AU2007326900B2 - Burner with means for changing the direction of fuel flow - Google Patents
Burner with means for changing the direction of fuel flow Download PDFInfo
- Publication number
- AU2007326900B2 AU2007326900B2 AU2007326900A AU2007326900A AU2007326900B2 AU 2007326900 B2 AU2007326900 B2 AU 2007326900B2 AU 2007326900 A AU2007326900 A AU 2007326900A AU 2007326900 A AU2007326900 A AU 2007326900A AU 2007326900 B2 AU2007326900 B2 AU 2007326900B2
- Authority
- AU
- Australia
- Prior art keywords
- burner
- duct
- fuel
- main axis
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D99/0033—Heating elements or systems using burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14481—Burner nozzles incorporating flow adjusting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B7/00—Rotary-drum furnaces, i.e. horizontal or slightly inclined
- F27B7/20—Details, accessories, or equipment peculiar to rotary-drum furnaces
- F27B7/34—Arrangements of heating devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
- Furnace Details (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Gas Burners (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
A description is given of a burner for introducing solid, liquid or gaseous fuel to a burning zone of a kiln, such as a rotary kiln for manufacturing cement clinker or the like, said burner comprising a number of substantially concentric ducts (1, 2, 3), being parallel to the main axis B3 of the burner, for conveying fuel and primary air to nozzle openings, as well as a number of additional ducts (4, 6, 7, 8) for conveying solid, fluid or gaseous fuel to separate nozzle openings, said additional ducts being located in the central part (10) of the burner. The burner is characterized in that it comprises means (4a, 5) for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the central part (10) of the burner, relative to the main axis B3 of the burner, at least in an ascending direction. This will allow the individual fuel particles to travel in a curved, approximately ballistic path, thereby extending the time they can be maintained in the flame. Another advantage of this configuration of the burner is that the large particles will attain the highest, and hence the longest, path, since the path of the smaller particles will to a greater extent than is the case for the large ones be deflected by the primary air which is injected via the outer annular primary air nozzle which is parallel to the main axis of the burner. Hence it will be possible to achieve a more uniform combustion of all particles, regardless of their size. It will be possible to change the path of the particles by altering the velocity or direction of injection.
Description
WO 2008/065554 PCT/IB2007/054281 1 Burner with means for changing the direction of fuel flow The present invention relates to a burner for introducing solid, liquid or gaseous fuel to a burning zone of a kiln, such as a rotary kiln for 5 manufacturing cement clinker or the like, said burner comprising a number of substantially concentric ducts, which are parallel to the main axis of the burner, for conveying fuel and primary air to nozzle openings, and a number of additional ducts for conveying solid, fluid or gaseous fuel to separate nozzle openings, with said additional ducts 10 being located in the central part of the burner. Burners of the aforementioned kind are known for example from EP 965 019 and EP 967 434. These known burners comprise in the central part one or several ducts for conveying fuel, said ducts being 15 surrounded by annular, concentric channels for introducing primary air. These centrally located channels are often used for introducing alternative fuels such as solid fuels comprising for example plastics, paper, rubber and wood chips or liquid fuels such as for example oil or mixtures of solid and/or liquid fuels. 20 When for example solid fuel is injected via a fuel duct into a flame in a rotary kiln for cement manufacturing, it is essential to ensure that the individual fuel particles are kept suspended for as long as possible in order to achieve complete combustion of the majority of the particles 25 before they drop into the material charge. However, it will rarely be possible to achieve complete combustion of the largest fuel particles which will drop into the material charge, with a continuation of the combustion process at this location. In such cases, it would be advantageous for these particles to be led so far into the kiln as is 30 practicably possible in order to achieve full combustion of the particles prior to the discharge of the material from the kiln, always providing that the material, as is the case in a typical rotary kiln for WO 2008/065554 PCT/IB2007/054281 2 manufacturing of cement, is transported in direction which is opposite to that in which the fuel is injected. If this is not the case, unburned particles may cause damage to the material charge in the rotary kiln. Quite often, solid alternative fuels will have a highly variable particle 5 size and, as a rule, they will be less finely comminuted than solid fossil fuels. Also, the comminution of alternative fuels may be a relatively complex and expensive process. Therefore, many burners are configured so that a small amount of the primary air is injected through annular, concentric ducts surrounding the individual ducts for 10 alternative fuel. Such a configuration will allow even relatively large particles to remain suspended until complete combustion has been achieved. In EP 967 434, a description is given of separate annular ducts for primary air which are concentrically positioned around the ducts for solid fuel. Such a configuration would make it possible to 15 increase the time the fuel particles can be maintained in a state of suspension, thereby leading to improved combustion efficiency. It is also proposed in this patent application that the primary air is injected subject to rotation causing the fuel particles to be scattered further outwards in the cross-sectional area of the flame, thereby improving 20 combustion efficiency. However, disadvantages may be associated with the injection of air subject to rotation since it may cause large particles to be thrust outward all the way to the point of the flame before complete combustion of these particles has been achieved. This may entail risk of the fuel particles dropping through, with attendant 25 risk of the quality of the material in the kiln being impaired. Also, it is a common characteristic of the known burners that the fuel is introduced to the kiln in a flow of direction which is substantially parallel to the main axis of the burner. In this context, the expression "flow direction" is taken to mean the direction described, on average, 30 by the fuel particles in a fuel stream. In cases where the fuel is introduced subject to rotation, the flow direction of the fuel will thus coincide approximately with the line of symmetry for the fuel stream.
3 Therefore, it would be desirable to provide a burner by means of which the alternative fuel can be maintained in the flame for a longer period of time without any of the aforementioned disadvantages. Accordingly, the present invention relates to a method of the kind mentioned in the 5 introduction and being characterized in that the burner comprises means for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the central part of the burner, relative to the main axis of the burner, at least partially in an ascending direction. Hence it will be possible for the individual fuel particles to travel in a curved, approximately ballistic path, thereby extending the time they can be maintained in the flame. Another advantage of this configuration of the burner is that the large particles will attain the highest, and hence the longest, path, since the path of the smaller particles will to a greater extent than is the case for the large ones be deflected by the primary air which is injected via the outer annular primary air nozzle which is 5 parallel to the main axis of the burner. Hence it will be possible to achieve a more uniform combustion of all particles, regardless of their size. It will be possible to change the path of the particles by altering the velocity or direction of injection. In principle, the means for changing the flow direction of the fuel may be made up of any suitable means. 0 In one embodiment of the invention the means for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the central part of the burner comprises an injection WO 2008/065554 PCT/IB2007/054281 4 duct which is located at the outlet point of the duct in question in immediate extension hereof, with its centreline forming an angle relative to the main axis of the burner. It is preferred that the injection duct is located so that it points upward in relation to the main axis of 5 the burner at an angle between 10 and 250, preferentially between 50 and 150 and most preferentially between 70 and 100. It is further preferred that the lowest point of the outlet of the injection duct is located at a level above the upper part of the pipes of the duct in question. The injection duct may in a special embodiment have an oval 10 cross-section or may otherwise be configured so that the height/width ratio is less than 1. If this is the case, the injection velocity may be varied either by changing the cross-sectional area of the injection duct or by changing the airflow rate which is injected simultaneously with the fuel. 15 In a second embodiment of the invention, the fuel is introduced in parallel to the main axis of the burner. In this embodiment of the invention the means for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the central part of 20 the burner comprises an air duct, the outlet of which is located immediately at or at least partially enclosing the duct in question in such a way that the centre of gravity of the outlet cross-section of the air duct is displaced in relation to the centre of gravity of the outlet cross-section of the duct in question. In this embodiment according to 25 the invention, the change in the flow direction of the fuel is effected according to a method which involves that the cross-section of the outlet, or in other words the flow-through area of the air duct outlet is not uniformly distributed across the outlet of the fuel duct in question, entailing also that the quantity of air flowing through the air duct outlet 30 is not uniformly distributed across the circumference of the fuel duct outlet in question. Since the greatest movement quantity of the air will occur in the area or areas of the air duct outlet where the highest air WO 2008/065554 PCT/IB2007/054281 5 passage rates occur, the airflow in this area or these areas will physically impact the fuel so that this flow direction is changed in direction toward this area or these areas. This second embodiment of the invention may be combined with the aforementioned first 5 embodiment. In a third embodiment of the invention the fuel is also introduced in parallel to the main axis of the burner. In this third embodiment of the invention the means for changing the flow direction of the fuel which is 10 introduced via at least one of the additional ducts in the central part of the burner comprises a separate air duct, the outlet of which is located immediately at or at least partially enclosing the duct in question, and forming an angle relative to the main axis of the burner. In this embodiment the flow direction of the fuel is changed according to a 15 method whereby the air being injected via the separate air duct forces the fuel in a different direction determined as a function of the angle formed by the air duct in relation to the main axis of the burner. It is preferred that the air duct is fitted so that it points upward relative to the main axis of the burner at an angle of between 80 and 800, 20 preferentially between 350 and 600. In this embodiment the direction and velocity of injection will be changed by varying the airflow rate. This third embodiment of the invention may be combined with one or both of the embodiments described above. 25 The duct 4a, 4 may be configured with an outlet cross-section which forms an angle which is different from 900 relative to the centreline through the duct. Such a configuration can be used to effect a change in the direction of the fuel stream exclusively or in combination with the above-mentioned embodiments. 30 WO 2008/065554 PCT/IB2007/054281 6 The invention will now be described in further details with reference to the drawing, being diagrammatical, and where Fig. 1 shows a first embodiment of the burner according to the 5 invention, Fig. 2 shows a second embodiment of the burner according to the invention, and 10 Fig. 3 shows a third embodiment of the burner according to the invention. The Figs. 1-3 show front views as well as sectional views of three different embodiments of the burner according to the invention, and 15 they all comprise two substantially concentric ducts 1 and 2 for conveying primary air which are parallel to the main axis Ba, and a herewith concentric duct 3 for pneumatic conveyance of coal dust and a central part 10 which comprises a duct 4 for conveying solid alternative fuel, and a number of additional ducts or pipes 6, 7 and 8 20 for ignition gas burner, oil burner and gas burner, respectively. The burners shown in Figs. 2 and 3 also comprise an air duct 5 which encloses the duct 4. According to the first embodiment of the invention which is shown in 25 Fig. 1 the burner comprises an introduction duct 4a which is fitted in extension of the duct 4 for conveying solid alternative fuel. The introduction duct 4a is arranged so that it points upward relative to the main axis of the burner at an angle a of approximately 80 relative to its centreline. As previously mentioned, the injection velocity of the fuel 30 can be varied by changing the cross-sectional area of the introduction duct 4a or by varying the airflow rate which is injected simultaneously with the fuel.
WO 2008/065554 PCT/IB2007/054281 7 According to the second embodiment of the invention which is shown in Fig. 2, the burner comprises, as mentioned, an air duct 5, the outlet of which is located so that it encloses the duct 4 for conveying solid 5 alternative fuel. In this embodiment, the air duct 5 is arranged so that the centre of gravity of the outlet cross-section of the air duct 5 is displaced upwards relative to the centre of gravity of the outlet cross section of the duct 4. Hence the largest quantity of air will flow through the upper part of the air duct 5, thereby impacting the fuel stream in 10 upward direction, hence changing the flow of direction of the fuel in the upward direction. This is due to the fact that the movement quantity of the air in the shown embodiment will be greatest in the upper area of the outlet of the air duct 5. As mentioned in the introduction, this second embodiment of the invention may be combined with the first 15 embodiment described above, although this is not shown in the drawing. According to the third embodiment of the invention, which is shown in Fig. 3, the burner comprises, as mentioned, an air duct 5 the outlet of 20 which is located so that it encloses the duct 4 for conveying solid alternative fuel. In the shown embodiment the air duct 5 is arranged so that it points upwards, forming an angle P of approximately 650 relative to the main axis of the burner. This will cause the flow direction of the fuel to be changed in the upward direction due to the 25 fact that the airflow being injected via the air duct 5 will force the fuel in the upward direction. As previously mentioned, the direction and velocity of injection can be changed by varying the airflow rate. This third embodiment of the invention may as previously mentioned be combined with one or both of the aforementioned embodiments. 30 7A The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the referenced prior art forms part of the common general knowledge in Australia. 5 In the specification the term "comprising" shall be understood to have a broad meaning similar to the term "including" and will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. This definition also applies to 10 variations on the term "comprising" such as "comprise" and "comprises."
Claims (11)
1. A burner for introducing solid, liquid or gaseous fuel to a burning zone of a kiln, such as a rotary kiln for manufacturing cement clinker or the like, said burner comprising a number of substantially concentric ducts, which are parallel to the main 5 axis of the burner, for conveying fuel and primary air to nozzle openings, and a number of additional ducts for conveying solid, fluid or gaseous fuel to separate nozzle openings, with said additional ducts being located in the central part of the burner, characterized in that the burner comprises means for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the 0 central part of the burner, relative to the main axis of the burner, at least partially in an ascending direction.
2. A burner according to claim 1, characterized in that the means for changing the flow direction of the fuel being introduced via at least one of the additional ducts in the central part of the burner, comprises an introduction duct which is located at the 5 outlet end of the duct in question in immediate extension hereof, with its centreline forming an angle relative to the main axis of the burner.
3. A burner according to claim 2, characterized in that the introduction duct is arranged so that it points upward relative to the main axis of the burner at an angle between 10 and 250, preferentially between 50 and 15' and most preferentially 20 between 7' and 100.
4. A burner according to claim 1, characterized in that the means for changing the flow direction of the fuel which is introduced via at least one of the additional ducts in the central part of the burner, comprises an air duct the outlet of which is located 9 immediately at or at least partially enclosing the duct in question in such a way that the centre of gravity of the outlet cross-section of the air duct is displaced in relation to the centre of gravity of the outlet cross-section of the duct in question.
5. A burner according to claims 2 or 3, characterized in that the means further 5 comprises an air duct, the outlet of which is located immediately at or at least partially enclosing the duct in such a way that the point of gravity of the outlet cross-section of the air duct is displaced in relation to the centre of gravity of the outlet cross-section of the duct.
6. A burner according to claim 1, characterized in that the means for changing the ) flow direction of the fuel which is introduced via at least one of the additional ducts in the central part of the burner comprises a separate air duct, the outlet of which is immediately at or at least partially enclosing the duct in question, and forming an angle relative to the main axis of the burner.
7. A burner according to claim 6, characterized in that the air duct is arranged so 5 that it points upward relative to the main axis of the burner at an angle between 8' and 800, preferentially between 350 and 60*.
8. A burner according to the claims 2 or 3, characterized in that the means further comprises a separate air duct, the outlet of which is immediately at or at least partially enclosing the duct in question, and forming an angle relative to the main axis 20 of the burner. 10
9. A burner according to claim 8, characterized in that the air duct is located so that it points upward relative to the main axis at an angle between 80 and 800, preferentially between 350 and 600.
10. A burner according to claim 5, characterized in that the air duct, having an outlet 5 immediately at or at least partially enclosing the duct, forms an angle relative to the main axis of the burner.
11. A burner substantially as hereinbefore described with reference to the accompanying drawings.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200601564 | 2006-11-29 | ||
DKPA200601564 | 2006-11-29 | ||
PCT/IB2007/054281 WO2008065554A1 (en) | 2006-11-29 | 2007-10-22 | Burner with means for changing the direction of fuel flow |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2007326900A1 AU2007326900A1 (en) | 2008-06-05 |
AU2007326900B2 true AU2007326900B2 (en) | 2012-12-13 |
Family
ID=39467493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007326900A Ceased AU2007326900B2 (en) | 2006-11-29 | 2007-10-22 | Burner with means for changing the direction of fuel flow |
Country Status (13)
Country | Link |
---|---|
US (1) | US20100003625A1 (en) |
EP (1) | EP2087285A4 (en) |
JP (1) | JP5394247B2 (en) |
CN (1) | CN101542204B (en) |
AU (1) | AU2007326900B2 (en) |
BR (1) | BRPI0719644A2 (en) |
CA (1) | CA2667921C (en) |
EG (1) | EG25502A (en) |
MX (1) | MX2009005411A (en) |
RU (1) | RU2437029C2 (en) |
UA (1) | UA97963C2 (en) |
WO (1) | WO2008065554A1 (en) |
ZA (1) | ZA200902956B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2039996B1 (en) * | 2007-09-21 | 2014-08-06 | Electrolux Home Products Corporation N.V. | Gas burner for a cooktop |
CN102803849A (en) * | 2009-04-24 | 2012-11-28 | Fl史密斯公司 | A Burner |
US8632621B2 (en) * | 2010-07-12 | 2014-01-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for melting a solid charge |
US20120009531A1 (en) * | 2010-07-12 | 2012-01-12 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Distributed combustion process and burner |
DE102010061496A1 (en) * | 2010-12-22 | 2012-06-28 | Thyssenkrupp Polysius Ag | A tubular burner and method of operating a tubular burner |
EP2500640A1 (en) * | 2011-03-16 | 2012-09-19 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Low NOx combustion process and burner therefor |
WO2014058381A1 (en) * | 2012-10-11 | 2014-04-17 | Ecomb Ab (Publ) | Supply device for a combustion chamber |
DE102012019912A1 (en) * | 2012-10-11 | 2014-04-17 | Linde Aktiengesellschaft | burner |
DE102013004016A1 (en) * | 2013-03-08 | 2014-09-11 | Messer Austria Gmbh | Multi-fuel burner and method for heating a furnace chamber |
JP6070323B2 (en) * | 2013-03-21 | 2017-02-01 | 大陽日酸株式会社 | Combustion burner, burner apparatus, and raw material powder heating method |
US11421871B2 (en) * | 2019-08-14 | 2022-08-23 | Taiheiyo Cement Corporation | Combustible waste injection device and method for operating the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832401A (en) * | 1951-04-05 | 1958-04-29 | Ernest E Lail | Open hearth burner |
US6315551B1 (en) * | 2000-05-08 | 2001-11-13 | Entreprise Generale De Chauffage Industriel Pillard | Burners having at least three air feed ducts, including an axial air duct and a rotary air duct concentric with at least one fuel feed, and a central stabilizer |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1425145A (en) * | 1918-02-25 | 1922-08-08 | Gas Res Co | Fuel distributor |
US2196282A (en) * | 1937-03-27 | 1940-04-09 | Joseph T Voorheis | Adjustable gas burner |
US2395276A (en) * | 1943-05-12 | 1946-02-19 | Sinclair Refining Co | Fuel burner |
US2857148A (en) * | 1955-12-02 | 1958-10-21 | Kennedy Van Saun Mfg & Eng | Method of firing rotary kilns and gas burner therefor |
US2960047A (en) * | 1955-12-06 | 1960-11-15 | William F Oberhuber | Burner for finely divided fuel |
FR1360793A (en) * | 1963-04-02 | 1964-05-15 | Babcock & Wilcox France | Combined pulverized coal and fuel oil burner |
US3989443A (en) * | 1975-10-10 | 1976-11-02 | California Portland Cement Company | Multiple fuel burner and usage in rotary kilns |
JPS5459632A (en) * | 1977-10-19 | 1979-05-14 | Kobe Steel Ltd | Combustion method of gas fuel containing hydrogen with reduced formation of nitrogen oxides |
US4208180A (en) * | 1978-02-06 | 1980-06-17 | Ube Industries, Ltd. | Mixed-firing burners for use with pulverized coal and heavy oil |
DE3027587A1 (en) * | 1980-07-21 | 1982-02-25 | Klöckner-Humboldt-Deutz AG, 5000 Köln | BURNER FOR SOLID FUELS |
JPS58193006A (en) * | 1982-05-06 | 1983-11-10 | Babcock Hitachi Kk | Burner for ground coke |
JPS59186610U (en) * | 1983-05-25 | 1984-12-11 | バブコツク日立株式会社 | pulverized coal burner |
DE3518080A1 (en) * | 1985-05-20 | 1986-11-20 | Stubinen Utveckling AB, Stockholm | METHOD AND DEVICE FOR BURNING LIQUID AND / OR SOLID FUELS IN POWDERED FORM |
DE3715453A1 (en) * | 1987-05-08 | 1988-11-24 | Krupp Polysius Ag | METHOD AND BURNER FOR FIREING FUEL |
FR2625295B1 (en) * | 1987-12-24 | 1990-04-13 | Gaz De France | METHOD AND APPARATUS FOR PROVIDING THE STAGE COMBUSTION OF A FUEL-FUEL MIXTURE REDUCING THE PRODUCTION OF NITROGEN OXIDES |
DK169633B1 (en) * | 1990-01-29 | 1994-12-27 | Smidth & Co As F L | Burner for solid and liquid or gaseous fuel |
US5542839A (en) * | 1994-01-31 | 1996-08-06 | Gas Research Institute | Temperature controlled low emissions burner |
US5433573A (en) * | 1994-03-10 | 1995-07-18 | Buta; John R. | Apparatus for injecting fuel into kilns and the like |
DE19504667B4 (en) * | 1995-02-13 | 2005-01-05 | Schwenk Zement Kg | Burner system for cement kilns |
DK173204B1 (en) * | 1997-03-07 | 2000-03-13 | F.L.Smidth & Co A/S | is in an oven Proceed and burn to introduce burning |
JPH10300018A (en) * | 1997-04-23 | 1998-11-13 | Osaka Gas Co Ltd | Low nox burner |
FR2780489B1 (en) * | 1998-06-24 | 2000-09-08 | Pillard Chauffage | IMPROVEMENT IN BURNERS COMPRISING AT LEAST THREE AIR SUPPLY DUCTS, OF WHICH TWO AXIAL AND ROTATING, CONCENTRIC WITH AT LEAST ONE FUEL-SUPPLY, AND A CENTRAL STABILIZER |
US6077072A (en) * | 1998-09-18 | 2000-06-20 | American Air Liquide Inc. | Prefferential oxygen firing system for counter-current mineral calcining |
FR2788108B1 (en) * | 1998-12-30 | 2001-04-27 | Air Liquide | INJECTOR FOR BURNER AND INJECTION SYSTEM THEREOF |
DE19925875A1 (en) * | 1999-06-07 | 2000-12-14 | Krupp Polysius Ag | Tubular burner for industrial furnaces |
JP2002303406A (en) * | 2001-03-30 | 2002-10-18 | Chugai Ro Co Ltd | High speed jet type diffusion combustion type burner |
JP3914448B2 (en) * | 2002-03-26 | 2007-05-16 | 太平洋セメント株式会社 | Cement kiln burner equipment |
JP4192167B2 (en) * | 2004-07-23 | 2008-12-03 | 財団法人石油産業活性化センター | Burner and boiler |
EP1783426B1 (en) * | 2005-11-07 | 2014-05-14 | Riello S.p.A. | Combustion head for a gas burner |
-
2007
- 2007-10-22 UA UAA200904626A patent/UA97963C2/en unknown
- 2007-10-22 EP EP07826814.1A patent/EP2087285A4/en not_active Withdrawn
- 2007-10-22 MX MX2009005411A patent/MX2009005411A/en active IP Right Grant
- 2007-10-22 BR BRPI0719644-0A2A patent/BRPI0719644A2/en not_active IP Right Cessation
- 2007-10-22 US US12/513,901 patent/US20100003625A1/en not_active Abandoned
- 2007-10-22 RU RU2009118564/06A patent/RU2437029C2/en not_active IP Right Cessation
- 2007-10-22 ZA ZA200902956A patent/ZA200902956B/en unknown
- 2007-10-22 AU AU2007326900A patent/AU2007326900B2/en not_active Ceased
- 2007-10-22 CN CN2007800435162A patent/CN101542204B/en not_active Expired - Fee Related
- 2007-10-22 CA CA 2667921 patent/CA2667921C/en not_active Expired - Fee Related
- 2007-10-22 JP JP2009538807A patent/JP5394247B2/en not_active Expired - Fee Related
- 2007-10-22 WO PCT/IB2007/054281 patent/WO2008065554A1/en active Application Filing
-
2009
- 2009-04-27 EG EG2009040594A patent/EG25502A/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2832401A (en) * | 1951-04-05 | 1958-04-29 | Ernest E Lail | Open hearth burner |
US6315551B1 (en) * | 2000-05-08 | 2001-11-13 | Entreprise Generale De Chauffage Industriel Pillard | Burners having at least three air feed ducts, including an axial air duct and a rotary air duct concentric with at least one fuel feed, and a central stabilizer |
Also Published As
Publication number | Publication date |
---|---|
ZA200902956B (en) | 2010-07-28 |
EP2087285A4 (en) | 2016-08-17 |
UA97963C2 (en) | 2012-04-10 |
RU2437029C2 (en) | 2011-12-20 |
WO2008065554A1 (en) | 2008-06-05 |
CN101542204A (en) | 2009-09-23 |
EG25502A (en) | 2012-01-22 |
JP2010511140A (en) | 2010-04-08 |
CN101542204B (en) | 2012-12-26 |
EP2087285A1 (en) | 2009-08-12 |
CA2667921A1 (en) | 2008-06-05 |
AU2007326900A1 (en) | 2008-06-05 |
BRPI0719644A2 (en) | 2014-04-01 |
US20100003625A1 (en) | 2010-01-07 |
MX2009005411A (en) | 2009-06-01 |
RU2009118564A (en) | 2011-01-10 |
JP5394247B2 (en) | 2014-01-22 |
CA2667921C (en) | 2015-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007326900B2 (en) | Burner with means for changing the direction of fuel flow | |
CN101855022B (en) | Powder separation device and solid-fuel burner | |
JP5984399B2 (en) | Coal flow balancer | |
CN101371077A (en) | Pulverized coal-fired boiler and pulverized coal combustion method | |
US20120210917A1 (en) | Solid Fuel Burner | |
US20130305971A1 (en) | Burner for Powdered and/or Particulate Fuels with Adjustable Swirl | |
CN1111676C (en) | Over-fire air control system for pulverized solid fuel furnace | |
CA2861833C (en) | Adjustable division plate for classifier coal flow control | |
CN102803526B (en) | Arrangement for evening out powdery solid matter feed of a concentrate burner of a suspension smelting or suspension converting furnace | |
US6055914A (en) | Pre-riffle box mixing device for coal-fired power plant | |
AU2012202397B2 (en) | Burner for Particulate Fuel | |
US4728287A (en) | Apparatus for uniformly drawing and cooling pyroprocessed particulate material | |
CN204042882U (en) | Solid fuel/oxygen burner and reproducibility stove | |
CA2161727C (en) | Distribution cone for pulverized coal burners | |
CN1550713A (en) | Aggregate dryer burner device and method | |
JP2008101883A (en) | Burner for flame-retardant fuel | |
AU2010240471B2 (en) | A burner | |
JP2008101882A (en) | Solid fuel carrier pipe | |
US20120145055A1 (en) | Method of reducing coal ropes in a burner nozzle for pulverized coal | |
US11346546B2 (en) | Solid fuel burner and combustion device | |
US2855873A (en) | Cyclone furnace | |
JP2011240233A (en) | Vertical type crushing device, and coal burning boiler device | |
CN1111675C (en) | System for preheating fuel | |
CN1589383A (en) | Streamlined body and combustion apparatus having such a streamlined body | |
TH94864B (en) | Burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |