; Figure 5b: CSTI,2 & 4; Figure 5c: CSPG2; Figure 5d: IGFBP7; Figure 5e: 25 INHBA; Figure 5f: LOXL2; Figure 5g: LUM; Figure 5h: SFRP4; Figure 5i: SPARC; Figure 5j: SPPl; Figure 5k: THBS2; Figure 51: TIMPl; Figure 5m: adlican; Figure 5n: PRSI 1; Figure 5o: ASAH1; Figure 5p: SFRP2; Figure 5q: GGH; Figure 5r: MMP 12; Figure 5s: KLKIO; Figure 5t: LEPREI; Figure 5u: TG; Figure 5v: EFEMP2 and Figure 5w: TGFBI. 30 Figure 6 is a histogram showing the number of markers with a higher expression than the 9 5 th percentile of the median normal expression. Results are based on qPCR data and are shown separately for each tumor sample. Figures 7a- 7c depicts graphs that show relative log2 expression of the markers in individual tumor samples and non-malignant samples compared to the -5 expression of the gene for the tumor marker, CEA. CEA is the serum marker currently most used to monitor progression of gastric cancer. Figure 8 shows a table that complements Figure 3. Figure 8 summarizes expression levels determined by qPCR for the candidate tumor markers, but using the 5 paired data (i.e., tumor ("T") and non-malignant ("N") samples from the same individual) to provide a T:N ratio. Figure 8 also includes additional markers not included in Figure 3, namely MMP2, CGRll, TGFB1, PCSK5, SERPINB5, SERPINH1. For comparison, the expression level of the established serum marker gene, CEACAM5 (CEA), is also shown. 27 of the 29 markers have a median T:N 10 difference greater than or equal to CEA. Further, compared to CEA, 29/29 of the markers have a higher percentage of paired samples in which the expression in the tumor sample exceeds the expression in the normal sample. Three markers, CST1,2,44, ASPN and SFRP4 showed 100% discrimination between the paired tumor and normal samples. The gene sequences of these markers, and the location of the 15 primers and probes used to detect them, are shown herein. Figures 9a - 9d depict individual and median T:N fold change data for 29 gastric cancer markers in 40 patients with paired samples. Figures 10a - lOad depict graphs of tumor stage and log2 fold change in expression of CEA and other GTM of this invention. Figure 1Oa: adlican; Figure lOb: 20 ASPN; Figure 10c: CSPG2; Figure 10d: CSTl,2,4; Figure 10e:EFEMP2; Figure 10f: GGF; Figure 10g: INHBA; Figure 10h: IGFBP7; Figure 10i: KLK1O; Figure 1Oj: LEPREI; Figure 10k: LUM; Figure 101: LOXL2; Figure 10m: MMP12; Figure IOn; TIMPI; Figure 10o: ASAHI; Figure 10p: SPPl; Figure l0q: SFRP2; Figure 1Or: SFRP4; Figure lOs: SPARC; Figure 1Ot: PRSS 11; Figure 1Ou: THBS2: Figure 1Ov: 25 TG; Figure 10w: TGFBI; Figure lOx: CGRII; Figure 10y: SERPINHI; Figure 1Oz: MMP2; Figure 10aa: PCSK5; Figure 10ab: SERPINB5; Figure lOac: TGFB1 and Figure lOad: CEA (CEACAM5). Figures 11 a - II ad depict graphs of tumor type (diffuse (D) or intestinal (I)) and log2 fold change in expression 29 GTM of this invention and CEA. Figure I la: 30 adlican; Figure llb: ASPN; Figure 1lc: CSPG2; Figure l d: CSTI,2,4; Figure Ile: EFEMP2; Figure 1 If: GGH; Figure 1 Ig: INHBA; Figure 1 lh: IGFBP7; Figure 1 li: KLK10; Figure llj: LEPREl: Figure Il k: LUM; Figure 111: LOXL2; Figure llm: MMP12; Figure l In: TIMPl; Figure llo: ASAH1; Figure lIp: SPPl; Figure Ilq: SFRP2; Figure IIr: SFRP4: Figure IIs; SPARC; Figure lIt: PRSS11: Figure l lu: -6 THBS2; Figure liv: TG; Figure llw: TGFBI; Figure lix: CGRll: Figure ily: SERPINHI; Figure liz: MMP2; Figure llaa: PCSK5; Figure llab:SERPINB5; Figure I I ac: TGFB 1 and Figure 1 lad: CEA (CEACAM5). Figure 12 depicts a three-dimensional graph showing 3 markers, SERPINH 1, 5 CSTI,2,4 and INHBA, in a series of gastric tumor samples and non-malignant gastric samples. Figure 13 depicts a table that shows the effect of multiple markers on the ability to accurately discriminate between tumor tissue and non-malignant tissue. The table has been derived from normal distributions derived from qPCR data. 10 Figure 14 is a Western blot of 4 tumor markers derived from tumor and non tumor tissue. Figure 15 is a Western blot of the tumor marker SPARC in gastric tumor tissue and in serum. Figure 16 is an immunoblot depicting cystatin SN in the supernatant of a 15 gastric cell line, AGS. DETAILED DESCRIPTION Definitions Before describing embodiments of the invention in detail, it will be useful to 20 provide some definitions of terms as used herein. In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not 25 to preclude the presence or addition of further features in various embodiments of the invention. The term "GTM" or "gastric tumor marker" or "GTM family member" means a gene, gene fragment, RNA, RNA fragment, protein or protein fragment related or other identifying molecule associated with gastric cancer that does not include 30 molecules that are known in the prior art to be associated with gastric cancer, cal9-9, ca72-4 and CEA. Examples of GTMs are included herein below. The term "marker" means a molecule that is associated quantitatively or qualitatively with the presence of a biological phenomenon. Examples of "markers" -7 are GTMs, however, "markers" also includes metabolites, byproducts, whether related directly or indirectly to a mechanism underlying a condition. The term "qPCR" means quantitative polymerase chain reaction. The term "expression" includes production of mRNA from a gene or portion 5 of a gene, and includes the production of a protein encoded by an RNA or gene or portion of a gene, and includes appearance of a detection material associated with expression. For example, the binding of a binding ligand, such as an antibody, to a gene or other oligonucleotide, a protein or a protein fragment and the visualization of the binding ligand is included within the scope of the term "expression." Thus, 10 increased density of a spot on an immunoblot, such as a Western blot, is included within the term "expression" of the underlying biological molecule. The term "CPN2" means human carboxypeptidase N, polypeptide 2, 83 kDa chain; and carboxypeptidase N. The term "HAPLN4" means human hyaluronan glycoprotein link protein 4. 15 The term "MMP 12" means human matrix metalloproteinase 12. The term "INHBA" means human inhibin, beta A (also includes activin A, activin AB or alpha polypeptide). The term "IGFBP7" means human insulin-like growth factor 7. The term "GGH" means human gamma-glutamyl hydrolase (also known as 20 conjugase, folylpolygammaglutamyl hydrolase). The term "LEPRE1" means human leucine proline-enriched proteoglycan (also known as leprecan 1). The term "CST4" means human cystatin S. The term "SFRP4" means human secreted frizzled-related protein 4. 25 The term "ASPN" means human asporin (also known as LRR class 1). The term "CGREF1" or "CGRl I" means human cell growth regulator with EF hand domain 1. The term "KLK" means either human kallikrein 10, variant I or human kallikrein 10, variant 2, or both, unless specified otherwise. 30 The term "TIMP I" means human tissue inhibitor of metalloproteinase 1 (also known as erythroid potentiating activity or collagenase inhibitor). The term "SPARC" means human secreted protein, acidic, cysteine-rich (also known as osteonectin).
-8 The term "TGFBI" means human transforming growth factor, beta-induced, 68kDa. The term "EFEMP2" means human EGF-containing fibulin-like extracellular matrix protein 2. 5 The term "LUM" means human lumican. The term "SNN" means human stannin. The term "SPP1" means human secreted phosphoprotein 1 (also known as osteopontin, or bone sialoprotein I, or early T-lymphocyte activation 1). The term "CSPG2" means human chondroitin sulfate proteoglycan 2 (also 10 known as versican). The term "ASAHI" means human N-acylsphingosine amidohydrolase, variant 1, or N-acylsphingosine amidohydrolase, variant 2, or both N-acylsphingosine amidohydrolase variants 1 and 2 (also known as acid ceramidase 1, variants I and 2). The term "PRSSI I" means human protease, shrine, II (also known as IGF 15 binding seine protease). The term "SFRP2" means human secreted frizzled-related protein 2. The term "PLA2GI2B" means human phospholipase A2, group XIIB. The term "SPON2" means human spondin 2, extracellular matrix protein. The term "OLFM 1'" means human olfactomedin 1. 20 The term "TSRC I" means human thrombospondin repeat containing 1. The term "THBS2" means human thrombospondin 2. The term "adlican" means DKFZp564 1922. The term "CST2" means human cystatin SA. The term "CST 1" means human cystatin SN. 25 The term "LOXL2" means human lysyl oxidase-like enzyme 2. The term "TG" means human thyroglobulin. The ten "TGFB 1" means human transforming growth factor, beta 1 The term "SERPINHl" means human seine or cysteine proteinase inhibitor clade H (also known as heat shock protein 47, member 1, or collagen binding protein 30 1). The term "SERPINB5" means human seine or cysteine proteinase inhibitor, clade B (also known as ovalbumin, member 5). The term "CEACAM5" or "CEA" means human carcinoembryonic antigen related cell adhesion molecule 5.
-9 The term "MMP2" means human matrix metalloproteinase 2 (also known as gelatinase A, or 72 kDa gelatinase, or 72 kDa type IV collagenase). The term "PCSK5" means human proprotein convertase subtilisin/kexin type 5. 5 It is to be understood that the above terms may refer to protein, DNA sequence and/or RNA sequence. It is also to be understood that the above terms also refer to non-human proteins, DNA and/or RNA having the same sequences as depicted herein. Description of Embodiments of the Invention 10 Markers for detection and evaluation of tumors including gastric cancer are provided that have a greater reliability in detecting gastric cancer than prior art markers. By the term "reliability" we include the absence of false positives and/or false negatives. Thus, with higher reliability of a marker, fewer false positives and/or false negatives are associated with diagnoses made using that marker Therefore, in 15 certain embodiments, markers are provided that permit detection of gastric cancer with reliability greater than the reliability of prior art markers of about 50%. In other embodiments, markers are provided that have reliability greater than about 70%; in other embodiments, greater than about 73%, in still other embodiments, greater than about 80%, in yet further embodiments, greater than about 90%, in still others, greater 20 than about 95%, in yet further embodiments greater than about 98%, and in certain embodiments, about 100% reliability. Thus, we have surprisingly found numerous genes and proteins whose presence is associated with gastric tumors. Detection of gene products (e.g., oligonucleotides such as mRNA) and proteins and peptides translated from such 25 oligonucleotides therefore can be used to diagnose tumors, such as gastric tumors. Array analysis of samples taken from patients with gastric tumors and from non malignant tissues of the same subjects has led us to the surprising discovery that in many gastric tumors, specific patterns of over-expression of certain genes are associated with the disease. 30 Cancer markers can also be detected using antibodies raised against cancer markers. By analyzing the presence and amounts of expression of a plurality of cancer markers can thus increase the sensitivity of diagnosis while decreasing the frequency of false positive and/or false negative results. 1717A-1 1 .. L~jt . O .77 A.. .
- 10 General Approaches to Cancer Detection The following approaches are non-limiting methods that can be used to detect cancer including gastric cancer using GTM family members. 5 e Microarray approaches using oligonucleotide probes selective for products of GTM genes. * Real-time quantitative PCR (qPCR) on tumor samples and normal samples using marker specific primers and probes. 0 Enzyme-linked immunological assays (ELISA). 10 0 Immunohistochemistry using anti-marker antibodies on gastric tumors and lymph node metastases. e Immunohistochemistry using anti-marker antibodies on other tumors including but not limited to colorectal, pancreatic, ovarian, melanoma, liver, esophageal, bladder, endometrial, and brain. 15 e Immunodetection of marker family members in sera from gastric cancer patients taken before and after surgery to remove the tumor. * Immunodetection of marker family members in sera from healthy individuals and individuals with non-malignant diseases such as gastritis, ulceration, gastric metaplasia and dysplasia. 20 * Immunodetection of marker family members in patients with other cancers including but not limited to colorectal, pancreatic, ovarian, melanoma, liver, oesophageal, bladder, endometrial, and brain. 0 Detection of markers in body fluids, including serum, lymph, peritoneal fluid, cerebrospinal fluid, synovial fluid and the like. 25 e Immunodetection of marker family members in gastric fluid, peritoneal washes, urine and stool from gastric cancer patients. Using array methods and/or qPCR. * Analysis of array or qPCR data using computers. Primary data is collected and fold change analysis is performed by comparison of levels of gastric 30 tumor gene expression with expression of the same genes in non-tumor tissue. A threshold for concluding that expression is increased is provided (e.g., 1.5 x increase, 2-fold increase, and in alternative embodiments, 3-fold increase, 4 fold increase or 5-fold increase). It can be appreciated that other thresholds - 11 for concluding that increased expression has occurred can be selected without departing from the scope of this invention. Further analysis of tumor gene expression includes matching those genes exhibiting increased expression with expression profiles of known gastric tumors to provide diagnosis of tumors. 5 In certain aspects, this invention provides methods for detecting cancer, comprising: (a) providing a biological sample; and (b) detecting the over expression of a GTM family member in said sample. 10 In other aspects, the invention includes a step of detecting over expression of GTM mRNA. In other aspects, the invention includes a step of detecting over expression of a GTM protein. In yet further aspects, the invention includes a step of detecting over 15 expression of a GTM peptide. In still further aspects, the invention includes a device for detecting a GTM, comprising: a substrate having a GTM capture reagent thereon; and a detector associated with said substrate, said detector capable of detecting a 20 GTM associated with said capture reagent, wherein the capture reagent includes an oligonucleotide or an antibody. Additional aspects include kits for detecting cancer, comprising: a substrate; a GTM capture reagent, including one or more of a GTM-specific 25 oligonucleotide and a GTM-specific antibody; and instructions for use. Yet further aspects of the invention include method for detecting a GTM using qPCR, comprising: a forward primer specific for said GTM; 30 a reverse primer specific for said GTM; PCR reagents; a reaction vial; and instructions for use.
- 12 Additional aspects of this invention comprise a kit for detecting the presence of a GTM protein or peptide, comprising: a substrate having a capture agent for said GTM protein or peptide; an antibody specific for said GTM protein or peptide; 5 a reagent capable of labeling bound antibody for said GTM protein or peptide; and instructions for use. Additional aspects of this invention include a method for manufacturing a monoclonal antibody, comprising the steps of: 10 In yet further aspects, this invention includes a method for detecting gastric cancer, comprising the steps of: providing a sample from a patient suspected of having gastric cancer; measuring the presence of a GTM protein using an ELISA method. As described herein, detection of tumors can be accomplished by measuring 15 expression of one or more tumor-specific markers. We have unexpectedly found that the association between increased expression of GTMs and the presence of diagnosed gastric cancer is extremely high. The least significant association detected had a p value of about 1.6 x 106. Many of the associations were significant at p values of less than 10-20. With such a high significance, it may not be necessary to detect increased 20 expression in more than one GTM. However, the redundancy in the GTMs of this invention can permit detection of gastric cancers with an increased reliability. The methods provided herein also include assays of high sensitivity. qPCR is extremely sensitive, and can be used to detect gene products in very low copy number (e.g., 1 - 100) in a sample. With such sensitivity, very early detection of events that 25 are associated with gastric cancer is made possible. Methods The following general methods were used to evaluate the suitability of various approaches to molecular identification of markers associated with gastric tumors. 30 Tumor Collection Gastric tumor samples and non-malignant gastric tissues were collected from surgical specimens resected at Seoul National University Hospital, Korea and - 13 Dunedin Hospital, New Zealand. Diagnosis of gastric cancer was made on the basis of symptoms, physical findings and histological examination of tissues. RNA Extraction 5 In some embodiments, expression of genes associated with gastric tumors was analyzed by determining the changes in RNA from samples taken from tumors. Frozen surgical specimens were embedded in OCT medium. 60im sections were sliced from the tissue blocks using a microtome, homogenized in a TriReagent: water (3:1) mix, then chloroform extracted. Total RNA was then purified from the aqueous 10 phase using the RNeasyTm procedure (Qiagen). RNA was also extracted from 16 cancer cell lines and pooled to serve as a reference RNA. Microarray Slide Preparation Epoxy coated glass slides were obtained from MWG Biotech AG, Ebersberg, 15 Germany) and were printed with -30,000 50mer oligonucleotides using a Gene Machines microarraying robot, according to the manufacturer's protocol. Reference numbers (MWG oligo #) for relevant oligonucleotides, and the NCBI mRNA and protein reference sequences are shown in Figure 2. Full DNA sequences of the GTM of this invention are shown herein below. 20 RNA labeling and Hybridization cDNA was transcribed from 104g total RNA using Superscript II reverse transcriptase (Invitrogen) in reactions containing 5-(3-aminoallyl)- 2' deoxyuridine 5'-triphosphate. The reaction was then de-ionized in a Microcon column before being 25 incubated with Cy3 or Cy5 in bicarbonate buffer for 1 hour at room temperature. Unincorporated dyes were removed using a Qiaquick column (Qiagen) and the sample concentrated to 15ul in a SpeedVac. Cy3 and Cy5 labeled cDNAs were then mixed with Ambion ULTRAhyb buffer, denatured at 100 C for 2 minutes and hybridized to the microarray slides in hybridization chambers at 42'C for 16 hours. The slides were 30 then washed and scanned twice in an Axon 4000A scanner at two power settings to yield primary fluorescence data on gene expression.
- 14 Normalization Procedure To compare expression of cancer genes from tumors and non-cancerous tissues, median fluorescence intensities detected by GenepixTM software were corrected by subtraction of the local background fluorescence intensities. Spots with a background 5 corrected intensity of less than zero were excluded. To facilitate normalization, intensity ratios and overall spot intensities were log-transformed. Log-transformed intensity ratios were corrected for dye and spatial bias using local regression implemented in the LOCFITTM package. Log-transformed intensity ratios were regressed simultaneously with respect to overall spot intensity and location. The 10 residuals of the local regression provided the corrected log-fold changes. For quality control, ratios of each normalized microarray were plotted with respect to spot intensity and localization. The plots were subsequently visually inspected for possible remaining artifacts. Additionally, an analysis of variance (ANOVA) model was applied for the detection of pin-tip bias. All results and parameters of the 15 normalization were inserted into a Postgres-database for statistical analysis. Statistical Analysis Statistically significant changes in gene expression in tumor samples vs. normal tissues were identified by measured fold changes between arrays. To accomplish this, 20 log2 (ratios) were scaled to have the same overall standard deviation per array. This standardization procedure reduced the average within-tissue class variability. The log2 (ratios) were further shifted to have a median value of zero for each oligonucleotide to facilitate visual inspection of results. A rank-test based on fold changes was then used to improve the noise robustness. This test consisted of two 25 steps: (i) calculation of the rank of fold change (Rfc) within arrays and ii) subtraction of the median (Rfc) for normal tissue from the median(Rfc) for tumor tissue. The difference of both median ranks defines the score of the fold change rank presented in Figure 2. Two additional statistical tests were also performed on this standardized data: 1) Two sample student's t-test, with and without the Bonferroni adjustment and 30 2) the Wilcoxon test. Statistical Analysis of Marker Combinations To determine the value of using combinations of two or three of the markers to discriminate between tumor and non-malignant samples, the qPCR data from 40 -15 paired samples (tumor and non-malignant samples from the same patient) were subjected to the following analysis. Normal distributions for the non-malignant and tumor samples were generated using the sample means and standard deviations. The probability that values taken from the tumor expression data would exceed a defined 5 threshold (e.g., greater than 50%, 70%, 73%, 80%, 90%, 95%, 98%, 99% or 100%) in the non-malignant distribution was then determined (i.e., sensitivity). For combinations of markers, the probability that at least one marker exceeded the threshold was determined.
