AU2008200266A1 - Refractory material for cement industry kilns and use thereof - Google Patents

Refractory material for cement industry kilns and use thereof Download PDF

Info

Publication number
AU2008200266A1
AU2008200266A1 AU2008200266A AU2008200266A AU2008200266A1 AU 2008200266 A1 AU2008200266 A1 AU 2008200266A1 AU 2008200266 A AU2008200266 A AU 2008200266A AU 2008200266 A AU2008200266 A AU 2008200266A AU 2008200266 A1 AU2008200266 A1 AU 2008200266A1
Authority
AU
Australia
Prior art keywords
cement industry
kilns
refractory material
refractory
percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2008200266A
Inventor
Pedro Fajardo Sola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2001230259A external-priority patent/AU2001230259A1/en
Application filed by Individual filed Critical Individual
Publication of AU2008200266A1 publication Critical patent/AU2008200266A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

P/00/01Il Regulation 3.2
AUSTRALIA
Pazte,rs~Aci 1990 ORI GINAL COMPLETE SPECIFICATION STANDARD PATENT Invention title- Refractory material for cement industry kilns and use thereof The following statement is a full description of this invention, including the best method of performing it known to us: 00 C REFRACTORY MATERIAL FOR CEMENT INDUSTRY KILNS AND USE
STHEREOF
ot 00
DESCRIPTION
Cl SThe invention protected by this Patent is a refractory material for cement Sindustry kilns and the use thereof.
00 This material can be used to line the inside of cement industry kilns or placed in particular areas of the kiln with a view to refractory capacity.
The cement industry is familiar with the use of refractory materials to line the interior of the kilns used to manufacture the said product in order to withstand the high working temperatures, which can reach around 1500 degrees Celsius in some areas, and the resulting physical and chemical reactions. However, the differing compositions of the refractory materials also lead to their having differing degrees of hardness and resistance to the deformation that is caused by the differences in kiln temperature in different parts of the same kiln, among other factors. This invention achieves a refractory material of greater hardness and resistance than the materials hitherto employed.
Various refractory materials are currently known and used but they all present drawbacks, both operative and functional, particularly as regards progressive deformation by high kiln temperatures, spalling and cracking.
Consequently, the use of the materials developed to date always presents certain limitations compared to the invention described herein, as a result of its technical and cost advantages. Already known refractory materials are the addition of glass-manufacture crucibles, lime, silica, chromium, magnetite, aluminium oxide and aluminous silica glass Norton, Refractarios, first 00 2 O Spanish edition published by Blume in 1972), as well as Japanese patents no.
C JP11230679 concerning variations in porosity of refractory bricks, no.
CJP11130485 as prefabricated panels or no. JP11201649 as glass textures; in n 00 relation to the arrangement of shapes of the materials the outstanding examples are European patent no. EP0911594 and the German patent DE19729582 IDconcerning prefabricated bricks. All of these are prior to the invention described IDherein but are generic and imprecise compared to the same, and are often Sdesigned for the steel industry; in all these inventions the resulting chemical 0 composition or form are either not applied to the peculiarities of the cement industry or are not detailed and not sufficiently established compared to that described herein.
These deficiencies are overcome by the chemical composition of this invention, a neo-silicate such as Andalucite (AI 1 1 Si0 4 a crystalline solid such as silicon carbide SIC and a hydroaluminosilicate pelitic rock such as clay.
This composition surpasses the above-mentioned limitations and increases the operational capacity and performance of the material, while its application presents certain features that significantly favour its use in cement industry kilns.
All the foregoing helps to achieve results as regards refractory quality, location within the kilns and resistance to alterations in shape wherever the invention is used (whether in geometrical configurations such as bricks or in formless configurations such as mortar) that already-known media do not provide.
00 3 The invention described herein combines certain chemical compounds Nfor their physical properties: Andalucite Al 11 SiO 4 for its low porosity, low thermal conductivity and refractory capacity, silicon carbide SiC for its 00 resistance to oxidation and abrasion, while also being highly refractory, and clay for its plasticity.
This three-part combination of solid crystalline compounds formed from 00 silicon can be made up of different proportions by weight of each of its 0 10 constituents in order to achieve a greater or lesser degree of thermal conductivity, according to the location and function of the refractory material in the different parts of the kiln.
In short, the result obtained by combining these components makes it possible to obtain a technical advantage with a product of greater hardness and greater resistance to the deformation caused by the heat inside cementproduction kilns and the physical and chemical reactions that occur within the said kilns. This leads to considerable cost advantages as the new invention reduces the number of kiln stoppage cycles for maintenance and replacing worn material in each work period. As well as these technical and cost improvements, it also results in a production process advantage for the most widely and frequently found kilns, those of the rotary type, as it achieves greater resistance and hardness in the materials arranged inside the kiln to assist the circulation of the cement clinker being processed such as retainers and areas with shapes or in the satellite coolers, with staggered :orms and elliptical inlets, respectively, and is consequently more efficient in maintaining their design and function.
For a better understanding of the above-mentioned general characteristics, drawings are attached hereto showing the following: Figure 1: Outline drawing of a rotary kiln with satellite coolers for the cement industry, in a configuration comprising a heat exchanger and a calcination area 2 safety area 3 transition area 4 sintering area outlet area coolers 7 kiln head 8 and flame burner 9).
Figure 2: Outline drawing of a rotary kiln with grate coolers for the cement industry, in a configuration comprising a heat exchanger 1 and a calcination area 2 safety area 3 transition area 4 sintering area 5 outlet area 6 coolers kiln head 8 and flame burner 9 The refractory material can be made up and placed as follows: As regards the chemical components, a percentage by weight of andalusite All 1 1 Si04 of 10-80%, a percentage by weight of silicon carbide SiC of 10-80% and a percentage by weight of clay of 10-15%.
The preferable average composition is in the following proportions: Andalusite( A I1 1 SiO4): Silicon carbide SiC): Clay: Percentage by weight 55 35 10 Given its cost advantages, kaolinite AI4 [(OH) 8 (Si0 4 4 can also be used instead of andalusite, in equal proportions.
00 0 c" As regards its location in the kilns, the areas where this refractory oo material is used are: the calcination area 2 the safety area 3 the transition area the kiln outlet 6 and the coolers (7
\O
O
O0 010

Claims (2)

  1. 2. Use of the refractory material as claimed under Claim 1, characterised by the use thereof to line the inside of cement industry kilns in the calcination areas 2 in the safety area 3 in the outlet area 6 and in the coolers 7).
  2. 3. Refractory material for cement industry kilns and its use for resistance to thermal, physical and chemical deformation, characterised by a chemical composition that combines a percentage by weight equal to or greater than of kaolinite AI4 [(OH) 8 (SiO 4 4 a percentage by weight equal to or greater than 10 of silicon carbide SiC and a percentage by weight equal to or greater than 5 of clay.
AU2008200266A 2001-01-26 2008-01-18 Refractory material for cement industry kilns and use thereof Abandoned AU2008200266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2001230259A AU2001230259A1 (en) 2001-01-26 Refractory material for cement industry kilns and use thereof
AU2001230259 2001-01-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001230259A Division AU2001230259A1 (en) 2001-01-26 2001-01-26 Refractory material for cement industry kilns and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2011221428A Division AU2011221428A1 (en) 2001-01-26 2011-09-09 Refractory material for cement industry kilns and use thereof

Publications (1)

Publication Number Publication Date
AU2008200266A1 true AU2008200266A1 (en) 2008-02-07

Family

ID=39052562

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008200266A Abandoned AU2008200266A1 (en) 2001-01-26 2008-01-18 Refractory material for cement industry kilns and use thereof

Country Status (1)

Country Link
AU (1) AU2008200266A1 (en)

Similar Documents

Publication Publication Date Title
EP2167434B1 (en) Azs refractory composition
EP2996998B1 (en) Refractory castables with hydrophobic aggregates
Dana et al. Refractories of alumina-silica system
CN110937905B (en) High-thermal-shock-resistance composite kiln mouth castable
AU2010202278A1 (en) Unfired firebrick containing graphite for cement industry kilns and use of same
CN109111209A (en) A kind of cement kiln micro crystal material
EP1357094A1 (en) Refractory material for cement industry kilns and use thereof
AU2008333636B2 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
CN105218129B (en) A kind of ferro-magnesium-aluminum spinelle kilneye castable
AU2008200266A1 (en) Refractory material for cement industry kilns and use thereof
CN103951451B (en) The manufacture method of high-strength wearable lining brick
ZA200305854B (en) Refractory material for cement industry kilns and use thereof.
CN110452002A (en) A kind of refractory brick and preparation method thereof with corrosion resistance
US7531476B2 (en) Refractory material for cement industry kilns and use thereof
AU2011221428A1 (en) Refractory material for cement industry kilns and use thereof
CN109232005A (en) Kilneye castable after a kind of cement rotary kiln
CN105906351A (en) A wear resistant castable resisting chemical corrosion
CN106278293A (en) Far infrared high-temperature wearable energy-saving coatings and preparation method thereof
JP2007145622A (en) Spinel-magnesia brick
JP4269148B2 (en) Basic refractory
Nievoll et al. Sulphur, Spurrite, and Rings—Always a Headache for the Cement Kiln Operator?
KR100239939B1 (en) Refractory material and its manufacturing method
ZA200503097B (en) Unfired firebrick containing graphite for cement industry klins and use of same.
CN110963809A (en) Preparation method of Al4Si4C-Al2O3 refractory castable
Jafari et al. DEVELOPMENT IN ANODE BAKING REFRACTORIES FOR ALUMINIUM INDUSTRY

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted