AU2007231555A1 - A supplement lubricant free pneumatic motor - Google Patents

A supplement lubricant free pneumatic motor Download PDF

Info

Publication number
AU2007231555A1
AU2007231555A1 AU2007231555A AU2007231555A AU2007231555A1 AU 2007231555 A1 AU2007231555 A1 AU 2007231555A1 AU 2007231555 A AU2007231555 A AU 2007231555A AU 2007231555 A AU2007231555 A AU 2007231555A AU 2007231555 A1 AU2007231555 A1 AU 2007231555A1
Authority
AU
Australia
Prior art keywords
motor
rotor
chamber
air outlet
baffling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2007231555A
Inventor
Peter Mastalir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rambor Pty Ltd
Original Assignee
Rambor Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006901600A external-priority patent/AU2006901600A0/en
Application filed by Rambor Pty Ltd filed Critical Rambor Pty Ltd
Priority to AU2007231555A priority Critical patent/AU2007231555A1/en
Publication of AU2007231555A1 publication Critical patent/AU2007231555A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

WO 2007/109859 PCT/AU2007/000404 A Supplement Lubricant Free Pneumatic Motor Technical Field The present invention relates to a pneumatic motor. The invention has been developed primarily for use in underground mining and tunnelling tools, such as a 5 roofbolter, and will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited to this particular field of use. Other applications include motors for processing equipment in the food and pharmaceutical industry, in which contamination-free process equipment is required. Background of the Invention 10 Pneumatic motors use rotors driven by compressed air and are common in power tools and other machinery. Pneumatic motors using very clean and dry air can be operated without supplementary lubrication. However, most pneumatic motors require supplementary lubrication to function reliably with durability. The supplementary lubrication is fed into the compressed air stream by a controlled drip rate of oil relative to is the supplied airflow. All the components exposed to the compressed air are then coated with a film of oil. In mining and construction, pneumatic motors rely more heavily on the supplementary lubrication to combat compressed air that can be highly contaminated with contaminants such as water, rock and coal. Without the supplementary lubrication, 20 corrosion and fouling of internal components can render the equipment inoperable in a short time. The lubricators which feed oil into the airflow are generally unreliable and often result in too little or too much oil being fed in. As noted above, lack of oil feed will reduce the operational life of the equipment. Excessive oiling reduces the performance of 25 the equipment due to the sludging of internal components. Excessive oiling can also render the equipment inoperable. The responsibility for maintaining oil supply to the lubricators generally falls to the operators, who, in practice, rarely check the lubricator oil level and often operate equipment without sufficient oil. A lubricator without sufficient oil can also act as a 30 water trap which results in water being fed into the air stream and the misconception that the lubricator is full of oil. Further, equipment with motors having supplementary lubrication expel a fine mist of oil with their exhausted air. This can be detrimental to the health of operators WO 2007/109859 PCT/AU2007/000404 2 who inhale the contaminated air and creates a potential occupational health and safety liability. Object of the Invention It is the object of the present invention to substantially overcome or at least s ameliorate one or more of the disadvantages of the prior art, or to provide a useful alternative. Summary of the Invention Accordingly, the present invention provides a pneumatic motor having: a motor body having an air inlet and an air outlet; 10 at least one rotor mounted in a chamber of the motor body and adapted to be driven by compressed air fed into the air inlet; and an adhesive lubricant applied to the at least one rotor, the lubricant being sufficiently adhesive to remain substantially adhered to the at least one rotor under operational speeds in excess of 13500 rpm. 15 Preferably, the at least one rotor includes a drive rotor and an idler rotor. Further preferably, the rotors are mounted on sealed cage deep groove ball bearings. In a preferred embodiment, the motor body is constructed from corrosion resistant material. Preferably, the motor further includes a reduction gearbox having a gearbox body constructed from a corrosion resistant material. Preferably, the corrosion 20 resistant material comprises nylon, stainless steel or acetyl resin engineering plastic. In an optional embodiment, the motor is adapted for bidirectional rotation and the air inlet and air outlet are selectively interchangeable. In a preferred embodiment, the motor body includes internal baffling formed in the motor body and associated with the air outlet, the baffling being adapted to muffle 25 motor noise. Preferably, the motor body comprises a wall surrounding the chamber and the baffling is provided in a conduit formed within the wall, the conduit providing fluid communication between the chamber and the air outlet. Further preferably, the baffling is provided by the conduit following a corrugated path within the wall. Optionally, the conduit extends around the wall, substantially circumventing the chamber. 30 Preferably, the adhesive lubricant is Optimol Paste White T Spray (trade mark), marketed by Castrol.
WO 2007/109859 PCT/AU2007/000404 3 Brief Description of the Drawings A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings wherein: Fig. 1 is a side view of an embodiment of a motor according to the invention; 5 Fig. 2 is a front view of the motor depicted in Fig. 1; Fig. 3 is an open top view of the motor of Fig. 1; Fig. 4 is a perspective view of the motor of Fig. 1, showing internal detail; and Fig. 5 is a top view of the motor of Fig. 4. Detailed Description of the Preferred Embodiments 10 Referring to the drawings, Figs. 1 to 5 depict an embodiment of a motor 10 according to the present invention. The motor 10 comprises a motor body 12, having an air inlet 14 and an air outlet 16. The motor body 12 has a chamber 15 in fluid communication with the air inlet 14 and air outlet 16. The chamber 15 houses a steel alloy drive rotor 18 on a drive shaft 20 and a steel alloy idler rotor 22, intermeshed with 15is the drive rotor 18, on an idler shaft 24. Each shaft 20, 24 is mounted on sealed cage deep groove ball bearings (not shown). A conduit 25 extends from an opening 26 to the air outlet 16. The conduit 25 is formed within the wall of the motor body 12, extending around the periphery of the chamber 15 and following a corrugated path. During construction of the motor 10, the rotors 18, 22 are sprayed with an 20 adhesive lubricant such as Optimol Paste White T Spray (trade mark) marketed by Castrol. The lubricant is sufficiently adhesive to remain adhered to the rotors 18, 22 under operational speeds in excess of 13500 rpm. In operation, compressed air is fed into the air inlet 14. Since the intermeshed rotors 18, 22 prevent air passing between the rotors 18, 22, the air is forced around the 25 periphery of the rotors 18, 22. As the air flows between the rotors 18, 22 and the wall of the motor body 12, the air drives the two rotors 18, 22 to rotate in the direction indicated by the arrows. The air then exits the chamber 15 via the opening 26 and flows along the corrugated conduit 25 around the periphery of the chamber 15 before being expelled via 30 the air outlet 16. As the air travels along the conduit 25 noise energy is absorbed into the wall of the motor body 12 and the noise output at the air outlet 16 is reduced. Since the adhesive lubricant adheres to the rotors 18, 22 at normal operational speeds, the motor 10 doesn't require supplementary lubrication. This results in cleaner exhaust, less maintenance and more reliable performance.
WO 2007/109859 PCT/AU2007/000404 4 The motor body 12 is advantageously constructed from corrosion resistant material such as nylon, stainless steel or acetyl resin engineering plastic, such as polyoxymethylene. This construction provides a light weight motor that is not susceptible to corrosion when used in contaminated environments. 5 The motor 10 can also be configured to operate selectively in forward or reverse, i.e. bidirectional rotation. When the motor is operated in reverse, the air inlet becomes the air outlet and vice versa. This feature is particularly advantageous in applications of the motor in the food and pharmaceutical industry. Although the invention has been described with reference to a specific example, 10 it will be appreciated by those skilled in the art that the invention may be embodied in other forms.

Claims (12)

1. A pneumatic motor having: 5 a motor body having an air inlet and an air outlet; at least one rotor mounted in a chamber of said motor body and adapted to be driven by compressed air fed into said air inlet; and an adhesive lubricant applied to said at least one rotor, said lubricant being sufficiently adhesive to remain substantially adhered to said at least one rotor under 10 operational speeds in excess of 13500 rpm.
2. The motor of claim 1, wherein said at least one rotor includes a drive rotor and an idler rotor.
3. The motor of claim 1 or 2, wherein said rotors are mounted on sealed cage deep groove ball bearings. s15
4. The motor of any one of the preceding claims, wherein said motor body is constructed from corrosion resistant material.
5. The motor of any one of the preceding claims, wherein said motor further includes a reduction gearbox having a gearbox body constructed from corrosion resistant material. 20
6. The motor of claim 4 or 5 wherein the corrosion resistant material comprises nylon, stainless steel or acetyl resin engineering plastic.
7. The motor of any one of the preceding claims, wherein the motor is adapted for bidirectional rotation and the air inlet and air outlet are selectively interchangeable. 25
8. The motor of any one of the preceding claims, wherein said motor body includes internal baffling formed in said motor body and associated with said air outlet, said baffling being adapted to muffle motor noise.
9. The motor of claim 8, wherein said motor body comprises a wall surrounding said chamber and wherein said baffling is provided in a conduit formed 30 within said wall, said conduit providing fluid communication between said chamber and said air outlet.
10. The motor of claim 9, wherein said baffling is provided by said conduit following a corrugated path within said wall.
11. The motor of claim 9 or 10, wherein said conduit extends around said 35 wall, substantially circumventing said chamber. WO 2007/109859 PCT/AU2007/000404 6
12. The motor of any one of the preceding claims, wherein the adhesive lubricant is Optimol Paste White T Spray (trade mark).
AU2007231555A 2006-03-29 2007-03-29 A supplement lubricant free pneumatic motor Abandoned AU2007231555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007231555A AU2007231555A1 (en) 2006-03-29 2007-03-29 A supplement lubricant free pneumatic motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2006901600 2006-03-29
AU2006901600A AU2006901600A0 (en) 2006-03-29 A motor
AU2007231555A AU2007231555A1 (en) 2006-03-29 2007-03-29 A supplement lubricant free pneumatic motor
PCT/AU2007/000404 WO2007109859A1 (en) 2006-03-29 2007-03-29 A supplement lubricant free pneumatic motor

Publications (1)

Publication Number Publication Date
AU2007231555A1 true AU2007231555A1 (en) 2007-10-04

Family

ID=38540730

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007231555A Abandoned AU2007231555A1 (en) 2006-03-29 2007-03-29 A supplement lubricant free pneumatic motor

Country Status (6)

Country Link
US (1) US20100028187A1 (en)
EP (1) EP2002091A1 (en)
CN (1) CN101415913A (en)
AU (1) AU2007231555A1 (en)
RU (1) RU2008142732A (en)
WO (1) WO2007109859A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457301B (en) * 2008-02-11 2013-03-13 Energetix Pnu Power Ltd Lubrication of positive displacement expanders
CN103089284B (en) * 2013-02-06 2015-04-29 石家庄中煤装备制造股份有限公司 Pneumatic jumbolter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836249A (en) * 1923-02-19 1931-12-15 Sullivan Machinery Co Motor
US3857461A (en) * 1973-04-16 1974-12-31 Caterpillar Tractor Co Bidirectional pump system having plural lubrication circuits
FR2318817A1 (en) * 1975-07-21 1977-02-18 Binaut Jean IMPROVEMENTS IN PNEUMATIC OR HYDRAULIC MACHINES AND IN PARTICULAR MACHINES FOR MINING SITES AND PUBLIC WORKS
US4202719A (en) * 1978-04-10 1980-05-13 Molins Machine Company, Inc. Single facer drive
GB8415879D0 (en) * 1984-06-21 1984-07-25 Dowty Hydraulic Units Ltd Rotary positive displacement fluid-pressure machines
US5554020A (en) * 1994-10-07 1996-09-10 Ford Motor Company Solid lubricant coating for fluid pump or compressor
US5823452A (en) * 1997-05-05 1998-10-20 Ballew; Russell Flaker mill
US6668971B2 (en) * 1998-01-13 2003-12-30 Robert E. Sterling Pneumatic hand tool exhaust muffler having inner and outer tubes
WO2000004276A1 (en) * 1998-07-17 2000-01-27 J. D. Neuhaus Gmbh & Co. Kg Pneumatic motor lubrication
DE20021980U1 (en) * 2000-12-27 2002-05-08 Cooper Power Tools Gmbh & Co air motor
CA2427306A1 (en) * 2003-04-30 2004-10-30 Vilho O. Mantyla Sound muffling apparatus for air operated equipment

Also Published As

Publication number Publication date
EP2002091A1 (en) 2008-12-17
US20100028187A1 (en) 2010-02-04
WO2007109859A1 (en) 2007-10-04
CN101415913A (en) 2009-04-22
RU2008142732A (en) 2010-05-10

Similar Documents

Publication Publication Date Title
CN102410223A (en) Vacuum pump with ventilating means
WO2006036598A8 (en) Portable, rotary vane vacuum pump with removable oil reservoir cartridge
EP2314879A2 (en) Turbo blower and high speed rotating body used in same
CN102762867A (en) Dry vacuum pump with purge gas system and purge method thereof
JP4714009B2 (en) Oil mist splash prevention system for rotating machinery
TW200607928A (en) Motor compressor lubrication
US20100028187A1 (en) Supplement lubricant free pneumatic motor
RU2179653C2 (en) Hydraulic machine sealing system
US20060035741A1 (en) Gear drive
JP4712506B2 (en) Lubricating device for screw compressor and screw compressor provided with the same
CN207256162U (en) Power tool
JPS63129829A (en) Generator with vacuum pump
ITMI990067A1 (en) PUMP
CN110821874B (en) Self-lubricating bearing seat and self-lubricating method for fan
CN1774317A (en) Pneumatic rock drill
JP7427324B2 (en) rotating machinery
JP2014145315A (en) Leaked-oil recovering structure in shaft seal portion of screw compressor
KR100570413B1 (en) Oil pump for cooling and lubricating bearing by power transmission gear
RU2343699C2 (en) Lubrication device used for milking unit vacuum system
KR200195482Y1 (en) Oil lubricator for vertical speed reducer
JP7207459B1 (en) vacuum pump
JP5026313B2 (en) Bearing member and vertical pump device
JP2023054628A (en) reduction gear
RU23757U1 (en) TIP DENTAL TURBINE
US7229259B2 (en) Compressor motor-end bearing having oil leakage path

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application