- 16 0'a 10 .0 ifg 4" diV. w n .1 -It 0 11 u 1111411-1 EE Z I _M wdI E 2 a. E411) t' r I 9 .0 V E = _ _ I I1 E E i 9 N 277431(GIf.m P98 U - 17 Quantitative Real-Time PCR In other embodiments, real-time, or quantitative PCR (qPCR) can be used for absolute or relative quantitation of PCR template copy number. TaqmanTM probe and primer sets were designed using Primer Express V 2.OTM (Applied Biosystems). 5 Where possible, all potential splice variants were included in the resulting amplicon, with amplicon preference given to regions covered by the MWG-Biotech-derived microarray oligonucleotide. Alternatively, if the target gene was represented by an Assay-on-Demand TM expression assay (Applied Biosystems) covering the desired amplicons, these were used. The name of the gene, symbol, the Applied Biosystems 10 "assay on demand" number, forward primer, reverse primer and probe sequence used for qPCR are shown in Table 1 and in Figure 1. In the in-house designed assays, primer concentration was titrated using a SYBR green labeling protocol and cDNA made from the reference RNA. Amplification was carried out on an ABI PrismTM 7000 sequence detection system under standard cycling conditions. When single 15 amplification products were observed in the dissociation curves, standard curves were generated over a 625-fold concentration range using optimal primer concentrations and 5'FAM - 3'TAMRA phosphate TaqmanTM probe (Proligo) at a final concentration of 250nM. Assays giving standard curves with regression coefficients over 0.98 were used in subsequent assays. It can be appreciated that in other embodiments, 20 regression coefficients need not be as high. Rather, any standard curve can be used so long as the regression coefficients are sufficiently high to permit statistically significant determination of differences in expression. Such regression coefficients may be above about 0.7, above about 0.8, above about 0.9 or above about 0.95 in alternative embodiments. 25 Assays were performed over two 96 well plates with each RNA sample represented by a single cDNA. Each plate contained a reference cDNA standard curve, over a 625-fold concentration range, in duplicate. Analysis consisted of calculating the ACT (target gene CT - mean reference cDNA CT). ACT is directly proportional to the negative log2 fold change. Log2 fold changes relative to the 30 median non-malignant log2 fold change were then calculated (log2 fold change median normal log2 fold change). These fold changes were then clustered into frequency classes and graphed.
- 18 Microarray Analysis of Cancer Marker Genes RNA from 58 gastric tumors and 58 non-malignant ("normal") gastric tissue samples were labeled with Cy5 and hybridized in duplicate or triplicate with Cy3 labeled reference RNA. After normalization, the change in expression in each of 5 29,718 genes was then estimated by three measures: (i) fold change: the ratio of the gene's median expression (un-standardized) in the tumor samples divided by the median level in the non-malignant samples. (ii) fold change rank and (iii) the statistical probability that the observed fold changes were significant. 10 Selection of Serum Markers for Gastric Malignancy In certain embodiments, the cancer marker can be found in biological fluids, including serum. Serum markers were selected from the array data based on (i) the presence of a signal sequence characteristic of secreted proteins or cleaved from the outside of the membrane, (ii) the median level of over-expression (fold change) in 15 tumors compared to non-malignant controls, (iii) the median change in expression rank between tumors and non-malignant controls, and (iv) the degree of overlap between the ranges of expression in the tumor and the non-malignant controls. All 29 GTMs are known to have a signal peptide sequence at the 5'end of their coding sequences. The signal sequence targets the GTM proteins for transport to an 20 extracellular compartment through the plasma membrane (Gunner von Heijne, Journal of Molecular Biology 173:243-251 (1984). In addition, none of the GTMs have transmembrane sequence motifs that would result in the full-length protein being retained within the plasma membrane. Consequently, all of the GTM markers of this invention are likely to be secreted into the extracellular compartment, and therefore 25 can be in contact with the blood supply, either being taken up by capillaries, or by being transported into the lymphatic system and then into the blood supply. As a result, each of these tumor-derived markers will be present in the blood. Next, genes were excluded if >50% of the tumor samples showed expression levels within the 9 5 th percentile of the non-malignant range. The variation in the 30 degree of over-expression in the tumor samples reflects not only tumor heterogeneity but also variations in the extent of contamination of the tumor samples with "normal" tissue including muscle, stromal cells and non-malignant epithelial glands. This "normal" contamination ranged from 5 to 70% with a median of approximately 25%. Other genes were excluded because of high relative expression in hematopoietic cells, -19 or elevated expression in metaplastic gastric tissue. It can be appreciated that depending on the degree of contamination by normal cells or cells that normally express the marker, different threshold ranges can be selected that can provide sufficient separation between a cancer source and a normal source. 5 GTM that we have found to be useful include genes (DNA), complementary DNA (cDNA), RNA, proteins, and protein fragments of the following markers: carboxypeptidase N, polypeptide 2, 83 kDa chain (also known as carboxypeptidase N (CPN2), matrix metalloproteinase 12 (MMP12), inhibin ("INHBA"), insulin-like growth factor 7 ("IGFBP7"), gamma-glutamyl hydrolase ("GGH"), leucine proline 10 enriched proteoglycan ("LEPREI"), cystatin S ("CST4"), secreted frizzled-related protein 4 ("SFRP4"), asporin ("ASPN"), cell growth regulator with EF hand domain 1 ("CGREFI"), kallikrein (KLK10), tissue inhibitor of metalloproteinase 1 ("TIMP I"), secreted acidic cysteine-rich protein ("SPARC"), transforming growth factor, p induced ("TGFBI"), EGF-containing fibulin-like extracellular matrix protein 2 15 ("EFEMP2"), lumican ("LUM"), stannin ("SNN"), secreted phosphoprotein 1 ("SPP1"), chondroitin sulfate proteoglycan 2 ("CSPG2"), N-acylsphingosine amidohydrolase ("ASAHI"), serine protease 11 ("PRSSl I"), secreted frizzled-related protein 2 ("SFRP2"), phospholipase A2, group XIIB ("PLA2G12B"), spondin 2, extracellular matrix protein ("SPON2"), olfactomedin I ("OLFM 1"), thrombospondin 20 repeat containing 1 ("TSRCl"), thrombospondin 2 ("THBS2"), adlican, cystatin SA ("CST2"), cystatin SN (CST1), lysyl oxidase-like enzyme 2 ("LOXL2"), thyroglobulin ("TG"), transforming growth factor betal ("TGFB1"), seine or cysteine proteinase inhibitor clade H ("SERPINHI"), seine or cysteine proteinase inhibitor clade B ("SERPINB5"), matrix metalloproteinase 2 ("MMP2"), proprotein 25 convertase subtilisin/kexin type 5 ("PCSK5"), and hyaluronan proteoglycan link protein 4 ("HAPLN4"). DNA sequences of GTM of this invention along with identifying information are shown herein below. 30 Matrix Metalloproteinase 12 >gil45052061reflNM_002426.11 Homo sapiens matrix metalloproteinase 12 (macrophage elastase) (MMP12), mRNA I qPCR forwardprimer match [758..780] I qPCR reverseprimer match [888..864] 1 qPCR probe match [786..815] - 20 TAGAAGTTTACAATGAAGTTTCTTCTAATACTGCTCCTGCAGGCCA CTGCTTCTGGAGCTCTTCCCCTGAACAGCTCTACAAGCCTGGAAAAAAAT AATGTGCTATTTGGTGAGAGATACTTAGAAAAATTTTATGGCCTTGAGATA AACAAACTTCCAGTGACAAAAATGAAATATAGTGGAAACTTAATGAAGG 5 AAAAAATCCAAGAAATGCAGCACTTCTTGGGTCTGAAAGTGACCGGGCAA CTGGACACATCTACCCTGGAGATGATGCACGCACCTCGATGTGGAGTCCC CGATCTCCATCATTTCAGGGAAATGCCAGGGGGGCCCGTATGGAGGAAAC ATTATATCACCTACAGAATCAATAATTACACACCTGACATGAACCGTGAG GATGTTGACTACGCAATCCGGAAAGCTTTCCAAGTATGGAGTAATGTTAC 10 CCCCTTGAAATTCAGCAAGATTAACACAGGCATGGCTGACATTTTGGTGG TTTTTGCCCGTGGAGCTCATGGAGACTTCCATGCTTTTGATGGCAAAGGTG GAATCCTAGCCCATGCTTTTGGACCTGGATCTGGCATTGGAGGGGATGCA CATTTCGATGAGGACGAATTCTGGACTACACATTCAGGAGGCACAAACTT GTTCCTCACTGCTGTTCACGAGATTGGCCATTCCTTAGGTCTTGGCCATTCT 15 AGTGATCCAAAGGCTGTAATGTTCCCCACCTACAAATATGTCGACATCAA CACATTTCGCCTCTCTGCTGATGACATACGTGGCATTCAGTCCCTGTATGG AGACCCAAAAGAGAACCAACGCTTGCCAAATCCTGACAATTCAGAACCAG CTCTCTGTGACCCCAATTTGAGTTTTGATGCTGTCACTACCGTGGGAAATA AGATCTTTTTCTTCAAAGACAGGTTCTTCTGGCTGAAGGTTTCTGAGAGAC 20 CAAAGACCAGTGTTAATTTAATTTCTTCCTTATGGCCAACCTTGCCATCTG GCATTGAAGCTGCTTATGAAATTGAAGCCAGAAATCAAGTTTTTCTTTTTA AAGATGACAAATACTGGTTAATTAGCAATTTAAGACCAGAGCCAAATTAT CCCAAGAGCATACATTCTTTTGGTTTTCCTAACTTTGTGAAAAAAATTGAT GCAGCTGTTTTTAACCCACGTTTTTATAGGACCTACTTCTTTGTAGATAAC 25 CAGTATTGGAGGTATGATGAAAGGAGACAGATGATGGACCCTGGTTATCC CAAACTGATTACCAAGAACTTCCAAGGAATCGGGCCTAAAATTGATGCAG TCTTCTATTCTAAAAACAAATACTACTATTTCTTCCAAGGATCTAACCAAT TTGAATATGACTTCCTACTCCAACGTATCACCAAAACACTGAAAAGCAAT AGCTGGTTTGGTTGTTAGAAATGGTGTAATTAATGGTTTTTGTTAGTTCAC 30 TTCAGCTTAATAAGTATTTATTGCATATTTGCTATGTCCTCAGTGTACCACT ACTTAGAGATATGTATCATAAAAATAAAATCTGTAAACCATAGGTAATGA TTATATAAAATACATAATATTTTTCAATTTTGAAAACTCTAATTGTCCATTC TTGCTTGACTCTACTATTAAGTTTGAAAATAGTTACCTTCAAAGCAAGATA ATTCTATTTGAAGCATGCTCTGTAAGTTGCTTCCTAACATCCTTGGACTGA 35 GAAATTATACTTACTTCTGGCATAACTAAAATTAAGTATATATATTTTGGC TCAAATAAAATTG SEQ ID NO:67 Inhibin Beta A >gil4504698|ref]NM_002192.11 Homo sapiens inhibin, beta A (activin A, 40 activin AB alpha polypeptide) (INHBA), mRNA I qPCR assayon demandcontext match [457..481] TCCACACACACAAAAAACCTGCGCGTGAGGGGGGAGGAAAAGCAG GGCCTTTAAAAAGGCAATCACAACAACTTTTGCTGCCAGGATGCCCTTGCT TTGGCTGAGAGGATTTCTGTTGGCAAGTTGCTGGATTATAGTGAGGAGTTC 45 CCCCACCCCAGGATCCGAGGGGCACAGCGCGGCCCCCGACTGTCCGTCCT GTGCGCTGGCCGCCCTCCCAAAGGATGTACCCAACTCTCAGCCAGAGATG GTGGAGGCCGTCAAGAAGCACATTTTAAACATGCTGCACTTGAAGAAGAG
ACCCGATGTCACCCAGCCGGTACCCAAGGCGGCGCTTCTGAACGCGATCA
-21 GAAAGCTTCATGTGGGCAAAGTCGGGGAGAACGGGTATGTGGAGATAGA GGATGACATTGGAAGGAGGGCAGAAATGAATGAACTTATGGAGCAGACC TCGGAGATCATCACGTTTGCCGAGTCAGGAACAGCCAGGAAGACGCTGCA CTTCGAGATTTCCAAGGAAGGCAGTGACCTGTCAGTGGTGGAGCGTGCAG 5 AAGTCTGGCTCTTCCTAAAAGTCCCCAAGGCCAACAGGACCAGGACCAAA GTCACCATCCGCCTCTTCCAGCAGCAGAAGCACCCGCAGGGCAGCTTGGA CACAGGGGAAGAGGCCGAGGAAGTGGGCTTAAAGGGGGAGAGGAGTGA ACTGTTGCTCTCTGAAAAAGTAGTAGACGCTCGGAAGAGCACCTGGCATG TCTTCCCTGTCTCCAGCAGCATCCAGCGGTTGCTGGACCAGGGCAAGAGC 10 TCCCTGGACGTTCGGATTGCCTGTGAGCAGTGCCAGGAGAGTGGCGCCAG CTTGGTTCTCCTGGGCAAGAAGAAGAAGAAAGAAGAGGAGGGGGAAGGG AAAAAGAAGGGCGGAGGTGAAGGTGGGGCAGGAGCAGATGAGGAAAAG GAGCAGTCGCACAGACCTTTCCTCATGCTGCAGGCCCGGCAGTCTGAAGA CCACCCTCATCGCCGGCGTCGGCGGGGCTTGGAGTGTGATGGCAAGGTCA 15 ACATCTGCTGTAAGAAACAGTTCTTTGTCAGTTTCAAGGACATCGGCTGGA ATGACTGGATCATTGCTCCCTCTGGCTATCATGCCAACTACTGCGAGGGTG AGTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCACTGTCCTTCCACT CAACAGTCATCAACCACTACCGCATGCGGGGCCATAGCCCCTTTGCCAAC CTCAAATCGTGCTGTGTGCCCACCAAGCTGAGACCCATGTCCATGTTGTAC 20 TATGATGATGGTCAAAACATCATCAAAAAGGACATTCAGAACATGATCGT GGAGGAGTGTGGGTGCTCATAGAGTTGCCCAGCCCAGGGGGAAAGGGAG CAAGAGTTGTCCAGAGAAGACAGTGGCAAAATGAAGAAATTTTTAAGGTT TCTGAGTTAACCAGAAAAATAGAAATTAAAAACAAAACAAAACAAAAAA AAAAACAAAAAAAAACAAAAGTAAATTAAAAACAAACCTGATGAAACAG 25 ATGAAACAGATGAAGGAAGATGTGGAAATCTTAGCCTGCCTTAGCCAGGG CTCAGAGATGAAGCAGTGAAGAGACAGATTGGGAGGGAAAGGGAGAATG GTGTACCCTTTATTTCTTCTGAAATCACACTGATGACATCAGTTGTTTAAA CGGGGTATTGTCCTTTCCCCCCTTGAGGTTCCCTTGTGAGCTTGAATCAAC CAATCTGATCTGCAGTAGTGTGGACTAGAACAACCCAAATAGCATCTAGA 30 AAGCCATGAGTTTGAAAGGGCCCATCACAGGCACTTTCCTAGCCTAAT SEQ ID NO:68 Insulin-Like Growth Factor Binding Protein 7 >gil4504618|refNM_001553.1l Homo sapiens insulin-like growth factor 35 binding protein 7 (IGFBP7), mRNA I qPCR forwardprimer match [470..487] 1 qPCR reverseprimer match [567..546] | qPCR probe match [492..517] GCCGCTGCCACCGCACCCCGCCATGGAGCGGCCGTCGCTGCGCGCC CTGCTCCTCGGCGCCGCTGGGCTGCTGCTCCTGCTCCTGCCCCTCTCCTCTT CCTCCTCTTCGGACACCTGCGGCCCCTGCGAGCCGGCCTCCTGCCCGCCCC 40 TGCCCCCGCTGGGCTGCCTGCTGGGCGAGACCCGCGACGCGTGCGGCTGC TGCCCTATGTGCGCCCGCGGCGAGGGCGAGCCGTGCGGGGGTGGCGGCGC CGGCAGGGGGTACTGCGCGCCGGGCATGGAGTGCGTGAAGAGCCGCAAG AGGCGGAAGGGTAAAGCCGGGGCAGCAGCCGGCGGTCCGGGTGTAAGCG GCGTGTGCGTGTGCAAGAGCCGCTACCCGGTGTGCGGCAGCGACGGCACC 45 ACCTACCCGAGCGGCTGCCAGCTGCGCGCCGCCAGCCAGAGGGCCGAGA GCCGCGGGGAGAAGGCCATCACCCAGGTCAGCAAGGGCACCTGCGAGCA AGGTCCTTCCATAGTGACGCCCCCCAAGGACATCTGGAATGTCACTGGTG
CCCAGGTGTACTTGAGCTGTGAGGTCATCGGAATCCCGACACCTGTCCTCA
- 22 TCTGGAACAAGGTAAAAAGGGGTCACTATGGAGTTCAAAGGACAGAACT CCTGCCTGGTGACCGGGACAACCTGGCCATTCAGACCCGGGGTGGCCCAG AAAAGCATGAAGTAACTGGCTGGGTGCTGGTATCTCCTCTAAGTAAGGAA GATGCTGGAGAATATGAGTGCCATGCATCCAATTCCCAAGGACAGGCTTC 5 AGCATCAGCAAAAATTACAGTGGTTGATGCCTTACATGAAATACCAGTGA AAAAAGGTGAAGGTGCCGAGCTATAAACCTCCAGAATATTATTAGTCTGC ATGGTTAAAAGTAGTCATGGATAACTACATTACCTGTTCTTGCCTAATAAG TTTCTTTTAATCCAATCCACTAACACTTTAGTTATATTCACTGGTTTTACAC AGAGAAATACAAAATAAAGATCACACATCAAGACTATCTACAAAAATTTA 10 TTATATATTTACAGAAGAAAAGCATGCATATCATTAAACAAATAAAATAC TTTTTATCACAAAAAAAAAAAAAAAA SEQ ID NO: 69 Gamma-Glutamyl Hydrolase >gil4503986|reflNM_003878.11 Homo sapiens gamma-glutamyl hydrolase 15 (conjugase, folylpolygammaglutamyl hydrolase) (GGH), mRNA | qPCR forward_pimer match [531..547] | qPCR reverseprimer match [611..587] 1 qPCR probe match [549..577] TGCCGCAGCCCCCGCCCGCCCGCAGAGCTTTTGAAAGGCGGCGGG AGGCGGCGAGCGCCATGGCCAGTCCGGGCTGCCTGCTGTGCGTGCTGGGC 20 CTGCTACTCTGCGGGGCGGCGAGCCTCGAGCTGTCTAGACCCCACGGCGA CACCGCCAAGAAGCCCATCATCGGAATATTAATGCAAAAATGCCGTAATA AAGTCATGAAAAACTATGGAAGATACTATATTGCTGCGTCCTATGTAAAG TACTTGGAGTCTGCAGGTGCGAGAGTTGTACCAGTAAGGCTGGATCTTAC AGAGAAAGACTATGAAATACTTTTCAAATCTATTAATGGAATCCTTTTCCC 25 TGGAGGAAGTGTTGACCTCAGACGCTCAGATTATGCTAAAGTGGCCAAAA TATTTTATAACTTGTCCATACAGAGTTTTGATGATGGAGACTATTTTCCTGT GTGGGGCACATGCCTTGGATTTGAAGAGCTTTCACTGCTGATTAGTGGAG AGTGCTTATTAACTGCCACAGATACTGTTGACGTGGCAATGCCGCTGAACT TCACTGGAGGTCAATTGCACAGCAGAATGTTCCAGAATTTTCCTACTGAGT 30 TGTTGCTGTCATTAGCAGTAGAACCTCTGACTGCCAATTTCCATAAGTGGA GCCTCTCCGTGAAGAATTTTACAATGAATGAAAAGTTAAAGAAGTTTTTC AATGTCTTAACTACAAATACAGATGGCAAGATTGAGTTTATTTCAACAAT GGAAGGATATAAGTATCCAGTATATGGTGTCCAGTGGCATCCAGAGAAAG CACCTTATGAGTGGAAGAATTTGGATGGCATTTCCCATGCACCTAATGCTG 35 TGAAAACCGCATTTTATTTAGCAGAGTTTTTTGTTAATGAAGCTCGGAAAA ACAACCATCATTTTAAATCTGAATCTGAAGAGGAGAAAGCATTGATTTAT CAGTTCAGTCCAATTTATACTGGAAATATTTCTTCATTTCAGCAATGTTAC ATATTTGATTGAAAGTCTTCAATTTGTTAACAGAGCAAATTTGAATAATTC CATGATTAAACTGTTAGAATAACTTGCTACTCATGGCAAGATTAGGAAGT 40 CACAGATTCTTTTCTATAATGTGCCTGGCTCTGATTCTTCATTATGTATGTG ACTATTTATATAACATTAGATAATTAAATAGTGAGACATAAATAGAGTGC TTTTTCATGGAAAAGCCTTCTTATATCTGAAGATTGAAAAATAAATTTACT GAAATACAAAAAAAAAAAAAAA SEQ ID NO: 70 45 -23 Leucine Proline-Enriched Proteoglycan I >gil213619171reflNM_022356.21 Homo sapiens leucine proline-enriched proteoglycan (leprecan) I (LEPREl), mRNA | qPCR forwardprimer match 5 [813..836] 1 qPCR reverseprimer match [894..872] qPCR probe match [841..870] GGTGGCGGGTGGCTGGCGGTTCCGTTAGGTCTGAGGGAGCGATGG CGGTACGCGCGTTGAAGCTGCTGACCACACTGCTGGCTGTCGTGGCCGCT GCCTCCCAAGCCGAGGTCGAGTCCGAGGCAGGATGGGGCATGGTGACGCC TGATCTGCTCTTCGCCGAGGGGACCGCAGCCTACGCGCGCGGGGACTGGC 10 CCGGGGTGGTCCTGAGCATGGAACGGGCGCTGCGCTCCCGGGCAGCCCTC CGCGCCCTTCGCCTGCGCTGCCGCACCCAGTGTGCCGCCGACTTCCCGTGG GAGCTGGACCCCGACTGGTCCCCCAGCCCGGCCCAGGCCTCGGGCGCCGC CGCCCTGCGCGACCTGAGCTTCTTCGGGGGCCTTCTGCGTCGCGCTGCCTG CCTGCGCCGCTGCCTCGGGCCGCCGGCCGCCCACTCGCTCAGCGAAGAGA 15 TGGAGCTGGAGTTCCGCAAGCGGAGCCCCTACAACTACCTGCAGGTCGCC TACTTCAAGATCAACAAGTTGGAGAAAGCTGTTGCTGCAGCACACACCTT CTTCGTGGGCAATCCTGAGCACATGGAAATGCAGCAGAACCTAGACTATT ACCAAACCATGTCTGGAGTGAAGGAGGCCGACTTCAAGGATCTTGAGACT CAACCCCATATGCAAGAATTTCGACTGGGAGTGCGACTCTACTCAGAGGA 20 ACAGCCACAGGAAGCTGTGCCCCACCTAGAGGCGGCGCTGCAAGAATACT TTGTGGCCTATGAGGAGTGCCGTGCCCTCTGCGAAGGGCCCTATGACTAC GATGGCTACAACTACCTTGAGTACAACGCTGACCTCTTCCAGGCCATCAC AGATCATTACATCCAGGTCCTCAACTGTAAGCAGAACTGTGTCACGGAGC TTGCTTCCCACCCAAGTCGAGAGAAGCCCTTTGAAGACTTCCTCCCATCGC 25 ATTATAATTATCTGCAGTTTGCCTACTATAACATTGGGAATTATACACAGG CTGTTGAATGTGCCAAGACCTATCTTCTCTTCTTCCCCAATGACGAGGTGA TGAACCAAAATTTGGCCTATTATGCAGCTATGCTTGGAGAAGAACACACC AGATCCATCGGCCCCCGTGAGAGTGCCAAGGAGTACCGACAGCGAAGCCT ACTGGAAAAAGAACTGCTTTTCTTCGCTTATGATGTTTTTGGAATTCCCTTT 30 GTGGATCCGGATTCATGGACTCCAGGAGAAGTGATTCCCAAGAGATTGCA AGAGAAACAGAAGTCAGAACGGGAAACAGCCGTACGCATCTCCCAGGAG ATTGGGAACCTTATGAAGGAAATCGAGACCCTTGTGGAAGAGAAGACCA AGGAGTCACTGGATGTGAGCAGACTGACCCGGGAAGGTGGCCCCCTGCTG TATGAAGGCATCAGTCTCACCATGAACTCCAAACTCCTGAATGGTTCCCA 35 GCGGGTGGTGATGGACGGCGTAATCTCTGACCACGAGTGTCAGGAGCTGC AGAGACTGACCAATGTGGCAGCAACCTCAGGAGATGGCTACCGGGGTCA GACCTCCCCACATACTCCCAATGAAAAGTTCTATGGTGTCACTGTCTTCAA AGCCCTCAAGCTGGGGCAAGAAGGCAAAGTTCCTCTGCAGAGTGCCCACC TGTACTACAACGTGACGGAGAAGGTGCGGCGCATCATGGAGTCCTACTTC 40 CGCCTGGATACGCCCCTCTACTTTTCCTACTCTCATCTGGTGTGCCGCACT GCCATCGAAGAGGTCCAGGCAGAGAGGAAGGATGATAGTCATCCAGTCC ACGTGGACAACTGCATCCTGAATGCCGAGACCCTCGTGTGTGTCAAAGAG CCCCCAGCCTACACCTTCCGCGACTACAGCGCCATCCTTTACCTAAATGGG GACTTCGATGGCGGAAACTTTTATTTCACTGAACTGGATGCCAAGACCGT 45 GACGGCAGAGGTGCAGCCTCAGTGTGGAAGAGCCGTGGGATTCTCTTCAG GCACTGAAAACCCACATGGAGTGAAGGCTGTCACCAGGGGGCAGCGCTGT GCCATCGCCCTGTGGTTCACCCTGGACCCTCGACACAGCGAGCGGGTGAG
AGCAGCTCGAGCGGGTGAGAGCAGCTGGTGCTGTGGTGACCCGTTCCCAG
- 24 AGCGCCCTTGGTTTGCCTTTCTCTTCCCCAAATCCCATTGCCAGTGGCTGA GACACGAAAGGAGCACTTGGGACACCAGCTCCAACGCCCTGTCATTATGG TCACATTGCCTTGTCCTCCCTGGGCCTGCTGTGAACGGGATCCAGGTGGGG AAAGAGGTCAAGACAGGGAGCGATGCTGAGTTCTTGGTTCCCTCCTTGGG 5 CCCCACTTCAGCTGTCCTTTTCCAGAGAGTAGGACCTGCTGGGAAGGAGA TGAGCCTGGGGCCATTAAGGAACCTTCCTTGTCCCCTGGGAAGTAGCAGC TGAGAGATAGCGAGTGTCTGGAGCGGAGGCCTCTCTGAATGGGCAGGGGT TTGTCCTTGCAGGACAGGGTGCAGGCAGATGACCTGGTGAAGATGCTCTT CAGCCCAGAAGAGATGGTCCTCTCCCAGGAGCAGCCCCTGGATGCCCAGC 10 AGGGCCCCCCCGAACCTGCACAAGAGTCTCTCTCAGGCAGTGAATCGAAG CCCAAGGATGAGCTATGACAGCGTCCAGGTCAGACGGATGGGTGACTAGA CCCATGGAGAGGAACTCTTCTGCACTCTGAGCTGGCCAGCCCCTCGGGGC TGCAGAGCAGTGAGCCTACATCTGCCACTCAGCCGAGGGGACCCTGCTCA CAGCCTTCTACATGGTGCTACTGCTCTTGGAGTGGACATGACCAGACACC 15 GCACCCCCTGGATCTGGCTGAGGGCTCAGGACACAGGCCCAGCCACCCCC AGGGGCCTCCACAGGCCGCTGCATAACAGCGATACAGTACTTAAGTGTCT GTGTAGACAACCAAAGAATAAATGATTCATGGTTTTTTTT SEQ ID NO: 71 Cystatin S 20 >gil19882254|reflNM_001899.21 Homo sapiens cystatin S (CST4), mRNA qPCR forward_primer match [343..361] 1 qPCR reverseprimer match [434..411] qPCR probe match [382..410] GGCTCTCACCCTCCTCTCCTGCAGCTCCAGCTTTGTGCTCTGCCTCT GAGGAGACCATGGCCCGGCCTCTGTGTACCCTGCTACTCCTGATGGCTACC 25 CTGGCTGGGGCTCTGGCCTCGAGCTCCAAGGAGGAGAATAGGATAATCCC AGGTGGCATCTATGATGCAGACCTCAATGATGAGTGGGTACAGCGTGCCC TTCACTTCGCCATCAGCGAGTACAACAAGGCCACCGAAGATGAGTACTAC AGACGCCCGCTGCAGGTGCTGCGAGCCAGGGAGCAGACCTTTGGGGGGGT GAATTACTTCTTCGACGTAGAGGTGGGCCGCACCATATGTACCAAGTCCC 30 AGCCCAACTTGGACACCTGTGCCTTCCATGAACAGCCAGAACTGCAGAAG AAACAGTTGTGCTCTTTCGAGATCTACGAAGTTCCCTGGGAGGACAGAAT GTCCCTGGTGAATTCCAGGTGTCAAGAAGCCTAGGGGTCTGTGCCAGGCC AGTCACACCGACCACCACCCACTCCCACCCACTGTAGTGCTCCCACCCCTG GACTGGTGGCCCCCACCCTGCGGGAGGCCTCCCCATGTGCCTGTGCCAAG 35 AGACAGACAGAGAAGGCTGCAGGAGTCCTTTGTTGCTCAGCAGGGCGCTC TGCCCTCCCTCCTTCCTTCTTGCTTCTAATAGACCTGGTACATGGTACACAC ACCCCCACCTCCTGCAATTAAACAGTAGCATCGCC SEQ ID NO: 72 Secreted Frizzled-Related Protein 4 40 >gil84007331reflNM_003014.21 Homo sapiens secreted frizzled-related protein 4 (SFRP4), mRNA I qPCR assay_on_demandcontext match [1079..1103] GGCGGGTTCGCGCCCCGAAGGCTGAGAGCTGGCGCTGCTCGTGCCC TGTGTGCCAGACGGCGGAGCTCCGCGGCCGGACCCCGCGGCCCCGCTTTG CTGCCGACTGGAGTTTGGGGGAAGAAACTCTCCTGCGCCCCAGAAGATTT 45 CTTCCTCGGCGAAGGGACAGCGAAAGATGAGGGTGGCAGGAAGAGAAGG
CGCTTTCTGTCTGCCGGGGTCGCAGCGCGAGAGGGCAGTGCCATGTTCCTC
-25 TCCATCCTAGTGGCGCTGTGCCTGTGGCTGCACCTGGCGCTGGGCGTGCGC GGCGCGCCCTGCGAGGCGGTGCGCATCCCTATGTGCCGGCACATGCCCTG GAACATCACGCGGATGCCCAACCACCTGCACCACAGCACGCAGGAGAAC GCCATCCTGGCCATCGAGCAGTACGAGGAGCTGGTGGACGTGAACTGCAG 5 CGCCGTGCTGCGCTTCTTCTTCTGTGCCATGTACGCGCCCATTTGCACCCT GGAGTTCCTGCACGACCCTATCAAGCCGTGCAAGTCGGTGTGCCAACGCG CGCGCGACGACTGCGAGCCCCTCATGAAGATGTACAACCACAGCTGGCCC GAAAGCCTGGCCTGCGACGAGCTGCCTGTCTATGACCGTGGCGTGTGCAT TTCGCCTGAAGCCATCGTCACGGACCTCCCGGAGGATGTTAAGTGGATAG 10 ACATCACACCAGACATGATGGTACAGGAAAGGCCTCTTGATGTTGACTGT AAACGCCTAAGCCCCGATCGGTGCAAGTGTAAAAAGGTGAAGCCAACTTT GGCAACGTATCTCAGCAAAAACTACAGCTATGTTATTCATGCCAAAATAA AAGCTGTGCAGAGGAGTGGCTGCAATGAGGTCACAACGGTGGTGGATGTA AAAGAGATCTTCAAGTCCTCATCACCCATCCCTCGAACTCAAGTCCCGCTC 15 ATTACAAATTCTTCTTGCCAGTGTCCACACATCCTGCCCCATCAAGATGTT CTCATCATGTGTTACGAGTGGCGTTCAAGGATGATGCTTCTTGAAAATTGC TTAGTTGAAAAATGGAGAGATCAGCTTAGTAAAAGATCCATACAGTGGGA AGAGAGGCTGCAGGAACAGCGGAGAACAGTTCAGGACAAGAAGAAAACA GCCGGGCGCACCAGTCGTAGTAATCCCCCCAAACCAAAGGGAAAGCCTCC 20 TGCTCCCAAACCAGCCAGTCCCAAGAAGAACATTAAAACTAGGAGTGCCC AGAAGAGAACAAACCCGAAAAGAGTGTGAGCTAACTAGTTTCCAAAGCG GAGACTTCCGACTTCCTTACAGGATGAGGCTGGGCATTGCCTGGGACAGC CTATGTAAGGCCATGTGCCCCTTGCCCTAACAACTCACTGCAGTGCTCTTC ATAGACACATCTTGCAGCATTTTTCTTAAGGCTATGCTTCAGTTTTTCTTTG 25 TAAGCCATCACAAGCCATAGTGGTAGGTTTGCCCTTTGGTACAGAAGGTG AGTTAAAGCTGGTGGAAAAGGCTTATTGCATTGCATTCAGAGTAACCTGT GTGCATACTCTAGAAGAGTAGGGAAAATAATGCTTGTTACAATTCGACCT AATATGTGCATTGTAAAATAAATGCCATATTTCAAACAAAACACGTAATT TTTTTACAGTATGTTTTATTACCTTTTGATATCTGTTGTTGCAATGTTAGTG 30 ATGTTTTAAAATGTGATGAAAATATAATGTTTTTAAGAAGGAACAGTAGT GGAATGAATGTTAAAAGATCTTTATGTGTTTATGGTCTGCAGAAGGATTTT TGTGATGAAAGGGGATTTTTTGAAAAATTAGAGAAGTAGCATATGGAAAA TTATAATGTGTTTTTTTACCAATGACTTCAGTTTCTGTTTTTAGCTAGAAAC TTAAAAACAAAAATAATAATAAAGAAAAATAAATAAAAAGGAGAGGCAG 35 ACAATGTCTGGATTCCTGTTTTTTGGTTACCTGATTTCCATGATCATGATGC TTCTTGTCAACACCCTCTTAAGCAGCACCAGAAACAGTGAGTTTGTCTGTA CCATTAGGAGTTAGGTACTAATTAGTTGGCTAATGCTCAAGTATTTTATAC CCACAAGAGAGGTATGTCACTCATCTTACTTCCCAGGACATCCACCCTGA GAATAATTTGACAAGCTTAAAAATGGCCTTCATGTGAGTGCCAAATTTTGT 40 TTTTCTTCATTTAAATATTTTCTTTGCCTAAATACATGTGAGAGGAGTTAA ATATAAATGTACAGAGAGGAAAGTTGAGTTCCACCTCTGAAATGAGAATT ACTTGACAGTTGGGATACTTTAATCAGAAAAAAAGAACTTATTTGCAGCA TTTTATCAACAAATTTCATAATTGTGGACAATTGGAGGCATTTATTTTAAA AAACAATTTTATTGGCCTTTTGCTAACACAGTAAGCATGTATTTTATAAGG 45 CATTCAATAAATGCACAACGCCCAAAGGAAATAAAATCCTATCTAATCCT ACTCTCCACTACACAGAGGTAATCACTATTAGTATTTTGGCATATTATTCT CCAGGTGTTTGCTTATGCACTTATAAAATGATTTGAACAAATAAAACTAG GAACCTGTATACATGTGTTTCATAACCTGCCTCCTTTGCTTGGCCCTTTATT GAGATAAGTTTTCCTGTCAAGAAAGCAGAAACCATCTCATTTCTAACAGC 50 TGTGTTATATTCCATAGTATGCATTACTCAACAAACTGTTGTGCTATTGGA -26 TACTTAGGTGGTTTCTTCACTGACAATACTGAATAAACATCTCACCGGAAT TC SEQ ID NO: 73 Asporin 5 >gil41350213|reflNM_017680.3| Homo sapiens asporin (LRR class 1) (ASPN), mRNA | qPCR forward_primer match [798..823] | qPCR reverseprimer match [934..912] qPCR probe match [842..875] AGTACTAACATGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCA CCCAGGGTGCAGCCACACCAGGACTGTGTTGAAGGGTGTTTTTTTTCTTTT 10 AAATGTAATACCTCCTCATCTTTTCTTCTTACACAGTGTCTGAGAACATTT ACATTATAGATAAGTAGTACATGGTGGATAACTTCTACTTTTAGGAGGACT ACTCTCTTCTGACAGTCCTAGACTGGTCTTCTACACTAAGACACCATGAAG GAGTATGTGCTCCTATTATTCCTGGCTTTGTGCTCTGCCAAACCCTTCTTTA GCCCTTCACACATCGCACTGAAGAATATGATGCTGAAGGATATGGAAGAC 15 ACAGATGATGATGATGATGATGATGATGATGATGATGATGATGATGAGGA CAACTCTCTTTTTCCAACAAGAGAGCCAAGAAGCCATTTTTTTCCATTTGA TCTGTTTCCAATGTGTCCATTTGGATGTCAGTGCTATTCACGAGTTGTACA TTGCTCAGATTTAGGTTTGACCTCAGTCCCAACCAACATTCCATTTGATAC TCGAATGCTTGATCTTCAAAACAATAAAATTAAGGAAATCAAAGAAAATG 20 ATTTTAAAGGACTCACTTCACTTTATGGTCTGATCCTGAACAACAACAAGC TAACGAAGATTCACCCAAAAGCCTTTCTAACCACAAAGAAGTTGCGAAGG CTGTATCTGTCCCACAATCAACTAAGTGAAATACCACTTAATCTTCCCAAA TCATTAGCAGAACTCAGAATTCATGAAAATAAAGTTAAGAAAATACAAAA GGACACATTCAAAGGAATGAATGCTTTACACGTTTTGGAAATGAGTGCAA 25 ACCCTCTTGATAATAATGGGATAGAGCCAGGGGCATTTGAAGGGGTGACG GTGTTCCATATCAGAATTGCAGAAGCAAAACTGACCTCAGTTCCTAAAGG CTTACCACCAACTTTATTGGAGCTTCACTTAGATTATAATAAAATTTCAAC AGTGGAACTTGAGGATTTTAAACGATACAAAGAACTACAAAGGCTGGGCC TAGGAAACAACAAAATCACAGATATCGAAAATGGGAGTCTTGCTAACATA 30 CCACGTGTGAGAGAAATACATTTGGAAAACAATAAACTAAAAAAAATCCC TTCAGGATTACCAGAGTTGAAATACCTCCAGATAATCTTCCTTCATTCTAA TTCAATTGCAAGAGTGGGAGTAAATGACTTCTGTCCAACAGTGCCAAAGA TGAAGAAATCTTTATACAGTGCAATAAGTTTATTCAACAACCCGGTGAAA TACTGGGAAATGCAACCTGCAACATTTCGTTGTGTTTTGAGCAGAATGAGT 35 GTTCAGCTTGGGAACTTTGGAATGTAATAATTAGTAATTGGTAATGTCCAT TTAATATAAGATTCAAAAATCCCTACATTTGGAATACTTGAACTCTATTAA TAATGGTAGTATTATATATACAAGCAAATATCTATTCTCAAGTGGTAAGTC CACTGACTTATTTTATGACAAGAAATTTCAACGGAATTTTGCCAAACTATT GATACATAAGGGTTGAGAGAAACAAGCATCTATTGCAGTTTCTTTTTGCGT 40 ACAAATGATCTTACATAAATCTCATGCTTGACCATTCCTTTCTTCATAACA AAAAAGTAAGATATTCGGTATTTAACACTTTGTTATCAAGCATATTTTAAA AAGAACTGTACTGTAAATGGAATGCTTGACTTAGCAAAATTTGTGCTCTTT CATTTGCTGTTAGAAAAACAGAATTAACAAAGACAGTAATGTGAAGAGTG CATTACACTATTCTTATTCTTTAGTAACTTGGGTAGTACTGTAATATTTTTA 45 ATCATCTTAAAGTATGATTTGATATAATCTTATTGAAATTACCTTATCATG TCTTAGAGCCCGTCTTTATGTTTAAAACTAATTTCTTAAAATAAAGCCTTC AGTAAATGTTCATTACCAACTTGATAAATGCTACTCATAAGAGCTGGTTTG
GGGCTATAGCATATGCTTTTTTTTTTTTAATTATTACCTGATTTAAAAATCT
-27 CTGTAAAAACGTGTAGTGTTTCATAAAATCTGTAACTCGCATTTTAATGAT CCGCTATTATAAGCTTTTAATAGCATGAAAATTGTTAGGCTATATAACATT GCCACTTCAACTCTAAGGAATATTTTTGAGATATCCCTTTGGAAGACCTTG CTTGGAAGAGCCTGGACACTAACAATTCTACACCAAATTGTCTCTTCAAAT 5 ACGTATGGACTGGATAACTCTGAGAAACACATCTAGTATAACTGAATAAG CAGAGCATCAAATTAAACAGACAGAAACCGAAAGCTCTATATAAATGCTC AGAGTTCTTTATGTATTTCTTATTGGCATTCAACATATGTAAAATCAGAAA ACAGGGAAATTTTCATTAAAAATATTGGTTTGAAATAAAAAAAAAAAAAA SEQ ID NO: 74 10 Cell Growth Regulator with EF Hand Domain 1 >gil335898231reflNM_006569.2 Homo sapiens cell growth regulator with EF hand domain 1 (CGREF1), mRNA I qPCR forward_primer match [378..394] | qPCR reverseprimer match [455..43 1] I qPCR probe match [396..415] CGCGCAGCCCCTCCGGCCGCGGGCGCAGCGGGGGCGCTGGTGGAG 15 CTGCGAAGGGCCAGGTCCGGCGGGCGGGGCGGCGGCTGGCACTGGCTCC GGACTCTGCCCGGCCAGGGCGGCGGCTCCAGCCGGGAGGGCGACGTGGA GCGGCCACGTGGAGCGGCCCGGGGGAGGCTGGCGGCGGGAGGCGAGGCG CGGGCGGCGCAGCAGCCAGGAGCGCCCACGGAGCTGGACCCCCAGAGCC GCGCGGCGCCGCAGCAGTTCCAGGAAGGATGTTACCTTTGACGATGACAG 20 TGTTAATCCTGCTGCTGCTCCCCACGGGTCAGGCTGCCCCAAAGGATGGA GTCACAAGGCCAGACTCTGAAGTGCAGCATCAGCTCCTGCCCAACCCCTT CCAGCCAGGCCAGGAGCAGCTCGGACTTCTGCAGAGCTACCTAAAGGGAC TAGGAAGGACAGAAGTGCAACTGGAGCATCTGAGCCGGGAGCAGGTTCT CCTCTACCTCTTTGCCCTCCATGACTATGACCAGAGTGGACAGCTGGATGG 25 CCTGGAGCTGCTGTCCATGTTGACAGCTGCTCTGGCCCCTGGAGCTGCCAA CTCTCCTACCACCAACCCGGTGATATTGATAGTGGACAAAGTGCTCGAGA CGCAGGACCTGAATGGGGATGGGCTCATGACCCCTGCTGAGCTCATCAAC TTCCCGGGAGTAGCCCTCAGGCACGTGGAGCCCGGAGAGCCCCTTGCTCC ATCTCCTCAGGAGCCACAAGCTGTTGGAAGGCAGTCCCTATTAGCTAAAA 30 GCCCATTAAGACAAGAAACACAGGAAGCCCCTGGTCCCAGAGAAGAAGC AAAGGGCCAGGTAGAGGCCAGAAGGGAGTCTTTGGATCCTGTCCAGGAG CCTGGGGGCCAGGCAGAGGCTGATGGAGATGTTCCAGGGCCCAGAGGGG AAGCTGAGGGCCAGGCAGAGGCTAAAGGAGATGCCCCTGGGCCCAGAGG GGAAGCTGGGGGCCAGGCAGAGGCTGAAGGAGATGCCCCCGGGCCCAGA 35 GGGGAAGCTGGGGGCCAGGCAGAGGCCAGGGAGAATGGAGAGGAGGCC AAGGAACTTCCAGGGGAAACACTGGAGTCTAAGAACACCCAAAATGACTT TGAGGTGCACATTGTTCAAGTGGAGAATGATGAGATCTAGATCTTGAAGA TACAGGTACCCCACGAAGTCTCAGTGCCAGAACATAAGCCCTGAAGTGGG CAGGGGAAATGTACGCTGGGACAAGGACCATCTCTGTGCCCCCTGTCTGG 40 TCCCAGTAGGTATCAGGTCTTTCTGTGCAGCTCAGGGAGACCCTAAGTTAA GGGGCAGATTACCAATAAAGAACTGAATGAATTCATCCCCCCGGGCCACC TCTCTACCCGTCCAGCCTGCCCAGACCCTCTCAGAGGAACGGGGTTGGGG ACCGAAAGGACAGGGATGCCGCCTGCCCAGTGTTTCTGGGCCTCACGGTG CTCCGGCAGCAGAGCGCATGGTGCTAGCCATGGCCGGCTGCAGAGGACCC 45 AGTGAGGAAAGCTCAGTCTATCCCTGGGCCCCAAACCCTCACCGGTTCCC CCTCACCTGGTGTTCAGACACCCCATGCTCTCCTGCAGCTCAGGGCAGGTG ACCCCATCCCCAGTAATATTAATCATCACTAGAACTTTTTGAGAGCCTTGT
ACACATCAGGCATCATGCTGGGCATTTTATATATGATTTTATCCTCACAAT
- 28 AATTCTGTAGCCAAGCAGAATTGGTTCCATTTGACAGATGAAGAAATTGA GGCAGATTGCGTTAAGTGCTGTACCCTAAGGTGATATGCAGCTAATTAAA TGGCAGATTTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO: 75 5 Kallikrein 10, Transcript Variant 1 >gi|22208981|ref)NM_002776.3| Homo sapiens kallikrein 10 (KLK10), transcript variant 1, mRNA | qPCR forward_primer match [851..874] | qPCR reverse-primer match [950..931]| qPCR probe match [890..914] 10 CATCCTGCCACCCCTAGCCTTGCTGGGGACGTGAACCCTCTCCCCG CGCCTGGGAAGCCTTCTTGGCACCGGGACCCGGAGAATCCCCACGGAAGC CAGTTCCAAAAGGGATGAAAAGGGGGCGTTTCGGGCACTGGGAGAAGCC TGTATTCCAGGGCCCCTCCCAGAGCAGGAATCTGGGACCCAGGAGTGCCA GCCTCACCCACGCAGATCCTGGCCATGAGAGCTCCGCACCTCCACCTCTCC 15 GCCGCCTCTGGCGCCCGGGCTCTGGCGAAGCTGCTGCCGCTGCTGATGGC GCAACTCTGGGCCGCAGAGGCGGCGCTGCTCCCCCAAAACGACACGCGCT TGGACCCCGAAGCCTATGGCTCCCCGTGCGCGCGCGGCTCGCAGCCCTGG CAGGTCTCGCTCTTCAACGGCCTCTCGTTCCACTGCGCGGGTGTCCTGGTG GACCAGAGTTGGGTGCTGACGGCCGCGCACTGCGGAAACAAGCCACTGTG 20 GGCTCGAGTAGGGGATGACCACCTGCTGCTTCTTCAGGGAGAGCAGCTCC GCCGGACCACTCGCTCTGTTGTCCATCCCAAGTACCACCAGGGCTCAGGC CCCATCCTGCCAAGGCGAACGGATGAGCACGATCTCATGTTGCTGAAGCT GGCCAGGCCCGTAGTGCTGGGGCCCCGCGTCCGGGCCCTGCAGCTTCCCT ACCGCTGTGCTCAGCCCGGAGACCAGTGCCAGGTTGCTGGCTGGGGCACC 25 ACGGCCGCCCGGAGAGTGAAGTACAACAAGGGCCTGACCTGCTCCAGCAT CACTATCCTGAGCCCTAAAGAGTGTGAGGTCTTCTACCCTGGCGTGGTCAC CAACAACATGATATGTGCTGGACTGGACCGGGGCCAGGACCCTTGCCAGA GTGACTCTGGAGGCCCCCTGGTCTGTGACGAGACCCTCCAAGGCATCCTCT CGTGGGGTGTTTACCCCTGTGGCTCTGCCCAGCATCCAGCTGTCTACACCC 30 AGATCTGCAAATACATGTCCTGGATCAATAAAGTCATACGCTCCAACTGA TCCAGATGCTACGCTCCAGCTGATCCAGATGTTATGCTCCTGCTGATCCAG ATGCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAGTCGGCTGAACTC TCCCCTTGTCTGCACTGTTCAAACCTCTGCCGCCCTCCACACCTCTAAACA TCTCCCCTCTCACCTCATTCCCCCACCTATCCCCATTCTCTGCCTGTACTGA 35 AGCTGAAATGCAGGAAGTGGTGGCAAAGGTTTATTCCAGAGAAGCCAGG AAGCCGGTCATCACCCAGCCTCTGAGAGCAGTTACTGGGGTCACCCAACC TGACTTCCTCTGCCACTCCCTGCTGTGTGACTTTGGGCAAGCCAAGTGCCC TCTCTGAACCTCAGTTTCCTCATCTGCAAAATGGGAACAATGACGTGCCTA CCTCTTAGACATGTTGTGAGGAGACTATGATATAACATGTGTATGTAAATC 40 TTCATGGTGATTGTCATGTAAGGCTTAACACAGTGGGTGGTGAGTTCTGAC TAAAGGTTACCTGTTGTCGTGA SEQ ID NO: 76 Kallikrein 10 Transcript Variant 2 >gil22208983|reflNM_145888.1l Homo sapiens kallikrein 10 (KLK1O), 45 transcript variant 2, mRNA I qPCR forwardprimer match [714..737] | qPCR reverse-primer match [813..794] 1 qPCR probe match [753..777] - 29 ACCAGCGGCAGACCACAGGCAGGGCAGAGGCACGTCTGGGTCCCC TCCCTCCTTCCTATCGGCGACTCCCAGGATCCTGGCCATGAGAGCTCCGCA CCTCCACCTCTCCGCCGCCTCTGGCGCCCGGGCTCTGGCGAAGCTGCTGCC GCTGCTGATGGCGCAACTCTGGGCCGCAGAGGCGGCGCTGCTCCCCCAAA 5 ACGACACGCGCTTGGACCCCGAAGCCTATGGCTCCCCGTGCGCGCGCGGC TCGCAGCCCTGGCAGGTCTCGCTCTTCAACGGCCTCTCGTTCCACTGCGCG GGTGTCCTGGTGGACCAGAGTTGGGTGCTGACGGCCGCGCACTGCGGAAA CAAGCCACTGTGGGCTCGAGTAGGGGATGACCACCTGCTGCTTCTTCAGG GAGAGCAGCTCCGCCGGACCACTCGCTCTGTTGTCCATCCCAAGTACCAC 10 CAGGGCTCAGGCCCCATCCTGCCAAGGCGAACGGATGAGCACGATCTCAT GTTGCTGAAGCTGGCCAGGCCCGTAGTGCTGGGGCCCCGCGTCCGGGCCC TGCAGCTTCCCTACCGCTGTGCTCAGCCCGGAGACCAGTGCCAGGTTGCTG GCTGGGGCACCACGGCCGCCCGGAGAGTGAAGTACAACAAGGGCCTGAC CTGCTCCAGCATCACTATCCTGAGCCCTAAAGAGTGTGAGGTCTTCTACCC 15 TGGCGTGGTCACCAACAACATGATATGTGCTGGACTGGACCGGGGCCAGG ACCCTTGCCAGAGTGACTCTGGAGGCCCCCTGGTCTGTGACGAGACCCTC CAAGGCATCCTCTCGTGGGGTGTTTACCCCTGTGGCTCTGCCCAGCATCCA GCTGTCTACACCCAGATCTGCAAATACATGTCCTGGATCAATAAAGTCAT ACGCTCCAACTGATCCAGATGCTACGCTCCAGCTGATCCAGATGTTATGCT 20 CCTGCTGATCCAGATGCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCA GTCGGCTGAACTCTCCCCTTGTCTGCACTGTTCAAACCTCTGCCGCCCTCC ACACCTCTAAACATCTCCCCTCTCACCTCATTCCCCCACCTATCCCCATTCT CTGCCTGTACTGAAGCTGAAATGCAGGAAGTGGTGGCAAAGGTTTATTCC AGAGAAGCCAGGAAGCCGGTCATCACCCAGCCTCTGAGAGCAGTTACTGG 25 GGTCACCCAACCTGACTTCCTCTGCCACTCCCTGCTGTGTGACTTTGGGCA AGCCAAGTGCCCTCTCTGAACCTCAGTTTCCTCATCTGCAAAATGGGAACA ATGACGTGCCTACCTCTTAGACATGTTGTGAGGAGACTATGATATAACAT GTGTATGTAAATCTTCATGGTGATTGTCATGTAAGGCTTAACACAGTGGGT GGTGAGTTCTGACTAAAGGTTACCTGTTGTCGTGA SEQ ID NO: 77 30 Tissue Inhibitor of Metalloproteinase I >gil45075081reflNM_003254.1l Homo sapiens tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor) (TIMP1), mRNA I qPCR forward_primer match [221..241] | qPCR reverse_primer match 35 [359..340] 1 qPCR probe match [251..283] AGGGGCCTTAGCGTGCCGCATCGCCGAGATCCAGCGCCCAGAGAG ACACCAGAGAACCCACCATGGCCCCCTTTGAGCCCCTGGCTTCTGGCATCC TGTTGTTGCTGTGGCTGATAGCCCCCAGCAGGGCCTGCACCTGTGTCCCAC CCCACCCACAGACGGCCTTCTGCAATTCCGACCTCGTCATCAGGGCCAAG 40 TTCGTGGGGACACCAGAAGTCAACCAGACCACCTTATACCAGCGTTATGA GATCAAGATGACCAAGATGTATAAAGGGTTCCAAGCCTTAGGGGATGCCG CTGACATCCGGTTCGTCTACACCCCCGCCATGGAGAGTGTCTGCGGATACT TCCACAGGTCCCACAACCGCAGCGAGGAGTTTCTCATTGCTGGAAAACTG CAGGATGGACTCTTGCACATCACTACCTGCAGTTTCGTGGCTCCCTGGAAC 45 AGCCTGAGCTTAGCTCAGCGCCGGGGCTTCACCAAGACCTACACTGTTGG CTGTGAGGAATGCACAGTGTTTCCCTGTTTATCCATCCCCTGCAAACTGCA
GAGTGGCACTCATTGCTTGTGGACGGACCAGCTCCTCCAAGGCTCTGAAA
-30 AGGGCTTCCAGTCCCGTCACCTTGCCTGCCTGCCTCGGGAGCCAGGGCTGT GCACCTGGCAGTCCCTGCGGTCCCAGATAGCCTGAATCCTGCCCGGAGTG GAACTGAAGCCTGCACAGTGTCCACCCTGTTCCCACTCCCATCTTTCTTCC GGACAATGAAATAAAGAGTTACCACCCAGC SEQ ID NO: 78 5 Secreted Protein, Acidic, Cysteine-Rich >gil48675809reflNM_003118.2| Homo sapiens secreted protein, acidic, cysteine-rich (osteonectin) (SPARC), mRNA | qPCR forwardprimer match [788..810] 1 qPCR reverse_primer match [915..898] qPCR probe match [818..839] 10 GTTGCCTGTCTCTAAACCCCTCCACATTCCCGCGGTCCTTCAGACTG CCCGGAGAGCGCGCTCTGCCTGCCGCCTGCCTGCCTGCCACTGAGGGTTCC CAGCACCATGAGGGCCTGGATCTTCTTTCTCCTTTGCCTGGCCGGGAGGGC CTTGGCAGCCCCTCAGCAAGAAGCCCTGCCTGATGAGACAGAGGTGGTGG AAGAAACTGTGGCAGAGGTGACTGAGGTATCTGTGGGAGCTAATCCTGTC 15 CAGGTGGAAGTAGGAGAATTTGATGATGGTGCAGAGGAAACCGAAGAGG AGGTGGTGGCGGAAAATCCCTGCCAGAACCACCACTGCAAACACGGCAA GGTGTGCGAGCTGGATGAGAACAACACCCCCATGTGCGTGTGCCAGGACC CCACCAGCTGCCCAGCCCCCATTGGCGAGTTTGAGAAGGTGTGCAGCAAT GACAACAAGACCTTCGACTCTTCCTGCCACTTCTTTGCCACAAAGTGCACC 20 CTGGAGGGCACCAAGAAGGGCCACAAGCTCCACCTGGACTACATCGGGCC TTGCAAATACATCCCCCCTTGCCTGGACTCTGAGCTGACCGAATTCCCCCT GCGCATGCGGGACTGGCTCAAGAACGTCCTGGTCACCCTGTATGAGAGGG ATGAGGACAACAACCTTCTGACTGAGAAGCAGAAGCTGCGGGTGAAGAA GATCCATGAGAATGAGAAGCGCCTGGAGGCAGGAGACCACCCCGTGGAG 25 CTGCTGGCCCGGGACTTCGAGAAGAACTATAACATGTACATCTTCCCTGTA CACTGGCAGTTCGGCCAGCTGGACCAGCACCCCATTGACGGGTACCTCTC CCACACCGAGCTGGCTCCACTGCGTGCTCCCCTCATCCCCATGGAGCATTG CACCACCCGCTTTTTCGAGACCTGTGACCTGGACAATGACAAGTACATCG CCCTGGATGAGTGGGCCGGCTGCTTCGGCATCAAGCAGAAGGATATCGAC 30 AAGGATCTTGTGATCTAAATCCACTCCTTCCACAGTACCGGATTCTCTCTT TAACCCTCCCCTTCGTGTTTCCCCCAATGTTTAAAATGTTTGGATGGTTTGT TGTTCTGCCTGGAGACAAGGTGCTAACATAGATTTAAGTGAATACATTAA CGGTGCTAAAAATGAAAATTCTAACCCAAGACATGACATTCTTAGCTGTA ACTTAACTATTAAGGCCTTTTCCACACGCATTAATAGTCCCATTTTTCTCTT 35 GCCATTTGTAGCTTTGCCCATTGTCTTATTGGCACATGGGTGGACACGGAT CTGCTGGGCTCTGCCTTAAACACACATTGCAGCTTCAACTTTTCTCTTTAGT GTTCTGTTTGAAACTAATACTTACCGAGTCAGACTTTGTGTTCATTTCATTT CAGGGTCTTGGCTGCCTGTGGGCTTCCCCAGGTGGCCTGGAGGTGGGCAA AGGGAAGTAACAGACACACGATGTTGTCAAGGATGGTTTTGGGACTAGAG 40 GCTCAGTGGTGGGAGAGATCCCTGCAGAACCCACCAACCAGAACGTGGTT TGCCTGAGGCTGTAACTGAGAGAAAGATTCTGGGGCTGTGTTATGAAAAT ATAGACATTCTCACATAAGCCCAGTTCATCACCATTTCCTCCTTTACCTTTC AGTGCAGTTTCTTTTCACATTAGGCTGTTGGTTCAAACTTTTGGGAGCACG GACTGTCAGTTCTCTGGGAAGTGGTCAGCGCATCCTGCAGGGCTTCTCCTC 45 CTCTGTCTTTTGGAGAACCAGGGCTCTTCTCAGGGGCTCTAGGGACTGCCA GGCTGTTTCAGCCAGGAAGGCCAAAATCAAGAGTGAGATGTAGAAAGTTG TAAAATAGAAAAAGTGGAGTTGGTGAATCGGTTGTTCTTTCCTCACATTTG
GATGATTGTCATAAGGTTTTTAGCATGTTCCTCCTTTTCTTCACCCTCCCCT
-31 TTTTTCTTCTATTAATCAAGAGAAACTTCAAAGTTAATGGGATGGTCGGAT CTCACAGGCTGAGAACTCGTTCACCTCCAAGCATTTCATGAAAAAGCTGC TTCTTATTAATCATACAAACTCTCACCATGATGTGAAGAGTTTCACAAATC CTTCAAAATAAAAAGTAATGACTTAGAAACTGCCTTCCTGGGTGATTTGC 5 ATGTGTCTTAGTCTTAGTCACCTTATTATCCTGACACAAAAACACATGAGC ATACATGTCTACACATGACTACACAAATGCAAACCTTTGCAAACACATTA TGCTTTTGCACACACACACCTGTACACACACACCGGCATGTTTATACACAG GGAGTGTATGGTTCCTGTAAGCACTAAGTTAGCTGTTTTCATTTAATGACC TGTGGTTTAACCCTTTTGATCACTACCACCATTATCAGCACCAGACTGAGC 10 AGCTATATCCTTTTATTAATCATGGTCATTCATTCATTCATTCATTCACAAA ATATTTATGATGTATTTACTCTGCACCAGGTCCCATGCCAAGCACTGGGGA CACAGTTATGGCAAAGTAGACAAAGCATTTGTTCATTTGGAGCTTAGAGT CCAGGAGGAATACATTAGATAATGACACAATCAAATATAAATTGCAAGAT GTCACAGGTGTGATGAAGGGAGAGTAGGAGAGACCATGAGTATGTGTAA 15 CAGGAGGACACAGCATTATTCTAGTGCTGTACTGTTCCGTACGGCAGCCA CTACCCACATGTAACTTTTTAAGATTTAAATTTAAATTAGTTAACATTCAA AACGCAGCTCCCCAATCACACTAGCAACATTTCAAGTGCTTGAGAGCCAT GCATGATTAGTGGTTACCCTATTGAATAGGTCAGAAGTAGAATCTTTTCAT CATCACAGAAAGTTCTATTGGACAGTGCTCTTCTAGATCATCATAAGACTA 20 CAGAGCACTTTTCAAAGCTCATGCATGTTCATCATGTTAGTGTCGTATTTT GAGCTGGGGTTTTGAGACTCCCCTTAGAGATAGAGAAACAGACCCAAGAA ATGTGCTCAATTGCAATGGGCCACATACCTAGATCTCCAGATGTCATTTCC CCTCTCTTATTTTAAGTTATGTTAAGATTACTAAAACAATAAAAGCTCCTA AAAAATCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 25 SEQ ID NO: 79 Transforming Growth Factor, Beta-Induced >gil4507466reflNM_000358.lI Homo sapiens transforming growth factor, beta-induced, 68kDa (TGFBI), mRNA I qPCR assayondemandcontext match 30 [170..194] GCTTGCCCGTCGGTCGCTAGCTCGCTCGGTGCGCGTCGTCCCGCTCC ATGGCGCTCTTCGTGCGGCTGCTGGCTCTCGCCCTGGCTCTGGCCCTGGGC CCCGCCGCGACCCTGGCGGGTCCCGCCAAGTCGCCCTACCAGCTGGTGCT GCAGCACAGCAGGCTCCGGGGCCGCCAGCACGGCCCCAACGTGTGTGCTG 35 TGCAGAAGGTTATTGGCACTAATAGGAAGTACTTCACCAACTGCAAGCAG TGGTACCAAAGGAAAATCTGTGGCAAATCAACAGTCATCAGCTACGAGTG CTGTCCTGGATATGAAAAGGTCCCTGGGGAGAAGGGCTGTCCAGCAGCCC TACCACTCTCAAACCTTTACGAGACCCTGGGAGTCGTTGGATCCACCACCA CTCAGCTGTACACGGACCGCACGGAGAAGCTGAGGCCTGAGATGGAGGG 40 GCCCGGCAGCTTCACCATCTTCGCCCCTAGCAACGAGGCCTGGGCCTCCTT GCCAGCTGAAGTGCTGGACTCCCTGGTCAGCAATGTCAACATTGAGCTGC TCAATGCCCTCCGCTACCATATGGTGGGCAGGCGAGTCCTGACTGATGAG CTGAAACACGGCATGACCCTCACCTCTATGTACCAGAATTCCAACATCCA GATCCACCACTATCCTAATGGGATTGTAACTGTGAACTGTGCCCGGCTCCT 45 GAAAGCCGACCACCATGCAACCAACGGGGTGGTGCACCTCATCGATAAGG TCATCTCCACCATCACCAACAACATCCAGCAGATCATTGAGATCGAGGAC ACCTTTGAGACCCTTCGGGCTGCTGTGGCTGCATCAGGGCTCAACACGAT GCTTGAAGGTAACGGCCAGTACACGCTTTTGGCCCCGACCAATGAGGCCT I77A .. f1.datri E77 ... I -32 TCGAGAAGATCCCTAGTGAGACTTTGAACCGTATCCTGGGCGACCCAGAA GCCCTGAGAGACCTGCTGAACAACCACATCTTGAAGTCAGCTATGTGTGC TGAAGCCATCGTTGCGGGGCTGTCTGTAGAGACCCTGGAGGGCACGACAC TGGAGGTGGGCTGCAGCGGGGACATGCTCACTATCAACGGGAAGGCGATC 5 ATCTCCAATAAAGACATCCTAGCCACCAACGGGGTGATCCACTACATTGA TGAGCTACTCATCCCAGACTCAGCCAAGACACTATTTGAATTGGCTGCAG AGTCTGATGTGTCCACAGCCATTGACCTTTTCAGACAAGCCGGCCTCGGCA ATCATCTCTCTGGAAGTGAGCGGTTGACCCTCCTGGCTCCCCTGAATTCTG TATTCAAAGATGGAACCCCTCCAATTGATGCCCATACAAGGAATTTGCTTC 10 GGAACCACATAATTAAAGACCAGCTGGCCTCTAAGTATCTGTACCATGGA CAGACCCTGGAAACTCTGGGCGGCAAAAAACTGAGAGTTTTTGTTTATCG TAATAGCCTCTGCATTGAGAACAGCTGCATCGCGGCCCACGACAAGAGGG GGAGGTACGGGACCCTGTTCACGATGGACCGGGTGCTGACCCCCCCAATG GGGACTGTCATGGATGTCCTGAAGGGAGACAATCGCTTTAGCATGCTGGT 15 AGCTGCCATCCAGTCTGCAGGACTGACGGAGACCCTCAACCGGGAAGGAG TCTACACAGTCTTTGCTCCCACAAATGAAGCCTTCCGAGCCCTGCCACCAA GAGAACGGAGCAGACTCTTGGGAGATGCCAAGGAACTTGCCAACATCCTG AAATACCACATTGGTGATGAAATCCTGGTTAGCGGAGGCATCGGGGCCCT GGTGCGGCTAAAGTCTCTCCAAGGTGACAAGCTGGAAGTCAGCTTGAAAA 20 ACAATGTGGTGAGTGTCAACAAGGAGCCTGTTGCCGAGCCTGACATCATG GCCACAAATGGCGTGGTCCATGTCATCACCAATGTTCTGCAGCCTCCAGCC AACAGACCTCAGGAAAGAGGGGATGAACTTGCAGACTCTGCGCTTGAGAT CTTCAAACAAGCATCAGCGTTTTCCAGGGCTTCCCAGAGGTCTGTGCGACT AGCCCCTGTCTATCAAAAGTTATTAGAGAGGATGAAGCATTAGCTTGAAG 25 CACTACAGGAGGAATGCACCACGGCAGCTCTCCGCCAATTTCTCTCAGAT TTCCACAGAGACTGTTTGAATGTTTTCAAAACCAAGTATCACACTTTAATG TACATGGGCCGCACCATAATGAGATGTGAGCCTTGTGCATGTGGGGGAGG AGGGAGAGAGATGTACTTTTTAAATCATGTTCCCCCTAAACATGGCTGTTA ACCCACTGCATGCAGAAACTTGGATGTCACTGCCTGACATTCACTTCCAGA 30 GAGGACCTATCCCAAATGTGGAATTGACTGCCTATGCCAAGTCCCTGGAA AAGGAGCTTCAGTATTGTGGGGCTCATAAAACATGAATCAAGCAATCCAG CCTCATGGGAAGTCCTGGCACAGTTTTTGTAAAGCCCTTGCACAGCTGGA GAAATGGCATCATTATAAGCTATGAGTTGAAATGTTCTGTCAAATGTGTCT CACATCTACACGTGGCTTGGAGGCTTTTATGGGGCCCTGTCCAGGTAGAA 35 AAGAAATGGTATGTAGAGCTTAGATTTCCCTATTGTGACAGAGCCATGGT GTGTTTGTAATAATAAAACCAAAGAAACATA SEQ ID NO: 80 EGF-Containing Fibulin-Like Extracellular Matrix Protein 2 >gil8393298|reflNM_016938.11 Homo sapiens EGF-containing fibulin-like 40 extracellular matrix protein 2 (EFEMP2), mRNA I qPCR assayon demandcontext match [1248..1272] CAAGCTTGGCACGAGGGCAGGCATTGCCCGAGCCAGCCGAGCCGC CAGAGCCGCGGGCCGCGCGGGTGTCGCGGGCCCAACCCCAGGATGCTCCC CTGCGCCTCCTGCCTACCCGGGTCTCTACTGCTCTGGGCGCTGCTACTGTT 45 GCTCTTGGGATCAGCTTCTCCTCAGGATTCTGAAGAGCCCGACAGCTACAC GGAATGCACAGATGGCTATGAGTGGGACCCAGACAGCCAGCACTGCCGG GATGTCAACGAGTGTCTGACCATCCCTGAGGCCTGCAAGGGGGAAATGAA
GTGCATCAACCACTACGGGGGCTACTTGTGCCTGCCCCGCTCCGCTGCCGT
- 33 CATCAACGACCTACACGGCGAGGGACCCCCGCCACCAGTGCCTCCCGCTC AACACCCCAACCCCTGCCCACCAGGCTATGAGCCCGACGATCAGGACAGC TGTGTGGATGTGGACGAGTGTGCCCAGGCCCTGCACGACTGTCGCCCCAG CCAGGACTGCCATAACTTGCCTGGCTCCTATCAGTGCACCTGCCCTGATGG 5 TTACCGCAAGATCGGGCCCGAGTGTGTGGACATAGACGAGTGCCGCTACC GCTACTGCCAGCACCGCTGCGTGAACCTGCCTGGCTCCTTCCGCTGCCAGT GCGAGCCGGGCTTCCAGCTGGGGCCTAACAACCGCTCCTGTGTTGATGTG AACGAGTGTGACATGGGGGCCCCATGCGAGCAGCGCTGCTTCAACTCCTA TGGGACCTTCCTGTGTCGCTGCCACCAGGGCTATGAGCTGCATCGGGATG 10 GCTTCTCCTGCAGTGATATTGATGAGTGTAGCTACTCCAGCTACCTCTGTC AGTACCGCTGCGTCAACGAGCCAGGCCGTTTCTCCTGCCACTGCCCACAG GGTTACCAGCTGCTGGCCACACGCCTCTGCCAAGACATTGATGAGTGTGA GTCTGGTGCGCACCAGTGCTCCGAGGCCCAAACCTGTGTCAACTTCCATG GGGGCTACCGCTGCGTGGACACCAACCGCTGCGTGGAGCCCTACATCCAG 15 GTCTCTGAGAACCGCTGTCTCTGCCCGGCCTCCAACCCTCTATGTCGAGAG CAGCCTTCATCCATTGTGCACCGCTACATGACCATCACCTCGGAGCGGAG AGTACCCGCTGACGTGTTCCAGATCCAGGCGACCTCCGTCTACCCCGGTGC CTACAATGCCTTTCAGATCCGTGCTGGAAACTCGCAGGGGGACTTTTACAT TAGGCAAATCAACAACGTCAGCGCCATGCTGGTCCTCGCCCGGCCGGTGA 20 CGGGCCCCCGGGAGTACGTGCTGGACCTGGAGATGGTCACCATGAATTCC CTCATGAGCTACCGGGCCAGCTCTGTACTGAGGCTCACCGTCTTTGTAGGG GCCTACACCTTCTGAGGAGCAGGAGGGAGCCACCCTCCCTGCAGCTACCC TAGCTGAGGAGCCTGTTGTGAGGGGCAGAATGAGAAAGGCCCAGGGGCC CCCATTGACAGGAGCTGGGAGCTCTGCACCACGAGCTTCAGTCACCCCGA 25 GAGGAGAGGAGGTAACGAGGAGGGCGGACTCCAGGCCCCGGCCCAGAGA TTTGGACTTGGCTGGCTTGCAGGGGTCCTAAGAAACTCCACTCTGGACAG CGCCAGGAGGCCCTGGGTTCCATTCCTAACTCTGCCTCAAACTGTACATTT GGATAAGCCCTAGTAGTTCCCTGGGCCTGTTTTTCTATAAAACGAGGCAAC TGG SEQ ID NO: 81 30 Lumican >gil21359858lreflNM_002345.2 Homo sapiens lumican (LUM), mRNA qPCR forward_primer match [61..84] | qPCR reverseprimer match [182..162] qPCR probe match [1 17..152] 35 GTATCACTCAGAATCTGGCAGCCAGTTCCGTCCTGACAGAGTTCAC AGCATATATTGGTGGATTCTTGTCCATAGTGCATCTGCTTTAAGAATTAAC GAAAGCAGTGTCAAGACAGTAAGGATTCAAACCATTTGCCAAAAATGAGT CTAAGTGCATTTACTCTCTTCCTGGCATTGATTGGTGGTACCAGTGGCCAG TACTATGATTATGATTTTCCCCTATCAATTTATGGGCAATCATCACCAAAC 40 TGTGCACCAGAATGTAACTGCCCTGAAAGCTACCCAAGTGCCATGTACTG TGATGAGCTGAAATTGAAAAGTGTACCAATGGTGCCTCCTGGAATCAAGT ATCTTTACCTTAGGAATAACCAGATTGACCATATTGATGAAAAGGCCTTTG AGAATGTAACTGATCTGCAGTGGCTCATTCTAGATCACAACCTTCTAGAA AACTCCAAGATAAAAGGGAGAGTTTTCTCTAAATTGAAACAACTGAAGAA 45 GCTGCATATAAACCACAACAACCTGACAGAGTCTGTGGGCCCACTTCCCA AATCTCTGGAGGATCTGCAGCTTACTCATAACAAGATCACAAAGCTGGGC TCTTTTGAAGGATTGGTAAACCTGACCTTCATCCATCTCCAGCACAATCGG
CTGAAAGAGGATGCTGTTTCAGCTGCTTTTAAAGGTCTTAAATCACTCGAA
-34 TACCTTGACTTGAGCTTCAATCAGATAGCCAGACTGCCTTCTGGTCTCCCT GTCTCTCTTCTAACTCTCTACTTAGACAACAATAAGATCAGCAACATCCCT GATGAGTATTTCAAGCGTTTTAATGCATTGCAGTATCTGCGTTTATCTCAC AACGAACTGGCTGATAGTGGAATACCTGGAAATTCTTTCAATGTGTCATCC 5 CTGGTTGAGCTGGATCTGTCCTATAACAAGCTTAAAAACATACCAACTGTC AATGAAAACCTTGAAAACTATTACCTGGAGGTCAATCAACTTGAGAAGTT TGACATAAAGAGCTTCTGCAAGATCCTGGGGCCATTATCCTACTCCAAGA TCAAGCATTTGCGTTTGGATGGCAATCGCATCTCAGAAACCAGTCTTCCAC CGGATATGTATGAATGTCTACGTGTTGCTAACGAAGTCACTCTTAATTAAT 10 ATCTGTATCCTGGAACAATATTTTATGGTTATGTTTTTCTGTGTGTCAGTTT TCATAGTATCCATATTTTATTACTGTTTATTACTTCCATGAATTTTAAAATC TGAGGGAAATGTTTTGTAAACATTTATTTTTTTTAAAGAAAAGATGAAAG GCAGGCCTATTTCATCACAAGAACACACACATATACACGAATAGACATCA AACTCAATGCTTTATTTGTAAATTTAGTGTTTTTTTATTTCTACTGTCAAAT 15 GATGTGCAAAACCTTTTACTGGTTGCATGGAAATCAGCCAAGTTTTATAAT CCTTAAATCTTAATGTTCCTCAAAGCTTGGATTAAATACATATGGATGTTA CTCTCTTGCACCAAATTATCTTGATACATTCAAATTTGTCTGGTTAAAAAA TAGGTGGTAGATATTGAGGCCAAGAATATTGCAAAATACATGAAGCTTCA TGCACTTAAAGAAGTATTTTTAGAATAAGAATTTGCATACTTACCTAGTGA 20 AACTTTTCTAGAATTATTTTTCACTCTAAGTCATGTATGTTTCTCTTTGATT ATTTGCATGTTATGTTTAATAAGCTACTAGCAAAATAAAACATAGCAAAT GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO: 82 Stannin 25 >gil298935601reflNM_003498.31 Homo sapiens stannin (SNN), mRNA AGCGGGGCCGGACCGGGCGGGCGGAGCCGGGCCCGCGGGGCTGCT GCGGGGCGATCGGGCCGGGCCGCTGCCGCGCCATGGACTCCCGTGTCCAG CCTGAGTTCCAGCCTCACTGAGTGGCCACCCCCAAAGTGCTGCCAGCCGA GGAAGCCCCCAGCACTGACCATGTCTATTATGGACCACAGCCCCACCACG 30 GGCGTGGTCACAGTCATCGTCATCCTCATTGCCATCGCGGCCCTGGGGGCC TTGATCCTGGGCTGCTGGTGCTACCTGCGGCTGCAGCGCATCAGCCAGTCA GAGGACGAGGAGAGCATCGTGGGGGATGGGGAGACCAAGGAACCCTTCC TGCTGGTGCAGTATTCGGCCAAGGGACCGTGCGTGGAGAGAAAGGCCAA GCTGATGACTCCCAACGGCCCGGAAGTCCACGGCTGAGCCAGGATGCAAG 35 GCTCCTGGTCCTGTTTGCAGCCGGCCAAGAGGCGCTGGGAGGGGCAAAAC CATACGGATGCGCTGCTGTCTGAGAGGAAGGGCTGACACTTGCTGGCATG GCCTCTGCGGGCTTCGTCATCGCATGCACTGATGCCCGGGGACCTGGCTGT CCTGGGCTTCCCCTCGGCCTCCAGGTGAGGCTGCCCATTGCAGGCACTGG GCAGGCCTGACCTTGCTGGGGCTCATGGCCCTGTAGCGCTTTTGTTACTTG 40 AATGTCTAGCTGAGCCTGTTTTTGATGGAGCTACTACTGTAATGCGTGAAC TAACAAACCTGTGAACTGTAAATAGGCCCCTGGAAGCACGTGCTTAAGCC CTTTTGCTGATTTTTAAAAATATCATCTAGCGCACACGGGACTGGTATTCT GGCTGTACTAATGACAAGCTGAGTCAAGACCCTGGAGGGTCATAGGCTTG TAAAGGCCCACGCCACACTCGGCAGGGGTCTCTCATGTGTGTCCATCTGC 45 GTGTATGTCAAGGAAGTGAGATGCCAATTTGGGGTCTTGAGGCTGACCAG TTGGGGTGCTTGGGTGATCTCTGCTTCATTAGTCATGGGTGGAAGAAAAA CCACACCCCCCGCACCCCTCCGTTCTTTCTGCATAGACTCACTTGTTAAAT AGCAGTTCTGTTGAGAGTGGAGTTACTGCAGGGAAGCTACCGGACCTGCC
TGGGAGCCAGTGAAGGGCGAGTCAGGGCACGCGTCCTGGAGGCTGCCAG
-35 CGTCCTTGTAGCAGAGCAGTTTCTTGCCGCTTGGGTCTTCAGCACGCCAAG CCCCCCACCAACCCTCCACCCCGAGTGAAGGCTTCGCTGAAATTGCTTTGG TCCTCATAGAGCCTGTGGTGGCTACTTTTGGTCTGAAACCCACTTGGCCCA GGAAAGAGAAAAGGTTGTATGTTTTGTGTTGGTGTTTCCTATTTTCTGCAC 5 TGGAGGGGAGGGGACTGTTGAGGTTCTGTCTTTTTTCTTCTTTTCCTCTTCC CTCTTCACATCACTTGGCTTCCTTTCCTCTCTGATGACCGTCCGCCTATGGG GTTCTGACTTCACTTTCCTCAGCGGGTCTCCAGTCCCCTGACCCAGCTCTA AAGGCACTTAGGACCCAGGGAACATTTCTCACGTGCACATTCCCCTAAGA GCCACCAGACTGCTTCCTGCCAGCCTGTGCTTGCGGCAGGGAGCCGGGGC 10 AGGGCAGAGGTGAACTTGAAGTTCAGGACTTGACTCTCCCACAGGTGGTG AGCTGGTGGCTCTCTGGTGAGCTAGTGTCTCCACAGCCTGTCTCCAAGGCC TCCCCTATGTACATTTCAGTGAGCTCACTTTGATTTTTAATCCCACCACAA GCACATACTAATTTTATTTATGATTCAAATGTGACTCGTGCCTGCCCATCC CTGTAATAGATGGAAGGTCAGCCCCGGCTTAACCACAGAGCACTGGCCCT 15 TCATGGCTGAGCTCAGAGCTCTGGCCTCCTGCTCAGACTAAAGGCACCTCC TCTGGCCTCACCCAAGCCTCTTCTAAAAACCATGTTGAATGAATCCACGTT CTGGAACCCCGAGGCGGGAGAAGTAGGGAGCTGTTCGTTTAAGCAGCATA CACCTAAATTGGGGGTTTAAACATTAAGTAGGAGCTTGGGGTGGAAGAGG GACAGCCGGCTGGGCCACCTGAGCAGAAGGTGGTAATGAAACACCTCAG 20 CTGGGCTCTTGGGAGACCTTAGGAAGCAGGAGAGGCAACACCTCTGGCTA CTGATGGTGTGGCAAGTTCAGAAGAGGTGGTGGTGGGGTAGGCGTGATGT CAGCAGAAGCCCTGCAGGCTGGGTGGGCAGGACACGTGGTGGGGGCCAC TGAAACCAGGCCTAGGAGGGAGAACAAGTTCCAAAGGTGCCGACTGGAA GAAGGGGGTAAAAGTTTGCTTTGGTGAGTGAGAAAAGGCTGGGGCGTGTG 25 ATCCATCCCCTCACGTTTCAGAACTTCCAGGCTTTCTACCTCGACTCTCAC CACAGCCAGCACATACACCTAGGCTGTTTTTCCTTCCTCCACACCTGAGGG ACGCAGCAACAGCTAGGATCTGCATTTTCAGGTTCCGAGCCTGACCCCTG GAACTGACCAGCGCTCGATTGTCAGCCTTGGCCTGGGGTTTTGACCTTGCC AGTGAAGTTTCGGTTTTGAAGTGATTAAATGTCACTTCCTCATCAGTTTCA 30 CTTCTGGAGGTTTTCTTATCCTACTCCCTGGTGCCAGGGACGTACCTGGGA GTTTGAATCAGGCCCATTTGAGCGTGGCAGCCGTGTTGGGTGAAGGTCCG GGGCTCGGTGAGGCACTGGGGGGGTTTTCGGGAGGAAAATGAAAATGCTT CTAGAATGAGTGAACCACATCATAGCTCTCACTGTTTTTTCAATAGCTACT TTTTTTAGCAGACACCAGAGCCACACTCAAATGGCTAAGTAGGTTATGAC 35 CTCTCTGGATTATTTTTGAATGCCCAACTGTTGCATTCAAGTTTTCTGACTA ATAAGAAATTAAGCATTCATCCTTCGTATCACTGCAGAAGCAACAGTGGG GGCACAGGGAGGGAACTCTTGACACTGAGCCACTAAAATATGGACTAATT TTTTGGACAAATCTTCAAACGGACTGTGCTACTGTATTTGTCTCAAAGCTA CCAAGTTTGTGCAATAAGTGGAAGGGATGTCATCCTTCTTCAATAAATGCT 40 GAATGACATTCAAGCTGATTTTCTAGACCACTGAGAAAATCTTTATTTACA ATAAATTTCAATAAAATTTGCATAAATATATTCCCAAAAAAAAAAAAAAA AAAAAAGAAAAAAAAAAAAA SEQ ID NO: 83 Secreted Phosphoprotein 1 45 >gi|38146097|reflNM_000582.21 Homo sapiens secreted phosphoprotein I (osteopontin, bone sialoprotein I, early T-lymphocyte activation 1) (SPP1), mRNA qPCR assay_on_demandcontext match [253..277] -36 CTCCCTGTGTTGGTGGAGGATGTCTGCAGCAGCATTTAAATTCTGG GAGGGCTTGGTTGTCAGCAGCAGCAGGAGGAGGCAGAGCACAGCATCGT CGGGACCAGACTCGTCTCAGGCCAGTTGCAGCCTTCTCAGCCAAACGCCG ACCAAGGAAAACTCACTACCATGAGAATTGCAGTGATTTGCTTTTGCCTCC 5 TAGGCATCACCTGTGCCATACCAGTTAAACAGGCTGATTCTGGAAGTTCTG AGGAAAAGCAGCTTTACAACAAATACCCAGATGCTGTGGCCACATGGCTA AACCCTGACCCATCTCAGAAGCAGAATCTCCTAGCCCCACAGACCCTTCC AAGTAAGTCCAACGAAAGCCATGACCACATGGATGATATGGATGATGAA GATGATGATGACCATGTGGACAGCCAGGACTCCATTGACTCGAACGACTC 10 TGATGATGTAGATGACACTGATGATTCTCACCAGTCTGATGAGTCTCACCA TTCTGATGAATCTGATGAACTGGTCACTGATTTTCCCACGGACCTGCCAGC AACCGAAGTTTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGGCC GAGGTGATAGTGTGGTTTATGGACTGAGGTCAAAATCTAAGAAGTTTCGC AGACCTGACATCCAGTACCCTGATGCTACAGACGAGGACATCACCTCACA 15 CATGGAAAGCGAGGAGTTGAATGGTGCATACAAGGCCATCCCCGTTGCCC AGGACCTGAACGCGCCTTCTGATTGGGACAGCCGTGGGAAGGACAGTTAT GAAACGAGTCAGCTGGATGACCAGAGTGCTGAAACCCACAGCCACAAGC AGTCCAGATTATATAAGCGGAAAGCCAATGATGAGAGCAATGAGCATTCC GATGTGATTGATAGTCAGGAACTTTCCAAAGTCAGCCGTGAATTCCACAG 20 CCATGAATTTCACAGCCATGAAGATATGCTGGTTGTAGACCCCAAAAGTA AGGAAGAAGATAAACACCTGAAATTTCGTATTTCTCATGAATTAGATAGT GCATCTTCTGAGGTCAATTAAAAGGAGAAAAAATACAATTTCTCACTTTG CATTTAGTCAAAAGAAAAAATGCTTTATAGCAAAATGAAAGAGAACATGA AATGCTTCTTTCTCAGTTTATTGGTTGAATGTGTATCTATTTGAGTCTGGAA 25 ATAACTAATGTGTTTGATAATTAGTTTAGTTTGTGGCTTCATGGAAACTCC CTGTAAACTAAAAGCTTCAGGGTTATGTCTATGTTCATTCTATAGAAGAAA TGCAAACTATCACTGTATTTTAATATTTGTTATTCTCTCATGAATAGAAATT TATGTAGAAGCAAACAAAATACTTTTACCCACTTAAAAAGAGAATATAAC ATTTTATGTCACTATAATCTTTTGTTTTTTAAGTTAGTGTATATTTTGTTGT 30 GATTATCTTTTTGTGGTGTGAATAAATCTTTTATCTTGAATGTAATAAGAA TTTGGTGGTGTCAATTGCTTATTTGTTTTCCCACGGTTGTCCAGCAATTAAT AAAACATAACCTTTTTTACTGCCTAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAA SEQ ID NO: 84 35 Chondroitin Sulfate Proteoglycan 2 >gil2l3611 5|reflNM_004385.2| Homo sapiens chondroitin sulfate proteoglycan 2 (versican) (CSPG2), mRNA I qPCR forward primer match [10087..10106] | qPCR reverseprimer match [10185..10163] | qPCR probe match [10139..10161] 40 GCTGCCCCGAGCCTTTCTGGGGAAGAACTCCAGGCGTGCGGACGCA ACAGCCGAGAACATTAGGTGTTGTGGACAGGAGCTGGGACCAAGATCTTC GGCCAGCCCCGCATCCTCCCGCATCTTCCAGCACCGTCCCGCACCCTCCGC ATCCTTCCCCGGGCCACCACGCTTCCTATGTGACCCGCCTGGGCAACGCCG AACCCAGTCGCGCAGCGCTGCAGTGAATTTTCCCCCCAAACTGCAATAAG 45 CCGCCTTCCAAGGCCAAGATGTTCATAAATATAAAGAGCATCTTATGGAT GTGTTCAACCTTAATAGTAACCCATGCGCTACATAAAGTCAAAGTGGGAA
AAAGCCCACCGGTGAGGGGCTCCCTCTCTGGAAAAGTCAGCCTACCTTGT
-37 CATTTTTCAACGATGCCTACTTTGCCACCCAGTTACAACACCAGTGAATTT CTCCGCATCAAATGGTCTAAGATTGAAGTGGACAAAAATGGAAAAGATTT GAAAGAGACTACTGTCCTTGTGGCCCAAAATGGAAATATCAAGATTGGTC AGGACTACAAAGGGAGAGTGTCTGTGCCCACACATCCCGAGGCTGTGGGC 5 GATGCCTCCCTCACTGTGGTCAAGCTGCTGGCAAGTGATGCGGGTCTTTAC CGCTGTGACGTCATGTACGGGATTGAAGACACACAAGACACGGTGTCACT GACTGTGGATGGGGTTGTGTTTCACTACAGGGCGGCAACCAGCAGGTACA CACTGAATTTTGAGGCTGCTCAGAAGGCTTGTTTGGACGTTGGGGCAGTC ATAGCAACTCCAGAGCAGCTCTTTGCTGCCTATGAAGATGGATTTGAGCA 10 GTGTGACGCAGGCTGGCTGGCTGATCAGACTGTCAGATATCCCATCCGGG CTCCCAGAGTAGGCTGTTATGGAGATAAGATGGGAAAGGCAGGAGTCAG GACTTATGGATTCCGTTCTCCCCAGGAAACTTACGATGTGTATTGTTATGT GGATCATCTGGATGGTGATGTGTTCCACCTCACTGTCCCCAGTAAATTCAC CTTCGAGGAGGCTGCAAAAGAGTGTGAAAACCAGGATGCCAGGCTGGCA 15 ACAGTGGGGGAACTCCAGGCGGCATGGAGGAACGGCTTTGACCAGTGCG ATTACGGGTGGCTGTCGGATGCCAGCGTGCGCCACCCTGTGACTGTGGCC AGGGCCCAGTGTGGAGGTGGTCTACTTGGGGTGAGAACCCTGTATCGTTT TGAGAACCAGACAGGCTTCCCTCCCCCTGATAGCAGATTTGATGCCTACTG CTTTAAACCTAAAGAGGCTACAACCATCGATTTGAGTATCCTCGCAGAAA 20 CTGCATCACCCAGTTTATCCAAAGAACCACAAATGGTTTCTGATAGAACT ACACCAATCATCCCTTTAGTTGATGAATTACCTGTCATTCCAACAGAGTTC CCTCCCGTGGGAAATATTGTCAGTTTTGAACAGAAAGCCACAGTCCAACC TCAGGCTATCACAGATAGTTTAGCCACCAAATTACCCACACCTACTGGCA GTACCAAGAAGCCCTGGGATATGGATGACTACTCACCTTCTGCTTCAGGA 25 CCTCTTGGAAAGCTAGACATATCAGAAATTAAGGAAGAAGTGCTCCAGAG TACAACTGGCGTCTCTCATTATGCTACGGATTCATGGGATGGTGTCGTGGA AGATAAACAAACACAAGAATCGGTTACACAGATTGAACAAATAGAAGTG GGTCCTTTGGTAACATCTATGGAAATCTTAAAGCACATTCCTTCCAAGGAA TTCCCTGTAACTGAAACACCATTGGTAACTGCAAGAATGATCCTGGAATC 30 CAAAACTGAAAAGAAAATGGTAAGCACTGTTTCTGAATTGGTAACCACAG GTCACTATGGATTCACCTTGGGAGAAGAGGATGATGAAGACAGAACACTT ACAGTTGGATCTGATGAGAGCACCTTGATCTTTGACCAAATTCCTGAAGTC ATTACGGTGTCAAAGACTTCAGAAGACACCATCCACACTCATTTAGAAGA CTTGGAGTCAGTCTCAGCATCCACAACTGTTTCCCCTTTAATTATGCCTGA 35 TAATAATGGATCATCCATGGATGACTGGGAAGAGAGACAAACTAGTGGTA GGATAACGGAAGAGTTTCTTGGCAAATATCTGTCTACTACACCTTTTCCAT CACAGCATCGTACAGAAATAGAATTGTTTCCTTATTCTGGTGATAAAATAT TAGTAGAGGGAATTTCCACAGTTATTTATCCTTCTCTACAAACAGAAATGA CACATAGAAGAGAAAGAACAGAAACACTAATACCAGAGATGAGAACAGA 40 TACTTATACAGATGAAATACAAGAAGAGATCACTAAAAGTCCATTTATGG GAAAAACAGAAGAAGAAGTCTTCTCTGGGATGAAACTCTCTACATCTCTC TCAGAGCCAATTCATGTTACAGAGTCTTCTGTGGAAATGACCAAGTCTTTT GATTTCCCAACATTGATAACAAAGTTAAGTGCAGAGCCAACAGAAGTAAG AGATATGGAGGAAGACTTTACAGCAACTCCAGGTACTACAAAATATGATG 45 AAAATATTACAACAGTGCTTTTGGCCCATGGTACTTTAAGTGTTGAAGCAG CCACTGTATCAAAATGGTCATGGGATGAAGATAATACAACATCCAAGCCT TTAGAGTCTACAGAACCTTCAGCCTCTTCAAAATTGCCCCCTGCCTTACTC ACAACTGTGGGGATGAATGGAAAGGATAAAGACATCCCAAGTTTCACTGA AGATGGAGCAGATGAATTTACTCTTATTCCAGATAGTACTCAAAAGCAGT 50 TAGAGGAGGTTACTGATGAAGACATAGCAGCCCATGGAAAATTCACAATT -38 AGATTTCAGCCAACTACATCAACTGGTATTGCAGAAAAGTCAACTTTGAG AGATTCTACAACTGAAGAAAAAGTTCCACCTATCACAAGCACTGAAGGCC AAGTTTATGCAACCATGGAAGGAAGTGCTTTGGGTGAAGTAGAAGATGTG GACCTCTCTAAGCCAGTATCTACTGTTCCCCAATTTGCACACACTTCAGAG 5 GTGGAAGGATTAGCATTTGTTAGTTATAGTAGCACCCAAGAGCCTACTAC TTATGTAGACTCTTCCCATACCATTCCTCTTTCTGTAATTCCCAAGACAGA CTGGGGAGTGTTAGTACCTTCTGTTCCATCAGAAGATGAAGTTCTAGGTGA ACCCTCTCAAGACATACTTGTCATTGATCAGACTCGCCTTGAAGCGACTAT TTCTCCAGAAACTATGAGAACAACAAAAATCACAGAGGGAACAACTCAG 10 GAAGAATTCCCTTGGAAAGAACAGACTGCAGAGAAACCAGTTCCTGCTCT CAGTTCTACAGCTTGGACTCCCAAGGAGGCAGTAACACCACTGGATGAAC AAGAGGGCGATGGATCAGCATATACAGTCTCTGAAGATGAATTGTTGACA GGTTCTGAGAGGGTCCCAGTTTTAGAAACAACTCCAGTTGGAAAAATTGA TCACAGTGTGTCTTATCCACCAGGTGCTGTAACTGAGCACAAAGTGAAAA 15 CAGATGAAGTGGTAACACTAACACCACGCATTGGGCCAAAAGTATCTTTA AGTCCAGGGCCTGAACAAAAATATGAAACAGAAGGTAGTAGTACAACAG GATTTACATCATCTTTGAGTCCTTTTAGTACCCACATTACCCAGCTTATGG AAGAAACCACTACTGAGAAAACATCCCTAGAGGATATTGATTTAGGCTCA GGATTATTTGAAAAGCCCAAAGCCACAGAACTCATAGAATTTTCAACAAT 20 CAAAGTCACAGTTCCAAGTGATATTACCACTGCCTTCAGTTCAGTAGACA GACTTCACACAACTTCAGCATTCAAGCCATCTTCCGCGATCACTAAGAAA CCACCTCTCATCGACAGGGAACCTGGTGAAGAAACAACCAGTGACATGGT AATCATTGGAGAATCAACATCTCATGTTCCTCCCACTACCCTTGAAGATAT TGTAGCCAAGGAAACAGAAACCGATATTGATAGAGAGTATTTCACGACTT 25 CAAGTCCTCCTGCTACACAGCCAACAAGACCACCCACTGTGGAAGACAAA GAGGCCTTTGGACCTCAGGCGCTTTCTACGCCACAGCCCCCAGCAAGCAC AAAATTTCACCCTGACATTAATGTTTATATTATTGAGGTCAGAGAAAATAA GACAGGTCGAATGAGTGATTTGAGTGTAATTGGTCATCCAATAGATTCAG AATCTAAAGAAGATGAACCTTGTAGTGAAGAAACAGATCCAGTGCATGAT 30 CTAATGGCTGAAATTTTACCTGAATTCCCTGACATAATTGAAATAGACCTA TACCACAGTGAAGAAAATGAAGAAGAAGAAGAAGAGTGTGCAAATGCTA CTGATGTGACAACCACCCCATCTGTGCAGTACATAAATGGGAAGCATCTC GTTACCACTGTGCCCAAGGACCCAGAAGCTGCAGAAGCTAGGCGTGGCCA GTTTGAAAGTGTTGCACCTTCTCAGAATTTCTCGGACAGCTCTGAAAGTGA 35 TACTCATCCATTTGTAATAGCCAAAACGGAATTGTCTACTGCTGTGCAACC TAATGAATCTACAGAAACAACTGAGTCTCTTGAAGTTACATGGAAGCCTG AGACTTACCCTGAAACATCAGAACATTTTTCAGGTGGTGAGCCTGATGTTT TCCCCACAGTCCCATTCCATGAGGAATTTGAAAGTGGAACAGCCAAAAAA GGGGCAGAATCAGTCACAGAGAGAGATACTGAAGTTGGTCATCAGGCAC 40 ATGAACATACTGAACCTGTATCTCTGTTTCCTGAAGAGTCTTCAGGAGAGA TTGCCATTGACCAAGAATCTCAGAAAATAGCCTTTGCAAGGGCTACAGAA GTAACATTTGGTGAAGAGGTAGAAAAAAGTACTTCTGTCACATACACTCC CACTATAGTTCCAAGTTCTGCATCAGCATATGTTTCAGAGGAAGAAGCAG TTACCCTAATAGGAAATCCTTGGCCAGATGACCTGTTGTCTACCAAAGAA 45 AGCTGGGTAGAAGCAACTCCTAGACAAGTTGTAGAGCTCTCAGGGAGTTC TTCGATTCCAATTACAGAAGGCTCTGGAGAAGCAGAAGAAGATGAAGATA CAATGTTCACCATGGTAACTGATTTATCACAGAGAAATACTACTGATACA CTCATTACTTTAGACACTAGCAGGATAATCACAGAAAGCTTTTTTGAGGTT CCTGCAACCACCATTTATCCAGTTTCTGAACAACCTTCTGCAAAAGTGGTG 50 CCTACCAAGTTTGTAAGTGAAACAGACACTTCTGAGTGGATTTCCAGTACC -39 ACTGTTGAGGAAAAGAAAAGGAAGGAGGAGGAGGGAACTACAGGTACGG CTTCTACATTTGAGGTATATTCATCTACACAGAGATCGGATCAATTAATTT TACCCTTTGAATTAGAAAGTCCAAATGTAGCTACATCTAGTGATTCAGGTA CCAGGAAAAGTTTTATGTCCTTGACAACACCAACACAGTCTGAAAGGGAA 5 ATGACAGATTCTACTCCTGTCTTTACAGAAACAAATACATTAGAAAATTTG GGGGCACAGACCACTGAGCACAGCAGTATCCATCAACCTGGGGTTCAGGA AGGGCTGACCACTCTCCCACGTAGTCCTGCCTCTGTCTTTATGGAGCAGGG CTCTGGAGAAGCTGCTGCCGACCCAGAAACCACCACTGTTTCTTCATTTTC ATTAAACGTAGAGTATGCAATTCAAGCCGAAAAGGAAGTAGCTGGCACTT 10 TGTCTCCGCATGTGGAAACTACATTCTCCACTGAGCCAACAGGACTGGTTT TGAGTACAGTAATGGACAGAGTAGTTGCTGAAAATATAACCCAAACATCC AGGGAAATAGTGATTTCAGAGCGATTAGGAGAACCAAATTATGGGGCAG AAATAAGGGGCTTTTCCACAGGTTTTCCTTTGGAGGAAGATTTCAGTGGTG ACTTTAGAGAATACTCAACAGTGTCTCATCCCATAGCAAAAGAAGAAACG 15 GTAATGATGGAAGGCTCTGGAGATGCAGCATTTAGGGACACCCAGACTTC ACCATCTACAGTACCTACTTCAGTTCACATCAGTCACATATCTGACTCAGA AGGACCCAGTAGCACCATGGTCAGCACTTCAGCCTTCCCCTGGGAAGAGT TTACATCCTCAGCTGAGGGCTCAGGTGAGCAACTGGTCACAGTCAGCAGC TCTGTTGTTCCAGTGCTTCCCAGTGCTGTGCAAAAGTTTTCTGGTACAGCT 20 TCCTCCATTATCGACGAAGGATTGGGAGAAGTGGGTACTGTCAATGAAAT TGATAGAAGATCCACCATTTTACCAACAGCAGAAGTGGAAGGTACGAAAG CTCCAGTAGAGAAGGAGGAAGTAAAGGTCAGTGGCACAGTTTCAACAAA CTTTCCCCAAACTATAGAGCCAGCCAAATTATGGTCTAGGCAAGAAGTCA ACCCTGTAAGACAAGAAATTGAAAGTGAAACAACATCAGAGGAACAAAT 25 TCAAGAAGAAAAGTCATTTGAATCCCCTCAAAACTCTCCTGCAACAGAAC AAACAATCTTTGATTCACAGACATTTACTGAAACTGAACTCAAAACCACA GATTATTCTGTACTAACAACAAAGAAAACTTACAGTGATGATAAAGAAAT GAAGGAGGAAGACACTTCTTTAGTTAACATGTCTACTCCAGATCCAGATG CAAATGGCTTGGAATCTTACACAACTCTCCCTGAAGCTACTGAAAAGTCA 30 CATTTTTTCTTAGCTACTGCATTAGTAACTGAATCTATACCAGCTGAACAT GTAGTCACAGATTCACCAATCAAAAAGGAAGAAAGTACAAAACATTTTCC GAAAGGCATGAGACCAACAATTCAAGAGTCAGATACTGAGCTCTTATTCT CTGGACTGGGATCAGGAGAAGAAGTTTTACCTACTCTACCAACAGAGTCA GTGAATTTTACTGAAGTGGAACAAATCAATAACACATTATATCCCCACAC 35 TTCTCAAGTGGAAAGTACCTCAAGTGACAAAATTGAAGACTTTAACAGAA TGGAAAATGTGGCAAAAGAAGTTGGACCACTCGTATCTCAAACAGACATC TTTGAAGGTAGTGGGTCAGTAACCAGCACAACATTAATAGAAATTTTAAG TGACACTGGAGCAGAAGGACCCACGGTGGCACCTCTCCCTTTCTCCACGG ACATCGGACATCCTCAAAATCAGACTGTCAGGTGGGCAGAAGAAATCCAG 40 ACTAGTAGACCACAAACCATAACTGAACAAGACTCTAACAAGAATTCTTC AACAGCAGAAATTAACGAAACAACAACCTCATCTACTGATTTTCTGGCTA GAGCTTATGGTTTTGAAATGGCCAAAGAATTTGTTACATCAGCACCAAAA CCATCTGACTTGTATTATGAACCTTCTGGAGAAGGATCTGGAGAAGTGGA TATTGTTGATTCATTTCACACTTCTGCAACTACTCAGGCAACCAGACAAGA 45 AAGCAGCACCACATTTGTTTCTGATGGGTCCCTGGAAAAACATCCTGAGG TGCCAAGCGCTAAAGCTGTTACTGCTGATGGATTCCCAACAGTTTCAGTGA TGCTGCCTCTTCATTCAGAGCAGAACAAAAGCTCCCCTGATCCAACTAGC ACACTGTCAAATACAGTGTCATATGAGAGGTCCACAGACGGTAGTTTCCA AGACCGTTTCAGGGAATTCGAGGATTCCACCTTAAAACCTAACAGAAAAA 50 AACCCACTGAAAATATTATCATAGACCTGGACAAAGAGGACAAGGATTTA -40 ATATTGACAATTACAGAGAGTACCATCCTTGAAATTCTACCTGAGCTGAC ATCGGATAAAAATACTATCATAGATATTGATCATACTAAACCTGTGTATG AAGACATTCTTGGAATGCAAACAGATATAGATACAGAGGTACCATCAGAA CCACATGACAGTAATGATGAAAGTAATGATGACAGCACTCAAGTTCAAGA 5 GATCTATGAGGCAGCTGTCAACCTTTCTTTAACTGAGGAAACATTTGAGG GCTCTGCTGATGTTCTGGCTAGCTACACTCAGGCAACACATGATGAATCA ATGACTTATGAAGATAGAAGCCAACTAGATCACATGGGCTTTCACTTCAC AACTGGGATCCCTGCTCCTAGCACAGAAACAGAATTAGACGTTTTACTTCC CACGGCAACATCCCTGCCAATTCCTCGTAAGTCTGCCACAGTTATTCCAGA 10 GATTGAAGGAATAAAAGCTGAAGCAAAAGCCCTGGATGACATGTTTGAAT CAAGCACTTTGTCTGATGGTCAAGCTATTGCAGACCAAAGTGAAATAATA CCAACATTGGGCCAATTTGAAAGGACTCAGGAGGAGTATGAAGACAAAA AACATGCTGGTCCTTCTTTTCAGCCAGAATTCTCTTCAGGAGCTGAGGAGG CATTAGTAGACCATACTCCCTATCTAAGTATTGCTACTACCCACCTTATGG 15 ATCAGAGTGTAACAGAGGTGCCTGATGTGATGGAAGGATCCAATCCCCCA TATTACACTGATACAACATTAGCAGTTTCAACATTTGCGAAGTTGTCTTCT CAGACACCATCATCTCCCCTCACTATCTACTCAGGCAGTGAAGCCTCTGGA CACACAGAGATCCCCCAGCCCAGTGCTCTGCCAGGAATAGACGTCGGCTC ATCTGTAATGTCCCCACAGGATTCTTTTAAGGAAATTCATGTAAATATTGA 20 AGCAACTTTCAAACCATCAAGTGAGGAATACCTTCACATAACTGAGCCTC CCTCTTTATCTCCTGACACAAAATTAGAACCTTCAGAAGATGATGGTAAAC CTGAGTTATTAGAAGAAATGGAAGCTTCTCCCACAGAACTTATTGCTGTG GAAGGAACTGAGATTCTCCAAGATTTCCAAAACAAAACCGATGGTCAAGT TTCTGGAGAAGCAATCAAGATGTTTCCCACCATTAAAACACCTGAGGCTG 25 GAACTGTTATTACAACTGCCGATGAAATTGAATTAGAAGGTGCTACACAG TGGCCACACTCTACTTCTGCTTCTGCCACCTATGGGGTCGAGGCAGGTGTG GTGCCTTGGCTAAGTCCACAGACTTCTGAGAGGCCCACGCTTTCTTCTTCT CCAGAAATAAACCCTGAAACTCAAGCAGCTTTAATCAGAGGGCAGGATTC CACGATAGCAGCATCAGAACAGCAAGTGGCAGCGAGAATTCTTGATTCCA 30 ATGATCAGGCAACAGTAAACCCTGTGGAATTTAATACTGAGGTTGCAACA CCACCATTTTCCCTTCTGGAGACTTCTAATGAAACAGATTTCCTGATTGGC ATTAATGAAGAGTCAGTGGAAGGCACGGCAATCTATTTACCAGGACCTGA TCGCTGCAAAATGAACCCGTGCCTTAACGGAGGCACCTGTTATCCTACTG AAACTTCCTACGTATGCACCTGTGTGCCAGGATACAGCGGAGACCAGTGT 35 GAACTTGATTTTGATGAATGTCACTCTAATCCCTGTCGTAATGGAGCCACT TGTGTTGATGGTTTTAACACATTCAGGTGCCTCTGCCTTCCAAGTTATGTT GGTGCACTTTGTGAGCAAGATACCGAGACATGTGACTATGGCTGGCACAA ATTCCAAGGGCAGTGCTACAAATACTTTGCCCATCGACGCACATGGGATG CAGCTGAACGGGAATGCCGTCTGCAGGGTGCCCATCTCACAAGCATCCTG 40 TCTCACGAAGAACAAATGTTTGTTAATCGTGTGGGCCATGATTATCAGTGG ATAGGCCTCAATGACAAGATGTTTGAGCATGACTTCCGTTGGACTGATGG CAGCACACTGCAATACGAGAATTGGAGACCCAACCAGCCAGACAGCTTCT TTTCTGCTGGAGAAGACTGTGTTGTAATCATTTGGCATGAGAATGGCCAGT GGAATGATGTTCCCTGCAATTACCATCTCACCTATACGTGCAAGAAAGGA 45 ACAGTTGCTTGCGGCCAGCCCCCTGTTGTAGAAAATGCCAAGACCTTTGG AAAGATGAAACCTCGTTATGAAATCAACTCCCTGATTAGATACCACTGCA AAGATGGTTTCATTCAACGTCACCTTCCAACTATCCGGTGCTTAGGAAATG GAAGATGGGCTATACCTAAAATTACCTGCATGAACCCATCTGCATACCAA AGGACTTATTCTATGAAATACTTTAAAAATTCCTCATCAGCAAAGGACAA 50 TTCAATAAATACATCCAAACATGATCATCGTTGGAGCCGGAGGTGGCAGG 117-AA i .ii mn 067-7 AI . I -41 AGTCGAGGCGCTGATCCCTAAAATGGCGAACATGTGTTTTCATCATTTCAG CCAAAGTCCTAACTTCCTGTGCCTTTCCTATCACCTCGAGAAGTAATTATC AGTTGGTTTGGATTTTTGGACCACCGTTCAGTCATTTTGGGTTGCCGTGCT CCCAAAACATTTTAAATGAAAGTATTGGCATTCAAAAAGACAGCAGACAA 5 AATGAAAGAAAATGAGAGCAGAAAGTAAGCATTTCCAGCCTATCTAATTT CTTTAGTTTTCTATTTGCCTCCAGTGCAGTCCATTTCCTAATGTATACCAGC CTACTGTACTATTTAAAATGCTCAATTTCAGCACCGATGGCCATGTAAATA AGATGATTTAATGTTGATTTTAATCCTGTATATAAAATAAAAAGTCACAAT GAGTTTGGGCATATTTAATGATGATTATGGAGCCTTAGAGGTCTTTAATCA 10 TTGGTTCGGCTGCTTTTATGTAGTTTAGGCTGGAAATGGTTTCACTTGCTCT TTGACTGTCAGCAAGACTGAAGATGGCTTTTCCTGGACAGCTAGAAAACA CAAAATCTTGTAGGTCATTGCACCTATCTCAGCCATAGGTGCAGTTTGCTT CTACATGATGCTAAAGGCTGCGAATGGGATCCTGATGGAACTAAGGACTC CAATGTCGAACTCTTCTTTGCTGCATTCCTTTTTCTTCACTTACAAGAAAGG 15 CCTGAATGGAGGACTTTTCTGTAACCAGG SEQ ID NO: 85 N-Acylsphingosine Amidohydrolase I >gil300899291reflNM_004315.21 Homo sapiens N-acylsphingosine amidohydrolase (acid ceramidase) I (ASAH1), transcript variant 2, mRNA I qPCR 20 forwardprimer match [1212..1228] | qPCR reverseprimer match [1290..1266] qPCR probe match [1233..1260] GGACTTTGAAATCCAACCCGGTCACCTACCCGCGCGACTGTGTCCA CGGATGGCACGAAAGCCAAGCGAGTCCCCCTGCCGAGCTACTCGCGTCCG CCTCCTCCCAAGCTGAGCTCTGCTCCGCCCACCTGAGTCCTTCGCCAGTTA 25 GGAGGAAACACAGCCGCTTAATGAACTGCTGCATCGGGCTGGGAGAGAA AGCTCGCGGGTCCCACCGGGCCTCCTACCCAAGTCTCAGCGCGCTTTTCAC CGAGGCCTCAATTCTGGGATTTGGCAGCTTTGCTGTGAAAGCCCAATGGA CAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGA GGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAG 30 ATGGCATGAATTGATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGA ATTCTCTGAAGAATATGATAAATACATTCGTGCCAAGTGGAAAAGTTATG CAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCT TTTGAAGAGGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGG AGAGATTATTTCATTCAATATTTTTTATGAATTATTTACCATTTGTACTTCA 35 ATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGGGAGAAACATGG ATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAA CTGAGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAAC AAAACTGTCTTCAAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACA GGATTCAAACCAGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATA 40 AATGGTGGTTATCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGATGC CATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTT ATGAAGAAGCCAAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCC TACTTTATCCTGGGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACG AGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTA 45 GATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCC TTGATGATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAA
GAGAATATCTCATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTC
- 42 CTCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAAGGTCA ATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGAGC ACACGTCTGGCCTACAGAATGCGGCCTCTGAGACATGAAGACACCATCTC CATGTGACCGAACACTGCAGCTGTCTGACCTTCCAAAGACTAAGACTCGC 5 GGCAGGTTCTCTTTGAGTCAAAAGCTTGTCTTCGTCCATCTGTTGACAAAT GACAGACCTTTTTTTTTCCCCCATCAGTTGATTTTTCTTATTTACAGATAAC TTCTTTAGGGGAAGTAAAACAGTCATCTAGAATTCACTGAGTTTTGTTTCA CTTTGACATTTGGGGATCTGGTGGGCAGTCGAACCATGGTGAACTCCACCT CCGTGGAATAAATGGAGATTCAGCGTGGGTGTTGAATCCAGCACGTCTGT 10 GTGAGTAACGGGACAGTAAACACTCCACATTCTTCAGTTTTTCACTTCTAC CTACATATTTGTATGTTTTTCTGTATAACAGCCTTTTCCTTCTGGTTCTAAC TGCTGTTAAAATTAATATATCATTATCTTTGCTGTTATTGACAGCGATATA ATTTTATTACATATGATTAGAGGGATGAGACAGACATTCACCTGTATATTT CTTTTAATGGGCACAAAATGGGCCCTTGCCTCTAAATAGCACTTTTTGGGG 15 TTCAAGAAGTAATCAGTATGCAAAGCAATCTTTTATACAATAATTGAAGT GTTCCCTTTTTCATAATTACTGTACTTCCCAGTAACCCTAAGGAAGTTGCT AACTTAAAAAACTGCATCCCACGTTCTGTTAATTTAGTAAATAAACAAGTC AAAGACTTGTGGAAAATAGGAAGTGAACCCATATTTTAAATTCTCATAAG TAGCATTCATGTAATAAACAGGTTTTTAGTTTGTTCTTCAGATTGATAGGG 20 AGTTTTAAAGAAATTTTAGTAGTTACTAAAATTATGTTACTGTATTTTTCA GAAATCAAACTGCTTATGAAAAGTACTAATAGAACTTGTTAACCTTTCTAA CCTTCACGATTAACTGTGAAATGTACGTCATTTGTGCAAGACCGTTTGTCC ACTTCATTTTGTATAATCACAGTTGTGTTCCTGACACTCAATAAACAGTCA TTGGAAAGAGTGCCAGTCAGCAGTCATGCA SEQ ID NO: 86 25 N-Acylsphingosine Amidohydrolase 1 Transcript Variant 1 >gil30089927|reflNM_1 77924.11 Homo sapiens N-acylsphingosine amidohydrolase (acid ceramidase) 1 (ASAH 1), transcript variant 1, mRNA | qPCR forward_primer match [1050..1066] 1 qPCR reverseprimer match [1128..1104] 30 qPCR probe match [1071..1098] GGCTCTTCTTTGCCTCTGCTGGAGTCCGGGGAGTGGCGTTGGCTGCT AGAGCGATGCCGGGCCGGAGTTGCGTCGCCTTAGTCCTCCTGGCTGCCGC CGTCAGCTGTGCCGTCGCGCAGCACGCGCCGCCGTGGACAGAGGACTGCA GAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAGGTGCAGTTCCA 35 TGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATT GATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGAATTCTCTGAAGA ATATGATAAATACATTCGTGCCAAGTGGAAAAGTTATGCAGGTGGTGGAT GAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGAGGAA ATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCA 40 TTCAATATTTTTTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAA GACAAAAAAGGTCATCTAATACATGGGAGAAACATGGATTTTGGAGTATT TCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTGAGCAACTAA AACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTC AAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACC 45 AGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATAAATGGTGGTTA TCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGATGCCATGTGGATAG GGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCC 277 I' 1. t1.tee C77 ... .
- 43 AAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTG GGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACGAGACAGAAAGG AATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTAGATGGTATGTG GTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGATGATCGC 5 AGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTC ATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCT GACCGTATACACAACCTTGATAGATGTTACCAAAGGTCAATTCGAAACTT ACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGAGCACACGTCTGG CCTACAGAATGCGGCCTCTGAGACATGAAGACACCATCTCCATGTGACCG 10 AACACTGCAGCTGTCTGACCTTCCAAAGACTAAGACTCGCGGCAGGTTCT CTTTGAGTCAAAAGCTTGTCTTCGTCCATCTGTTGACAAATGACAGACCTT TTTTTTTCCCCCATCAGTTGATTTTTCTTATTTACAGATAACTTCTTTAGGG GAAGTAAAACAGTCATCTAGAATTCACTGAGTTTTGTTTCACTTTGACATT TGGGGATCTGGTGGGCAGTCGAACCATGGTGAACTCCACCTCCGTGGAAT 15 AAATGGAGATTCAGCGTGGGTGTTGAATCCAGCACGTCTGTGTGAGTAAC GGGACAGTAAACACTCCACATTCTTCAGTTTTTCACTTCTACCTACATATT TGTATGTTTTTCTGTATAACAGCCTTTTCCTTCTGGTTCTAACTGCTGTTAA AATTAATATATCATTATCTTTGCTGTTATTGACAGCGATATAATTTTATTAC ATATGATTAGAGGGATGAGACAGACATTCACCTGTATATTTCTTTTAATGG 20 GCACAAAATGGGCCCTTGCCTCTAAATAGCACTTTTTGGGGTTCAAGAAG TAATCAGTATGCAAAGCAATCTTTTATACAATAATTGAAGTGTTCCCTTTT TCATAATTACTGTACTTCCCAGTAACCCTAAGGAAGTTGCTAACTTAAAAA ACTGCATCCCACGTTCTGTTAATTTAGTAAATAAACAAGTCAAAGACTTGT GGAAAATAGGAAGTGAACCCATATTTTAAATTCTCATAAGTAGCATTCAT 25 GTAATAAACAGGTTTTTAGTTTGTTCTTCAGATTGATAGGGAGTTTTAAAG AAATTTTAGTAGTTACTAAAATTATGTTACTGTATTTTTCAGAAATCAAAC TGCTTATGAAAAGTACTAATAGAACTTGTTAACCTTTCTAACCTTCACGAT TAACTGTGAAATGTACGTCATTTGTGCAAGACCGTTTGTCCACTTCATTTT GTATAATCACAGTTGTGTTCCTGACACTCAATAAACAGTCATTGGAAAGA 30 GTGCCAGTCAGCAGTCATGCA SEQ ID NO: 87 Protease, Serine 11 >gil213277121reflNM_002775.2 Homo sapiens protease, serine, I1 (IGF binding) (PRSS1 1), mRNA I qPCR forward_primer match [1030..1048] | qPCR 35 reverseprimer match [1106..1083] 1 qPCR probe match [1080..1050] CCGGCCCTCGCCCTGTCCGCCGCCACCGCCGCCGCCGCCAGAGTCG CCATGCAGATCCCGCGCGCCGCTCTTCTCCCGCTGCTGCTGCTGCTGCTGG CGGCGCCCGCCTCGGCGCAGCTGTCCCGGGCCGGCCGCTCGGCGCCTTTG GCCGCCGGGTGCCCAGACCGCTGCGAGCCGGCGCGCTGCCCGCCGCAGCC 40 GGAGCACTGCGAGGGCGGCCGGGCCCGGGACGCGTGCGGCTGCTGCGAG GTGTGCGGCGCGCCCGAGGGCGCCGCGTGCGGCCTGCAGGAGGGCCCGTG CGGCGAGGGGCTGCAGTGCGTGGTGCCCTTCGGGGTGCCAGCCTCGGCCA CGGTGCGGCGGCGCGCGCAGGCCGGCCTCTGTGTGTGCGCCAGCAGCGAG CCGGTGTGCGGCAGCGACGCCAACACCTACGCCAACCTGTGCCAGCTGCG 45 CGCCGCCAGCCGCCGCTCCGAGAGGCTGCACCGGCCGCCGGTCATCGTCC TGCAGCGCGGAGCCTGCGGCCAAGGGCAGGAAGATCCCAACAGTTTGCGC CATAAATATAACTTTATCGCGGACGTGGTGGAGAAGATCGCCCCTGCCGT
GGTTCATATCGAATTGTTTCGCAAGCTTCCGTTTTCTAAACGAGAGGTGCC
- 44 GGTGGCTAGTGGGTCTGGGTTTATTGTGTCGGAAGATGGACTGATCGTGA CAAATGCCCACGTGGTGACCAACAAGCACCGGGTCAAAGTTGAGCTGAAG AACGGTGCCACTTACGAAGCCAAAATCAAGGATGTGGATGAGAAAGCAG ACATCGCACTCATCAAAATTGACCACCAGGGCAAGCTGCCTGTCCTGCTG 5 CTTGGCCGCTCCTCAGAGCTGCGGCCGGGAGAGTTCGTGGTCGCCATCGG AAGCCCGTTTTCCCTTCAAAACACAGTCACCACCGGGATCGTGAGCACCA CCCAGCGAGGCGGCAAAGAGCTGGGGCTCCGCAACTCAGACATGGACTA CATCCAGACCGACGCCATCATCAACTATGGAAACTCGGGAGGCCCGTTAG TAAACCTGGACGGTGAAGTGATTGGAATTAACACTTTGAAAGTGACAGCT 10 GGAATCTCCTTTGCAATCCCATCTGATAAGATTAAAAAGTTCCTCACGGAG TCCCATGACCGACAGGCCAAAGGAAAAGCCATCACCAAGAAGAAGTATA TTGGTATCCGAATGATGTCACTCACGTCCAGCAAAGCCAAAGAGCTGAAG GACCGGCACCGGGACTTCCCAGACGTGATCTCAGGAGCGTATATAATTGA AGTAATTCCTGATACCCCAGCAGAAGCTGGTGGTCTCAAGGAAAACGACG 15 TCATAATCAGCATCAATGGACAGTCCGTGGTCTCCGCCAATGATGTCAGC GACGTCATTAAAAGGGAAAGCACCCTGAACATGGTGGTCCGCAGGGGTA ATGAAGATATCATGATCACAGTGATTCCCGAAGAAATTGACCCATAGGCA GAGGCATGAGCTGGACTTCATGTTTCCCTCAAAGACTCTCCCGTGGATGAC GGATGAGGACTCTGGGCTGCTGGAATAGGACACTCAAGACTTTTGACTGC 20 CATTTTGTTTGTTCAGTGGAGACTCCCTGGCCAACAGAATCCTTCTTGATA GTTTGCAGGCAAAACAAATGTAATGTTGCAGATCCGCAGGCAGAAGCTCT GCCCTTCTGTATCCTATGTATGCAGTGTGCTTTTTCTTGCCAGCTTGGGCCA TTCTTGCTTAGACAGTCAGCATTTGTCTCCTCCTTTAACTGAGTCATCATCT TAGTCCAACTAATGCAGTCGATACAATGCGTAGATAGAAGAAGCCCCACG 25 GGAGCCAGGATGGGACTGGTCGTGTTTGTGCTTTTCTCCAAGTCAGCACCC AAAGGTCAATGCACAGAGACCCCGGGTGGGTGAGCGCTGGCTTCTCAAAC GGCCGAAGTTGCCTCTTTTAGGAATCTCTTTGGAATTGGGAGCACGATGAC TCTGAGTTTGAGCTATTAAAGTACTTCTTACACATTG SEQ ID NO: 88 30 Secreted Frizzled-Related Protein 2 >gil426569881reflXM_050625.41 Homo sapiens secreted frizzled-related protein 2 (SFRP2), mRNA I qPCR forward_primer match [686..703] qPCR reverse_pimer match [750..728] 1 qPCR probe match [705..726] CCGGGTCGGAGCCCCCCGGAGCTGCGCGCGGGCTTGCAGCGCCTCG 35 CCCGCGCTGTCCTCCCGGTGTCCCGCTTCTCCGCGCCCCAGCCGCCGGCTG CCAGCTTTTCGGGGCCCCGAGTCGCACCCAGCGAAGAGAGCGGGCCCGGG ACAAGCTCGAACTCCGGCCGCCTCGCCCTTCCCCGGCTCCGCTCCCTCTGC CCCCTCGGGGTCGCGCGCCCACGATGCTGCAGGGCCCTGGCTCGCTGCTG CTGCTCTTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGCGGGCTCTTC 40 CTCTTTGGCCAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATC CCTGCCAACCTGCAGCTGTGCCACGGCATCGAATACCAGAACATGCGGCT GCCCAACCTGCTGGGCCACGAGACCATGAAGGAGGTGCTGGAGCAGGCC GGCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCGGACACCAAGAA GTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC 45 CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCC CGGTCATGTCCGCCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACC GTTTCCCCCAGGACAACGACCTTTGCATCCCCCTCGCTAGCAGCGACCACC
TCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATGTGAAGCCTGCAAAAAT
- 45 AAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATGATTT TGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACC AAAATCATCCTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGGTGT GTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGC 5 AGTGCACCTGTGAGGAGATGAACGACATCAACGCGCCCTATCTGGTCATG GGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGGTGGC AGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCT GCAGTGCTAGTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGC ACGGCTGACCATTTCTGCTCCGGGATCTCAGCTCCCGTTCCCCAAGCACAC 10 TCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCTTCCCCCTGCCTTTTGCACG TTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTGGATAGCTG TTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACT AATAAAATCATGAATATTTTTATGAAGTTTAAAAA SEQ ID NO: 89 15 Phospholipase A2, Group XIIB >gil45505134|reflNM_032562.2| Homo sapiens phospholipase A2, group XIIB (PLA2G12B), mRNA TGTCCCTGGAATTCTGGGACACTGGCTGGGGTTTGAGGAGAGAAGC CAGTACCTACCTGGCTGCAGGATGAAGCTGGCCAGTGGCTTCTTGGTTTTG 20 TGGCTCAGCCTTGGGGGTGGCCTGGCTCAGAGCGACACGAGCCCTGACAC GGAGGAGTCCTATTCAGACTGGGGCCTTCGGCACCTCCGGGGAAGCTTTG AATCCGTCAATAGCTACTTCGATTCTTTTCTGGAGCTGCTGGGAGGGAAGA ATGGAGTCTGTCAGTACAGGTGCCGATATGGAAAGGCACCAATGCCCAGA CCTGGCTACAAGCCCCAAGAGCCCAATGGCTGCGGCTCCTATTTCCTGGGT 25 CTCAAGGTACCAGAAAGTATGGACTTGGGCATTCCAGCAATGACAAAGTG CTGCAACCAGCTGGATGTCTGTTATGACACTTGCGGTGCCAACAAATATC GCTGTGATGCAAAATTCCGATGGTGTCTCCACTCGATCTGCTCTGACCTTA AGCGGAGTCTGGGCTTTGTCTCCAAAGTGGAAGCAGCCTGTGATTCCCTG GTTGACACTGTGTTCAACACCGTGTGGACCTTGGGCTGCCGCCCCTTTATG 30 AATAGTCAGCGGGCAGCTTGCATCTGTGCAGAGGAGGAGAAGGAAGAGT TATGAGGAAGAAGTGATTCCTTCCTGGTTTTGAGTGACACCACAGCTGTCA GCCTTCAAGATGTCAAGTCTTCGAGTCAGCGTGACTCATTCATTCTTCCAA CAGTTTGGACACCACAAAGCAGGAGAAAGGGAACATTTTTCTACAGCTGG AAAGTGAGTCCTATCCTTTGAGGAAATTTGAAAAAAGACATGGAGTGGTT 35 TGAAAGCTACTCTTCATTTAAGACTGCTCTCCCCAACCAAGACACATTTGC CTGGAAATTCAGTTCTTAGCTTAAAGACTAAAATGCAAGCAAACCCTGCA ATTCCTGGACCTGATAGTTATATTCATGAGTGAAATTGTGGGGAGTCCAGC CATTTGGGAGGCAATGACTTTCTGCTGGCCCATGTTTCAGTTGCCAGTAAG CTTCTCACATTTAATAAAGTGTACTTTTTAGAACATT SEQ ID NO: 90 40 Spondin 2, Extracellular Matrix Protein >gil6912681 IreflNMOl 2445.11 Homo sapiens spondin 2, extracellular matrix protein (SPON2), mRNA GCACGAGGGAAGAGGGTGATCCGACCCGGGGAAGGTCGCTGGGCA 45 GGGCGAGTTGGGAAAGCGGCAGCCCCCGCCGCCCCCGCAGCCCCTTCTCC
TCCTTTCTCCCACGTCCTATCTGCCTCTCGCTGGAGGCCAGGCCGTGCAGC
- 46 ATCGAAGACAGGAGGAACTGGAGCCTCATTGGCCGGCCCGGGGCGCCGG CCTCGGGCTTAAATAGGAGCTCCGGGCTCTGGCTGGGACCCGACCGCTGC CGGCCGCGCTCCCGCTGCTCCTGCCGGGTGATGGAAAACCCCAGCCCGGC CGCCGCCCTGGGCAAGGCCCTCTGCGCTCTCCTCCTGGCCACTCTCGGCGC 5 CGCCGGCCAGCCTCTTGGGGGAGAGTCCATCTGTTCCGCCAGAGCCCCGG CCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGACGGCCTTCCCC AAGCAGTACCCCCTGTTCCGCCCCCCTGCGCAGTGGTCTTCGCTGCTGGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAG TAACGGGCTGCGCGACTTTGCGGAGCGCGGCGAGGCCTGGGCGCTGATGA 10 AGGAGATCGAGGCGGCGGGGGAGGCGCTGCAGAGCGTGCACGCGGTGTT TTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACGTCGGCGGAGCTGG AGGTGCAGCGCAGGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCCC AGCCCCGACTGGTTCGTGGGCGTGGACAGCCTGGACCTGTGCGACGGGGA CCGTTGGCGGGAACAGGCGGCGCTGGACCTGTACCCCTACGACGCCGGGA 15 CGGACAGCGGCTTCACCTTCTCCTCCCCCAACTTCGCCACCATCCCGCAGG ACACGGTGACCGAGATAACGTCCTCCTCTCCCAGCCACCCGGCCAACTCC TTCTACTACCCGCGGCTGAAGGCCCTGCCTCCCATCGCCAGGGTGACACTG GTGCGGCTGCGACAGAGCCCCAGGGCCTTCATCCCTCCCGCCCCAGTCCT GCCCAGCAGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGC 20 CGCTGGACTGCGAGGTCTCCCTGTGGTCGTCCTGGGGACTGTGCGGAGGC CACTGTGGGAGGCTCGGGACCAAGAGCAGGACTCGCTACGTCCGGGTCCA GCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAGGCTGAG TGCGTCCCTGATAACTGCGTCTAAGACCAGAGCCCCGCAGCCCCTGGGGC CCCCGGAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGG 25 CGGCCGAGGCACAGGGGGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGC GCCGACCATCTCTGCACTGAAGGGCCCTCTGGTGGCCGGCACGGGCATTG GGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGGCCCCCGTGTCC CGTCTGCTCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGGTCTCCTTATAAGTTATTGCTGCTCCAGGAGAT 30 TGTCCTTCATCGTCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAG ACCTGGTGCTCTAGGCTGTGCTGAGCCCACTCTCCCGAGGGCGCATCCAA GCGGGGGCCACTTGAGAAGTGAATAAATGGGGCGGTTTCGGAAGCGTCA GTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCTGTTG CTCAC SEQ ID NO: 91 35 Olfactomedin 1, Transcript Variant 3 >gil34335282|refNM_058199.2| Homo sapiens olfactomedin 1 (OLFM1), transcript variant 3, mRNA CCCGCCCCCGCCCCTTCCGAGCAAACTTTTGGCACCCACCGCAGCC 40 CAGCGCGCGTTCGTGCTCCGCAGGGCGCGCCTCTCTCCGCCAATGCCAGG CGCGCGGGGGAGCCATTAGGAGGCGAGGAGAGAGGAGGGCGCAGCTCCC GCCCAGCCCAGCCCTGCCCAGCCCTGCCCGGAGGCAGACGCGCCGGAACC GGGACGCGATAAATATGCAGAGCGGAGGCTTCGCGCAGCAGAGCCCGCG CGCCGCCCGCTCCGGGTGCTGAATCCAGGCGTGGGGACACGAGCCAGGCG 45 CCGCCGCCGGAGCCAGCGGAGCCGGGGCCAGAGCCGGAGCGCGTCCGCG TCCACGCAGCCGCCGGCCGGCCAGCACCCAGGGCCCTGCATGCCAGGTCG TTGGAGGTGGCAGCGAGACATGCACCCGGCCCGGAAGCTCCTCAGCCTCC
TCTTCCTCATCCTGATGGGCACTGAACTCACTCAAAATAAAAGAGAAAAC
- 47 AAAGCAGAGAAGATGGGAGGGCCAGAGAGCGAGAGGAAGACCACAGGA GAGAAGACACTGAACGAGCTTCCCTTGTTTTGCCTGGAAGCCCACGCTGG CTCCCTGGCTCTGCCCAGGATGTGCAGTCCAAATCCCAATCCAGCAGTGG GGTTATGTCGTCCCGCTTACCCTCAGAGCCCTTCTCCTGGTGCTGCCCAGA 5 CGATCAGCCAGTCCCTCCTGGAGAGGTTCTGCATGGCCTCTAGGAGAGAA GTTTTCTTGGCCCCAGGAAGGCCTGGTGGAGGGTGGTGGTTGTGCACTGTT GCTGGACAGATGCATTCATTCATGTGCACACACACACACACACATGCACA CACAGGGGAGCAGATACCTGCAGAGAAGAGCCAACCAGGTCCTGATTAG TGGCAAGCTGCCCCACAAAGGGCTATGCCTGTGTCTTATTGAGACACCTTG 10 GCAAAGAGATGGCTGATTCTGGGTGGTCCTGGACATGGCCGCACCCAAGG GCCCTCCAAGCCTTAATGGCACCCTGAAGCCTCCATGCCCAGGCCAAAAG ATGCTTTTCCTCCCTAAAAAAAAAAAAAAAAAAA SEQ ID NO:92 Thrombospondin Repeat Containing 1 15 >gil38016903|reflNM_019032.21 Homo sapiens thrombospondin repeat containing I (TSRCI), mRNA GGGGCCCCAGTGGCCGCCGCGGAGCGAGGTTGCCTGGAGAGAGCG CCTGGGCGCAGAAGGGTTAACGGGCCACCGGGGGCTCGCAGAGCAGGAG GGTGCTCTCGGACGGTGTGTCCCCCACTGCACTCCTGAACTTGGAGGACA 20 GGGTCGCCGCGAGGGACGCAGAGAGCACCCTCCACGCCCAGATGCCTGCG TAGTTTTTGTGACCAGTCCGCTCCTGCCTCCCCCTGGGGCAGTAGAGGGGG AGCGATGGAGAACTGGACTGGCAGGCCCTGGCTGTATCTGCTGCTGCTTC TGTCCCTCCCTCAGCTCTGCTTGGATCAGGAGGTGTTGTCCGGACACTCTC TTCAGACACCTACAGAGGAGGGCCAGGGCCCCGAAGGTGTCTGGGGACCT 25 TGGGTCCAGTGGGCCTCTTGCTCCCAGCCCTGCGGGGTGGGGGTGCAGCG CAGGAGCCGGACATGTCAGCTCCCTACAGTGCAGCTCCACCCGAGTCTGC CCCTCCCTCCCCGGCCCCCAAGACATCCAGAAGCCCTCCTCCCCCGGGGCC AGGGTCCCAGACCCCAGACTTCTCCAGAAACCCTCCCCTTGTACAGGACA CAGTCTCGGGGAAGGGGTGGCCCACTTCGAGGTCCCGCTTCCCACCTAGG 30 GAGAGAGGAGACCCAGGAGATTCGAGCGGCCAGGAGGTCCCGGCTTCGA GACCCCATCAAGCCAGGAATGTTCGGTTATGGGAGAGTGCCCTTTGCATT GCCACTGCACCGGAACCGCAGGCACCCTCGGAGCCCACCCAGATCTGAGC TGTCCCTGATCTCTTCTAGAGGGGAAGAGGCTATTCCGTCCCCTACTCCAA GAGCAGAGCCATTCTCCGCAAACGGCAGCCCCCAAACTGAGCTCCCTCCC 35 ACAGAACTGTCTGTCCACACCCCATCCCCCCAAGCAGAACCTCTAAGCCC TGAAACTGCTCAGACAGAGGTGGCCCCCAGAACCAGGCCTGCCCCCCTAC GGCATCACCCCAGAGCCCAGGCCTCTGGCACAGAGCCCCCCTCACCCACG CACTCCTTAGGAGAAGGTGGCTTCTTCCGTGCATCCCCTCAGCCACGAAG GCCAAGTTCCCAGGGTTGGGCCAGTCCCCAGGTAGCAGGGAGACGCCCTG 40 ATCCTTTTCCTTCGGTCCCTCGGGGCCGAGGCCAGCAGGGCCAAGGGCCTT GGGGAACGGGGGGGACTCCTCACGGGCCCCGCCTGGAGCCTGACCCTCAG CACCCGGGCGCCTGGCTGCCCCTGCTGAGCAACGGCCCCCATGCCAGCTC CCTCTGGAGCCTCTTTGCTCCCAGTAGCCCTATTCCAAGATGTTCTGGGGA GAGTGAACAGCTAAGAGCCTGCAGCCAAGCGCCCTGCCCCCCTGAGCAGC 45 CAGACCCCCGGGCCCTGCAGTGCGCAGCCTTTAACTCCCAGGAATTCATG GGCCAGCTGTATCAGTGGGAGCCCTTCACTGAAGTCCAGGGCTCCCAGCG CTGTGAACTGAACTGCCGGCCCCGTGGCTTCCGCTTCTATGTCCGTCACAC
TGAAAAGGTCCAGGATGGGACCCTGTGTCAGCCTGGAGCCCCTGACATCT
-48 GTGTGGCTGGACGCTGTCTGAGCCCCGGCTGTGATGGGATCCTTGGCTCTG GCAGGCGTCCTGATGGCTGTGGAGTCTGTGGGGGTGATGATTCTACCTGTC GCCTTGTTTCGGGGAACCTCACTGACCGAGGGGGCCCCCTGGGCTATCAG AAGATCTTGTGGATTCCAGCGGGAGCCTTGCGGCTCCAGATTGCCCAGCT 5 CCGGCCTAGCTCCAACTACCTGGCACTTCGTGGCCCTGGGGGCCGGTCCAT CATCAATGGGAACTGGGCTGTGGATCCCCCTGGGTCCTACAGGGCCGGCG GGACCGTCTTTCGATATAACCGTCCTCCCAGGGAGGAGGGCAAAGGGGAG AGTCTGTCGGCTGAAGGCCCCACCACCCAGCCTGTGGATGTCTATATGATC TTTCAGGAGGAAAACCCAGGCGTTTTTTATCAGTATGTCATCTCTTCACCT 10 CCTCCAATCCTTGAGAACCCCACCCCAGAGCCCCCTGTCCCCCAGCTTCAG CCGGAGATTCTGAGGGTGGAGCCCCCACTTGCTCCGGCACCCCGCCCAGC CCGGACCCCAGGCACCCTCCAGCGTCAGGTGCGGATCCCCCAGATGCCCG CCCCGCCCCATCCCAGGACACCCCTGGGGTCTCCAGCTGCGTACTGGAAA CGAGTGGGACACTCTGCATGCTCAGCGTCCTGCGGGAAAGGTGTCTGGCG 15 CCCCATTTTCCTCTGCATCTCCCGTGAGTCGGGAGAGGAACTGGATGAAC GCAGCTGTGCCGCGGGTGCCAGGCCCCCAGCCTCCCCTGAACCCTGCCAC GGCACCCCATGCCCCCCATACTGGGAGGCTGGCGAGTGGACATCCTGCAG CCGCTCCTGTGGCCCCGGCACCCAGCACCGCCAGCTGCAGTGCCGGCAGG AATTTGGGGGGGGTGGCTCCTCGGTGCCCCCGGAGCGCTGTGGACATCTC 20 CCCCGGCCCAACATCACCCAGTCTTGCCAGCTGCGCCTCTGTGGCCATTGG GAAGTTGGCTCTCCTTGGAGCCAGTGCTCCGTGCGGTGCGGCCGGGGCCA GAGAAGCCGGCAGGTTCGCTGTGTTGGGAACAACGGTGATGAAGTGAGC GAGCAGGAGTGTGCGTCAGGCCCCCCGCAGCCCCCCAGCAGAGAGGCCTG TGACATGGGGCCCTGTACTACTGCCTGGTTCCACAGCGACTGGAGCTCCA 25 AGTGCTCAGCCGAGTGTGGGACGGGAATCCAGCGGCGCTCTGTGGTCTGC CTTGGGAGTGGGGCAGCCCTCGGGCCAGGCCAGGGGGAAGCAGGAGCAG GAACTGGGCAGAGCTGTCCAACAGGAAGCCGGCCCCCTGACATGCGCGCC TGCAGCCTGGGGCCCTGTGAGAGAACTTGGCGCTGGTACACAGGGCCCTG GGGTGAGTGCTCCTCCGAATGTGGCTCTGGCACACAGCGTAGAGACATCA 30 TCTGTGTATCCAAACTGGGGACGGAGTTCAACGTGACTTCTCCGAGCAAC TGTTCTCACCTCCCCAGGCCCCCTGCCCTGCAGCCCTGTCAAGGGCAGGCC TGCCAGGACCGATGGTTTTCCACGCCCTGGAGCCCATGTTCTCGCTCCTGC CAAGGGGGAACGCAGACACGGGAGGTCCAGTGCCTGAGCACCAACCAGA CCCTCAGCACCCGATGCCCTCCTCAACTGCGGCCCTCCAGGAAGCGCCCCT 35 GTAACAGCCAACCCTGCAGCCAGCGCCCTGATGATCAATGCAAGGACAGC TCTCCACATTGCCCCCTGGTGGTACAGGCCCGGCTCTGCGTCTACCCCTAC TACACAGCCACCTGTTGCCGCTCTTGCGCACATGTCCTGGAGCGGTCTCCC CAGGATCCCTCCTGAAAGGGGTCCGGGGCACCTTCACGGTTTTCTGTGCCA CCATCGGTCACCCATTGATCGGCCCACTCTGAACCCCCTGGCTCTCCAGCC 40 TGTCCCAGTCTCAGCAGGGATGTCCTCCAGGTGACAGAGGGTGGCAAGGT GACTGACACAAAGTGACTTTCAGGGCTGTGGTCAGGCCCATGTGGTGGTG TGATGGGTGTGTGCACATATGCCTCAGGTGTGCTTTTGGGACTGCATGGAT ATGTGTGTGCTCAAACGTGTATCACTTTTCAAAAAGAGGTTACACAGACT GAGAAGGACAAGACCTGTTTCCTTGAGACTTTCCTAGGTGGAAAGGAAAG 45 CAAGTCTGCAGTTCCTTGCTAATCTGAGCTACTTAGAGTGTGGTCTCCCCA CCAACTCCAGTTTTGTGCCCTAAGCCTCATTTCTCATGTTCAGACCTCACA TCTTCTAAGCCGCCCTGTGTCTCTGACCCCTTCTCATTTGCCTAGTATCTCT GCCCCTGCCTCCCTAATTAGCTAGGGCTGGGGTCAGCCACTGCCAATCCTG CCTTACTCAGGAAGGCAGGAGGAAAGAGACTGCCTCTCCAGAGCAAGGC 50 CCAGCTGGGCAGAGGGTGAAAAAGAGAAATGTGAGCATCCGCTCCCCCA - 49 CCACCCCGCCCAGCCCCTAGCCCCACTCCCTGCCTCCTGAAATGGTTCCCA CCCAGAACTAATTTATTTTTTATTAAAGATGGTCATGACAAATGAAAAAA AAAAAAAAAAAAA SEQ ID NO: 93 5 Thrombospondin 2 >gil40317627|reflNM_003247.2 Homo sapiens thrombospondin 2 (THBS2), mRNA I qPCR forwardprimer match [3558..3580] | qPCR reverse-primer match [3682..3655] qPCR probe match [3597..3623] GAGGAGGAGACGGCATCCAGTACAGAGGGGCTGGACTTGGACCCC 10 TGCAGCAGCCCTGCACAGGAGAAGCGGCATATAAAGCCGCGCTGCCCGG GAGCCGCTCGGCCACGTCCACCGGAGCATCCTGCACTGCAGGGCCGGTCT CTCGCTCCAGCAGAGCCTGCGCCTTTCTGACTCGGTCCGGAACACTGAAA CCAGTCATCACTGCATCTTTTTGGCAAACCAGGAGCTCAGCTGCAGGAGG CAGGATGGTCTGGAGGCTGGTCCTGCTGGCTCTGTGGGTGTGGCCCAGCA 15 CGCAAGCTGGTCACCAGGACAAAGACACGACCTTCGACCTTTTCAGTATC AGCAACATCAACCGCAAGACCATTGGCGCCAAGCAGTTCCGCGGGCCCGA CCCCGGCGTGCCGGCTTACCGCTTCGTGCGCTTTGACTACATCCCACCGGT GAACGCAGATGACCTCAGCAAGATCACCAAGATCATGCGGCAGAAGGAG GGCTTCTTCCTCACGGCCCAGCTCAAGCAGGACGGCAAGTCCAGGGGCAC 20 GCTGTTGGCTCTGGAGGGCCCCGGTCTCTCCCAGAGGCAGTTCGAGATCG TCTCCAACGGCCCCGCGGACACGCTGGATCTCACCTACTGGATTGACGGC ACCCGGCATGTGGTCTCCCTGGAGGACGTCGGCCTGGCTGACTCGCAGTG GAAGAACGTCACCGTGCAGGTGGCTGGCGAGACCTACAGCTTGCACGTGG GCTGCGACCTCATAGACAGCTTCGCTCTGGACGAGCCCTTCTACGAGCAC 25 CTGCAGGCGGAAAAGAGCCGGATGTACGTGGCCAAAGGCTCTGCCAGAG AGAGTCACTTCAGGGGTTTGCTTCAGAACGTCCACCTAGTGTTTGAAAACT CTGTGGAAGATATTCTAAGCAAGAAGGGTTGCCAGCAAGGCCAGGGAGCT GAGATCAACGCCATCAGTGAGAACACAGAGACGCTGCGCCTGGGTCCGCA TGTCACCACCGAGTACGTGGGCCCCAGCTCGGAGAGGAGGCCCGAGGTGT 30 GCGAACGCTCGTGCGAGGAGCTGGGAAACATGGTCCAGGAGCTCTCGGG GCTCCACGTCCTCGTGAACCAGCTCAGCGAGAACCTCAAGAGAGTGTCGA ATGATAACCAGTTTCTCTGGGAGCTCATTGGTGGCCCTCCTAAGACAAGG AACATGTCAGCTTGCTGGCAGGATGGCCGGTTCTTTGCGGAAAATGAAAC GTGGGTGGTGGACAGCTGCACCACGTGTACCTGCAAGAAATTTAAAACCA 35 TTTGCCACCAAATCACCTGCCCGCCTGCAACCTGCGCCAGTCCATCCTTTG TGGAAGGCGAATGCTGCCCTTCCTGCCTCCACTCGGTGGACGGTGAGGAG GGCTGGTCTCCGTGGGCAGAGTGGACCCAGTGCTCCGTGACGTGTGGCTC TGGGACCCAGCAGAGAGGCCGGTCCTGTGACGTCACCAGCAACACCTGCT TGGGGCCCTCCATCCAGACACGGGCTTGCAGTCTGAGCAAGTGTGACACC 40 CGCATCCGGCAGGACGGCGGCTGGAGCCACTGGTCACCTTGGTCTTCATG CTCTGTGACCTGTGGAGTTGGCAATATCACACGCATCCGTCTCTGCAACTC CCCAGTGCCCCAGATGGGGGGCAAGAATTGCAAAGGGAGTGGCCGGGAG ACCAAAGCCTGCCAGGGCGCCCCATGCCCAATCGATGGCCGCTGGAGCCC CTGGTCCCCGTGGTCGGCCTGCACTGTCACCTGTGCCGGTGGGATCCGGG 45 AGCGCACCCGGGTCTGCAACAGCCCTGAGCCTCAGTACGGAGGGAAGGCC TGCGTGGGGGATGTGCAGGAGCGTCAGATGTGCAACAAGAGGAGCTGCC CCGTGGATGGCTGTTTATCCAACCCCTGCTTCCCGGGAGCCCAGTGCAGCA GCTTCCCCGATGGGTCCTGGTCATGCGGCTCCTGCCCTGTGGGCTTCTTGG 7727I i MHUa-n PM7R7 Al I 1 -50 GCAATGGCACCCACTGTGAGGACCTGGACGAGTGTGCCCTGGTCCCCGAC ATCTGCTTCTCCACCAGCAAGGTGCCTCGCTGTGTCAACACTCAGCCTGGC TTCCACTGCCTGCCCTGCCCGCCCCGATACAGAGGGAACCAGCCCGTCGG GGTCGGCCTGGAAGCAGCCAAGACGGAAAAGCAAGTGTGTGAGCCCGAA 5 AACCCATGCAAGGACAAGACACACAACTGCCACAAGCACGCGGAGTGCA TCTACCTGGGCCACTTCAGCGACCCCATGTACAAGTGCGAGTGCCAGACA GGCTACGCGGGCGACGGGCTCATCTGCGGGGAGGACTCGGACCTGGACG GCTGGCCCAACCTCAATCTGGTCTGCGCCACCAACGCCACCTACCACTGC ATCAAGGATAACTGCCCCCATCTGCCAAATTCTGGGCAGGAAGACTTTGA 10 CAAGGACGGGATTGGCGATGCCTGTGATGATGACGATGACAATGACGGTG TGACCGATGAGAAGGACAACTGCCAGCTCCTCTTCAATCCCCGCCAGGCT GACTATGACAAGGATGAGGTTGGGGACCGCTGTGACAACTGCCCTTACGT GCACAACCCTGCCCAGATCGACACAGACAACAATGGAGAGGGTGACGCC TGCTCCGTGGACATTGATGGGGACGATGTCTTCAATGAACGAGACAATTG 15 TCCCTACGTCTACAACACTGACCAGAGGGACACGGATGGTGACGGTGTGG GGGATCACTGTGACAACTGCCCCCTGGTGCACAACCCTGACCAGACCGAC GTGGACAATGACCTTGTTGGGGACCAGTGTGACAACAACGAGGACATAGA TGACGACGGCCACCAGAACAACCAGGACAACTGCCCCTACATCTCCAACG CCAACCAGGCTGACCATGACAGAGACGGCCAGGGCGACGCCTGTGACCCT 20 GATGATGACAACGATGGCGTCCCCGATGACAGGGACAACTGCCGGCTTGT GTTCAACCCAGACCAGGAGGACTTGGACGGTGATGGACGGGGTGATATTT GTAAAGATGATTTTGACAATGACAACATCCCAGATATTGATGATGTGTGT CCTGAAAACAATGCCATCAGTGAGACAGACTTCAGGAACTTCCAGATGGT CCCCTTGGATCCCAAAGGGACCACCCAAATTGATCCCAACTGGGTCATTC 25 GCCATCAAGGCAAGGAGCTGGTTCAGACAGCCAACTCGGACCCCGGCATC GCTGTAGGTTTTGACGAGTTTGGGTCTGTGGACTTCAGTGGCACATTCTAC GTAAACACTGACCGGGACGACGACTATGCCGGCTTCGTCTTTGGTTACCA GTCAAGCAGCCGCTTCTATGTGGTGATGTGGAAGCAGGTGACGCAGACCT ACTGGGAGGACCAGCCCACGCGGGCCTATGGCTACTCCGGCGTGTCCCTC 30 AAGGTGGTGAACTCCACCACGGGGACGGGCGAGCACCTGAGGAACGCGC TGTGGCACACGGGGAACACGCCGGGGCAGGTGCGAACCTTATGGCACGA CCCCAGGAACATTGGCTGGAAGGACTACACGGCCTATAGGTGGCACCTGA CTCACAGGCCCAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAAAA CAGGTCATGGCAGACTCAGGACCTATCTATGACCAAACCTACGCTGGCGG 35 GCGGCTGGGTCTATTTGTCTTCTCTCAAGAAATGGTCTATTTCTCAGACCT CAAGTACGAATGCAGAGATATTTAAACAAGATTTGCTGCATTTCCGGCAA TGCCCTGTGCATGCCATGGTCCCTAGACACCTCAGTTCATTGTGGTCCTTG TGGCTTCTCTCTCTAGCAGCACCTCCTGTCCCTTGACCTTAACTCTGATGGT TCTTCACCTCCTGCCAGCAACCCCAAACCCAAGTGCCTTCAGAGGATAAA 40 TATCAATGGAACTCAGAGATGAACATCTAACCCACTAGAGGAAACCAGTT TGGTGATATATGAGACTTTATGTGGAGTGAAAATTGGGCATGCCATTACA TTGCTTTTTCTTGTTTGTTTAAAAAGAATGACGTTTACATATAAAATGTAA TTACTTATTGTATTTATGTGTATATGGAGTTGAAGGGAATACTGTGCATAA GCCATTATGATAAATTAAGCATGAAAAATATTGCTGAACTACTTTTGGTGC 45 TTAAAGTTGTCACTATTCTTGAATTAGAGTTGCTCTACAATGACACACAAA TCCCATTAAATAAATTATAAACAAGGGTCAATTCAAATTTGAAGTAATGTT TTAGTAAGGAGAGATTAGAAGACAACAGGCATAGCAAATGACATAAGCT ACCGATTAACTAATCGGAACATGTAAAACAGTTACAAAAATAAACGAACT CTCCTCTTGTCCTACAATGAAAGCCCTCATGTGCAGTAGAGATGCAGTTTC 50 ATCAAAGAACAAACATCCTTGCAAATGGGTGTGACGCGGTTCCAGATGTG -51 GATTTGGCAAAACCTCATTTAAGTAAAAGGTTAGCAGAGCAAAGTGCGGT GCTTTAGCTGCTGCTTGTGCCGCTGTGGCGTCGGGGAGGCTCCTGCCTGAG CTTCCTTCCCCAGCTTTGCTGCCTGAGAGGAACCAGAGCAGACGCACAGG CCGGAAAAGGCGCATCTAACGCGTATCTAGGCTTTGGTAACTGCGGACAA 5 GTTGCTTTTACCTGATTTGATGATACATTTCATTAAGGTTCCAGTTATAAAT ATTTTGTTAATATTTATTAAGTGACTATAGAATGCAACTCCATTTACCAGT AACTTATTTTAAATATGCCTAGTAACACATATGTAGTATAATTTCTAGAAA CAAACATCTAATAAGTATATAATCCTGTGAAAATATGAGGCTTGATAATA TTAGGTTGTCACGATGAAGCATGCTAGAAGCTGTAACAGAATACATAGAG 10 AATAATGAGGAGTTTATGATGGAACCTTAAATATATAATGTTGCCAGCGA TTTTAGTTCAATATTTGTTACTGTTATCTATCTGCTGTATATGGAATTCTTT TAATTCAAACGCTGAAAAGAATCAGCATTTAGTCTTGCCAGGCACACCCA ATAATCAGTCATGTGTAATATGCACAAGTTTGTTTTTGTTTTTGTTTTTTTT GTTGGTTGGTTTGTTTTTTTGCTTTAAGTTGCATGATCTTTCTGCAGGAAAT 15 AGTCACTCATCCCACTCCACATAAGGGGTTTAGTAAGAGAAGTCTGTCTGT CTGATGATGGATAGGGGGCAAATCTTTTTCCCCTTTCTGTTAATAGTCATC ACATTTCTATGCCAAACAGGAACAATCCATAACTTTAGTCTTAATGTACAC ATTGCATTTTGATAAAATTAATTTTGTTGTTTCCTTTGAGGTTGATCGTTGT GTTGTTGTTTTGCTGCACTTTTTACTTTTTTGCGTGTGGAGCTGTATTCCCG 20 AGACCAACGAAGCGTTGGGATACTTCATTAAATGTAGCGACTGTCAACAG CGTGCAGGTTTTCTGTTTCTGTGTTGTGGGGTCAACCGTACAATGGTGTGG GAGTGACGATGATGTGAATATTTAGAATGTACCATATTTTTTGTAAATTAT TTATGTTTTTCTAAACAAATTTATCGTATAGGTTGATGAAACGTCATGTGT TTTGCCAAAGACTGTAAATATTTATTTATGTGTTCACATGGTCAAAATTTC 25 ACCACTGAAACCCTGCACTTAGCTAGAACCTCATTTTTAAAGATTAACAAC AGGAAATAAATTGTAAAAAAGGTTTTCTATACATGAAAAAAAAAAAAAA AAAA SEQ ID NO: 94 Adlican 30 >gill 8390318|reflNM_015419.11 Homo sapiens adlican (DKFZp564I1922), mRNA I qPCR assayon_demandcontext match [694..718] ATGCCCAAGCGCGCGCACTGGGGGGCCCTCTCCGTGGTGCTGATCC TGCTTTGGGGCCATCCGCGAGTGGCGCTGGCCTGCCCGCATCCTTGTGCCT GCTACGTCCCCAGCGAGGTCCACTGCACGTTCCGATCCCTGGCTTCCGTGC 35 CCGCTGGCATTGCTAGACACGTGGAAAGAATCAATTTGGGGTTTAATAGC ATACAGGCCCTGTCAGAAACCTCATTTGCAGGACTGACCAAGTTGGAGCT ACTTATGATTCACGGCAATGAGATCCCAAGCATCCCCGATGGAGCTTTAA GAGACCTCAGCTCTCTTCAGGTTTTCAAGTTCAGCTACAACAAGCTGAGA GTGATCACAGGACAGACCCTCCAGGGTCTCTCTAACTTAATGAGGCTGCA 40 CATTGACCACAACAAGATCGAGTTTATCCACCCTCAAGCTTTCAACGGCTT AACGTCTCTGAGGCTACTCCATTTGGAAGGAAATCTCCTCCACCAGCTGCA CCCCAGCACCTTCTCCACGTTCACATTTTTGGATTATTTCAGACTCTCCACC ATAAGGCACCTCTACTTAGCAGAGAACATGGTTAGAACTCTTCCTGCCAG CATGCTTCGGAACATGCCGCTTCTGGAGAATCTTTACTTGCAGGGAAATCC 45 GTGGACCTGCGATTGTGAGATGAGATGGTTTTTGGAATGGGATGCAAAAT CCAGAGGAATTCTGAAGTGTAAAAAGGACAAAGCTTATGAAGGCGGTCA GTTGTGTGCAATGTGCTTCAGTCCAAAGAAGTTGTACAAACATGAGATAC
ACAAGCTGAAGGACATGACTTGTCTGAAGCCTTCAATAGAGTCCCCTCTG
-52 AGACAGAACAGGAGCAGGAGTATTGAGGAGGAGCAAGAACAGGAAGAG GATGGTGGCAGCCAGCTCATCCTGGAGAAATTCCAACTGCCCCAGTGGAG CATCTCTTTGAATATGACCGACGAGCACGGGAACATGGTGAACTTGGTCT GTGACATCAAGAAACCAATGGATGTGTACAAGATTCACTTGAACCAAACG 5 GATCCTCCAGATATTGACATAAATGCAACAGTTGCCTTGGACTTTGAGTGT CCAATGACCCGAGAAAACTATGAAAAGCTATGGAAATTGATAGCATACTA CAGTGAAGTTCCCGTGAAGCTACACAGAGAGCTCATGCTCAGCAAAGACC CCAGAGTCAGCTACCAGTACAGGCAGGATGCTGATGAGGAAGCTCTTTAC TACACAGGTGTGAGAGCCCAGATTCTTGCAGAACCAGAATGGGTCATGCA 10 GCCATCCATAGATATCCAGCTGAACCGACGTCAGAGTACGGCCAAGAAGG TGCTACTTTCCTACTACACCCAGTATTCTCAAACAATATCCACCAAAGATA CAAGGCAGGCTCGGGGCAGAAGCTGGGTAATGATTGAGCCTAGTGGAGCT GTGCAAAGAGATCAGACTGTCCTGGAAGGGGGTCCATGCCAGTTGAGCTG CAACGTGAAAGCTTCTGAGAGTCCATCTATCTTCTGGGTGCTTCCAGATGG 15 CTCCATCCTGAAAGCGCCCATGGATGACCCAGACAGCAAGTTCTCCATTCT CAGCAGTGGCTGGCTGAGGATCAAGTCCATGGAGCCATCTGACTCAGGCT TGTACCAGTGCATTGCTCAAGTGAGGGATGAAATGGACCGCATGGTATAT AGGGTACTTGTGCAGTCTCCCTCCACTCAGCCAGCCGAGAAAGACACAGT GACAATTGGCAAGAACCCAGGGGAGTCGGTGACATTGCCTTGCAATGCTT 20 TAGCAATACCCGAAGCCCACCTTAGCTGGATTCTTCCAAACAGAAGGATA ATTAATGATTTGGCTAACACATCACATGTATACATGTTGCCAAATGGAACT CTTTCCATCCCAAAGGTCCAAGTCAGTGATAGTGGTTACTACAGATGTGTG GCTGTCAACCAGCAAGGGGCAGACCATTTTACGGTGGGAATCACAGTGAC CAAGAAAGGGTCTGGCTTGCCATCCAAAAGAGGCAGACGCCCAGGTGCA 25 AAGGCTCTTTCCAGAGTCAGAGAAGACATCGTGGAGGATGAAGGGGGCTC GGGCATGGGAGATGAAGAGAACACTTCAAGGAGACTTCTGCATCCAAAG GACCAAGAGGTGTTCCTCAAAACAAAGGATGATGCCATCAATGGAGACA AGAAAGCCAAGAAAGGGAGAAGAAAGCTGAAACTCTGGAAGCATTCGGA AAAAGAACCAGAGACCAATGTTGCAGAAGGTCGCAGAGTGTTTGAATCTA 30 GACGAAGGATAAACATGGCAAACAAACAGATTAATCCGGAGCGCTGGGC TGATATTTTAGCCAAAGTCCGTGGGAAAAATCTCCCTAAGGGCACAGAAG TACCCCCGTTGATTAAAACCACAAGTCCTCCATCCTTGAGCCTAGAAGTCA CACCACCTTTTCCTGCTGTTTCTCCCCCCTCAGCATCTCCTGTGCAGACAGT AACCAGTGCTGAAGAATCCTCAGCAGATGTACCTCTACTTGGTGAAGAAG 35 AGCACGTTTTGGGTACCATTTCCTCAGCCAGCATGGGGCTAGAACACAAC CACAATGGAGTTATTCTTGTTGAACCTGAAGTAACAAGCACACCTCTGGA GGAAGTTGTTGATGACCTTTCTGAGAAGACTGAGGAGATAACTTCCACTG AAGGAGACCTGAAGGGGACAGCAGCCCCTACACTTATATCTGAGCCTTAT GAACCATCTCCTACTCTGCACACATTAGACACAGTCTATGAAAAGCCCAC 40 CCATGAAGAGACGGCAACAGAGGGTTGGTCTGCAGCAGATGTTGGATCGT CACCAGAGCCCACATCCAGTGAGTATGAGCCTCCATTGGATGCTGTCTCCT TGGCTGAGTCTGAGCCCATGCAATACTTTGACCCAGATTTGGAGACTAAG TCACAACCAGATGAGGATAAGATGAAAGAAGACACCTTTGCACACCTTAC TCCAACCCCCACCATCTGGGTTAATGACTCCAGTACATCACAGTTATTTGA 45 GGATTCTACTATAGGGGAACCAGGTGTCCCAGGCCAATCACATCTACAAG GACTGACAGACAACATCCACCTTGTGAAAAGTAGTCTAAGCACTCAAGAC ACCTTACTGATTAAAAAGGGTATGAAAGAGATGTCTCAGACACTACAGGG AGGAAATATGCTAGAGGGAGACCCCACACACTCCAGAAGTTCTGAGAGTG AGGGCCAAGAGAGCAAATCCATCACTTTGCCTGACTCCACACTGGGTATA 50 ATGAGCAGTATGTCTCCAGTTAAGAAGCCTGCGGAAACCACAGTTGGTAC -53 CCTCCTAGACAAAGACACCACAACAGTAACAACAACACCAAGGCAAAAA GTTGCTCCGTCATCCACCATGAGCACTCACCCTTCTCGAAGGAGACCCAAC GGGAGAAGGAGATTACGCCCCAACAAATTCCGCCACCGGCACAAGCAAA CCCCACCCACAACTTTTGCCCCATCAGAGACTTTTTCTACTCAACCAACTC 5 AAGCACCTGACATTAAGATTTCAAGTCAAGTGGAGAGTTCTCTGGTTCCTA CAGCTTGGGTGGATAACACAGTTAATACCCCCAAACAGTTGGAAATGGAG AAGAATGCAGAACCCACATCCAAGGGAACACCACGGAGAAAACACGGGA AGAGGCCAAACAAACATCGATATACCCCTTCTACAGTGAGCTCAAGAGCG TCCGGATCCAAGCCCAGCCCTTCTCCAGAAAATAAACATAGAAACATTGT 10 TACTCCCAGTTCAGAAACTATACTTTTGCCTAGAACTGTTTCTCTGAAAAC TGAGGGCCCTTATGATTCCTTAGATTACATGACAACCACCAGAAAAATAT ATTCATCTTACCCTAAAGTCCAAGAGACACTTCCAGTCACATATAAACCCA CATCAGATGGAAAAGAAATTAAGGATGATGTTGCCACAAATGTTGACAAA CATAAAAGTGACATTTTAGTCACTGGTGAATCAATTACTAATGCCATACCA 15 ACTTCTCGCTCCTTGGTCTCCACTATGGGAGAATTTAAGGAAGAATCCTCT CCTGTAGGCTTTCCAGGAACTCCAACCTGGAATCCCTCAAGGACGGCCCA GCCTGGGAGGCTACAGACAGACATACCTGTTACCACTTCTGGGGAAAATC TTACAGACCCTCCCCTTCTTAAAGAGCTTGAGGATGTGGATTTCACTTCCG AGTTTTTGTCCTCTTTGACAGTCTCCACACCATTTCACCAGGAAGAAGCTG 20 GTTCTTCCACAACTCTCTCAAGCATAAAAGTGGAGGTGGCTTCAAGTCAG GCAGAAACCACCACCCTTGATCAAGATCATCTTGAAACCACTGTGGCTAT TCTCCTTTCTGAAACTAGACCACAGAATCACACCCCTACTGCTGCCCGGAT GAAGGAGCCAGCATCCTCGTCCCCATCCACAATTCTCATGTCTTTGGGACA AACCACCACCACTAAGCCAGCACTTCCCAGTCCAAGAATATCTCAAGCAT 25 CTAGAGATTCCAAGGAAAATGTTTTCTTGAATTATGTGGGGAATCCAGAA ACAGAAGCAACCCCAGTCAACAATGAAGGAACACAGCATATGTCAGGGC CAAATGAATTATCAACACCCTCTTCCGACCGGGATGCATTTAACTTGTCTA CAAAGCTGGAATTGGAAAAGCAAGTATTTGGTAGTAGGAGTCTACCACGT GGCCCAGATAGCCAACGCCAGGATGGAAGAGTTCATGCTTCTCATCAACT 30 AACCAGAGTCCCTGCCAAACCCATCCTACCAACAGCAACAGTGAGGCTAC CTGAAATGTCCACACAAAGCGCTTCCAGATACTTTGTAACTTCCCAGTCAC CTCGTCACTGGACCAACAAACCGGAAATAACTACATATCCTTCTGGGGCT TTGCCAGAGAACAAACAGTTTACAACTCCAAGATTATCAAGTACAACAAT TCCTCTCCCATTGCACATGTCCAAACCCAGCATTCCTAGTAAGTTTACTGA 35 CCGAAGAACTGACCAATTCAATGGTTACTCCAAAGTGTTTGGAAATAACA ACATCCCTGAGGCAAGAAACCCAGTTGGAAAGCCTCCCAGTCCAAGAATT CCTCATTATTCCAATGGAAGACTCCCTTTCTTTACCAACAAGACTCTTTCTT TTCCACAGTTGGGAGTCACCCGGAGACCCCAGATACCCACTTCTCCTGCCC CAGTAATGAGAGAGAGAAAAGTTATTCCAGGTTCCTACAACAGGATACAT 40 TCCCATAGCACCTTCCATCTGGACTTTGGCCCTCCGGCACCTCCGTTGTTG CACACTCCGCAGACCACGGGATCACCCTCAACTAACTTACAGAATATCCC TATGGTCTCTTCCACCCAGAGTTCTATCTCCTTTATAACATCTTCTGTCCAG TCCTCAGGAAGCTTCCACCAGAGCAGCTCAAAGTTCTTTGCAGGAGGACC TCCTGCATCCAAATTCTGGTCTCTTGGGGAAAAGCCCCAAATCCTCACCAA 45 GTCCCCACAGACTGTGTCCGTCACCGCTGAGACAGACACTGTGTTCCCCTG TGAGGCAACAGGAAAACCAAAGCCTTTCGTTACTTGGACAAAGGTTTCCA CAGGAGCTCTTATGACTCCGAATACCAGGATACAACGGTTTGAGGTTCTC AAGAACGGTACCTTAGTGATACGGAAGGTTCAAGTACAAGATCGAGGCCA GTATATGTGCACCGCCAGCAACCTGCACGGCCTGGACAGGATGGTGGTCT 50 TGCTTTCGGTCACCGTGCAGCAACCTCAAATCCTAGCCTCCCACTACCAGG -54 ACGTCACTGTCTACCTGGGAGACACCATTGCAATGGAGTGTCTGGCCAAA GGGACCCCAGCCCCCCAAATTTCCTGGATCTTCCCTGACAGGAGGGTGTG GCAAACTGTGTCCCCCGTGGAGAGCCGCATCACCCTGCACGAAAACCGGA CCCTTTCCATCAAGGAGGCGTCCTTCTCAGACAGAGGCGTCTATAAGTGC 5 GTGGCCAGCAATGCAGCCGGGGCGGACAGCCTGGCCATCCGCCTGCACGT GGCGGCACTGCCCCCCGTTATCCACCAGGAGAAGCTGGAGAACATCTCGC TGCCCCCGGGGCTCAGCATTCACATTCACTGCACTGCCAAGGCTGCGCCCC TGCCCAGCGTGCGCTGGGTGCTCGGGGACGGTACCCAGATCCGCCCCTCG CAGTTCCTCCACGGGAACTTGTTTGTTTTCCCCAACGGGACGCTCTACATC 10 CGCAACCTCGCGCCCAAGGACAGCGGGCGCTATGAGTGCGTGGCCGCCAA CCTGGTAGGCTCCGCGCGCAGGACGGTGCAGCTGAACGTGCAGCGTGCAG CAGCCAACGCGCGCATCACGGGCACCTCCCCGCGGAGGACGGACGTCAG GTACGGAGGAACCCTCAAGCTGGACTGCAGCGCCTCGGGGGACCCCTGGC CGCGCATCCTCTGGAGGCTGCCGTCCAAGAGGATGATCGACGCGCTCTTC 15 AGTTTTGATAGCAGAATCAAGGTGTTTGCCAATGGGACCCTGGTGGTGAA ATCAGTGACGGACAAAGATGCCGGAGATTACCTGTGCGTAGCTCGAAATA AGGTTGGTGATGACTACGTGGTGCTCAAAGTGGATGTGGTGATGAAACCG GCCAAGATTGAACACAAGGAGGAGAACGACCACAAAGTCTTCTACGGGG GTGACCTGAAAGTGGACTGTGTGGCCACCGGGCTTCCCAATCCCGAGATC 20 TCCTGGAGCCTCCCAGACGGGAGTCTGGTGAACTCCTTCATGCAGTCGGA TGACAGCGGTGGACGCACCAAGCGCTATGTCGTCTTCAACAATGGGACAC TCTACTTTAACGAAGTGGGGATGAGGGAGGAAGGAGACTACACCTGCTTT GCTGAAAATCAGGTCGGGAAGGACGAGATGAGAGTCAGAGTCAAGGTGG TGACAGCGCCCGCCACCATCCGGAACAAGACTTACTTGGCGGTTCAGGTG 25 CCCTATGGAGACGTGGTCACTGTAGCCTGTGAGGCCAAAGGAGAACCCAT GCCCAAGGTGACTTGGTTGTCCCCAACCAACAAGGTGATCCCCACCTCCTC TGAGAAGTATCAGATATACCAAGATGGCACTCTCCTTATTCAGAAAGCCC AGCGTTCTGACAGCGGCAACTACACCTGCCTGGTCAGGAACAGCGCGGGA GAGGATAGGAAGACGGTGTGGATTCACGTCAACGTCCAGCCACCCAAGAT 30 CAACGGTAACCCCAACCCCATCACCACCGTGCGGGAGATAGCAGCCGGGG GCAGTCGGAAACTGATTGACTGCAAAGCTGAAGGCATCCCCACCCCGAGG GTGTTATGGGCTTTTCCCGAGGGTGTGGTTCTGCCAGCTCCATACTATGGA AACCGGATCACTGTCCATGGCAACGGTTCCCTGGACATCAGGAGTTTGAG GAAGAGCGACTCCGTCCAGCTGGTATGCATGGCACGCAACGAGGGAGGG 35 GAGGCGAGGTTGATCGTGCAGCTCACTGTCCTGGAGCCCATGGAGAAACC CATCTTCCACGACCCGATCAGCGAGAAGATCACGGCCATGGCGGGCCACA CCATCAGCCTCAACTGCTCTGCCGCGGGGACCCCGACACCCAGCCTGGTG TGGGTCCTTCCCAATGGCACCGATCTGCAGAGTGGACAGCAGCTGCAGCG CTTCTACCACAAGGCTGACGGCATGCTACACATTAGCGGTCTCTCCTCGGT 40 GGACGCTGGGGCCTACCGCTGCGTGGCCCGCAATGCCGCTGGCCACACGG AGAGGCTGGTCTCCCTGAAGGTGGGACTGAAGCCAGAAGCAAACAAGCA GTATCATAACCTGGTCAGCATCATCAATGGTGAGACCCTGAAGCTCCCCT GCACCCCTCCCGGGGCTGGGCAGGGACGTTTCTCCTGGACGCTCCCCAAT GGCATGCATCTGGAGGGCCCCCAAACCCTGGGACGCGTTTCTCTTCTGGA 45 CAATGGCACCCTCACGGTTCGTGAGGCCTCGGTGTTTGACAGGGGTACCT ATGTATGCAGGATGGAGACGGAGTACGGCCCTTCGGTCACCAGCATCCCC GTGATTGTGATCGCCTATCCTCCCCGGATCACCAGCGAGCCCACCCCGGTC ATCTACACCCGGCCCGGGAACACCGTGAAACTGAACTGCATGGCTATGGG GATTCCCAAAGCTGACATCACGTGGGAGTTACCGGATAAGTCGCATCTGA 50 AGGCAGGGGTTCAGGCTCGTCTGTATGGAAACAGATTTCTTCACCCCCAG - 55 GGATCACTGACCATCCAGCATGCCACACAGAGAGATGCCGGCTTCTACAA GTGCATGGCAAAAAACATTCTCGGCAGTGACTCCAAAACAACTTACATCC ACGTCTTCTGAAATGTGGATTCCAGAATGATTGCTTAGGAACTGACAACA AAGCGGGGTTTGTAAGGGAAGCCAGGTTGGGGAATAGGAGCTCTTAAATA 5 ATGTGTCACAGTGCATGGTGGCCTCTGGTGGGTTTCAAGTTGAGGTTGATC TTGATCTACAATTGTTGGGAAAAGGAAGCAATGCAGACACGAGAAGGAG GGCTCAGCCTTGCTGAGACACTTTCTTTTGTGTTTACATCATGCCAGGGGC TTCATTCAGGGTGTCTGTGCTCTGACTGCAATTTTTCTTCTTTTGCAAATGC CACTCGACTGCCTTCATAAGCGTCCATAGGATATCTGAGGAACATTCATCA 10 AAAATAAGCCATAGACATGAACAACACCTCACTACCCCATTGAAGACGCA TCACCTAGTTAACCTGCTGCAGTTTTTACATGATAGACTTTGTTCCAGATT GACAAGTCATCTTTCAGTTATTTCCTCTGTCACTTCAAAACTCCAGCTTGC CCAATAAGGATTTAGAACCAGAGTGACTGATATATATATATATATTTTAAT TCAGAGTTACATACATACAGCTACCATTTTATATGAAAAAAGAAAAACAT 15 TTCTTCCTGGAACTCACTTTTTATATAATGTTTTATATATATATTTTTTCCTT TCAAATCAGACGATGAGACTAGAAGGAGAAATACTTTCTGTCTTATTAAA ATTAATAAATTATTGGTCTTTACAAGACTTGGATACATTACAGCAGACATG GAAATATAATTTTAAAAAATTTCTCTCCAACCTCCTTCAAATTCAGTCACC ACTGTTATATTACCTTCTCCAGGAACCCTCCAGTGGGGAAGGCTGCGATAT 20 TAGATTTCCTTGTATGCAAAGTTTTTGTTGAAAGCTGTGCTCAGAGGAGGT GAGAGGAGAGGAAGGAGAAAACTGCATCATAACTTTACAGAATTGAATC TAGAGTCTTCCCCGAAAAGCCCAGAAACTTCTCTGCAGTATCTGGCTTGTC CATCTGGTCTAAGGTGGCTGCTTCTTCCCCAGCCATGAGTCAGTTTGTGCC CATGAATAATACACGACCTGTTATTTCCATGACTGCTTTACTGTATTTTTA 25 AGGTCAATATACTGTACATTTGATAATAAAATAATATTCTCCCAAAAAAA AAA SEQ ID NO: 95 Cystatin SA >gi1198822521reflNM_001322.21 Homo sapiens cystatin SA (CST2), mRNA 30 qPCR forwardprimer match [302..320] | qPCR reverseprimer match [393..370] qPCR probe match [341..369] GCCTCCGAGGAGACCATGGCCTGGCCCCTGTGCACCCTGCTGCTCC TGCTGGCCACCCAGGCTGTGGCCCTGGCCTGGAGCCCCCAGGAGGAGGAC AGGATAATCGAGGGTGGCATCTATGATGCAGACCTCAATGATGAGCGGGT 35 ACAGCGTGCCCTTCACTTTGTCATCAGCGAGTATAACAAGGCCACTGAAG ATGAGTACTACAGACGCCTGCTGCGGGTGCTACGAGCCAGGGAGCAGATC GTGGGCGGGGTGAATTACTTCTTCGACATAGAGGTGGGCCGAACCATATG TACCAAGTCCCAGCCCAACTTGGACACCTGTGCCTTCCATGAACAGCCAG AACTGCAGAAGAAACAGTTGTGCTCTTTCCAGATCTACGAAGTTCCCTGG 40 GAGGACAGAATGTCCCTGGTGAATTCCAGGTGTCAAGAAGCCTAGGGATC TGTGCCAGGGAGTCACACTGACCACCTCCTACTCCCACCCCTTGTAGTGCT CCCACCCCTGGACTGGTGGCCCCCACCCTGTGGGAGGTCTCCCCATGCACC TGCAGCAGGAGAAGACAGAGAAGGCTGCAGGAGGCCTTTGTTGCTCAGC AGGGGACTCTGCCCTCCCTCCTTCCTTTTGCTTCTCATAGCCCTGGTACATG 45 GTACACACACCCCCACCTCCTGCAATTAAACAGTAGCATCACCTC SEQ ID NO: 96 -56 Cystatin SN >gil198822501reflNM_001898.2 Homo sapiens cystatin SN (CSTl), mRNA qPCR forward_primer match [358..376] | qPCR reverseprimer match [449..426] I qPCR probe match [397..425] 5 GGGCTCCCTGCCTCGGGCTCTCACCCTCCTCTCCTGCAGCTCCAGCT TTGTGCTCTGCCTCTGAGGAGACCATGGCCCAGTATCTGAGTACCCTGCTG CTCCTGCTGGCCACCCTAGCTGTGGCCCTGGCCTGGAGCCCCAAGGAGGA GGATAGGATAATCCCGGGTGGCATCTATAACGCAGACCTCAATGATGAGT GGGTACAGCGTGCCCTTCACTTCGCCATCAGCGAGTATAACAAGGCCACC 10 AAAGATGACTACTACAGACGTCCGCTGCGGGTACTAAGAGCCAGGCAACA GACCGTTGGGGGGGTGAATTACTTCTTCGACGTAGAGGTGGGCCGCACCA TATGTACCAAGTCCCAGCCCAACTTGGACACCTGTGCCTTCCATGAACAGC CAGAACTGCAGAAGAAACAGTTGTGCTCTTTCGAGATCTACGAAGTTCCC TGGGAGAACAGAAGGTCCCTGGTGAAATCCAGGTGTCAAGAATCCTAGGG 15 ATCTGTGCCAGGCCATTCGCACCAGCCACCACCCACTCCCACCCCCTGTAG TGCTCCCACCCCTGGACTGGTGGCCCCCACCCTGCGGGAGGCCTCCCCATG TGCCTGCGCCAAGAGACAGACAGAGAAGGCTGCAGGAGTCCTTTGTTGCT CAGCAGGGCGCTCTGCCCTCCCTCCTTCCTTCTTGCTTCTAATAGCCCTGGT ACATGGTACACACCCCCCCACCTCCTGCAATTAAACAGTAGCATCGCCTCC 20 CTCTGAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO: 97 Lysyl Oxidase-Like Enzyme 2 >gil4505010|reflNM_002318.1l Homo sapiens lysyl oxidase-like 2 (LOXL2), mRNA I qPCR forwardprimer match [2205..2223] | qPCR reverse-primer match 25 [2286..2269] 1 qPCR probe match [2261..2229] ACTCCAGCGCGCGGCTACCTACGCTTGGTGCTTGCTTTCTCCAGCCA TCGGAGACCAGAGCCGCCCCCTCTGCTCGAGAAAGGGGCTCAGCGGCGGC GGAAGCGGAGGGGGACCACCGTGGAGAGCGCGGTCCCAGCCCGGCCACT GCGGATCCCTGAAACCAAAAAGCTCCTGCTGCTTCTGTACCCCGCCTGTCC 30 CTCCCAGCTGCGCAGGGCCCCTTCGTGGGATCATCAGCCCGAAGACAGGG ATGGAGAGGCCTCTGTGCTCCCACCTCTGCAGCTGCCTGGCTATGCTGGCC CTCCTGTCCCCCCTGAGCCTGGCACAGTATGACAGCTGGCCCCATTACCCC GAGTACTTCCAGCAACCGGCTCCTGAGTATCACCAGCCCCAGGCCCCCGC CAACGTGGCCAAGATTCAGCTGCGCCTGGCTGGGCAGAAGAGGAAGCAC 35 AGCGAGGGCCGGGTGGAGGTGTACTATGATGGCCAGTGGGGCACCGTGTG CGATGACGACTTCTCCATCCACGCTGCCCACGTCGTCTGCCGGGAGCTGG GCTATGTGGAGGCCAAGTCCTGGACTGCCAGCTCCTCCTACGGCAAGGGA GAAGGGCCCATCTGGTTAGACAATCTCCACTGTACTGGCAACGAGGCGAC CCTTGCAGCATGCACCTCCAATGGCTGGGGCGTCACTGACTGCAAGCACA 40 CGGAGGATGTCGGTGTGGTGTGCAGCGACAAAAGGATTCCTGGGTTCAAA TTTGACAATTCGTTGATCAACCAGATAGAGAACCTGAATATCCAGGTGGA GGACATTCGGATTCGAGCCATCCTCTCAACCTACCGCAAGCGCACCCCAG TGATGGAGGGCTACGTGGAGGTGAAGGAGGGCAAGACCTGGAAGCAGAT CTGTGACAAGCACTGGACGGCCAAGAATTCCCGCGTGGTCTGCGGCATGT 45 TTGGCTTCCCTGGGGAGAGGACATACAATACCAAAGTGTACAAAATGTTT
GCCTCACGGAGGAAGCAGCGCTACTGGCCATTCTCCATGGACTGCACCGG
-57 CACAGAGGCCCACATCTCCAGCTGCAAGCTGGGCCCCCAGGTGTCACTGG ACCCCATGAAGAATGTCACCTGCGAGAATGGGCTGCCGGCCGTGGTGAGT TGTGTGCCTGGGCAGGTCTTCAGCCCTGACGGACCCTCGAGATTCCGGAA AGCATACAAGCCAGAGCAACCCCTGGTGCGACTGAGAGGCGGTGCCTACA 5 TCGGGGAGGGCCGCGTGGAGGTGCTCAAAAATGGAGAATGGGGGACCGT CTGCGACGACAAGTGGGACCTGGTGTCGGCCAGTGTGGTCTGCAGAGAGC TGGGCTTTGGGAGTGCCAAAGAGGCAGTCACTGGCTCCCGACTGGGGCAA GGGATCGGACCCATCCACCTCAACGAGATCCAGTGCACAGGCAATGAGAA GTCCATTATAGACTGCAAGTTCAATGCCGAGTCTCAGGGCTGCAACCACG 10 AGGAGGATGCTGGTGTGAGATGCAACACCCCTGCCATGGGCTTGCAGAAG AAGCTGCGCCTGAACGGCGGCCGCAATCCCTACGAGGGCCGAGTGGAGGT GCTGGTGGAGAGAAACGGGTCCCTTGTGTGGGGGATGGTGTGTGGCCAAA ACTGGGGCATCGTGGAGGCCATGGTGGTCTGCCGCCAGCTGGGCCTGGGA TTCGCCAGCAACGCCTTCCAGGAGACCTGGTATTGGCACGGAGATGTCAA 15 CAGCAACAAAGTGGTCATGAGTGGAGTGAAGTGCTCGGGAACGGAGCTG TCCCTGGCGCACTGCCGCCACGACGGGGAGGACGTGGCCTGCCCCCAGGG CGGAGTGCAGTACGGGGCCGGAGTTGCCTGCTCAGAAACCGCCCCTGACC TGGTCCTCAATGCGGAGATGGTGCAGCAGACCACCTACCTGGAGGACCGG CCCATGTTCATGCTGCAGTGTGCCATGGAGGAGAACTGCCTCTCGGCCTCA 20 GCCGCGCAGACCGACCCCACCACGGGCTACCGCCGGCTCCTGCGCTTCTC CTCCCAGATCCACAACAATGGCCAGTCCGACTTCCGGCCCAAGAACGGCC GCCACGCGTGGATCTGGCACGACTGTCACAGGCACTACCACAGCATGGAG GTGTTCACCCACTATGACCTGCTGAACCTCAATGGCACCAAGGTGGCAGA GGGCCACAAGGCCAGCTTCTGCTTGGAGGACACAGAATGTGAAGGAGAC 25 ATCCAGAAGAATTACGAGTGTGCCAACTTCGGCGATCAGGGCATCACCAT GGGCTGCTGGGACATGTACCGCCATGACATCGACTGCCAGTGGGTTGACA TCACTGACGTGCCCCCTGGAGACTACCTGTTCCAGGTTGTTATTAACCCCA ACTTCGAGGTTGCAGAATCCGATTACTCCAACAACATCATGAAATGCAGG AGCCGCTATGACGGCCACCGCATCTGGATGTACAACTGCCACATAGGTGG 30 TTCCTTCAGCGAAGAGACGGAAAAAAAGTTTGAGCACTTCAGCGGGCTCT TAAACAACCAGCTGTCCCCGCAGTAAAGAAGCCTGCGTGGTCAACTCCTG TCTTCAGGCCACACCACATCTTCCATGGGACTTCCCCCCAACAACTGAGTC TGAACGAATGCCACGTGCCCTCACCCAGCCCGGCCCCCACCCTGTCCAGA CCCCTACAGCTGTGTCTAAGCTCAGGAGGAAAGGGACCCTCCCATCATTC 35 ATGGGGGGCTGCTACCTGACCCTTGGGGCCTGAGAAGGCCTTGGGGGGGT GGGGTTTGTCCACAGAGCTGCTGGAGCAGCACCAAGAGCCAGTCTTGACC GGGATGAGGCCCACAGACAGGTTGTCATCAGCTTGTCCCATTCAAGCCAC CGAGCTCACCACAGACACAGTGGAGCCGCGCTCTTCTCCAGTGACACGTG GACAAATGCGGGCTCATCAGCCCCCCCAGAGAGGGTCAGGCCGAACCCCA 40 TTTCTCCTCCTCTTAGGTCATTTTCAGCAAACTTGAATATCTAGACCTCTCT TCCAATGAAACCCTCCAGTCTATTATAGTCACATAGATAATGGTGCCACGT GTTTTCTGATTTGGTGAGCTCAGACTTGGTGCTTCCCTCTCCACAACCCCC ACCCCTTGTTTTTCAAGATACTATTATTATATTTTCACAGACTTTTGAAGCA CAAATTTATTGGCATTTAATATTGGACATCTGGGCCCTTGGAAGTACAAAT 45 CTAAGGAAAAACCAACCCACTGTGTAAGTGACTCATCTTCCTGTTGTTCCA ATTCTGTGGGTTTTTGATTCAACGGTGCTATAACCAGGGTCCTGGGTGACA GGGCGCTCACTGAGCACCATGTGTCATCACAGACACTTACACATACTTGA AACTTGGAATAAAAGAAAGATTTATG SEQ ID NO: 98 50 - 58 Thyroglobulin >gil335898511reflNM_003235.31 Homo sapiens thyroglobulin (TG), mRNA qPCR forwardprimer match [886..905] 1 qPCR reverseprimer match [962..941] qPCR probe match [915..939] 5 GCAGTGGTTTCTCCTCCTTCCTCCCAGGAAGGGCCAGGAAAATGGC CCTGGTCCTGGAGATCTTCACCCTGCTGGCCTCCATCTGCTGGGTGTCGGC CAATATCTTCGAGTACCAGGTTGATGCCCAGCCCCTTCGTCCCTGTGAGCT GCAGAGGGAAACGGCCTTTCTGAAGCAAGCAGACTACGTGCCCCAGTGTG CAGAGGATGGCAGCTTCCAGACTGTCCAGTGCCAGAACGACGGCCGCTCC 10 TGCTGGTGTGTGGGTGCCAACGGCAGTGAAGTGCTGGGCAGCAGGCAGCC AGGACGGCCTGTGGCTTGTCTGTCATTTTGTCAGCTACAGAAACAGCAGA TCTTACTGAGTGGCTACATTAACAGCACAGACACCTCCTACCTCCCTCAGT GTCAGGATTCAGGGGACTACGCGCCTGTTCAGTGTGATGTGCAGCATGTC CAGTGCTGGTGTGTGGACGCAGAGGGGATGGAGGTGTATGGGACCCGCCA 15 GCTGGGGAGGCCAAAGCGATGTCCAAGGAGCTGTGAAATAAGAAATCGT CGTCTTCTCCACGGGGTGGGAGATAAGTCACCACCCCAGTGTTCTGCGGA GGGAGAGTTTATGCCTGTCCAGTGCAAATTTGTCAACACCACAGACATGA TGATTTTTGATCTGGTCCACAGCTACAACAGGTTTCCAGATGCATTTGTGA CCTTCAGTTCCTTCCAGAGGAGGTTCCCTGAGGTATCTGGGTATTGCCACT 20 GTGCTGACAGCCAAGGGCGGGAACTGGCTGAGACAGGTTTGGAGTTGTTA CTGGATGAAATTTATGACACCATTTTTGCTGGCCTGGACCTTCCTTCCACC TTCACTGAAACCACCCTGTACCGGATACTGCAGAGACGGTTCCTCGCAGTT CAATCAGTCATCTCTGGCAGATTCCGATGCCCCACAAAATGTGAAGTGGA GCGGTTTACAGCAACCAGCTTTGGTCACCCCTATGTTCCAAGCTGCCGCCG 25 AAATGGCGACTATCAGGCGGTGCAGTGCCAGACGGAAGGGCCCTGCTGGT GTGTGGACGCCCAGGGGAAGGAAATGCATGGAACCCGGCAGCAAGGGGA GCCGCCATCTTGTGCTGAAGGCCAATCTTGTGCCTCCGAAAGGCAGCAGG CCTTGTCCAGACTCTACTTTGGGACCTCAGGCTACTTCAGCCAGCACGACC TGTTCTCTTCCCCAGAGAAAAGATGGGCCTCTCCAAGAGTAGCCAGATTT 30 GCCACATCCTGCCCACCCACGATCAAGGAGCTCTTTGTGGACTCTGGGCTT CTCCGCCCAATGGTGGAGGGACAGAGCCAACAGTTTTCTGTCTCAGAAAA TCTTCTCAAAGAAGCCATCCGAGCAATTTTTCCCTCCCGAGGGCTGGCTCG TCTTGCCCTTCAGTTTACCACCAACCCAAAGAGACTCCAGCAAAACCTTTT TGGAGGGAAATTTTTGGTGAATGTTGGCCAGTTTAACTTGTCTGGAGCCCT 35 TGGCACAAGAGGCACATTTAACTTCAGTCAATTTTTCCAGCAACTTGGTCT TGCAAGCTTCTTGAATGGAGGGAGACAAGAAGATTTGGCCAAGCCACTCT CTGTGGGATTAGATTCAAATTCTTCCACAGGAACCCCTGAAGCTGCTAAG AAGGATGGTACTATGAATAAGCCAACTGTGGGCAGCTTTGGCTTTGAAAT TAACCTACAAGAGAACCAAAATGCCCTCAAATTCCTTGCTTCTCTCCTGGA 40 GCTTCCAGAATTCCTTCTCTTCTTGCAACATGCTATCTCTGTGCCAGAAGA TGTGGCAAGAGATTTAGGTGATGTGATGGAAACGGTACTCGACTCCCAGA CCTGTGAGCAGACACCTGAAAGGCTATTTGTCCCATCATGCACGACAGAA GGAAGCTATGAGGATGTCCAATGCTTTTCCGGAGAGTGCTGGTGTGTGAA TTCCTGGGGCAAAGAGCTTCCAGGCTCAAGAGTCAGAGATGGACAGCCAA 45 GGTGCCCCACAGACTGTGAAAAGCAAAGGGCTCGCATGCAAAGCCTCATG GGCAGCCAGCCTGCTGGCTCCACCTTGTTTGTCCCTGCTTGTACTAGTGAG GGACATTTCCTGCCTGTCCAGTGCTTCAACTCAGAGTGCTACTGTGTTGAT
GCTGAGGGTCAGGCCATTCCTGGAACTCGAAGTGCAATAGGGAAGCCCAA
-59 GAAATGCCCCACGCCCTGTCAATTACAGTCTGAGCAAGCTTTCCTCAGGA CGGTGCAGGCCCTGCTCTCTAACTCCAGCATGCTACCCACCCTTTCCGACA CCTACATCCCACAGTGCAGCACCGATGGGCAGTGGAGACAAGTGCAATGC AATGGGCCTCCTGAGCAGGTCTTCGAGTTGTACCAACGATGGGAGGCTCA 5 GAACAAGGGCCAGGATCTGACGCCTGCCAAGCTGCTAGTGAAGATCATGA GCTACAGAGAAGCAGCTTCCGGAAACTTCAGTCTCTTTATTCAAAGTCTGT ATGAGGCTGGCCAGCAAGATGTCTTCCCGGTGCTGTCACAATACCCTTCTC TGCAAGATGTCCCACTAGCAGCACTGGAAGGGAAACGGCCCCAGCCCAG GGAGAATATCCTCCTGGAGCCCTACCTCTTCTGGCAGATCTTAAATGGCCA 10 ACTCAGCCAATACCCGGGGTCCTACTCAGACTTCAGCACTCCTTTGGCACA TTTTGATCTTCGGAACTGCTGGTGTGTGGATGAGGCTGGCCAAGAACTGG AAGGAATGCGGTCTGAGCCAAGCAAGCTCCCAACGTGTCCTGGCTCCTGT GAGGAAGCAAAGCTCCGTGTACTGCAGTTCATTAGGGAAACGGAAGAGA TTGTTTCAGCTTCCAACAGTTCTCGGTTCCCTCTGGGGGAGAGTTTCCTGG 15 TGGCCAAGGGAATCCGGCTGAGGAATGAGGACCTCGGCCTTCCTCCGCTC TTCCCGCCCCGGGAGGCTTTCGCGGAGTTTCTGCGTGGGAGTGATTACGCC ATTCGCCTGGCGGCTCAGTCTACCTTAAGCTTCTATCAGAGACGCCGCTTT TCCCCGGACGACTCGGCTGGAGCATCCGCCCTTCTGCGGTCGGGCCCCTAC ATGCCACAGTGTGATGCGTTTGGAAGTTGGGAGCCTGTGCAGTGCCACGC 20 TGGGACTGGGCACTGCTGGTGTGTAGATGAGAAAGGAGGGTTCATCCCTG GCTCACTGACTGCCCGCTCTCTGCAGATTCCACAGTGCCCGACAACCTGCG AGAAATCTCGAACCAGTGGGCTGCTTTCCAGTTGGAAACAGGCTAGATCC CAAGAAAACCCATCTCCAAAAGACCTGTTCGTCCCAGCCTGCCTAGAAAC AGGAGAATATGCCAGGCTGCAGGCATCGGGGGCTGGCACCTGGTGTGTGG 25 ACCCTGCATCAGGAGAAGAGTTGCGGCCTGGCTCGAGCAGCAGTGCCCAG TGCCCAAGCCTCTGCAATGTGCTCAAGAGTGGAGTCCTCTCTAGGAGAGT CAGCCCAGGCTATGTCCCAGCCTGCAGGGCAGAGGATGGGGGCTTTTCCC CAGTGCAATGTGACCAGGCCCAGGGCAGCTGCTGGTGTGTCATGGACAGC GGAGAAGAGGTGCCTGGGACGCGCGTGACCGGGGGCCAGCCCGCCTGTG 30 AGAGCCCGCGGTGTCCGCTGCCATTCAACGCGTCGGAGGTGGTTGGTGGA ACAATCCTGTGTGAGACAATCTCGGGCCCCACAGGCTCTGCCATGCAGCA GTGCCAATTGCTGTGCCGCCAAGGCTCCTGGAGCGTGTTTCCACCAGGGC CATTGATATGTAGCCTGGAGAGCGGACGCTGGGAGTCACAGCTGCCTCAG CCCCGGGCCTGCCAACGGCCCCAGCTGTGGCAGACCATCCAGACCCAAGG 35 GCACTTTCAGCTCCAGCTCCCGCCGGGCAAGATGTGCAGTGCTGACTACG CGGGTTTGCTGCAGACTTTCCAGGTTTTCATATTGGATGAGCTGACAGCCC GCGGCTTCTGCCAGATCCAGGTGAAGACTTTTGGCACCCTGGTTTCCATTC CTGTCTGCAACAACTCCTCTGTGCAGGTGGGTTGTCTGACCAGGGAGCGTT TAGGAGTGAATGTTACATGGAAATCACGGCTTGAGGACATCCCAGTGGCT 40 TCTCTTCCTGACTTACATGACATTGAGAGAGCCTTGGTGGGCAAGGATCTC CTTGGGCGCTTCACAGATCTGATCCAGAGTGGCTCATTCCAGCTTCATCTG GACTCCAAGACGTTCCCAGCGGAAACCATCCGCTTCCTCCAAGGGGACCA CTTTGGCACCTCTCCTAGGACACGGTTTGGGTGCTCGGAAGGATTCTACCA AGTCTTGACAAGTGAGGCCAGTCAGGACGGACTGGGATGCGTTAAGTGCC 45 ATGAAGGAAGCTATTCCCAAGATGAGGAATGCATTCCTTGTCCTGTTGGA TTCTACCAAGAACAGGCAGGGAGCTTGGCCTGTGTCCCATGTCCTGTGGG CAGAACGACCATTTCTGCCGGAGCTTTCAGCCAGACTCACTGTGTCACTGA CTGTCAGAGGAACGAAGCAGGCCTGCAATGTGACCAGAATGGCCAGTATC GAGCCAGCCAGAAGGACAGGGGCAGTGGGAAGGCCTTCTGTGTGGACGG 50 CGAGGGGCGGAGGCTGCCATGGTGGGAAACAGAGGCCCCTCTTGAGGAC -60 TCACAGTGTTTGATGATGCAGAAGTTTGAGAAGGTTCCAGAATCAAAGGT GATCTTCGACGCCAATGCTCCTGTGGCTGTCAGATCCAAAGTTCCTGATTC TGAGTTCCCCGTGATGCAGTGCTTGACAGATTGCACAGAGGACGAGGCCT GCAGCTTCTTCACCGTGTCCACGACGGAGCCAGAGATTTCCTGTGATTTCT 5 ATGCTTGGACAAGTGACAATGTTGCCTGCATGACTTCTGACCAGAAACGA GATGCACTGGGGAACTCAAAGGCCACCAGCTTTGGAAGTCTTCGCTGCCA GGTGAAAGTGAGGAGCCATGGTCAAGATTCTCCAGCTGTGTATTTGAAAA AGGGCCAAGGATCCACCACAACACTTCAGAAACGCTTTGAACCCACTGGT TTCCAAAACATGCTTTCTGGATTGTACAACCCCATTGTGTTCTCAGCCTCA 10 GGAGCCAATCTAACCGATGCTCACCTCTTCTGTCTTCTTGCATGCGACCGT GATCTGTGTTGCGATGGCTTCGTCCTCACACAGGTTCAAGGAGGTGCCATC ATCTGTGGGTTGCTGAGCTCACCCAGTGTCCTGCTTTGTAATGTCAAAGAC TGGATGGATCCCTCTGAAGCCTGGGCTAATGCTACATGTCCTGGTGTGACA TATGACCAGGAGAGCCACCAGGTGATATTGCGTCTTGGAGACCAGGAGTT 15 CATCAAGAGTCTGACACCCTTAGAAGGAACTCAAGACACCTTTACCAATT TTCAGCAGGTTTATCTCTGGAAAGATTCTGACATGGGGTCTCGGCCTGAGT CTATGGGATGTAGAAAAAACACAGTGCCAAGGCCAGCATCTCCAACAGA AGCAGGTTTGACAACAGAACTTTTCTCCCCTGTGGACCTCAACCAGGTCAT TGTCAATGGAAATCAATCACTATCCAGCCAGAAGCACTGGCTTTTCAAGC 20 ACCTGTTTTCAGCCCAGCAGGCAAACCTATGGTGCCTTTCTCGTTGTGTGC AGGAGCACTCTTTCTGTCAGCTCGCAGAGATAACAGAGAGTGCATCCTTG TACTTCACCTGCACCCTCTACCCAGAGGCACAGGTGTGTGATGACATCATG GAGTCCAATACCCAGGGCTGCAGACTGATCCTGCCTCAGATGCCAAAGGC CCTGTTCCGGAAGAAAGTTATACTGGAAGATAAAGTGAAGAACTTTTACA 25 CTCGCCTGCCGTTCCAAAAACTGATGGGGATATCCATTAGAAATAAAGTG CCCATGTCTGAAAAATCTATTTCTAATGGGTTCTTTGAATGTGAACGACGG TGCGATGCGGACCCATGCTGCACTGGCTTTGGATTTCTAAATGTTTCCCAG TTAAAAGGAGGAGAGGTGACATGTCTCACTCTGAACAGCTTGGGAATTCA GATGTGCAGTGAGGAGAATGGAGGAGCCTGGCGCATTTTGGACTGTGGCT 30 CTCCTGACATTGAAGTCCACACCTATCCCTTCGGATGGTACCAGAAGCCCA TTGCTCAAAATAATGCTCCCAGTTTTTGCCCTTTGGTTGTTCTGCCTTCCCT CACAGAGAAAGTGTCTCTGGAATCGTGGCAGTCCCTGGCCCTCTCTTCAGT GGTTGTTGATCCATCCATTAGGCACTTTGATGTTGCCCATGTCAGCACTGC TGCCACCAGCAATTTCTCTGCTGTCCGAGACCTCTGTTTGTCGGAATGTTC 35 CCAACATGAGGCCTGTCTCATCACCACTCTGCAAACCCAACTCGGGGCTG TGAGATGTATGTTCTATGCTGATACTCAAAGCTGCACACATAGTCTGCAGG GTCGGAACTGCCGACTTCTGCTTCGTGAAGAGGCCACCCACATCTACCGG AAGCCAGGAATCTCTCTGCTCAGCTATGAGGCATCTGTACCTTCTGTGCCC ATTTCCACCCATGGCCGGCTGCTGGGCAGGTCCCAGGCCATCCAGGTGGG 40 TACCTCATGGAAGCAAGTGGACCAGTTCCTTGGAGTTCCATATGCTGCCCC GCCCCTGGCAGAGAGGCACTTCCAGGCACCAGAGCCCTTGAACTGGACAG GCTCCTGGGATGCCAGCAAGCCAAGGGCCAGCTGCTGGCAGCCAGGCACC AGAACATCCACGTCTCCTGGAGTCAGTGAAGATTGTTTGTATCTCAATGTG TTCATCCCTCAGAATGTGGCCCCTAACGCGTCTGTGCTGGTGTTCTTCCAC 45 AACACCATGGACAGGGAGGAGAGTGAAGGATGGCCGGCTATCGACGGCT CCTTCTTGGCTGCTGTTGGCAACCTCATCGTGGTCACTGCCAGCTACCGAG TGGGTGTCTTCGGCTTCCTGAGTTCTGGATCCGGAGAGGTGAGTGGCAACT GGGGGCTGCTGGACCAGGTGGCGGCTCTGACCTGGGTGCAGACCCACATC CGAGGATTTGGCGGGGACCCTCGGCGCGTGTCCCTGGCAGCAGACCGTGG 50 CGGGGCTGATGTGGCCAGCATCCACCTTCTCACGGCCAGGGCCACCAACT I77& IflHL~ntare DSQ7A7 Alli - 61 CCCAACTTTTCCGGAGAGCTGTGCTGATGGGAGGCTCCGCACTCTCCCCGG CCGCCGTCATCAGCCATGAGAGGGCTCAGCAGCAGGCAATTGCTTTGGCA AAGGAGGTCAGTTGCCCCATGTCATCCAGCCAAGAAGTGGTGTCCTGCCT CCGCCAGAAGCCTGCCAATGTCCTCAATGATGCCCAGACCAAGCTCCTGG 5 CCGTGAGTGGCCCTTTCCACTACTGGGGTCCTGTGATCGATGGCCACTTCC TCCGTGAGCCTCCAGCCAGAGCACTGAAGAGGTCTTTATGGGTAGAGGTC GATCTGCTCATTGGGAGTTCTCAGGACGACGGGCTCATCAACAGAGCAAA GGCTGTGAAGCAATTTGAGGAAAGTCGAGGCCGGACCAGTAGCAAAACA GCCTTTTACCAGGCACTGCAGAATTCTCTGGGTGGCGAGGACTCAGATGC 10 CCGCGTCGAGGCTGCTGCTACATGGTATTACTCTCTGGAGCACTCCACGGA TGACTATGCCTCCTTCTCCCGGGCTCTGGAGAATGCCACCCGGGACTACTT TATCATCTGCCCTATAATCGACATGGCCAGTGCCTGGGCAAAGAGGGCCC GAGGAAACGTCTTCATGTACCATGCTCCTGAAAACTACGGCCATGGCAGC CTGGAGCTGCTGGCGGATGTTCAGTTTGCCTTGGGGCTTCCCTTCTACCCA 15 GCCTACGAGGGGCAGTTTTCTCTGGAGGAGAAGAGCCTGTCGCTGAAAAT CATGCAGTACTTTTCCCACTTCATCAGATCAGGAAATCCCAACTACCCTTA TGAGTTCTCACGGAAAGTACCCACATTTGCAACCCCCTGGCCTGACTTTGT ACCCCGTGCTGGTGGAGAGAACTACAAGGAGTTCAGTGAGCTGCTCCCCA ATCGACAGGGCCTGAAGAAAGCCGACTGCTCCTTCTGGTCCAAGTACATC 20 TCGTCTCTGAAGACATCTGCAGATGGAGCCAAGGGCGGGCAGTCAGCAGA GAGTGAAGAGGAGGAGTTGACGGCTGGATCTGGGCTAAGAGAAGATCTC CTAAGCCTCCAGGAACCAGGCTCTAAGACCTACAGCAAGTGACCAGCCCT TGAGCTCCCCAAAAACCTCACCCGAGGCTGCCCACTATGGTCATCTTTTTC TCTAAAATAGTTACTTACCTTCAATAAAGTATCTACATGCGGTG 25 SEQ ID NO: 99 Transforming Growth Factor, Beta 1 >gil10863872|ref]NM_000660.1l Homo sapiens transforming growth factor, beta I (Camurati-Engelmann disease) (TGFBI), mRNA I qPCR forward_primer 30 match [1651..1668] 1 qPCR reverseprimer match [1539..1557] | qPCR probe match [1687..1713] ACCTCCCTCCGCGGAGCAGCCAGACAGCGAGGGCCCCGGCCGGGG GCAGGGGGGACGCCCCGTCCGGGGCACCCCCCCCGGCTCTGAGCCGCCCG CGGGGCCGGCCTCGGCCCGGAGCGGAGGAAGGAGTCGCCGAGGAGCAGC 35 CTGAGGCCCCAGAGTCTGAGACGAGCCGCCGCCGCCCCCGCCACTGCGGG GAGGAGGGGGAGGAGGAGCGGGAGGAGGGACGAGCTGGTCGGGAGAAG AGGAAAAAAACTTTTGAGACTTTTCCGTTGCCGCTGGGAGCCGGAGGCGC GGGGACCTCTTGGCGCGACGCTGCCCCGCGAGGAGGCAGGACTTGGGGAC CCCAGACCGCCTCCCTTTGCCGCCGGGGACGCTTGCTCCCTCCCTGCCCCC 40 TACACGGCGTCCCTCAGGCGCCCCCATTCCGGACCAGCCCTCGGGAGTCG CCGACCCGGCCTCCCGCAAAGACTTTTCCCCAGACCTCGGGCGCACCCCCT GCACGCCGCCTTCATCCCCGGCCTGTCTCCTGAGCCCCCGCGCATCCTAGA CCCTTTCTCCTCCAGGAGACGGATCTCTCTCCGACCTGCCACAGATCCCCT ATTCAAGACCACCCACCTTCTGGTACCAGATCGCGCCCATCTAGGTTATTT 45 CCGTGGGATACTGAGACACCCCCGGTCCAAGCCTCCCCTCCACCACTGCG CCCTTCTCCCTGAGGAGCCTCAGCTTTCCCTCGAGGCCCTCCTACCTTTTGC
CGGGAGACCCCCAGCCCCTGCAGGGGCGGGGCCTCCCCACCACACCAGCC
- 62 CTGTTCGCGCTCTCGGCAGTGCCGGGGGGCGCCGCCTCCCCCATGCCGCCC TCCGGGCTGCGGCTGCTGCCGCTGCTGCTACCGCTGCTGTGGCTACTGGTG CTGACGCCTGGCCCGCCGGCCGCGGGACTATCCACCTGCAAGACTATCGA CATGGAGCTGGTGAAGCGGAAGCGCATCGAGGCCATCCGCGGCCAGATCC 5 TGTCCAAGCTGCGGCTCGCCAGCCCCCCGAGCCAGGGGGAGGTGCCGCCC GGCCCGCTGCCCGAGGCCGTGCTCGCCCTGTACAACAGCACCCGCGACCG GGTGGCCGGGGAGAGTGCAGAACCGGAGCCCGAGCCTGAGGCCGACTAC TACGCCAAGGAGGTCACCCGCGTGCTAATGGTGGAAACCCACAACGAAAT CTATGACAAGTTCAAGCAGAGTACACACAGCATATATATGTTCTTCAACA 10 CATCAGAGCTCCGAGAAGCGGTACCTGAACCCGTGTTGCTCTCCCGGGCA GAGCTGCGTCTGCTGAGGAGGCTCAAGTTAAAAGTGGAGCAGCACGTGGA GCTGTACCAGAAATACAGCAACAATTCCTGGCGATACCTCAGCAACCGGC TGCTGGCACCCAGCGACTCGCCAGAGTGGTTATCTTTTGATGTCACCGGAG TTGTGCGGCAGTGGTTGAGCCGTGGAGGGGAAATTGAGGGCTTTCGCCTT 15 AGCGCCCACTGCTCCTGTGACAGCAGGGATAACACACTGCAAGTGGACAT CAACGGGTTCACTACCGGCCGCCGAGGTGACCTGGCCACCATTCATGGCA TGAACCGGCCTTTCCTGCTTCTCATGGCCACCCCGCTGGAGAGGGCCCAGC ATCTGCAAAGCTCCCGGCACCGCCGAGCCCTGGACACCAACTATTGCTTC AGCTCCACGGAGAAGAACTGCTGCGTGCGGCAGCTGTACATTGACTTCCG 20 CAAGGACCTCGGCTGGAAGTGGATCCACGAGCCCAAGGGCTACCATGCCA ACTTCTGCCTCGGGCCCTGCCCCTACATTTGGAGCCTGGACACGCAGTACA GCAAGGTCCTGGCCCTGTACAACCAGCATAACCCGGGCGCCTCGGCGGCG CCGTGCTGCGTGCCGCAGGCGCTGGAGCCGCTGCCCATCGTGTACTACGT GGGCCGCAAGCCCAAGGTGGAGCAGCTGTCCAACATGATCGTGCGCTCCT 25 GCAAGTGCAGCTGAGGTCCCGCCCCGCCCCGCCCCGCCCCGGCAGGCCCG GCCCCACCCCGCCCCGCCCCCGCTGCCTTGCCCATGGGGGCTGTATTTAAG GACACCGTGCCCCAAGCCCACCTGGGGCCCCATTAAAGATGGAGAGAGG ACTGCGGATCTCTGTGTCATTGGGCGCCTGCCTGGGGTCTCCATCCCTGAC GTTCCCCCACTCCCACTCCCTCTCTCTCCCTCTCTGCCTCCTCCTGCCTGTC 30 TGCACTATTCCTTTGCCCGGCATCAAGGCACAGGGGACCAGTGGGGAACA CTACTGTAGTTAGATCTATTTATTGAGCACCTTGGGCACTGTTGAAGTGCC TTACATTAATGAACTCATTCAGTCACCATAGCAACACTCTGAGATGGCAG GGACTCTGATAACACCCATTTTAAAGGTTGAGGAAACAAGCCCAGAGAGG TTAAGGGAGGAGTTCCTGCCCACCAGGAACCTGCTTTAGTGGGGGATAGT 35 GAAGAAGACAATAAAAGATAGTAGTTCAGGCCAGGCGGGGTGCTCACGC CTGTAATCCTAGCACTTTTGGGAGGCAGAGATGGGAGGATACTTGAATCC AGGCATTTGAGACCAGCCTGGGTAACATAGTGAGACCCTATCTCTACAAA ACACTTTTAAAAAATGTACACCTGTGGTCCCAGCTACTCTGGAGGCTAAG GTGGGAGGATCACTTGATCCTGGGAGGTCAAGGCTGCAG 40 SEQ ID NO: 100 Serine Proteinase Inhibitor, Clade H, Member 1 >gil324547401reflNM_001235.21 Homo sapiens serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1) 45 (SERPINH 1), mRNA I qPCR assayondemandcontext match [184..208] TCTTTGGCTTTTTTTGGCGGAGCTGGGGCGCCCTCCGGAAGCGTTTC
CAACTTTCCAGAAGTTTCTCGGGACGGGCAGGAGGGGGTGGGGACTGCCA
- 63 TATATAGATCCCGGGAGCAGGGGAGCGGGCTAAGAGTAGAATCGTGTCGC GGCTCGAGAGCGAGAGTCACGTCCCGGCGCTAGCCCAGCCCGACCCAGGC CCACCGTGGTGCACGCAAACCACTTCCTGGCCATGCGCTCCCTCCTGCTTC TCAGCGCCTTCTGCCTCCTGGAGGCGGCCCTGGCCGCCGAGGTGAAGAAA 5 CCTGCAGCCGCAGCAGCTCCTGGCACTGCGGAGAAGTTGAGCCCCAAGGC GGCCACGCTTGCCGAGCGCAGCGCCGGCCTGGCCTTCAGCTTGTACCAGG CCATGGCCAAGGACCAGGCAGTGGAGAACATCCTGGTGTCACCCGTGGTG GTGGCCTCGTCGCTAGGGCTCGTGTCGCTGGGCGGCAAGGCGACCACGGC GTCGCAGGCCAAGGCAGTGCTGAGCGCCGAGCAGCTGCGCGACGAGGAG 10 GTGCACGCCGGCCTGGGCGAGCTGCTGCGCTCACTCAGCAACTCCACGGC GCGCAACGTGACCTGGAAGCTGGGCAGCCGACTGTACGGACCCAGCTCAG TGAGCTTCGCTGATGACTTCGTGCGCAGCAGCAAGCAGCACTACAACTGC GAGCACTCCAAGATCAACTTCCGCGACAAGCGCAGCGCGCTGCAGTCCAT CAACGAGTGGGCCGCGCAGACCACCGACGGCAAGCTGCCCGAGGTCACC 15 AAGGACGTGGAGCGCACGGACGGCGCCCTGCTAGTCAACGCCATGTTCTT CAAGCCACACTGGGATGAGAAATTCCACCACAAGATGGTGGACAACCGTG GCTTCATGGTGACTCGGTCCTATACCGTGGGTGTCATGATGATGCACCGGA CAGGCCTCTACAACTACTACGACGACGAGAAGGAAAAGCTGCAAATCGTG GAGATGCCCCTGGCCCACAAGCTCTCCAGCCTCATCATCCTCATGCCCCAT 20 CACGTGGAGCCTCTCGAGCGCCTTGAAAAGCTGCTAACCAAAGAGCAGCT GAAGATCTGGATGGGGAAGATGCAGAAGAAGGCTGTTGCCATCTCCTTGC CCAAGGGTGTGGTGGAGGTGACCCATGACCTGCAGAAACACCTGGCTGGG CTGGGCCTGACTGAGGCCATTGACAAGAACAAGGCCGACTTGTCACGCAT GTCAGGCAAGAAGGACCTGTACCTGGCCAGCGTGTTCCACGCCACCGCCT 25 TTGAGTTGGACACAGATGGCAACCCCTTTGACCAGGACATCTACGGGCGC GAGGAGCTGCGCAGCCCCAAGCTGTTCTACGCCGACCACCCCTTCATCTTC CTAGTGCGGGACACCCAAAGCGGCTCCCTGCTATTCATTGGGCGCCTGGT CCGGCCTAAGGGTGACAAGATGCGAGACGAGTTATAGGGCCTCAGGGTGC ACACAGGATGGCAGGAGGCATCCAAAGGCTCCTGAGACACATGGGTGCT 30 ATTGGGGTTGGGGGGGAGGTGAGGTACCAGCCTTGGATACTCCATGGGGT GGGGGTGGAAAAACAGACCGGGGTTCCCGTGTGCCTGAGCGGACCTTCCC AGCTAGAATTCACTCCACTTGGACATGGGCCCCAGATACCATGATGCTGA GCCCGGAAACTCCACATCCTGTGGGACCTGGGCCATAGTCATTCTGCCTGC CCTGAAAGTCCCAGATCAAGCCTGCCTCAATCAGTATTCATATTTATAGCC 35 AGGTACCTTCTCACCTGTGAGACCAAATTGAGCTAGGGGGGTCAGCCAGC CCTCTTCTGACACTAAAACACCTCAGCTGCCTCCCCAGCTCTATCCCAACC TCTCCCAACTATAAAACTAGGTGCTGCAGCCCCTGGGACCAGGCACCCCC AGAATGACCTGGCCGCAGTGAGGCGGATTGAGAAGGAGCTCCCAGGAGG GGCTTCTGGGCAGACTCTGGTCAAGAAGCATCGTGTCTGGCGTTGTGGGG 40 ATGAACTTTTTGTTTTGTTTCTTCCTTTTTTAGTTCTTCAAAGATAGGGAGG GAAGGGGGAACATGAGCCTTTGTTGCTATCAATCCAAGAACTTATTTGTA CATTTTTTTTTTCAATAAAACTTTTCCAATGACATTTTGTTGGAGCGTGGAA AAAA SEQ ID NO: 101 45 Serine Proteinase Inhibitor, Clade B, Member 5 >gil45057881ref]NM_002639.1| Homo sapiens serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 (SERPINB5), mRNA I qPCR -64 forwardprimer match [36..56] 1 qPCR reverseprimer match [106..86] 1 qPCR probe match [60..80] GGCACGAGTTGTGCTCCTCGCTTGCCTGTTCCTTTTCCACGCATTTT CCAGGATAACTGTGACTCCAGGCCCGCAATGGATGCCCTGCAACTAGCAA 5 ATTCGGCTTTTGCCGTTGATCTGTTCAAACAACTATGTGAAAAGGAGCCAC TGGGCAATGTCCTCTTCTCTCCAATCTGTCTCTCCACCTCTCTGTCACTTGC TCAAGTGGGTGCTAAAGGTGACACTGCAAATGAAATTGGACAGGTTCTTC ATTTTGAAAATGTCAAAGATATACCCTTTGGATTTCAAACAGTAACATCGG ATGTAAACAAACTTAGTTCCTTTTACTCACTGAAACTAATCAAGCGGCTCT 10 ACGTAGACAAATCTCTGAATCTTTCTACAGAGTTCATCAGCTCTACGAAGA GACCCTATGCAAAGGAATTGGAAACTGTTGACTTCAAAGATAAATTGGAA GAAACGAAAGGTCAGATCAACAACTCAATTAAGGATCTCACAGATGGCCA CTTTGAGAACATTTTAGCTGACAACAGTGTGAACGACCAGACCAAAATCC TTGTGGTTAATGCTGCCTACTTTGTTGGCAAGTGGATGAAGAAATTTCCTG 15 AATCAGAAACAAAAGAATGTCCTTTCAGACTCAACAAGACAGACACCAA ACCAGTGCAGATGATGAACATGGAGGCCACGTTCTGTATGGGAAACATTG ACAGTATCAATTGTAAGATCATAGAGCTTCCTTTTCAAAATAAGCATCTCA GCATGTTCATCCTACTACCCAAGGATGTGGAGGATGAGTCCACAGGCTTG GAGAAGATTGAAAAACAACTCAACTCAGAGTCACTGTCACAGTGGACTAA 20 TCCCAGCACCATGGCCAATGCCAAGGTCAAACTCTCCATTCCAAAATTTA AGGTGGAAAAGATGATTGATCCCAAGGCTTGTCTGGAAAATCTAGGGCTG AAACATATCTTCAGTGAAGACACATCTGATTTCTCTGGAATGTCAGAGAC CAAGGGAGTGGCCCTATCAAATGTTATCCACAAAGTGTGCTTAGAAATAA CTGAAGATGGTGGGGATTCCATAGAGGTGCCAGGAGCACGGATCCTGCAG 25 CACAAGGATGAATTGAATGCTGACCATCCCTTTATTTACATCATCAGGCAC AACAAAACTCGAAACATCATTTTCTTTGGCAAATTCTGTTCTCCTTAAGTG GCATAGCCCATGTTAAGTCCTCCCTGACTTTTCTGTGGATGCCGATTTCTG TAAACTCTGCATCCAGAGATTCATTTTCTAGATACAATAAATTGCTAATGT TGCTGGATCAGGAAGCCGCCAGTACTTGTCATATGTAGCCTTCACACAGA 30 TAGACCTTTTTTTTTTTCCAATTCTATCTTTTGTTTCCTTTTTTCCCATAAGA CAATGACATACGCTTTTAATGAAAAGGAATCACGTTAGAGGAAAAATATT TATTCATTATTTGTCAAATTGTCCGGGGTAGTTGGCAGAAATACAGTCTTC CACAAAGAAAATTCCTATAAGGAAGATTTGGAAGCTCTTCTTCCCAGCAC TATGCTTTCCTTCTTTGGGATAGAGAATGTTCCAGACATTCTCGCTTCCCTG 35 AAAGACTGAAGAAAGTGTAGTGCATGGGACCCACGAAACTGCCCTGGCTC CAGTGAAACTTGGGCACATGCTCAGGCTACTATAGGTCCAGAAGTCCTTA TGTTAAGCCCTGGCAGGCAGGTGTTTATTAAAATTCTGAATTTTGGGGATT TTCAAAAGATAATATTTTACATACACTGTATGTTATAGAACTTCATGGATC AGATCTGGGGCAGCAACCTATAAATCAACACCTTAATATGCTGCAACAAA 40 ATGTAGAATATTCAGACAAAATGGATACATAAAGACTAAGTAGCCCATAA GGGGTCAAAATTTGCTGCCAAATGCGTATGCCACCAACTTACAAAAACAC TTCGTTCGCAGAGCTTTTCAGATTGTGGAATGTTGGATAAGGAATTATAGA CCTCTAGTAGCTGAAATGCAAGACCCCAAGAGGAAGTTCAGATCTTAATA TAAATTCACTTTCATTTTTGATAGCTGTCCCATCTGGTCATGTGGTTGGCAC 45 TAGACTGGTGGCAGGGGCTTCTAGCTGACTCGCACAGGGATTCTCACAAT AGCCGATATCAGAATTTGTGTTGAAGGAACTTGTCTCTTCATCTAATATGA TAGCGGGAAAAGGAGAGGAAACTACTGCCTTTAGAAAATATAAGTAAAG TGATTAAAGTGCTCACGTTACCTTGACACATAGTTTTTCAGTCTATGGGTT
TAGTTACTTTAGATGGCAAGCATGTAACTTATATTAATAGTAATTTGTAAA
-65 GTTGGGTGGATAAGCTATCCCTGTTGCCGGTTCATGGATTACTTCTCTATA AAAAATATATATTTACCAAAAAATTTTGTGACATTCCTTCTCCCATCTCTT CCTTGACATGCATTGTAAATAGGTTCTTCTTGTTCTGAGATTCAATATTGA ATTTCTCCTATGCTATTGACAATAAAATATTATTGAACTACC 5 SEQ ID NO: 102 Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 >gill 1386170|reflNM_004363.11 Homo sapiens carcinoembryonic antigen related cell adhesion molecule 5 (CEACAM5), mRNA I qPCR 10 assayon demandcontext match [2128..2152] CTCAGGGCAGAGGGAGGAAGGACAGCAGACCAGACAGTCACAGC AGCCTTGACAAAACGTTCCTGGAACTCAAGCTCTTCTCCACAGAGGAGGA CAGAGCAGACAGCAGAGACCATGGAGTCTCCCTCGGCCCCTCCCCACAGA TGGTGCATCCCCTGGCAGAGGCTCCTGCTCACAGCCTCACTTCTAACCTTC 15 TGGAACCCGCCCACCACTGCCAAGCTCACTATTGAATCCACGCCGTTCAAT GTCGCAGAGGGGAAGGAGGTGCTTCTACTTGTCCACAATCTGCCCCAGCA TCTTTTTGGCTACAGCTGGTACAAAGGTGAAAGAGTGGATGGCAACCGTC AAATTATAGGATATGTAATAGGAACTCAACAAGCTACCCCAGGGCCCGCA TACAGTGGTCGAGAGATAATATACCCCAATGCATCCCTGCTGATCCAGAA 20 CATCATCCAGAATGACACAGGATTCTACACCCTACACGTCATAAAGTCAG ATCTTGTGAATGAAGAAGCAACTGGCCAGTTCCGGGTATACCCGGAGCTG CCCAAGCCCTCCATCTCCAGCAACAACTCCAAACCCGTGGAGGACAAGGA TGCTGTGGCCTTCACCTGTGAACCTGAGACTCAGGACGCAACCTACCTGTG GTGGGTAAACAATCAGAGCCTCCCGGTCAGTCCCAGGCTGCAGCTGTCCA 25 ATGGCAACAGGACCCTCACTCTATTCAATGTCACAAGAAATGACACAGCA AGCTACAAATGTGAAACCCAGAACCCAGTGAGTGCCAGGCGCAGTGATTC AGTCATCCTGAATGTCCTCTATGGCCCGGATGCCCCCACCATTTCCCCTCT AAACACATCTTACAGATCAGGGGAAAATCTGAACCTCTCCTGCCACGCAG CCTCTAACCCACCTGCACAGTACTCTTGGTTTGTCAATGGGACTTTCCAGC 30 AATCCACCCAAGAGCTCTTTATCCCCAACATCACTGTGAATAATAGTGGAT CCTATACGTGCCAAGCCCATAACTCAGACACTGGCCTCAATAGGACCACA GTCACGACGATCACAGTCTATGCAGAGCCACCCAAACCCTTCATCACCAG CAACAACTCCAACCCCGTGGAGGATGAGGATGCTGTAGCCTTAACCTGTG AACCTGAGATTCAGAACACAACCTACCTGTGGTGGGTAAATAATCAGAGC 35 CTCCCGGTCAGTCCCAGGCTGCAGCTGTCCAATGACAACAGGACCCTCAC TCTACTCAGTGTCACAAGGAATGATGTAGGACCCTATGAGTGTGGAATCC AGAACGAATTAAGTGTTGACCACAGCGACCCAGTCATCCTGAATGTCCTC TATGGCCCAGACGACCCCACCATTTCCCCCTCATACACCTATTACCGTCCA GGGGTGAACCTCAGCCTCTCCTGCCATGCAGCCTCTAACCCACCTGCACA 40 GTATTCTTGGCTGATTGATGGGAACATCCAGCAACACACACAAGAGCTCT TTATCTCCAACATCACTGAGAAGAACAGCGGACTCTATACCTGCCAGGCC AATAACTCAGCCAGTGGCCACAGCAGGACTACAGTCAAGACAATCACAGT CTCTGCGGAGCTGCCCAAGCCCTCCATCTCCAGCAACAACTCCAAACCCG TGGAGGACAAGGATGCTGTGGCCTTCACCTGTGAACCTGAGGCTCAGAAC 45 ACAACCTACCTGTGGTGGGTAAATGGTCAGAGCCTCCCAGTCAGTCCCAG GCTGCAGCTGTCCAATGGCAACAGGACCCTCACTCTATTCAATGTCACAA
GAAATGACGCAAGAGCCTATGTATGTGGAATCCAGAACTCAGTGAGTGCA
- 66 AACCGCAGTGACCCAGTCACCCTGGATGTCCTCTATGGGCCGGACACCCC CATCATTTCCCCCCCAGACTCGTCTTACCTTTCGGGAGCGAACCTCAACCT CTCCTGCCACTCGGCCTCTAACCCATCCCCGCAGTATTCTTGGCGTATCAA TGGGATACCGCAGCAACACACACAAGTTCTCTTTATCGCCAAAATCACGC 5 CAAATAATAACGGGACCTATGCCTGTTTTGTCTCTAACTTGGCTACTGGCC GCAATAATTCCATAGTCAAGAGCATCACAGTCTCTGCATCTGGAACTTCTC CTGGTCTCTCAGCTGGGGCCACTGTCGGCATCATGATTGGAGTGCTGGTTG GGGTTGCTCTGATATAGCAGCCCTGGTGTAGTTTCTTCATTTCAGGAAGAC TGACAGTTGTTTTGCTTCTTCCTTAAAGCATTTGCAACAGCTACAGTCTAA 10 AATTGCTTCTTTACCAAGGATATTTACAGAAAAGACTCTGACCAGAGATC GAGACCATCCTAGCCAACATCGTGAAACCCCATCTCTACTAAAAATACAA AAATGAGCTGGGCTTGGTGGCGCGCACCTGTAGTCCCAGTTACTCGGGAG GCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGTGGAGATTGCAGTGAG CCCAGATCGCACCACTGCACTCCAGTCTGGCAACAGAGCAAGACTCCATC 15 TCAAAAAGAAAAGAAAAGAAGACTCTGACCTGTACTCTTGAATACAAGTT TCTGATACCACTGCACTGTCTGAGAATTTCCAAAACTTTAATGAACTAACT GACAGCTTCATGAAACTGTCCACCAAGATCAAGCAGAGAAAATAATTAAT TTCATGGGACTAAATGAACTAATGAGGATTGCTGATTCTTTAAATGTCTTG TTTCCCAGATTTCAGGAAACTTTTTTTCTTTTAAGCTATCCACTCTTACAGC 20 AATTTGATAAAATATACTTTTGTGAACAAAAATTGAGACATTTACATTTTC TCCCTATGTGGTCGCTCCAGACTTGGGAAACTATTCATGAATATTTATATT GTATGGTAATATAGTTATTGCACAAGTTCAATAAAAATCTGCTCTTTGTAT AACAGAAAAA SEQ ID NO: 103 25 Matrix Metalloproteinase 2 >gill 13426651reflNM_004530.1l Homo sapiens matrix metalloproteinase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase) (MMP2), mRNA I qPCR forwardprimer match [1713..1732] | qPCR reverse_primer match [1793..1775] qPCR probe match [1751..1773] 30 TGTTTCCGCTGCATCCAGACTTCCTCAGGCGGTGGCTGGAGGCTGC GCATCTGGGGCTTTAAACATACAAAGGGATTGCCAGGACCTGCGGCGGCG GCGGCGGCGGCGGGGGCTGGGGCGCGGGGGCCGGACCATGAGCCGCTGA GCCGGGCAAACCCCAGGCCACCGAGCCAGCGGACCCTCGGAGCGCAGCC CTGCGCCGCGGACCAGGCTCCAACCAGGCGGCGAGGCGGCCACACGCAC 35 CGAGCCAGCGACCCCCGGGCGACGCGCGGGGCCAGGGAGCGCTACGATG GAGGCGCTAATGGCCCGGGGCGCGCTCACGGGTCCCCTGAGGGCGCTCTG TCTCCTGGGCTGCCTGCTGAGCCACGCCGCCGCCGCGCCGTCGCCCATCAT CAAGTTCCCCGGCGATGTCGCCCCCAAAACGGACAAAGAGTTGGCAGTGC AATACCTGAACACCTTCTATGGCTGCCCCAAGGAGAGCTGCAACCTGTTT 40 GTGCTGAAGGACACACTAAAGAAGATGCAGAAGTTCTTTGGACTGCCCCA GACAGGTGATCTTGACCAGAATACCATCGAGACCATGCGGAAGCCACGCT GCGGCAACCCAGATGTGGCCAACTACAACTTCTTCCCTCGCAAGCCCAAG TGGGACAAGAACCAGATCACATACAGGATCATTGGCTACACACCTGATCT GGACCCAGAGACAGTGGATGATGCCTTTGCTCGTGCCTTCCAAGTCTGGA 45 GCGATGTGACCCCACTGCGGTTTTCTCGAATCCATGATGGAGAGGCAGAC ATCATGATCAACTTTGGCCGCTGGGAGCATGGCGATGGATACCCCTTTGA
CGGTAAGGACGGACTCCTGGCTCATGCCTTCGCCCCAGGCACTGGTGTTG
-67 GGGGAGACTCCCATTTTGATGACGATGAGCTATGGACCTTGGGAGAAGGC CAAGTGGTCCGTGTGAAGTATGGCAACGCCGATGGGGAGTACTGCAAGTT CCCCTTCTTGTTCAATGGCAAGGAGTACAACAGCTGCACTGATACTGGCC GCAGCGATGGCTTCCTCTGGTGCTCCACCACCTACAACTTTGAGAAGGAT 5 GGCAAGTACGGCTTCTGTCCCCATGAAGCCCTGTTCACCATGGGCGGCAA CGCTGAAGGACAGCCCTGCAAGTTTCCATTCCGCTTCCAGGGCACATCCTA TGACAGCTGCACCACTGAGGGCCGCACGGATGGCTACCGCTGGTGCGGCA CCACTGAGGACTACGACCGCGACAAGAAGTATGGCTTCTGCCCTGAGACC GCCATGTCCACTGTTGGTGGGAACTCAGAAGGTGCCCCCTGTGTCTTCCCC 10 TTCACTTTCCTGGGCAACAAATATGAGAGCTGCACCAGCGCCGGCCGCAG TGACGGAAAGATGTGGTGTGCGACCACAGCCAACTACGATGACGACCGCA AGTGGGGCTTCTGCCCTGACCAAGGGTACAGCCTGTTCCTCGTGGCAGCC CACGAGTTTGGCCACGCCATGGGGCTGGAGCACTCCCAAGACCCTGGGGC CCTGATGGCACCCATTTACACCTACACCAAGAACTTCCGTCTGTCCCAGGA 15 TGACATCAAGGGCATTCAGGAGCTCTATGGGGCCTCTCCTGACATTGACCT TGGCACCGGCCCCACCCCCACACTGGGCCCTGTCACTCCTGAGATCTGCA AACAGGACATTGTATTTGATGGCATCGCTCAGATCCGTGGTGAGATCTTCT TCTTCAAGGACCGGTTCATTTGGCGGACTGTGACGCCACGTGACAAGCCC ATGGGGCCCCTGCTGGTGGCCACATTCTGGCCTGAGCTCCCGGAAAAGAT 20 TGATGCGGTATACGAGGCCCCACAGGAGGAGAAGGCTGTGTTCTTTGCAG GGAATGAATACTGGATCTACTCAGCCAGCACCCTGGAGCGAGGGTACCCC AAGCCACTGACCAGCCTGGGACTGCCCCCTGATGTCCAGCGAGTGGATGC CGCCTTTAACTGGAGCAAAAACAAGAAGACATACATCTTTGCTGGAGACA AATTCTGGAGATACAATGAGGTGAAGAAGAAAATGGATCCTGGCTTTCCC 25 AAGCTCATCGCAGATGCCTGGAATGCCATCCCCGATAACCTGGATGCCGT CGTGGACCTGCAGGGCGGCGGTCACAGCTACTTCTTCAAGGGTGCCTATT ACCTGAAGCTGGAGAACCAAAGTCTGAAGAGCGTGAAGTTTGGAAGCATC AAATCCGACTGGCTAGGCTGCTGAGCTGGCCCTGGCTCCCACAGGCCCTT CCTCTCCACTGCCTTCGATACACCGGGCCTGGAGAACTAGAGAAGGACCC 30 GGAGGGGCCTGGCAGCCGTGCCTTCAGCTCTACAGCTAATCAGCATTCTC ACTCCTACCTGGTAATTTAAGATTCCAGAGAGTGGCTCCTCCCGGTGCCCA AGAATAGATGCTGACTGTACTCCTCCCAGGCGCCCCTTCCCCCTCCAATCC CACCAACCCTCAGAGCCACCCCTAAAGAGATCCTTTGATATTTTCAACGCA GCCCTGCTTTGGGCTGCCCTGGTGCTGCCACACTTCAGGCTCTTCTCCTTTC 35 ACAACCTTCTGTGGCTCACAGAACCCTTGGAGCCAATGGAGACTGTCTCA AGAGGGCACTGGTGGCCCGACAGCCTGGCACAGGGCAGTGGGACAGGGC ATGGCCAGGTGGCCACTCCAGACCCCTGGCTTTTCACTGCTGGCTGCCTTA GAACCTTTCTTACATTAGCAGTTTGCTTTGTATGCACTTTGTTTTTTTCTTT GGGTCTTGTTTTTTTTTTCCACTTAGAAATTGCATTTCCTGACAGAAGGACT 40 CAGGTTGTCTGAAGTCACTGCACAGTGCATCTCAGCCCACATAGTGATGG TTCCCCTGTTCACTCTACTTAGCATGTCCCTACCGAGTCTCTTCTCCACTGG ATGGAGGAAAACCAAGCCGTGGCTTCCCGCTCAGCCCTCCCTGCCCCTCCT TCAACCATTCCCCATGGGAAATGTCAACAAGTATGAATAAAGACACCTAC TGAGTGGC SEQ ID NO: 104 45 - 68 Proprotein Convertase Subtilisin/Kexin Type 5 >gil203362451ref]NM_006200.21 Homo sapiens proprotein convertase subtilisin/kexin type 5 (PCSK5), mRNA | qPCR forward-primer match [2677..2697]| qPCR reverseprimer match [2821..2801] qPCR probe match [2737..2765] 5 CGGAGGGAGCGCTGGGAGCGAGCAAGCGAGCGTTTGGAGCCCGGG CCAGCAGAGGGGGCGCCCGGTCGCTGCCTGTACCGCTCCCGCTGGTCATC TCCGCCGCGCTCGGGGGCCCCGGGAGGAGCGAGACCGAGTCGGAGAGTC CGGGAGCCAAGCCGGGCGAAACCCAACTGCGGAGGACGCCCGCCCCACT CAGCCTCCTCCTGCGTCCGAGCCGGGGAGCATCGCCGAGCGCCCCACGGG 10 CCGGAGAGCTGGGAGCACAGGTCCCGGCAGCCCCAGGGATGGTCTAGGA GCCGGCGTAAGGCTCGCTGCTCTGCTCCCTGCCGGGGCTAGCCGCCTCCTG CCGATCGCCCGGGGCTGCGAGCTGCGGCGGCCCGGGGCTGCTCGCCGGGC GGCGCAGGCCGGAGAAGTTAGTTGTGCGCGCCCTTAGTGCGCGGAACCAG CCAGCGAGCGAGGGAGCAGCGAGGCGCCGGGACCATGGGCTGGGGGAGC 15 CGCTGCTGCTGCCCGGGACGTTTGGACCTGCTGTGCGTGCTGGCGCTGCTC GGGGGCTGCCTGCTCCCCGTGTGTCGGACGCGCGTCTACACCAACCACTG GGCAGTCAAAATCGCCGGGGGCTTCCCGGAGGCCAACCGTATCGCCAGCA AGTACGGATTCATCAACATAGGACAGATAGGGGCCCTGAAGGACTACTAC CACTTCTACCATAGCAGGACGATTAAAAGGTCAGTTATCTCGAGCAGAGG 20 GACCCACAGTTTCATTTCAATGGAACCAAAGGTGGAATGGATCCAACAGC AAGTGGTAAAAAAGCGGACAAAGAGGGATTATGACTTCAGTCGTGCCCA GTCTACCTATTTCAATGATCCCAAGTGGCCCAGCATGTGGTATATGCACTG CAGTGACAATACACATCCCTGCCAGTCTGACATGAATATCGAAGGAGCCT GGAAGAGAGGCTACACGGGAAAGAACATTGTGGTCACTATCCTGGATGAC 25 GGAATTGAGAGAACCCATCCAGATCTGATGCAAAACTACGATGCTCTGGC AAGTTGCGACGTGAATGGGAATGACTTGGACCCAATGCCTCGTTATGATG CAAGCAACGAGAACAAGCATGGGACTCGCTGTGCTGGAGAAGTGGCAGC CGCTGCAAACAATTCGCACTGCACAGTCGGAATTGCTTTCAACGCCAAGA TCGGAGGAGTGCGAATGCTGGACGGAGATGTCACGGACATGGTTGAAGC 30 AAAATCAGTTAGCTTCAACCCCCAGCACGTGCACATTTACAGCGCCAGCT GGGGCCCGGATGATGATGGCAAGACTGTGGACGGACCAGCCCCCCTCACC CGGCAAGCCTTTGAAAACGGCGTTAGAATGGGGCGGAGAGGCCTCGGCTC TGTGTTTGTTTGGGCATCTGGAAATGGTGGAAGGAGCAAAGACCACTGCT CCTGTGATGGCTACACCAACAGCATCTACACCATCTCCATCAGCAGCACT 35 GCAGAAAGCGGAAAGAAACCTTGGTACCTGGAAGAGTGTTCATCCACGCT GGCCACAACCTACAGCAGCGGGGAGTCCTACGATAAGAAAATCATCACTA CAGATCTGAGGCAGCGTTGCACGGACAACCACACTGGGACGTCAGCCTCA GCCCCCATGGCTGCAGGCATCATTGCGCTGGCCCTGGAAGCCAATCCGTTT CTGACCTGGAGAGACGTACAGCATGTTATTGTCAGGACTTCCCGTGCGGG 40 ACATTTGAACGCTAATGACTGGAAAACCAATGCTGCTGGTTTTAAGGTGA GCCATCTTTATGGATTTGGACTGATGGACGCAGAAGCCATGGTGATGGAG GCAGAGAAGTGGACCACCGTTCCCCGGCAGCACGTGTGTGTGGAGAGCAC AGACCGACAAATCAAGACAATCCGCCCTAACAGTGCAGTGCGCTCCATCT ACAAAGCTTCAGGCTGCTCGGATAACCCCAACCGCCATGTCAACTACCTG 45 GAGCACGTCGTTGTGCGCATCACCATCACCCACCCCAGGAGAGGAGACCT GGCCATCTACCTGACCTCGCCCTCTGGAACTAGGTCTCAGCTTTTGGCCAA CAGGCTATTTGATCACTCCATGGAAGGATTCAAAAACTGGGAGTTCATGA
CCATTCATTGCTGGGGAGAAAGAGCTGCTGGTGACTGGGTCCTTGAAGTT
-69 TATGATACTCCCTCTCAGCTAAGGAACTTTAAGACTCCAGGTAAATTGAA AGAATGGTCTTTGGTCCTCTACGGCACCTCCGTGCAGCCATATTCACCAAC CAATGAATTTCCGAAAGTGGAACGGTTCCGCTATAGCCGAGTTGAAGACC CCACAGACGACTATGGCACAGAGGATTATGCAGGTCCCTGCGACCCTGAG 5 TGCAGTGAGGTTGGCTGTGACGGGCCAGGACCAGACCACTGCAATGACTG TTTGCACTACTACTACAAGCTGAAAAACAATACCAGGATCTGTGTCTCCA GCTGCCCCCCTGGCCACTACCACGCCGACAAGAAGCGCTGCAGGAAGTGT GCCCCCAACTGTGAGTCCTGCTTTGGGAGCCATGGTGACCAATGCATGTCC TGCAAATATGGATACTTTCTGAATGAAGAAACCAACAGCTGTGTTACTCA 10 CTGCCCTGATGGGTCATATCAGGATACCAAGAAAAATCTTTGCCGGAAAT GCAGTGAAAACTGCAAGACATGTACTGAATTCCATAACTGTACAGAATGT AGGGATGGGTTAAGCCTGCAGGGATCCCGGTGCTCTGTCTCCTGTGAAGA TGGACGGTATTTCAACGGCCAGGACTGCCAGCCCTGCCACCGCTTCTGCG CCACTTGTGCTGGGGCAGGAGCTGATGGGTGCATTAACTGCACAGAGGGC 15 TACTTCATGGAGGATGGGAGATGCGTGCAGAGCTGTAGTATCAGCTATTA CTTTGACCACTCTTCAGAGAATGGATACAAATCCTGCAAAAAATGTGATA TCAGTTGTTTGACGTGCAATGGCCCAGGATTCAAGAACTGTACAAGCTGC CCTAGTGGGTATCTCTTAGACTTAGGAATGTGTCAAATGGGAGCCATTTGC AAGGATGCAACGGAAGAGTCCTGGGCGGAAGGAGGCTTCTGTATGCTTGT 20 GAAAAAGAACAATCTGTGCCAACGGAAGGTTCTTCAACAACTTTGCTGCA AAACATGTACATTTCAAGGCTGAGCAGCCATCTTAGATTTCTTTGTTCCTG TAGACTTATAGATTATTCCATATTATTAAAAAGAAAAAAAAAAGCCAAAA AG SEQ ID NO: 105 25 Carboxypeptidase N, polypeptide 2, 83kD >gil 1 8554966|reflXM_087358.11 Homo sapiens carboxypeptidase N, polypeptide 2, 83kD (CPN2), mRNA ATGGGTTGTGACTGCTTCGTCCAGGAGGTGTTCTGCTCAGATGAGG 30 AGCTTGCCACCGTCCCGCTGGACATCCCGCCATATACGAAAAACATCATC TTTGTGGAGACCTCGTTCACCACATTGGAAACCAGAGCTTTTGGCAGTAAC CCCAACTTGACCAAGGTGGTCTTCCTCAACACTCAGCTCTGCCAGTTTAGG CCGGATGCCTTTGGGGGGCTGCCCAGGCTGGAGGACCTGGAGGTCACAGG CAGTAGCTTCTTGAACCTCAGCACCAACATCTTCTCCAACCTGACCTCGCT 35 GGGCAAGCTCACCCTCAACTTCAACATGCTGGAGGCTCTGCCCGAGGGTC TTTTCCAGCACCTGGCTGCCCTGGAGTCCCTCCACCTGCAGGGGAACCAGC TCCAGGCCCTGCCCAGGAGGCTCTTCCAGCCTCTGACCCATCTGAAGACA CTCAACCTGGCCCAGAACCTCCTGGCCCAGCTCCCGGAGGAGCTGTTCCA CCCACTCACCAGCCTGCAGACCCTGAAGCTGAGCAACAACGCGCTCTCTG 40 GTCTCCCCCAGGGTGTGTTTGGCAAACTGGGCAGCCTGCAGGAGCTCTTCC TGGACAGCAACAACATCTCGGAGCTGCCCCCTCAGGTGTTCTCCCAGCTCT TCTGCCTAGAGAGGCTGTGGCTGCAACGCAACGCCATCACGCACCTGCCG CTCTCCATCTTTGCCTCCCTGGGTAATCTGACCTTTCTGAGCTTGCAGTGG AACATGCTTCGGGTCCTGCCTGCCGGCCTCTTTGCCCACACCCCATGCCTG 45 GTTGGCCTGTCTCTGACCCATAACCAGCTGGAGACTGTCGCTGAGGGCAC CTTTGCCCACCTGTCCAACCTGCGTTCCCTCATGCTCTCATACAATGCCATT ACCCACCTCCCAGCTGGCATCTTCAGAGACCTGGAGGAGTTGGTCAAACT CTACCTGGGCAGCAACAACCTTACGGCGCTGCACCCAGCCCTCTTCCAGA ACCTGTCCAAGCTGGAGCTGCTCAGCCTCTCCAAGAACCAGCTGACCACA 50 CTTCCGGAGGGCATCTTCGACACCAACTACAACCTGTTCAACCTGGCCCTG -70 CACGGTAACCCCTGGCAGTGCGACTGCCACCTGGCCTACCTCTTCAACTGG CTGCAGCAGTACACCGATCGGCTCCTGAACATCCAGACCTACTGCGCTGG CCCTGCCTACCTCAAAGGCCAGGTGGTGCCCGCCTTGAATGAGAAGCAGC TGGTGTGTCCCGTCACCCGGGACCACTTGGGCTTCCAGGTCACGTGGCCG 5 GACGAAAGCAAGGCAGGGGGCAGCTGGGATCTGGCTGTGCAGGAAAGGG CAGCCCGGAGCCAGTGCACCTACAGCAACCCCGAGGGCACCGTGGTGCTC GCCTGTGACCAGGCCCAGTGTCGCTGGCTGAACGTCCAGCTCTCTCCTTGG CAGGGCTCCCTGGGACTGCAGTACAATGCTAGTCAGGAGTGGGACCTGAG GTCGAGCTGCGGTTCTCTGCGGCTCACCGTGTCTATCGAGGCTCGGGCAGC 10 AGGGCCCTAGTAGCAGCGCATACAGGAGCTGGGGAAGGGGGCTTTGGGG CCTGCCCACGCGACAGGTAGGGGCGGAGGGGAGCTGAGTCTCCGAAGCTT GGCTTT SEQ ID NO: 106 Hyaluronan and proteoglycan link protein 4 15 >gi130794471|reflNM_023002.11 Homo sapiens hyaluronan and proteoglycan link protein 4 (HAPLN4), mRNA CGGGGGCCGCGCGGGCAAGATGGTGTGCGCTCGGGCGGCCCTCGG TCCCGGCGCGCTCTGGGCCGCGGCCTGGGGCGTCCTGCTGCTCACAGCCC 20 CTGCGGGGGCGCAGCGTGGCCGGAAGAAGGTCGTGCACGTGCTGGAGGG TGAGTCGGGCTCGGTAGTGGTACAGACAGCGCCTGGGCAGGTGGTAAGCC ACCGTGGTGGCACCATCGTCTTGCCCTGCCGCTACCACTATGAGGCAGCC GCCCACGGTCACGACGGCGTCCGGCTCAAGTGGACAAAGGTGGTGGACCC GCTGGCCTTCACCGACGTCTTCGTGGCACTAGGCCCCCAGCACCGGGCATT 25 CGGCAGCTACCGTGGGCGGGCTGAGCTGCAGGGCGACGGGCCTGGGGAT GCCTCCCTGGTCCTCCGCAACGTCACGCTGCAAGACTACGGGCGCTATGA GTGCGAAGTCACCAATGAGCTGGAAGATGACGCTGGCATGGTCAAGCTGG ACCTGGAAGGCGTGGTCTTTCCCTACCACCCCCGTGGAGGCCGATACAAG CTGACCTTCGCGGAGGCGCAGCGCGCGTGCGCCGAGCAGGACGGCATCCT 30 GGCATCTGCAGAACAGCTGCACGCGGCCTGGCGCGACGGCCTGGACTGGT GCAACGCGGGCTGGTTGCGCGACGGCTCAGTGCAATACCCCGTGAACCGG CCCCGGGAGCCCTGCGGCGGCCTGGGGGGGACCGGGAGTGCAGGGGGCG GCGGTGATGCCAACGGGGGCCTGCGCAACTACGGGTATCGCCATAACGCC GAGGAACGCTACGACGCCTTCTGCTTCACGTCCAACCTGCCGGGGCGCGT 35 GTTCTTCCTGAAGCCGCTGCGACCTGTACCCTTCTCCGGAGCTGCGCGCGC GTGTGCTGCGCGTGGCGCGGCCGTGGCCAAGGTGGGGCAGCTGTTCGCCG CGTGGAAGCTGCAGCTGCTAGACCGCTGCACCGCGGGTTGGCTGGCCGAT GGCAGTGCGCGCTACCCCATCGTGAACCCGCGAGCGCGCTGCGGAGGCCG CAGGCCTGGTGTGCGCAGCCTCGGCTTCCCGGACGCCACCCGACGGCTCT 40 TCGGCGTCTACTGCTACCGCGCTCCAGGAGCACCGGACCCGGCACCTGGC GGCTGGGGCTGGGGCTGGGCGGGCGGCGGCGGCTGGGCAGGGGGCGCGC GCGATCCTGCTGCCTGGACCCCTCTGCACGTCTAGGCTGGGAGTAGGCGG ACAGCCAGGGCGCTTGACCACTGGTCTAGAGCCCTGTGGTCCCCTGGAGC CTGGCCACGCCCTTGAAGCCCTGGACACTGGCCACATTCCCTGTGGTCCCT 45 TACAAACTAACTGTGCCCCTGGGGTCCCTGAAGACTGGCTAGTCCTGGCA GAACAGTACTTTGGAGTTCCCTGGAGCCTGGCCAGCCCTCACCTCTTCTGG ATAGAGGATTCCCCCAACTCCCCAACTTTCTCCATGAGGGTCACGCCCCCT GAGGACCTCAGGAGGCCAGCAGAACCCGCAGGCTCCTGAAGACTGGCCA CGCCTCCTGAGACCACTTGGAAACAGACCAACTGCCCCCGTGGTCGCCTG 50 GTGGCTGGACCCCCGGGATTGACTAGAGACCGGCCGTACACCTTCTGCAT -71 CTCACTGGAGACTGAACACTAGTCCCTTGCGGTCACGTGGGACACTGGGC GCCTCCTCCTCCCCCTCCTCCTCACCTGGAGAGACTACAGGAACTTCAGGG TCACTCCCCGTGGTCACATGGAGGTTGTGGGCCGAGGCGCTTATTTTCCCT TATGGTGACCTGAGTCCTGGAGACTCCCATTCTCCCCCTCTCCCTGAGAGT 5 CCCCTGCAGTTTCTGGGTAACAGGGCACACCCCTCTAGTTTCATGGGCGAG CACCCCCATCTGCCACCTCAGACTGACACACAGCCAGCTGGCTCACTTACT GGGGGCCACGTCCCACCCCTCAGATATTTCTTTGAAGGGAGAGCAAACCC ACCCTGTCCTCTGACGTCCCTTTCCCAACTGTCACCAAACAGACCATCTTC CCAGGCCTGGGGACCGGTAAGATCCATGTCACTAGTTATGCAGAGCAGTT 10 GCCTTGGGTCCCACTGTCACCAAGGCAACCAGTCCTGCTGCTACCTGTCAC CTAGAGTCACACACCCCTTCCCTCATCAGGCACACCCATGAAGACAGTGC CTCCCTCCTCCAGCTGTAACCATGGATACCACACATTTCTCATCTCATTGG CCCCCACCCCAGAGACCTCCACCTCAACTTCTGGCTGTCCCTACCCTGACT CACCGCCATGGAGATCACCCTCCCCGAAGCTGTCGCCAGGGTGACCCAAC 15 ATCCAGTTCTCCGGCTCTCACCATGGAAACAAACTGTCCCTGTCCCCAGGC CCACTCCAGTTCCAGACCACCCTCCATGCTCCACCCCCAGGCGGTTTGGAC CCCACCACTGTTGCCATGGTGACCAAACTCTGGAGTCCGAGGTAACAGAA CACCTGTCCCCCTAGGCTTTTCCTTGTGGACAACGGGGCCCTGTTCACCAA GCTGTTGCCATAGAGACTGTCAACGTTGTCCTCATGACAACCAGACTTCCA 20 GTTCTCAGGAACTTCTCATTGTGGGCCAGAAGTCCTGGGTGCCTCCTACTA GGGCTACCCTACTGCACCCCATCAGGGGCCTGATGGCTGCCCCTTCCCCAG ACAGGGCTGGACTTCTGGAGCTGCTAAGCCACCCTCCGTTTGCACGTTAAC TCTATGCCGGATAGCAGCTGTGCACGAGACAATCTTGCAACACCCGGGCA TGTTTGTCGTCGTCCTACAAATGAGGAAACCGAGCCTATGGCGTGCCCTG 25 GTCTGTTGAGATATGCAAGCACTGAGCTCCTCTTTTGTCCTCTGAGACCCC ATCTCCATTCTCACCCAGTTCCTCTCTCCTTCCCTGACCCCCACCCACATTT CCCTCCTTAGAGATCCAGGAGGGATGGAATGTTCTTTAAAATTCAACACC CACCAGGCTCTAAGCGGCGATCTGTGCTAAGAGGTCAGGACCCAGCCGAA GTCCTCGGCGTTGACAGGCAGCTGGGGGGACATGATCCATGGACAAGGCC 30 ATCCCGGCCGTGGGAGACCCCAGTCCCGAAGTCTTGCCTGCAGGAGTACT GGGGTCCCCCTGGGGCCCTCTTTACTGTCACGTCATCTCTAGGAAACCTAT CTCTGAGTTTTGGGACCAGGTCGGTTTGGGTTTGAATTCTGCCTCTTCTTGC TCACTGTGTGACCAAGTGACAAACTCCTTCTGAACCTGTGTTCTCCCACTG TACCAGGGCTGTTCTGTGGTCCCCGTGAGTGCCAAGCATACAGTAGGGGC 35 TCAATAAATCCTTGT SEQ ID NO: 107 Immunohistochemistry 8uM frozen sections were cut from tissue blocks and mounted onto APES 40 slides. The tissue was then fixed in acetone for 10 minutes before being air-dried. The slides were then soaked in 0.3% hydrogen peroxide in methanol for 10 minutes and washed in phosphate-buffered saline (PBS). Non-specific binding sites were blocked by incubating the slides in 20% serum from the appropriate animal and washing again in PBS. Primary antibody diluted in PBS containing 1% serum was then added to the 45 slides. After incubation for 1 hour, the slides were again washed in PBS before incubating with the secondary antibody for a further 1 hour. After final washing in - 72 PBS, the secondary antibody was detected with diaminobenzidine tetrahydrochloride dissolved in Tris buffered saline (TBS), before being washed in TBS and water. The slides were then counter stained in haemotoxylin and viewed under a light microscope. 5 In certain embodiments, gastric tumors can be localized in situ using stains based on cancer markers of this invention. At least one marker may be forming amyloid structures that can be visualized using Congo red or equivalent, non-specific amyloid stains. 10 Tests for Gastric Cancer Markers in Body Fluids In several embodiments, assays for GTM can be desirably carried out on samples obtained from blood, plasma, serum, peritoneal fluid obtained for example using peritoneal washes, or other body fluids, such as urine, lymph, cerebrospinal fluid, gastric fluid or stool samples. 15 In general, methods for assaying for oligonucleotides, proteins and peptides in these fluids are known in the art. Detection of oligonucleotides can be carried out using hybridization methods such as Northern blots, Southern blots or microarray methods, or qPCR. Methods for detecting proteins include such as enzyme linked immunosorbent assays (ELISA), protein chips having antibodies, suspension beads 20 radioimmunoassay (RIA), Western blotting and lectin binding. However, for purposes of illustration, fluid levels of a GTM can be quantified using a sandwich-type enzyme-linked immunosorbent assay (ELISA). For plasma assays, a 5 uL aliquot of a properly diluted sample or serially diluted standard GTM and 75 uL of peroxidase conjugated anti-human GTM antibody are added to wells of a microtiter plate. After a 25 30 minute incubation period at 30"C, the wells are washed with 0.05% Tween 20 in phosphate-buffered saline (PBS) to remove unbound antibody. Bound complexes of GTM and anti-GTM antibody are then incubated with o-phenylendiamine containing
H
2 0 2 for 15 minutes at 30'C. The reaction is stopped by adding 1 M H 2
SO
4 , and the absorbance at 492 nm is measured with a microtiter plate reader. 30 It can be appreciated that anti-GTM antibodies can be monoclonal antibodies or polyclonal antisera. It can also be appreciated that any other body fluid can be suitably studied. Certain markers are known to be present in plasma or serum. These include osteopontin (Hotte et al., Cancer 95(3): 507-510 (2002)), prostate-specific antigen - 73 (Martin et al., Prostate Cancer Prostatic Dis. (March 9, 2004) (Pub Med No: PMID: 15007379), thyroglobulin (Hall et al., Laryngoscope 113(l):77-81 (2003); Mazzaferri et al., J. Clin. Endocrinol. Metab. 88(4):1433-14421 (2003), matrix metalloproteinase 2 and -9 (Kuo et al., Clin. Chem. Acta. 294(1-2):157-168 (2000), CEA and TIMPI 5 (Pellegrini et al., Cancer Immunol. Immunother. 49(7):388-394 (2000). Thus, because some of the above markers are also useful markers for GTM, plasma, serum or other fluid assays are already available for their detection and quantification. Because many proteins are either (1) secreted by cells, (2) sloughed from cell membranes, or (3) are lost from cells upon cell death, other GTM are also present in 10 body fluids, such as plasma, serum and the like. Therefore, in embodiments of this invention, detection of GTM in conveniently obtained samples will be useful and desirable and can be a basis for diagnosis of gastric cancer. Western Analysis 15 Proteins were extracted from gastric tissue using a TriReagent and guanidine HCI extraction method. The non-aqueous phase from the TriReagent extraction of RNA was mixed with I.5vols of ethanol and centrifuged to remove DNA and OCT medium. 0.5mls of supernatant was mixed with 0.75ml isopropanol, incubated at room temperature for 10 minutes, and then centrifuged. The pellet was washed three 20 times in lml 0.3M guanidine HCI in 95% ethanol and once in ethanol alone, then resuspended in 50ul 1% SDS. Proteins were quantified and electrophoresed on SDS polyacrylamide gels using standard methods. Briefly, the separated proteins were transferred to PVDF membrane using the BioRad trans-blot electrophoretic transfer cell using standard 25 methodology. The membranes were then blocked with a solution containing non-fat milk powder for 30 minutes before being incubated with primary antibody for 2 hours at room temperature. After washing, the membrane was incubated with secondary antibody for I hour at room temperature. After final washes, bound antibody was visualized using the ECL detection system (Amersham Biosciences). 30 Detection of markers in the serum can be accomplished by providing a sample of serum using known methods and then subjecting the serum sample to analysis, either using oligonucleotide probes or antibodies directed against the protein of interest. Immunoblotting, including Western blotting analysis can be especially useful to determine whether alternatively expressed proteins are present in the serum.
- 74 Additionally, other body fluids may contain markers, and include peritoneal fluid, cerebrospinal fluid and the like. It is not necessary for a marker to be secreted, in a physiological sense, to be useful. Rather, any mechanism by which a marker protein or gene enters the serum can be effective in producing a detectable, quantifiable level 5 of the marker. Thus, normal secretion of soluble proteins from cells, sloughing of membrane proteins from plasma membranes, secretion of alternatively spliced forms of mRNA or proteins expressed therefrom, cell death (either apoptotic) can produce sufficient levels of the marker to be useful. There is increasing support for the use of serum markers as tools to diagnose and/or evaluate efficacy of therapy for a variety of 10 cancer types. Yoshikawa et al., (Cancer Letters, 151: 81-86 (2000) describes tissue inhibitor of matrix metalloproteinase- 1 in plasma of patients with gastric cancer. Rudland et al., (Cancer Research 62: 3417-3427 (2002) describes osteopontin as a metastasis associated protein in human breast cancer. 15 Buckhaults et al., (Cancer Research 61:6996-7001 (2002) describes certain secreted and cell surface genes expressed in colorectal tumors. Kim et al., (JAMA 287(13):1671-1679 (2002) describes osteopontin as a potential diagnostic biomarker for ovarian cancer. Hotte et al., (AJ. American Cancer Society 95(3):507-512 (2002) describes 20 plasma osteopontin as a protein detectable in human body fluids and is associated with certain malignancies. Martin et al., (Prostate Cancer Prostatic Dis. March 9, 2004 (PMID: 15007379) (Abstract) described use of human kallikrein 2, prostate-specific antigen (PSA) and free PSA as markers for detection of prostate cancer. 25 Hall et al (Laryngoscope 113(l):77-81 (2003) (PMID: 12679418) (Abstract) described predictive value of serum thyroglobulin in thyroid cancer. Mazzaferri et al., (J. Clin. Endocrinol. Metab. 88(4):1433-1441 (2003) (Abstract) describes thyroglobulin as a potential monitoring method for patients with thyroid carcinoma. 30 Whitley et al, (Clin. Lab. Med. 24(1):29-47 (2004) (Abstract) describes thyroglobulin as a serum marker for thyroid carcinoma. Kuo et al (Clin. Chim. Acta. 294(1-2):157-168 (2000) (Abstract) describes serum matrix metalloproteinase-2 and -9 in HCF- and HBV-infected patients. 17 -7A' i 1- -- kaetss DA17R7 A.l 1 -75 Koopman et al., (Cancer Epidemiol. Biomarkers Prev 13(3):487-491 (2004) (Abstract) describes osteopontin as a biomarker for pancreatic adenocarcinoma. Pellegrini et al., (Cancer Immunol. Immunother. 49(7):388-394 (2000) (Abstract) describes measurement of soluble carcinoembryonic antigen and TIMP I as 5 markers for pre-invasive colorectal cancer. Thus, we have identified numerous genes and/or proteins that are useful for developing reagents, devices and kits for detecting and evaluating gastric cancer. One or more markers of gastric can be used, either singly or in combination to provide a reliable molecular test for gastric cancer. 10 EXAMPLES The examples described herein are for purposes of illustrating embodiments of the invention. Other embodiments, methods and types of analyses are within the scope of persons of ordinary skill in the molecular diagnostic arts and need not be 15 described in detail hereon. Other embodiments within the scope of the art are considered to be part of this invention. Example 1: Identification of Markers for Gastric Malignancy Figure 2 depicts a table that shows results of studies using 38 markers for 20 gastric malignancy selected using the above criteria. The Figure 2 includes the symbol for the gene ("symbol"), the MWG oligo number, the NCBI mRNA reference sequence number, the protein reference sequence number, the fold change between tumor and non-tumor gene expression, the fold change rank relative to other genes in the microarray analysis, the results of an original, unadjusted Student's t-test, the 25 results of the Bonferroni-adjusted p value and the results of the 2-sample Wilcoxon test. The median fold change (tumor: non malignant tissue) for these 34 genes ranged from 1.6 to 7 and the median change in fold change rank ranged from -16,995 to -25,783. The maximum possible change in fold change rank was -29,718. For 30 each of the markers shown, the statistical significance of their specificity as cancer markers was found to be extremely high. The Bonferroni-adjusted p values were, in general, all below 10.6 or less, indicating that diagnosis using these markers is very highly associated with gastric cancer.
-76 The three cystatins (CSTl, CST2, and CST4) are highly homologous and represented by the same oligonucleotide on the microarray and unless otherwise stated, are referred to collectively as "CSTl,2,4." All proteins depicted in Figure 2 were predicted to have signal peptides using 5 the SMART package (European Molecular Biology Laboratory). The signal peptides are known to target synthesized proteins to the extracellular compartment and can therefore be secreted into the interstitial fluid, from which they can have access to the blood. In fact, some proteins of this invention have been detected in serum. Each of the genes depicted in Figure 2 exhibited a change in intensity rank 10 greater than the two oligonucleotides on the array corresponding to CEA, the marker most frequently used in clinical practice to monitor gastric cancer progression. Example 2: qPCR Analysis More sensitive and accurate quantitation of gene expression was obtained for a 15 subset of the genes shown in Figure 3 using qPCR. RNA from 46 tumor and 49 non malignant samples was analyzed for 23 genes identified by the microarray analysis (Figure 2) and results are shown in Figure 3. Figure 3 includes the gene symbol, median fold change between cancer and normal tissue, and the % of tumor samples with expression levels greater than the 95th percentile of expression levels in non 20 malignant samples. 12 tumor samples and 9 normal samples were excluded from the analysis because of high (>75%) normal cell contamination, a high degree of necrosis (>40%), or poor hybridization signal on the microarrays. The median fold change (tumor tissues compared to the median non-malignant tissue expression) for these 23 genes ranged from 3 to 525 fold (Figure 3). 25 The level of expression of genes ASPN, CSTI,2,4, LOXL2, TIMPl, SPP1, SFRP4, FNHBA, THBS2 and SPARC was greater in tumors than the 95th percentile of the non-malignant range for 290% of cases (Figure 3). For the remainder of genes, the expression in tumors was greater than the 95th percentile in >50% of samples. Each tumor over-expressed at least seven genes greater than the 95th percentile 30 indicating that combinations of markers will lead to comprehensive coverage of all gastric tumors.
- 77 Example 3: Validation of Array Data Using qPCR Array data was validated using quantitative, real-time PCR (qPCR) on the tumor and non-malignant samples with probes for 24 genes. Of all 24 genes studied, 20 showed a strong correlation between the two techniques. Four of these analyses are 5 show in Figures 4a - 4d, which depict graphs of the relative expression for the 4 selected cancer markers detected using array and qPCR methods. For each graph in Figure 4, the horizontal axis represents the array log2 fold change in gene expression, and the vertical axis represents the qPCR log2 fold change in gene expression. We found that there was a strong correlation between the two methods, as indicated by the 10 co-variant relationship between the methods. The strong correlation indicates that both microarray fold change analysis and qPCR are suitable methods for detecting changes in the expression of gastric cancer marker genes and therefore can be used as an accurate, sensitive screening method. It can also be appreciated from Figures 4a 4d that qPCR can be more sensitive at detecting changes in expression than are array 15 methods. Thus, in situations in which early detection is especially desirable, qPCR may be especially useful. Figures 5a - 5w depict histograms comparing frequency of observation of expression of each of a series of 23 genes (vertical axis) and the log2 fold change in expression for that gene (horizontal axis), for both normal tissue (open bars) and 20 tumor tissues (black bars). We found surprisingly that for each of these 23 genes, there was substantial separation in the frequency distributions between normal and tumor tissue, as reflected by the low degree of overlap between the frequency distribution curves. For example, Figure 5b depicts the results for CST 1, 2, 4, for which there was only one normal sample observed to have an expression level in the 25 tumor range. In other cases (e.g., Figure 5n; for PRSI 1) each frequency distribution curve was relatively narrow and there was a degree of overlap. However, even for this marker, the median log2 fold change showed a substantial separation of the amount of gene expression. In other cases, (e.g., Figure 5a; ASPN), although there was some overlap, there was a clear separation of the median log2 fold expression 30 between normal and tumor samples. Figure 6 depicts a histogram of the number of genes exhibiting a significantly increased expression ("over-expression") in tumor samples compared to normal samples (vertical axis) and the individual samples tested. In each case, the tumor sample exhibited multiple genes with elevated expression levels. The lowest number 797RA 1 ffHattr % PQ77 Ali I -78 of genes having increased expression was 7, found in sample E123. This finding indicates that, in situations in which multiple genes are over-expressed relative to normal tissue, the reliability of cancer detection can be very high, making diagnosis of cancer more certain. However, in some cases, elevation of expression of a single 5 marker gene is sufficient to lead to the diagnosis of cancer. Our previous comparison with the serum marker most frequently used currently for detection of gastric cancer, CEA, was based on difference in intensity rank of array data between tumors and normal samples. This comparison was verified using qPCR data for the markers and CEA. 10 Figures 7a-7c depict graphs of the relative log2 expression (compared to a reference RNA preparation) of markers in individual tumor samples and non malignant samples compared to the expression of the gene for the tumor marker, CEA. CEA is the serum marker currently most used to monitor progression of gastric cancer. The zero point is defined to be the median normal expression for each marker. 15 It can be seen that there is extensive overlap between the expression of the CEA gene (CEACAM5) in tumor samples and normal samples. This overlap is markedly less in the gastric cancer markers ASPN, CSPG2, CSTI,2,4, IGFBP7, INHBA, LOXL2, LUM, SFRP4, SPARC, SPPI, THBS2, TIMPl, adlican, LEPREI, and EFEMP2. For the other markers in Figures 7b-7c, ASAHI, SFRP2, GGH, MMP12, KLK1O, TG, 20 PRSS 11 and TGFBI, the overlap between the tumor expression range and the non malignant tissue expression range is greater than the overlap for the above markers, but still less than that of CEA, indicating that all of the herein described new markers are quantitatively better than CEA, and therefore can provide more reliable diagnosis. To minimize effects of variable tissue handling, tumor:normal (non-malignant) 25 fold changes were calculated using qPCR data from tumor and non-malignant tissue samples derived from the same patient. Such paired analysis corrects for differences in background levels of gene expression in different individuals and minimizes the effects of tissue handling on RNA quality. For example, if the resected stomach was at room temperature for an hour, the transcripts from the normal and tumor samples 30 will be degraded to the same extent. Figure 8 summarizes the T:N expression levels determined by qPCR for the markers, but used paired data (i.e., tumor and non-malignant samples) from the same individual. Figure 8 also includes expression data for six genes that were not included in Figure 3. The additionally studied genes are MMP2, CGRI 1, TGFB1, PCSK5, 777 11IrM 0 D07A7 AlII - 79 SERPINB5, and SERPINH 1. Identifying information and probes are shown in Figures 1 and 2. Figure 8 shows the median T:N fold change and the maximum T:N fold change for 29 gastric cancer markers in these 40 patients with "paired" samples. 27 of the 29 markers have a median T:N difference greater than or equal to the prior art 5 marker, CEA. 29/29 of the markers have a higher percentage of paired samples in which the expression in the tumor sample exceeds the expression in the normal sample. Figures 9a - 9d depict scatter dot plots of data from tumor and normal tissue from the same individuals. Each point represents the fold-change, within patient, in 10 expression of the markers in tumor tissue relative to the expression in non-malignant tissue. All of the markers studied have better discrimination of tumor from non-tumor tissue than CEA. Three markers, CSTl,2,4, ASPN and SFRP4 showed 100% discrimination between the paired tumor and normal samples. That is, for those markers, every tumor tissue had greater expression than did the corresponding non 15 tumor tissue from the same individual. In many other markers, for example, Adlican, CSPG2, EFEMP2, IGFBP7, INHBA, LOXL2, LUM, SERPINHI, SPARC, SPP1, TGFbI, THBS2 and TIMPI, each had only 2 or 3 individual points for which tumor tissue expression was less than that of the non-tumor tissue. Thus, for those markers, the likelihood that any one pair of tumor and non-tumor tissue would produce a false 20 negative is relatively low (e.g., 3 of 40 or 7.5%; 2 of 40 or 5%, 1 of 40 or 2.5%). Thus, even if the other markers listed immediately above were used, use of multiple samples from an individual patient would produce reliable diagnostic information. The gene sequences of these markers, and the location of the primers and probes used to detect them, are shown herein above. 25 To determine if over-expression of the marker genes is independent of the stage of the gastric tumors, the paired T:N log2 fold changes were plotted against the tumor stage (Figures 1 Oa - lOad). No stage dependency of expression on tumor stage was observed for 26 of the markers listed in Figure 8. These markers were similarly over-expressed in early stage as well as late stage tumors. However, KLK 10 showed 30 more consistent over-expression in stage 1 and stage 2 tumors, and PCSK5 and SERPIN35 showed more consistent over-expression in stage 4 tumors. KLK1O, PCSK5 and SERPINB5 therefore can be used in determining the stage of gastric tumors.
-80 In a similar analysis, paired T:N log2 fold changes were plotted against the Lauren classification of the tumor (either diffuse type or intestinal type). Figures 1 la - 1 Iad show that each of the 29 GTMs discriminated between tumor and non-tumor tissue, regardless of whether the type of tumor was intestinal (1) or diffuse (D). 5 Example 4: Use of Multiple Markers As described above, certain markers exhibit an ability to discriminate tumor from non-tumor tissue in 100% of the samples. Other markers, also described above, can be used in combination to achieve very high degrees of discrimination of tumor 10 tissue from non-tumor tissue. Figure 12 depicts a 3-dimensional plot of the expression of 3 markers, SERPINH1, CSTI,2,4 and INHBA, expressed as log2 T:N fold changes for a series of gastric tumor samples and non-malignant gastric samples. There is complete separation between the two groups of samples. The reliability of successful discrimination of tumor and non-tumor samples 15 using marker combinations is further illustrated by a statistical analysis summarized in Figure 13. This analysis compared the normal distributions of data generated using the qPCR gene expression from paired tumor and non-malignant samples, shows the effect of increasing the numbers of markers used to discriminate between tumor and non-malignant samples on test sensitivity (with a fixed specificity of 95%). Although 20 few of the 29 markers (as shown in Figure 8) have a sensitivity of greater than 90, 95, or 99% when used alone in this analysis, the combination of two or three markers enabled high sensitivity to be reached with large numbers of combinations. For example, 50 combinations of three markers would discriminate between tumor and non-malignant samples with a sensitivity of 99% and specificity of 25%. 25 Example 5: Detection of Gastric Tumor Marker Proteins In yet further embodiments, GTM proteins can be detected as a basis for diagnosis. In certain situations, the concentration of mRNA in a particular sample, such as a sample containing no cells, it may be difficult to use either microarray or 30 qPCR methods to detect elevations in gene expression. Thus, in certain embodiments, detection of GTM proteins can be accomplished using antibodies directed against either the entire protein, a fragment of the protein (peptide) or the protein core. Methods for detecting and quantifying expression of proteins and peptides are known in the art and can include methods relying on specific antibodies raised against the 117-R1 1 .. !L .a~ e DC7.7 A.. I -81 protein or peptide. Monoclonal antibodies and polyclonal antisera can be made using methods that are well known in the art and need not be described herein further. To demonstrate that GTM proteins can be used to discriminate tumor from non-tumor tissue, commercial antibodies were obtained against SPARC (R&D 5 Systems; cat # AF94I), THBS2 (Santa Cruz Biotechnology Inc; cat # sc-7655), CSPG2 (Calbiochem; cat # 428060) and IGFBP7 (R&D Systems; cat # AF1334). An additional polyclonal antibody was raised in rabbits (Alpha Diagnostic International Inc; San Antonio) against the cystatin SN peptide sequence 50-66 (C) FAISEYNKATKDDYYRR. SEQ ID NO: 108. 10 These antibodies were used in either immunohistochemistry or Western analysis of tumor and non-malignant gastric tissue. Each of these markers showed strong tumor:normal differences at the protein level. This confirmed that the over expression observed at the RNA level for these genes also occurred at the protein level. 15 Figure 14 shows a Western blot analyses of total protein extracted from two pairs of tumor and non-malignant tissues using antibodies against the proteins encoded by SPARC, CSTl (cystatin SN), IGFBP7 and THBS2. For each marker, the signal is significantly higher in the tumor samples than the non-malignant samples. The antibody raised against cystatin SN detected three major bands, 20 corresponding to molecular weights of approximately 34, 45 and 65kDa respectively. The lowest molecular weight band is shown in Figure 14. The protein species were larger than the control cystatin SN protein, suggesting that the protein produced by tumors has undergone post-translational modifications or multimerization. Regardless of the mechanism responsible for the differences in molecular weights of CST 25 proteins, Figure 14 demonstrated that CST expression was low in the non-tumor tissue, but was easily observed in blots of tumor-derived proteins. Figure 14 also showed that SPARC protein is expressed substantially to a greater degree in tumor tissue than in non-tumor tissue. The SPARC protein had gel mobility slower than the form of this protein that was detected in serum (Figure 15), 30 also indicating the occurrence of different post-translational modifications in proteins produced by malignant gastric cells. Regardless of the mechanism(s) responsible for any such modification, the finding that SPARC is over-expressed in tumor tissue relative to non-malignant tissue indicates that SPARC is a useful protein marker.
- 82 Similarly, IGFBP7 and THBS2 show over-expression in tumor tissue relative to non malignant tissue. Immunohistochemical analysis of tumor and non-malignant tissue was carried out using antibodies against the proteins encoded by CSPG2 (versican) and CSTI 5 (cystatin SN). Immunohistochemical analysis of tissue with antibodies against versican identified strong staining in the extracellular matrix of tumor tissue, but not non-malignant tissue. With the anti-cystatin SN antibodies, strong staining was observed in the area around the outside of the tumor cells. In non-malignant cells, the staining with this antibody was weaker, and observed only on the mucosal surface of 10 the tissue and the lining of the gastric pits. This demonstrated that in non-malignant cells, cystatin SN protein is directed out of the cell onto the mucosal surface and not into the extracellular spaces. Therefore, not only is the cystatin SN protein being produced in higher amounts in tumor tissue than non-malignant tissue, but, unlike the protein produced by the non-malignant tissue, the tumor cystatin SN is in direct 15 contact with the tissue vasculature. To extend these observations, oystatin SN was immunoprecipitated from the supernatant of the gastric cancer cell line, AGS with a monoclonal antibody (R&D Systems; cat # MAB 1285) (Figure 16). Large amounts of cystatin SN were detected in the supernatant, confirming that this protein is produced by, and secreted from, gastric epithelial cells. 20 Example 6: Analysis of Tumor Markers in Serum For a marker to be useful for rapid screening, it is desirable for the marker to be present in the serum in sufficient levels for detection. Certain proteins described in Figure 8 can be secreted into the blood at detectable levels from gastric cancers. One 25 marker known to be secreted from gastric tumors into blood in detectable levels is TIMP 1. However, if a protein is secreted or shed from any surface of a cell other than a mucosal surface, it will have contact with the interstitial fluid. From there, it can pass either directly into the blood supply through a capillary or via the lymph system. Thus, any shed GTM will be present in blood. Osteopontin, thyroglobulin, and 30 members of the MMP and kallikrein families have previously been described to be elevated in the serum of patients with a range of epithelial cancers, but not gastric cancer. TIMP 1 has, however, previously been observed to be elevated in the serum of gastric cancer patients. These findings suggest that the selection criteria for markers in this study, namely over-expression of secreted proteins in tumor tissue but not non- - 83 malignant tissue, can be effectively used to detect markers in the serum, and thus can be of substantial use clinically, without the need for tissue or organ biopsies. From Figure 15, it is apparent that the serum SPARC has a different molecular weight (depicted here in the Western blot) with the tumor SPARC having a lower 5 molecular weight than the SPARC produced by blood cells. Thus, even though SPARC is produced by tumor and non-tumor blood cells, the presence of tumor SPARC can be determined using molecular size, such as determined using Western analysis, or with an antibody specific for the glycosylated protein produced by the tumor cells. 10 In another study, we detected cystatin SN in the supernatant of a gastric cancer cell line, AGS. Figure 16 depicts a Western analysis of media alone or a supernatant from AGS cells in culture. The right hand lane of Figure 16 shows a dense band corresponding to cystatin SN protein. Thus, we conclude from Figure 10 that GTM of this invention are suitable for 15 diagnosing gastric cancers at early, middle or late stages of progression of the disease. Although certain marker proteins can be glycosylated, variations in the pattern of glycosylation can, in certain circumstances, lead to mis-detection of forms of GTMs that lack usual glycosylation patterns. Thus, in certain embodiments of this invention, GTM immunogens can include deglycosylated GTM or deglycosylated 20 GTM fragments. Deglycosylation can be accomplished using one or more glycosidases known in the art. Alternatively, GTM cDNA can be expressed in glycosylation-deficient cell lines, such as prokaryotic cell lines, including E. coli, thereby producing non-glycosylated proteins or peptides. It can also be appreciated that the level and quality of glycosylation can be sensitive to the presence of essential 25 precursors for sugar side-chains. Thus, in the absence of an essential sugar, "normal" glycosylation may not occur, but rather, shorter or missing side chain sugars may be found. Such "glycosylation variants" can be used as immunogens to produce antibodies specific for different types of marker genes. Additionally, certain GTMs may form homo-or heterodimers or other types of 30 multimeric forms. For example, inhibin beta A is a 47 kDa protein that can form homodimers of 97 kDa molecular weight (activin A) and 92 kDa heterodimers with the 45 kDa protein inhibin beta B (the heterodimers are known as activin AB). Thus, it can be appreciated that Western analysis or other type of assay that provides molecular weight need not be limited to only detection of a monomeric form of a - 84 GTM. Rather, one can readily appreciate that any form of a GTM can be detected, regardless of the molecular weight. Thus, detection of a multimeric form of a GTM can be readily used to diagnose the presence of gastric cancer. Further, for those GTM that are selective for stage (1 -4) or type of gastric tumor (diffuse or intestinal), 5 detection of a multimeric form can provide suitable target for evaluating stage or type of gastric cancer. Once an antibody or antiserum against a GTM is produced, such antibody preparations can be used for in a variety of ways. First, enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA) methods can be used to 10 quantify GTM proteins or peptides. Immunodetection can be accomplished in tissue samples using immunohistochemistry. These methods are all known in the art and need not be described further herein. Example 7: Vectors Containing GTM Oligonucleotides 15 Other embodiments of this invention include vectors useful for in vitro expression of marker genes or portions thereof ("marker peptides") or fragments of marker gene products. For example, vectors can be made having oligonucleotides for encoding GTMs therein. Many such vectors can be based on standard vectors known in the art. This invention also includes vectors that can be used to transfect a variety 20 of cell lines to prepare GTM-producing cell lines, which can be used to produce desired quantities of GTMs for development of specific antibodies or other reagents for detection of GTMs or for standardizing developed assays for GTMs. It is to be understood that to manufacture such vectors, an oligonucleotide containing the entire open reading frame or a portion of such an open reading frame 25 encoding a portion of the protein to be expressed can be inserted into a vector containing a promoter region, one or more enhancer regions operably linked to the oligonucleotide sequence, with an initiation codon, an open reading frame, and a stop codon. Methods for producing expression vectors are known in the art and need not be repeated herein. 30 It can also be appreciated that one or more selectable markers can be inserted into an expression vector to permit the expansion of cell lines selected to contain the expression vector of interest. Moreover, one can also insert leader sequences known in the art, in frame, to direct secretion, internal storage or membrane insertion of the protein or protein fragment in the expressing cell. I77 IfW MI. P-Q77 AtlIl - 85 Example 8: Cells Transfected with GTM-Containing Vectors In still further embodiments, cells are provided that can express GTMs, GTM fragments or peptide markers. Both prokaryotic and eukaryotic cells can be so used. 5 For example, E. coli (a prokaryotic cell) can be use to produce large quantities of GTMs lacking in mature glycosylation (if the particular GTM normally is glycosylated). COS cells, 293 cells and a variety of other eukaryotic cells can be used to produce GTMs that are glycosylated, or have proper folding and therefore, three dimensional structure of the native form of the GTM protein. Methods for 10 transfecting such cells are known in the art and need not be described further herein. Example 9: Kits Based on the discoveries of this invention, several types of test kits can be produced. First, kits can be made that have a detection device pre-loaded with a 15 detection molecule (or "capture reagent"). In embodiments for detection of GTM mRNA, such devices can comprise a substrate (e.g., glass, silicon, quartz, metal, etc) on which oligonucleotides as capture reagents that hybridize with the mRNA to be detected. In some embodiments, direct detection of mRNA can be accomplished by hybridizing mRNA (labeled with cy3, cy5, radiolabel or other label) to the 20 oligonucleotides on the substrate. In other embodiments, detection of mRNA can be accomplished by first making complementary DNA (cDNA) to the desired mRNA. Then, labeled cDNA can be hybridized to the oligonucleotides on the substrate and detected. Regardless of the detection method employed, comparison of test GTM 25 expression with a standard measure of expression is desirable. For example, RNA expression can be standardized to total cellular DNA, to expression of constitutively expressed RNAs (for example, ribosomal RNA) or to other relatively constant markers. Antibodies can also be used in kits as capture reagents. In some embodiments, 30 a substrate (e.g., a multiwell plate) can have a specific GTM capture reagent attached thereto. In some embodiments, a kit can have a blocking reagent included. Blocking reagents can be used to reduce non-specific binding. For example, non-specific oligonucleotide binding can be reduced using excess DNA from any convenient source that does not contain GTM oligonucleotides, such as salmon sperm DNA.
- 86 Non-specific antibody binding can be reduced using an excess of a blocking protein such as serum albumin. It can be appreciated that numerous methods for detecting oligonucleotides and proteins are known in the art, and any strategy that can specifically detect GTM associated molecules can be used and be considered within 5 the scope of this invention. In embodiments relying upon antibody detection, GTM proteins or peptides can be expressed on a per cell basis, or on the basis of total cellular, tissue, or fluid protein, fluid volume, tissue mass (weight). Additionally, GTM in serum can be expressed on the basis of a relatively high-abundance serum protein such as albumin. 10 In addition to a substrate, a test kit can comprise capture reagents (such as probes), washing solutions (e.g., SSC, other salts, buffers, detergents and the like), as well as detection moieties (e.g., cy3, cy5, radiolabels, and the like). Kits can also include instructions for use and a package. Although this invention is described with reference to specific embodiments 15 thereof, it can be appreciated that other embodiments involving the use of the disclosed markers can be used without departing from the scope of this invention. INDUSTRIAL APPLICABILITY Methods for detecting GTM family members include detection of nucleic 20 acids using microarray and/or real time PCR methods and detection of proteins and peptides. The compositions and methods of this invention are useful in the manufacture of diagnostic devices and kits, diagnosis of disease, evaluating efficacy of therapy, and for producing reagents suitable for measuring expression of GTM family members in biological samples. 25

Claims (11)

1. A method for detecting gastric cancer, comprising: (a) providing a biological sample; and 5 (b) detecting over-expression of a GTM family member in said sample, wherein the GTM family member is serine or cysteine proteinase inhibitor clade H ("SERPINHI ").
2. A method according to claim 1, comprising the further step of comparing the 10 amount of GTM present in said test sample with a value obtained from a control sample from a subject not having gastric cancer.
3. A method according to claim 1 or 2, comprising detecting over expression of at least one further GTM family member selected from the group consisting of 15 carboxypeptidase N, polypeptide 2, 83 kDa chain (CPN2), matrix metalloproteinase 12 (MMP 12), inhibin ("IBA"), insulin-like growth factor 7 ("IGFBP7"), gamma-glutamnyl hydrolase ("GGH"), leucine praline-enriched proteoglycan ("LEPREl"), cystatin S "(CST4"), secreted frizzled-related protein 4 ("SFRP4"), asporin ("ASPN"), cell growth regulator with EF hand domain 1 ("CGREFl"), kallikrein 10 (KLK10), tissue inhibitor of 20 metalloproteinase 1 (TIMP "), secreted acidic cysteine-rich protein ("SPARC"), transforming growth factor, B-induced ("TGFBI"), EGF-containing fibulin-like extracellular matrix protein 2 ("EFEMP2"), lumican ("LUM"), stannin ("SN'), secreted phosphoprotein 1 ("SPPl"), chondroitin sulfate proteoglycan 2 ("CSPG2"), N acylsphingosine amidohyrolase ("ASAHI"), serine protease 11 ("PRSS 1"'), secreted 25 frizzled-related protein 2 ("SFRP2"), phospholipase A2, group XIIB ("PLA2G12B"), spondin 2, extracellular matrix protein ("SPON2"), olfactomedin 1 ("OLFMl"), thrombospondin repeat containing 1 ("TSRCl "), thrombospondin 2 ("THBS2", adlican, cystatin SA ("CST2"), lysyl oxidase-like enzyme 2 ("LOXL2"), thyroglobulin ("TG"), transforming growth factor betal ("TGFB I"), serine or cysteine proteinase inhibitor clade 30 B ("SERPINB5"), matrix metalloproteinase 2 ("MMP2"), proprotein convertase subtilisin/kexin type 5 ("PCSK5"), and hyaluronan glycoprotein link protein 4 ("HAPLN4").
4. A method according to any one of claims 1 to 3, wherein the step of detecting is 35 carried out by detecting over-expression of GTM mRNA, cDNA or using an oligonucleotide complementary to at least a portion of said GTM cDNA. 322251 (oHMatters) P89777AU.1 - 88
5. A method according to claim 4, wherein the step of detecting is carried out using qPCR method using a forward primer and a reverse primer.
6. A method according to any one of claims I to 3, wherein the step of detecting is 5 carried out by detecting over expression of a GTM protein or peptide.
7. A method according to claim 6, wherein the step of detecting is carried out using an antibody directed against said GTM. 10
8. A method according to claim 6 or 7, wherein the step of detecting is carried out using a sandwich-type immunoassay method.
9. A method according to claim 7 or 8, wherein the antibody is a monoclonal antibody or polyclonal antiserum. 15
10. A method according to any one of claims I to 3, 5 or 6, wherein the step of measuring uses an ELISA assay.
11. A method according to any one of claims 1 to 10, wherein the test sample is 20 obtained from tissue, urine, gastric fluid, serum, stool, blood or plasma. 332252it {GHMters) PEO787AU.I
AU2011203336A 2003-07-17 2011-07-07 Markers for detection of gastric cancer Ceased AU2011203336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2011203336A AU2011203336B2 (en) 2003-07-17 2011-07-07 Markers for detection of gastric cancer
AU2012216703A AU2012216703B2 (en) 2003-07-17 2012-09-07 Markers for detection of gastric cancer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/487,906 2003-07-17
AU2004260083A AU2004260083B2 (en) 2003-07-17 2004-07-16 Markers for detection of gastric cancer
AU2011203336A AU2011203336B2 (en) 2003-07-17 2011-07-07 Markers for detection of gastric cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2004260083A Division AU2004260083B2 (en) 2003-07-17 2004-07-16 Markers for detection of gastric cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2012216703A Division AU2012216703B2 (en) 2003-07-17 2012-09-07 Markers for detection of gastric cancer

Publications (2)

Publication Number Publication Date
AU2011203336A1 AU2011203336A1 (en) 2011-07-28
AU2011203336B2 true AU2011203336B2 (en) 2012-06-21

Family

ID=45420083

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2011203336A Ceased AU2011203336B2 (en) 2003-07-17 2011-07-07 Markers for detection of gastric cancer
AU2012216703A Ceased AU2012216703B2 (en) 2003-07-17 2012-09-07 Markers for detection of gastric cancer

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2012216703A Ceased AU2012216703B2 (en) 2003-07-17 2012-09-07 Markers for detection of gastric cancer

Country Status (1)

Country Link
AU (2) AU2011203336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836539B (en) * 2022-05-06 2022-12-06 皖南医学院第一附属医院(皖南医学院弋矶山医院) circRNA marker for gastric cancer metastasis prediction and prognosis judgment and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081498A2 (en) * 2001-04-03 2002-10-17 Curagen Corporation Novel proteins and nucleic acids encoding same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081498A2 (en) * 2001-04-03 2002-10-17 Curagen Corporation Novel proteins and nucleic acids encoding same

Also Published As

Publication number Publication date
AU2012216703A1 (en) 2012-09-27
AU2012216703B2 (en) 2016-02-25
AU2011203336A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US10689707B2 (en) Treatment of recurrent gastric cancer identified using genetic biomarkers
US10024859B2 (en) Markers for detection of gastric cancer
US11130789B2 (en) Urine markers for detection of bladder cancer
AU2011203336B2 (en) Markers for detection of gastric cancer
WO2008036333A2 (en) Hypermethylation of cd44 promoter in head and neck squamous cell carcinoma
TWI539161B (en) Markers for detection of gastric cancer
NZ577012A (en) Human zymogen granule protein 16 as a marker for detection of gastric cancer

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired