AU2007202935A1 - Proteins Named FCTRX and Nucleic Acids Encoding Same - Google Patents

Proteins Named FCTRX and Nucleic Acids Encoding Same Download PDF

Info

Publication number
AU2007202935A1
AU2007202935A1 AU2007202935A AU2007202935A AU2007202935A1 AU 2007202935 A1 AU2007202935 A1 AU 2007202935A1 AU 2007202935 A AU2007202935 A AU 2007202935A AU 2007202935 A AU2007202935 A AU 2007202935A AU 2007202935 A1 AU2007202935 A1 AU 2007202935A1
Authority
AU
Australia
Prior art keywords
query
sbjct
amino acid
polypeptide
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2007202935A
Inventor
Elma Fernandes
John L. Herrmann
John Macdougall
Kumud Majumder
Peter S. Mezes
Vishnu S Mishra
Luca Rastelli
Richard A Shimkets
Corine A M. Vernet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CuraGen Corp
Original Assignee
CuraGen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CuraGen Corp filed Critical CuraGen Corp
Publication of AU2007202935A1 publication Critical patent/AU2007202935A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name of Applicant: Address for Service: CuraGen Corporation CULLEN CO.
Level 26 239 George Street Brisbane Qld 4000 Invention Title: Details of Original Application: The following statement is a full description of this method of performing it, known to us: Proteins Named FCTRX and Nucleic Acids Encoding Same 2001247294 invention, including the best BACKGROUND OF THE INVENTION The invention relates generally to polynucleotides and polypeptides, as well as vectors, host cells, antibodies, and recombinant methods for producing these nucleic acids and C 5 polypeptides.
SUMMARY OF THE INVENTION 8 The invention is based in part upon the discovery of novel nucleic acid sequences I encoding novel polypeptides. The disclosed FCTR1, FCTR2, FCTR3, FCTR4, FCTR6 and FCTR7 nucleic acids and polypeptides encoded therefrom, as well as derivatives, homologs, analogs and fragments thereof will hereinafter be collectively designated as "FCTRX" nucleic acid or polypeptide sequences.
In one aspect, the invention provides an isolated FCTRX nucleic acid molecule encoding a FCTRX polypeptide that includes a nucleic acid sequence that has identity to the nucleic acids disclosed in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24. In some embodiments, the FCTRX nucleic acid molecule will hybridize under stringent conditions to a nucleic acid sequence complementary to a nucleic acid molecule that includes a protein-coding sequence of a FCTRX nucleic acid sequence. The invention also includes an isolated nucleic acid that encodes a FCTRX polypeptide, or a fragment, homolog, analog or derivative thereof. For example, the nucleic acid can encode a polypeptide at least identical to a polypeptide comprising the amino acid sequences of SEQ ID NOS:2, 4, 6, 8, 13, 17, 19, 21, 23, and 25. The nucleic acid can be, for example, a genomic DNA fragment or a cDNA molecule that includes the nucleic acid sequence of any of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, and 24.
Also included in the invention is an oligonucleotide, an oligonucleotide which includes at least 6 contiguous nucleotides of a FCTRX nucleic acid SEQ ID NOS: 1, 3, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24) or a complement of said oligonucleotide.
Also included in the invention are substantially purified FCTRX polypeptides (SEQ ID NO: 2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25). In certain embodiments, the FCTRX polypeptides include an amino acid sequence that is substantially identical to the amino acid sequence of a human FCTRX polypeptide.
The invention also features antibodies that immunoselectively-binds to FCTRX polypeptides, or fragments, homologs, analogs or derivatives thereof In another aspect, the invention includes pharmaceutical compositions that include therapeutically- or prophylactically-effective amounts of a therapeutic and a pharmaceuticallyacceptable carrier. The therapeutic can be, a FCTRX nucleic acid, a FCTRX polypeptide, or an antibody specific for a FCTRX polypeptide. In a further aspect, the invention includes, in one or more containers, a therapeutically- or prophylactically-effective amount of this pharmaceutical composition.
In a further aspect, the invention includes a method of producing a polypeptide by 0 culturing a cell that includes a FCTRX nucleic acid, under conditions allowing for expression of the FCTRX polypeptide encoded by the DNA. If desired, the FCTRX polypeptide can then be recovered.
In another aspect, the invention includes a method of detecting the presence of a FCTRX polypeptide in a sample. In the method, a sample is contacted with a compound that selectively binds to the polypeptide under conditions allowing for formation of a complex between the polypeptide and the compound. The complex is detected, if present, thereby identifying the FCTRX polypeptide within the sample.
The invention also includes methods to identify specific cell or tissue types based on their expression of a FCTRX.
!0 Also included in the invention is a method of detecting the presence of a FCTRX nucleic acid molecule in a sample by contacting the sample with a FCTRX nucleic acid probe or primer, and detecting whether the nucleic acid probe or primer bound to a FCTRX nucleic acid molecule in the sample.
In a further aspect, the invention provides a method for modulating the activity of a FCTRX polypeptide by contacting a cell sample that includes the FCTRX polypeptide with a compound that binds to the FCTRX polypeptide in an amount sufficient to modulate the activity of said polypeptide. The compound can be, a small molecule, such as a nucleic acid, peptide, polypeptide, peptidomimetic, carbohydrate, lipid or other organic (carbon containing) or inorganic molecule, as further described herein.
Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot- Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein la deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy.
The Therapeutic can be, a FCTRX nucleic acid, a FCTRX polypeptide, or a FCTRXspecific antibody, or biologically-active derivatives or fragments thereof.
The invention further includes a method for screening for a modulator of disorders or syndromes including, Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy Groenouw type I, Comeal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy. The method includes contacting a test compound with a FCTRX polypeptide and determining if the test compound binds to said FCTRX polypeptide.
Binding of the test compound to the FCTRX polypeptide indicates the test compound is a modulator of activity, or of latency or predisposition to the aforementioned disorders or syndromes.
Also within the scope of the invention is a method for screening for a modulator of activity, or of latency or predisposition to an disorders or syndromes including, Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression of T-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot- Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinoph i ia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy by administering a test compound to a test animal at increased risk for the aforementioned disorders or syndromes. The test animal expresses a recombinant polypeptide encoded by a FCTRX nucleic acid. Expression or activity of FCTRX polypeptide is then measured in the test animal, as is expression or activity of the protein in a control animal which recombinantlyexpresses FCTRX polypeptide and is not at increased risk for the disorder or syndrome. Next, the expression ofFCTRX polypeptide in both the test animal and the control animal is compared. A change in the activity ofFCTRX polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of the disorder or syndrome.
In yet another aspect, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a FCTRX polypeptide, a FCTRX nucleic acid, or both, in a subject a human subject). The method includes measuring the amount of the FCTRX polypeptide in a test sample from the subject and comparing the amount of the polypeptide in the test sample to the amount of the FCTRX polypeptide present in a control sample. An alteration in the level of the FCTRX polypeptide in the test sample as compared to the control sample indicates the presence of or predisposition to a discase in the subject. Preferably, the predisposition includes, Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myclogcnous leukemia, congenital cconatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithcla and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumormediated immunosuppression of T-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein la deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy. Also, the 1 5 expression levels of the new polypeptides of the invention can be used in a method to screen for various cancers as well as to determine the stage of cancers.
SIn a further aspect, the invention includes a method of treating or preventing a pathological condition associated with a disorder in a mammal by administering to the subject 0 a FCTRX polypeptide, a FCTRX nucleic acid, or a FCTRX-specific antibody to a subject LO a human subject), in an amount sufficient to alleviate or prevent the pathological O condition. In preferred embodiments, the disorder, includes, Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumormediated immunosuppression of T-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilancc, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropatny, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotelm Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Comeal dystrophy Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers coreal dystrophy.
In yet another aspect, the invention can be used in a method to identity the cellular receptors and downstream effectors of the invention by any one of a number of techniques Scommonly employed in the art. These include but are not limited to the two-hybrid system, S affinity purification, co-precipitation with antibodies or other specific-interacting molecules.
SUnless otherwise defined, all technical and scientific terms used herein have the same t n meaning as commonly understood by one of ordinary skill in the art to which this invention
INO
N 5 belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are Sdescribed below. All publications, patent applications, patents, and other references Smentioned herein are incorporated by reference in their entirety. In the case of conflict, the Spresent specification, including definitions, will control. In addition, the materials, methods, 10 and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description and claims.
DETAILED DESCRIPTION The invention is based, in part, upon the discovery of novel nucleic acid sequences that encode novel polypeptides. The novel nucleic acids and their encoded polypeptides are referred to individually as FCTR1, FCTR2, FCTR3, FCTR4, FCTR5, FCTR6, and FCTR7.
The nucleic acids, and their encoded polypeptides, are collectively designated herein as
"FCTRX".
The novel FCTRX nucleic acids of the invention include the nucleic acids whose sequences are provided in Tables 1A, 2A, 3A, 3C, 3E, 3F, 3G, 3H, 4A, 5A, 5C, 5E, 6A, 6C, and 7A inclusive ("Tables 1A or a fragment, derivative, analog or homolog thereof.
The novel FCTRX proteins of the invention include the protein fragments whose sequences are provided in Tables 1B, 2B, 3B, 31, 4B, 5B, 5D, 6B, 6D, and 7B inclusive ("Tables 1B The individual FCTRX nucleic acids and proteins are described below. Within the scope of this invention is a method of using these nucleic acids and peptides in the treatment or prevention of a disorder related to cell signaling or metabolic pathway modulation.
FCTR1 Novel FCTR1 is a growth factor ("FCTR") protein related to follistatin-like gene, and FCTR1 (also referred to by proprietary accession number 58092213.0.36) is a fulllength clone of 771 nucleotides, including the entire coding sequence of a 105 amino acid protein from nucleotides 438 to 753. The clone was originally obtained from thyroid gland, kidney, fetal kidney, and spleen tissues.
The nucleotide sequence of FCTR1 as presently determined is reported in Table lA.
The start and stop codons are bolded and the 5' and 3' untranslated regions are underlined.
Table 1A. FCTR nucleotide sequence (SEQ ID NO:1).
;Z
GGTCCTCACCCCCTTCCCTCTCCCAGCCTCGGTGTCTGGTACGGCCTGTTCGCATTGTGACTTTGGGCCAGGCTGGGG
CTAATGACCCAGTGGA TCC TCCTG GGCTGAAGTGAAGAAATGCGATCAGG GCGGAG AGG GGGCCGGAGGAGCTTCTAGAA TC CAA CCGGCGGGCCCGGCTGACTGCGC csuce of FCT tein TC gt o Tte foregoin AGTTCCGGAr- ACTAGGGCCCCAGATCGTGTrATCTTGACGATTACAGCAGAGTATTTGTT In AAGTGTTTGCCTACCCCATGGCCCCAT
CGAGTGGAGAAGGATGGCTTGGACATCCAGCTGCCAGGGCCCTT
WC1 CG;TGCAGTTTAGGGGTGGACCCCAGAGGTTTGAGGTGACTGTGTCGTCGCGGGCCGGTAGC O\CTTACCG CTGC CTTGCCCGCAATGCCCTGGGCAAGTGGAGGCCCCTGCTCGTCCACACCTGACCAGCTGAACT
CTACAGGCATCCCCCAGCTGCGATCACTAAACCTGGTTCCTAGGGCGGGGAAGTAGTATCAG
TccAGAGCTCTGGCC The predicted amino acid sequence of FCTRI protein corresponding to the foregoing nucleotide sequence is reported in Table 1B. FCTRI was searched against other databases using SignalPep and PSort search protocols. The protein is most likely located in the cytoplasm (ceriainty-0.6500) and seems to have no N-terminal signal sequence. The predicted molecular we ight of FCTR1 protein is 11711.8 daltons.
z0 Table IB. Encoded FCTR1 protein sequence (SEQ ID NO:2).
MASIEWR:-'.D:Q PDDPHISVQFRGGPQRFEVTGWLQIQAVRPSDEGTYRCLARNALGOVEAPASLTVLTPDQLNSTGIPQ LRSIX:.'JPU ZAESEENDDYY FCTRI was initially identified with a TblastN analysis of a proprietary sequence file for a follstatin-like probe or homolog which was run against the Genomic Daily Files made available by GenBank. A proprietary software program (GenScan-r was used to further predict the nucleic acid sequence and the selection of exons. The resulting sequences were further modified by means of similarities using BLAST searches. The sequences were then manually corrcted for apparent inconsistencies, thereby obtaining the sequences encoding the full-length protein.
In an analysis of sequence databases, it was found, for example, that the FCTR1 nucleic acid sequence has 31/71 bases identical and 46/71 bases positively alike to a Mus Muscinadlus IGFBP-like protein (TREMBL Accession Number:BAA21725) shown in Table 1C. In all BLAST alignments herein, the "E-value" or "Expect" value is a numeric indication of the probability that the aligned sequences could have achieved their similarity to the BLAST query sequence by chance alone, within the database that was searched. For example, as shown in Table 1C, the probability that the subject ("Sbjct') retrieved from the FCTRI BLAST analysis, in this case the Ma TMusculus IGFBP-like protein, matched the Query FCTRI sequence purely by chance is 1.2xl0 s.
Table 1C. BLASTP of FCTRI against Mus Afuscultis IGFBP-iikc protein (SEQ ID NO:38) PTNR:REMTREMBL-ACC :BAA21725 IGFBP-LIKE PROTEIN MUS MUSCULUS (MOUSE), 270 AA.
LENGTH 270 SCORE 161 (56.7 BITS), EXPECT 1.2E-11, P 1.2E-11 IDENTITIES 31/71 POSITIVES 46/71 (64%) QUERY: 9 DGLDIQLPGDDPHISVQFRGGPQRFEVTGWLQIQAVRPSDEGTYRCLARNALGQVFPAS 68 +11+ +1111 41+11 Ji ll I 1 +1 111 1 1 1 i1+ SBJCT: 191 EGLE-ELPGDHVNIAVQVRGGPSDHETTSWILINPLRBEDEGVYHCAAIGEAQSHGT 249 QUERY: 69 LTVLTPDQLNS 79 +11I SBOCT: 250 VTVLDLNRYKS 260 The amino acid sequence of FCTRI also had 26/5 8 bases identical, and 38/58 bases positive for Mus MAlusculus Follistatin-like Protein shown in Table 1D.
Table ID. BLASTP of FCTRI against Mus Mlusculus Follistatin-like Protein (SEQ ID NO:39) PTNR:SPTREMBL-Ac.Q61581 FOLLISTATIN-Lyc 2 (FOLLISTArIN-LIIE PROTEIN) MUS MUSCULUS (MOUSE), 238 AA.
LENGTH 238 SCORE 149 (52.5 BITS), EXPECT 1.5E-10, P 1.5E-10 IDENTITIES 26/58 POSITIVES 38/58 QUERY: 15 LPGDDPHISVQFRGGPORFEVTGWQIQAVRPSDEGTYRCLA1TGQVEAPASLTL 72 JIII 1 1111+4 11111+ I I I I I 1+ 11I 1 +11+ SBJCT: 165 LPGDRE LAIQTRGGPEKEVTGWVLVSPLSKEDAGEYECHASNSQGQZSAAATCITW 222 The amino acid sequence of FCTR1 also had 26/58 bases identical, and 38/58 bases positive for Honzo sapiens MAC2S protein shown in Table lE.
Table lE. BLASTP of FCTRI against Homao sapiens MAC25 protein (SEQ ID PTNR:SPTREML-ACC:Q07B22 MAC25 PROTEIN HOMO SAPIENS (HUMAN), 277 AA.
LENGTH 277 SCORE 149 (52.5 BITS), EXPECT 3.2E-10, P 3.2E-10 IDENTITIES 26/58 POSITIVES 38/58 QUERY: 15 LPGDDPHISVQFRGGPQRFEVTGWLQIQAVRPSDEGTYRCLARNALCVEAPASLTVL 72 li (ill+ 1(111+4 I I I I j 1 +11+ SBJCT: 209 LPGDRDNLAIQTRGGPEKHEVTGWVLVSPLSKEDAGE ECHASNSQGQASASAKITvV 266 The amino acid sequence of FCTRI also had 26/58 bases identical, and 38/58 bases positive for Mus musculus MAC25 protein shown in Table IF.
Table IF. BLASTP of FCTR1 against Mus miusculus MIAC25 protein (SEQ ID NO:41) PTNR:SPTREMBL-ACC:088812 MAC25 MUS MOSCULUS (MOUSE), 281 AA LENGTH 281 SCORE 149 (52.5 BITS), EXPECT 3.4E-10, P -3.4E-10 IDENTITIES 26/58 POSITIVES 38/58 0 QUERY: 15 LPGDDPHISVQFRGGPQRFEVIGWLQIQAVRSDEGTYRCLARNALGQVEAPASLTVL 72 1111 1. I fll++ ]fll+ I I I I I 1+ 11 I +11+ SBJCT: 208 LPGDRENLAIQTRGGPEKHEVTGWLVSPLSKEDAGEYECHASNSQGQASAAKI TVV 265 The amino acid sequence ofFCTRl also had 26/58 bases identical, and 38/58 bases positive for Hoino sapiens Prostacyclin-stimulating factor shown in Table 1G.
Table 1G. BLASTP of FCTR1 against Homto sapiens Prostacyclin-stimulating factor (SEQ ID NO:42) PTNR:SPTREMBL-ACC:Q16270 PROSTACYCLIN-STIM7LATING FACTOR HOMO SAPIENS (HUMAN), 282
AA
LENGTH 282 SCORE 149 (52.5 BITS), EXPECT 3.4E-10, P 3.4E-10 IDENTITIES 26/58 POSITIVES 38/58 QUERY: 15 LPGDDPHISVQFRGGPQRFEVTGWLQIQAVRPSDEGTYRCLAPNALGQVEAPASLTVL 72 1111 Ill liii1 I I I I I 14 II 1 1 4 SBJCT: 209 LPGDRDNLAIQTRGGPEKHEVTGWV;VSFLSKEDAGEYECHASNSQGQASASAKITV 266 The amino acid sequence of FCTR1 also had 18/44 bases identical, and 25/44 bases positive for rat Colorectal cancer suppressor shown in Table 1H.
Table 1H. BLASTP of FCTR1 against rat Colorectal cancer suppressor (SEQ ID NO:43) PTNR:PIR-ID:B40098 COLORECTAL CANCER SUPPRESSOR DCC RAT (FRAGMENTS) LENGTH 144 SCORE 78 (27.5 BITS), EXPECT 1.1E-05, SUM P(2) 1%-05 IDENTITIES 18/44 POSITIVES 25/44 (56%) QUERY: 33 FEVTGW--LQIQAVRPSDEGTYRCLANALGQVEAPASLTVLTP 74 1 1+1 1 fl l W +I I I I I I I SBJCT: 101 FQIVGGSNLR.ILGVVKSDEGFYQCVAENEAGNAQSSAOLIVPKP 144 SCORE 37 (13.0 BITS), EXPECT 1.1E-05, SUM P(2) 1.1E-05 IDENTITIES 8/19 POSITIVES 12/19 (63%) QUERY: 1 MASIEWRKDGLDIQL-PGD 18 1 +1 1+ 1+ 111 SBJCT: 30 MPTIHWQKNQQDLTPNPGD 46 The amino acid sequence of FCTR1 also had 32/83 bases identical, and 45/83 bases positive to bases 55-137, and 24/68 bases identical, and 37/68 bases (54%) positive to bases 166-225 of Hoino sapiens PTPsigma-(Brain) Precursor shown in Table H1.
Table 11. BLASTP of FCTRI against Hono sapiens PTPsigma-(Brain) Precursor (SEQ ID NO:44) PTNR:TREMBLNEW-ACC:AADO936O PTPSIGMA- (BRAIN) PRECURSOR HOMO SAPIENS (HUMA), 1502
AA.
LENGTH 1502 SCORE 109 (38.4 BITS), EXPECT 0.00010, P 0.00010 IDENTITIES -32/83 POSITIVES 45/83 (54%) QUERY: 14 QLPGDD-PHISVQFRG---GPQRFEVTGW-------LQIQAVR-PSDEGTYRCLARNAIZ 61 I 1 1 +1 1111 1+11 +1 I II I SBJCT: 55 QATGDPKPRVTWNKKGKKVNSQRFETIE FDE SAGAVLRIQPLTPRDNVYECVAQN SVG 114 QUERY: 62 QVEAPASLTVLTPDQLNSTGIPOL I HII III I I I SBJCT: 115 EITVHAKLTVLREDQLPS-GFPNI 137 SCORE 77 (27.1 BITS), EXPECT 0.25, P 0.22 IDENTITIES 24/68 POSITIVES 37/68 (54%) QUERY: 4 IEWRKGCLDIQLPGDDPHISVQFRGGPQRFEVTGWLQIQAVRPSDEGTYRCLRNALGQ 62 I 11I II 1 +1 III++ +1+1 1 1+1 1+ 1 SBJCT: 166 ITWFKDFLPV- DPSAS---NGRIKQLR-SGALQIESSEETDQGKYECVATNSAGVR 216 QUERY: 63 VEAPASLTV 71 +11+1 1 SBJCT: 217 YSSPANLYV 225 The amino acid sequence ofFCTR1 also had 32/83 bases identical, and 45/83 bases positive for amino acids 55-137 and 26/69 bases identical, and 38/69 positive for amino acids 166-234 of Hoino sapiens Protein-Tyrosine Phosphatase Sigma shown in Table 1J.
Table 1J. BLASTP of FCTR1 against Honso sapiens PTPsigma-(Brain) Precursor (SEQ ID PTNR: SPTRRMBL-ACC:Q13332 PROTEIN-TYROSflE PHOSPHATASE, RECEPTOR-TYPE, S PRECURSOR (EC 3.1.3.48) (PROTEIN-TYROSINE PHOSPHATASE SIGMA) (R-PTP-SGMA) (PTPRS) HOMO SAPIENS (HUMAN), 1948 AA.
LENGTH 1948 SCORE 109 (38.4 BITS), EXPECT 0.00013, P 0.00013 IDENTITIES 32/83 POSITIVES 45/83 (54%) QUERY: 14 QLPGDD-PHISVQFG---GFQRFEVTGW-------LQIQAVR-PSDEGTYRCLANAGI G 61 1 11 1 +1 I I 1+11 +1 111 1 1+1+1++ SBJCT: 55 QATGDPKPRVTWKKGK NSQRFETIEFDESAGAVLRI QPLRTPRDENVYECVAQNSVG 114 QUERY: 62 QVEAPASLTVLTPDQLNSTGIPQL I 1111 III I I I+ SBJCT: 115 EITVJAKLTVLREDQLPS-GFPNI 137 SCORE 88 (31.0 BITS), EXPECT 0.023, P 0.022 IDENTITIES 26/69 POSITIVES 38/69 QUERY: 4 IEWRKDGLDIQLPGDDPHISVQFRGGPQRFEVT GWLQIQAVRPSDEGTYRCLARNAL 1 I I 1 I II I+ 1 1 111++ +1+1 I 1+ I 1+ SBJCT: 166 ITWFKDFLPVDPSASNGRIK-QRS--ETFESTPIRGQIESSEETDQECATSA 222 QUERY: 61 G-QVEAPASLTV 71 I +11+1 1 SBJCT: 223 GVRYSSPANLYV 234 A ClustalW analysis comparing the protein of the invention with related protein sequences is given in Table 1K, with ECTRI shown on line 2. In the ClustaiW alignment of the FCTR1 protein, as well as all other ClustaiW analyses herein, the black outlined amino acid residues indicate regions of conserved sequence regions that may be required to preserve structural or functional properties), whereas non-highlighted amino acid residues are less conserved and can potentially be mutated to a much broader extent without altering protein structure or function.
Table 1K ClustaiW Analysis of FCTR1 0 1) Q07822 MAC25 PROTEIN. (SEQ ID 2) Q16270 PROSTACYCLIN-STIMULATING FACTOR. (SEQ ID NO: 42) 3)061581_FOLLISTATIN-LIKE 2: FOLLISTATIN-LICE 2 (FOLLISTATIN-LIKE PROTEIN) (SEQ ID NO:39) 4) BAA2172-9 IGFBP-LIKE PROTEIN (SEQ ID NO:3B) 5) FCTR1 (SEQ ID NO:2) 6) B40098 COLORECTAL CANCER SUPPRESSOR DCC RAT (FRAGMENTS) (SEQ ID NO:43) Q07822 ,0 Q16270 Q615 81 BAA2 17 25 FCTR1 B4 00 98 QO7822 Q16270 061561 BAA2 1725 FCTR1 B4 0098 007 822 Q1 6270 061581.
BAA2 1725
FCTI
B4 00 98 Q07822 Q16270 061581 BAA2 1725 E'CTR1 B40098 007822 016270 061581 BAA21725 ECTR1 B40098 007822 016270 061581 BAA21725 FCTR1 MASMFG .ORRMMTSEPASPLPLGCLLGETW&A ImS EPASNPLPULGCLLGET~aM EPQLP2LLPSLRGGRDAG RRHPEISESQQDREAPSUCPAPWISASEF PMA~t.a5PGGEGj3["-U156'2 AR3LGjASjZ EPVGSR3GHL.VRA M
MGKAGAAAGGPJ
SVVK] VV 41 R ASET11PEE T jLAffhQGAff PiSR FLSQ'rE SO-T IMT&QOT*00 =R,8SI&LRA~jRAHG 0 *D-PjAVVMRjdj X~N-ZIVKEI ,~lPIWKNQLP 0SVV 0E;NINEYYSD WIN A~,CQSETGUM~lli7sMJ 'p MAS~ ER MvHSAAQH3TLINRYKS YSS~V VRPSETU RWP.5 2tS ITPDLNSTGIPLRSLNLVPEEEAESENa, PVMSMEtE fi IGFBP is expressed in neurostem cell and developing central nervous system. MACa follistatin like protein is a growth suppressor ofosteosarcoma cells, and meningiomas.
DCC is expressed in most normal tissues especially in colonic mucosa, but is deleted in colorectal cancers.
Since FCTR1 has similarity to these proteins (shown in BlastP, Tables IC-lJ, and in clustalW, Table 1K) it is likely that it has similar function. Therefore FCTRI could function as on or more of the following: a tumor suppressor geneor regulator of neuro!ngical system development.
Based on the protein similarity and tissue expression, FCTR1 may be useful in the following diseases and uses: Tissue regeneration in vitro and in vivo (ii) Neurological disorders, neurodegenerative disorders, nerve trauma (iii) Reproductive health (iv) Immunological disorders, allergy and infection In cancer as a diagnostic and prognostic marker, as well as a protein therapeutic FCTR2 FCTR2 (alternatively referred to herein as AC012614_1.0.123), is a growth factor bearing sequence similarity to human KIAA1061 protein and to genes involved in neuronal development and reproductive physiology cell adhesion molecules, follistatin, roundabout and frazzled). FCTR2 is a full-length clone of 5502 nucleotides, including the entire coding sequence of a 815 amino acid protein. This sequence is expressed in glioma, osteoblast, other cancer cells, lung carcinoma, small intestine (This sequence maps to Unigene Hs.123420 which is expressed in brain, breast, kidney, pancreas, pooled tissue).
A FCTR2 ORF begins with an ATG initiation codon at nucleotides 420-422 and ends with a TGA codon at nucleotides 2865-2867. Putative untranslated regions upstream from the initiation codon and downstream from the termination codon are underlined in Table 2A, and the start and stop codons are in bold letters.
Table 2A. FCTR2 Nucleotide Sequence (SEQ ID NO:3).
CAATT TCACCAGGAAACAGCTTA ATGCCAGGTTGGACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTG
TGCTGGAATTCGGCTTACTCACTAGGGCTCGAGCGGTGGCCCGCCAGGTCATTAATTCCATTTCTTTTTAGAGTATC
ACAGCTTTCTCCTTCACTGACCACCCTTTGCTTCCTGTCAGAAAGCCCTGGACAGAACTCTCTGTGGGATTCTGCCCATG
TTTCTGAGATTCGCCTCAATTGTCCT-GGCGCGGCGTCGTCTGCCCGTTTTACAGATGGGCAAACTGGGTGGGARG
TATCCGGGTGGCTTCCTCAGGCCTGCAGCGGTGGAGCAGCTACTGAAACAATCAGGAGCCCAGAAGCTTTGAAGTCACA
AGAAGAGAAGACTCCCAGTCAGCTGTGATGTTGGTGnTGGacGCCTGGTTTCGCCTTTCrCTTACTGCCCTTTCCA
GCTGCCCTGACCTCTTTGGGCTTTCCAGCCGCAACGAGCTGCTGGCCTCCTGCGGGAAGAAGTTCTGCAGCCGAGGGAGC
CGGTGCGTGCTCAGCAGGAAGACAGGGGAGCCCGAATGCCAGTGCCTGGAGGCATGCAGGCCCAGCTACGTGCCTGTGTG
CGGCTCTGATGGGAGGTTTTATGAAAACCACTGTAAGCTCCACCGTGCTGCTTGCCTCCTGGGAAAGAGGATCACCGTCA
TCCACAGCAAGGACTGTTTCCTCAAAGGTGACACGTGCACCATGGCCGGCTACGCCCGCTTGAAGAATGTCCTTCTGGCA
13
(N
C
(N
C
C
(N
CTCCGCGAGTTCTACATGGCCTTCCAGTGGTTCAGCTCAGCCTCGCCCCCGAGGACGGGTCAGTGTGACCCAGTGAC
CCCTGATC GCTGAGrACATATTGGGGATGATCCCTGTACAT
CACCAAGGTGACCACCATC
CAAGGATAACGCTCTCGCCACACGTCGCCCTCGAGGAGGCC
AGCTCTTTTCGGGCGCCGACTGATGACACTAAGCTCGGGAT
CCTCCGACCTGTAAAGCTGTTTACCGTTCACGTTCTTGCA
GGACITCCA .0GGTCGAGAAACGGCTCCCG
TCAAATAGGGG
GGTAGTTTCCCCTATAGCCGTAAAACTGAAACTTGGGGAGC
TCGGGGACTTCAGCTTCAGCGTTACTACACTTGCGGGTCGG
CACCACCCGAAATTAGGTTAGAACGCTAAAAAAAGACCGCT
CCGGGACGATATTCGACGAACAGGCCGCCCCGGAATCTTGC
ACTCACCGZArCAATCTGTTGCCCGCGTACGCTTAAGCCTA
CAGGGGCTACGGGAGGAAGCCGCAGCCAGGTAAAGCGACGC
,0 ACAGGACAGCCCCGCCTCTGCTGCCCGACGTCGTTGAAGTGTGACTCGTGCTTGGCCCCAAGGTGATG TACGCCCAAAACCCAGG-CTAACCGGTCGTAACCTGTrAGGA GAArAA CGGGGTCGCCCACCTCATACCGCTTAATGCTCAC
CTCTATAAC.TATCAACAGGCCGAAGACGACGTTCTGGTTC
CGGAGTGCTCGAACTAGACACGAGCACCGCTGGGTCrAAAT
ATAGAATGCGTGAATCTCCCCCGCGGGCCGTCCTATGAAAA
CAGTCGGGGTTAGAAAGGGACCGGTTGTGTAGAGAGCCG~-
GACCGGCAGAACCTGCTAATCGCC~.AGAGTTCTTTCGCAA
CAAACGATGTTTGTACCGTTCTGAGTCTGAAGTTCCGTCAG
TTGGTTTGTGAGAGTTTCTGGTCAGGAAAGTCGGAAGACT
0 CTTCAGTCCCGGGCTGGCTAGACAGGTCG~TC~cGc~~T~-
GTGCTAAATATTCTATCAACAGCGCTGCTAGATGCGAGAAG
CGCAGGAGGCCCCCACGA.CCTCTCCCTGACCTTCCCCCGT
CTCTCTTTTCTTATGTTACTAGGGGCAAGCTCGACTGGAGG
AATATATTTTGAATTGTAAAAATTTACCATCATACGAGGT
TCGGTCATTTCT-CGCTGCGGCCGCTGCCACCCTCAACAAA
AAATGCTTAATCGCCGCATTGCACTCTTCAACGCAGCCTAC
GTAGCCGTTTTGGCCAAAkCGAAGTTTTCTCTCGAAAGGGC
TCCTATAGCGTCCAATAGCGCTGCTCTGAGTTGTGCCAGTA
TG:GACCAGAAGGGGCAGGGTCGACAACTTAACGTTGTTCA
0 CTTGCACATCCCGTCCACCGATACCGAAAACCTTGCAGTTC
TACAATCCACAAAAAATCGACCGAAAGCAAGTGATCGATTC
TAGGCCGCGGTATTAAGGACAGATCACAAACCCGAACCTrA
CAAATACAAAAGTGCTCTTCAAAGGGACTCTTTCGTTATAC
TTTCACAAGGTGAAGGTTACCAAGCTGTATGCACTACATAA
GACGA7TCTGCTAGATACCTCAGGGAACTGCCGGCCCCA~- CAACCTT-CCTCTATCAGCrCGCTCCGCCGTTAGGTATATGA
GTTAGACTGCACACCTTCCGAATCAGGGGCAAAGA~CGTTT
TTTAAAAGTTTGTTATGGAGTCCTAAGCAATCGTCCGACGG
TGCATGGATGACCCATCTCACCCCTTTTTTTTTCCTGCCTATATCTGTATGTATGTTTACTCCCAATCTCCCATT
TTACCAA"CCACTCTACTTTTGAAArCATTTACCTAAAAAG TCCGGCAAGGAAGCCCACA:AACGAaGGCCCGGACGATCAG
CAAACGTGCCACGCTTAATACAGGGCGGCATCGACCTCTTC
CCCGCC7CTTGATTTTAAACTGTCCTGTTCCGGGAITCGAA
GGAGTAGCCCGCWTCAAAACGACAGAGCGACTGTAGTTAG
GTCGCCGAGAATACLTCGGGTATCTTGCGAACATGGTGTGT
GGATAGGGGGAAGAGAAGGAGGCGCGCTCCTCCCT~TACCG
AGGTCTGAAATGAACATGAGAAGCCCAAGGGCCTTGAGCAC
TACTCATACCCAGCATAACGTTTACATAGATCGCTACAA
AACTAGAGTTTTTACCCTATATTATATATTA
The predicted amino acid sequence of FGTR2 protein corresponding to the foregoing nucleotide sequence is reported in Table 2B. FCTR2 was searched against other databases using SignalPep and PSort search protocols. The protein is most likely located in the mitochondrial matrix space (certainty=0.47 18) and seems to have no N-terminal signal sequence. The predicted molecular weight is 90346.9 Daltons.
Table 2B3. FCTR2 Protein Sequence (SEQ ED NO:4).
MDDGGLR~JRLSPLGSRELSGKCRSCLRTEEQLARSVVGDRYN
CKLHACLLGKRITVII4SKDCFLKGDTCTMYLIZVQTRLQPLQEGDSRQDPASQKLLVESLFRDLDADGGHLS SSELAQHVLKKQDLDEDLLGCS
PGDLLRFDDYNSDSSLTLP.EFYMAFQVVQLSLAPEDRVSVTTVTVGLSTVLTCAVRGDLRPP
IIKNLLFILDNFEDLIKTIMNfCHSHQFTVQNPVRYEQQPVALC 'SVRYEDTGAYTCIAKNEVGVDEDI
SSLFIEDSARKTLANILWREEG
LSGtFVS)GIIPDEQHKTKFSEICQENTPQVANRRIVQASVVDQ QKVLQSIGVDPLPAKaSYDKSHDQVVLSWGDVHKISRPSLQVITEASTGQSQHLIRTPFAGVDDFFI PPTNLI INHIRFGFI FN KSDPAVHKVDLETMJPLTIGLRHHGCVPQAMAHTHLGGYFFIQCRQDS PASAARQLLVDSVTJSVLGPNGDVT1GTPHTS
PDGR
FISADPLVETREQIDQNGSLFRSTSQNYAHEDLLLTKGLNRPA
PAPGTRMDGMYLPPELLNRNLCVGKGTVVE
In a BLASTN search it was also found that nucleotides 784-5502 of FCTR2 nucleic acid had 4672 of 4719 bases identical to Hoino sapiens mRNA for KIAA1061 protein, partial cds (GenBank Acc:AB028984) (Table 2Q.
Table 2C. BLASTN of FCTR2 against Houto saqpiens mnRNA for KIA.A1O61 protein (SEQ ED NO:46) >GII5689458Bal,7ABO28984.IIABO2894 HOMO SAPIENS MRNA FOR KIAA1061 PROTEIN, PARTIAL
CDS
LENGTH 4719 SCORE 9075 BITS (4578), EXPECT 0.0 IDENTITIES =4672/4719 (99%) STRAND PLUS PLUS QUERY: 784
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:.
SBJ7CT:
QUERY:
S13JCT:
QUERY:
SBJCT:
QUERY:
1 844 904 121 964 181 1024 241 1084 301 1144 361 1204 AG1ATGTCCTTCTGGCACTCCAGACCCGTCTGCAGCCA1TC1AAGA1G1AGA1AG1AGAC
AGAATGTCCTTCGGCACTCCAGACCCGTCTGCAGCCACTCCAAGAGGAGACAGCAGAC
AGACCCTGCCTCCCAGAGCGCCTCCTGGTGGAATCTCTGTTCGGGACTTAGATGAG
AAGACCCTGCCTCCCACAAGCGCCTCCTGGTGGAATCTCTGTTCAGGGACTAGATCAG
ATGGCGATGGCCACCTCAGCAGCTCCGACTGGCTCAGCATGTGCTGAGACAGGACC
ATGGCAATGGCCACCTCAGCAGCTCCGACTGGCTCAGCATTGCTGAAGAGCAGGACC
TGGATGAAGAC'ACTTGGTTGCTCACr-AGGTGACCTCCTCCGATTTGACGATTACAACA
TGGATGAAGACTTACTTGGTTGCTCACCAGGTGACCTCCTCCGATTTGACGATTACAC
GTGACAGCTCCCTGACCCTCCGCGAGTTCTACATGCCTTCCAGTGGTTCAGCTCAGCC
TCGCCCCCGAGGACAGGGTCAGTGTGACCACAGTCCGTGCGGCAGT~GA
TCGCCCCCGAGGACAGGGTC.GTGTGACCACAGACCGTGGGCTGAGACAGTGCTGA
TGAACTTCCTGGACTTGGAAGACATCATGACTTTGGAGAGQATGATTCCCTGTACATCA
843 903 120 963 180 1023 240 1083 300 1143 360 1203 420 1263
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY.
SBJCT:
QUERY:
SBJc-T:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUEBRY
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:.
QUERY:
SBJCT:
QUERY:
SBJGT:
QUERY:
SBJCT:
421 TGAACTTCCTGGACTTGGAAGACATCAATGACTTTGGAGAGGATGATTCCCTGTACATCA 480 1264 CCAGGTACCACCATCCACATGGGCAATTACACCTGCCATGCTTCCGGCCACGAGCAGC 1323 48a1 CCI AGGTGACCACCATCCACATGGGCAATTACACCTGCCATGCTTCCGGCCACGAGCAGC 540 1324 TGTTCCAGI&CCCACGTCCTGCAGGTGAATGTGCCGCCAGTCATCCGTGTCTATCCAGAGA 1383 541 TGTTCAGACCCACGTCCTGCAGGTGAATGTGCCGCCAGTCATCCGTGTCTATCCAGAGA 600 1384 GCCAGGCACAGGAGCCTGGAGTGGCAGCCAGCCTAAxGATGCCATGCTGAGGGCATTCCCA, 1443 601 GCCAGGCACAGGAGCCTGGAGTGGCAGCCAGCCTAAGATGCCATGCTGAGGGC:ATTCCCA 660 1444 TGCCCAGAATCACTTGGCTGAAAAACGGCGTGGATGTCTCAACTCAGATGTCCAAACAGC 1503 661 TGCCCAGAATCACTTGGCTGAAAAACGGCGTGGATGTCTCAACTCAGATGTCCAACAGC 720 1504 TCTCCCTTTAGCCAATGGGAGCGAACTCCACATCAGCAGTGTTCGGTATGAAGACACAG 1563 721 TCTCCCTTTTAGC-AATGGAGCGAACTCCACATCAGCAGTGTTCGGTATGAAGACACAG 780 1564 GGGCATACACCTGCATTGCCAAAAATGAAGTGGGTGTGGATGAAGATATCTCCTCGCTCT 1623 781 GGGCATACACCTGCATTGCCAAAAATGAAGTGGGTGTGGATGAAGATATCTCCTCGCTCT 840 1624 TCATTGAGACTCACTAGAAAC-ACCCTTGCAAACATCCTGTGGCGAGAGGAAGGCCTCA 1683 841 TCATTGAAGACTCAGCTAGAAAGACCCTTGCAAACATCCTGTGGCGAGAGGAAGGCCTCA 900 1684 GCGTGGGAAACATGTTCTATGTCTTCTCCGACGACGGTATCATCGTCATCCATCCTGTGG 1743 901 GCGTGGGAAACATGTTCTATGTCTTCTCCGACGACGGTATCATCGTCATCCATCCTGTGG 960 17)44 ACTGTGAGATCCAGAGGCACCTCAAACCCACGGAAAAGATTTTCArGAGCTATGAAGAAA 1803 961 ACTGTGAGATCCAGAGGCACCTCAAACCCACGGAAAAC-ATTTTCArGAGCTATGAAGAAA 1020 1804 TCTGTCCTCAAAGAGNNNINNNTGCAACCCAGCCCTGCCAGTGGG7ATCTGCAGTCAATG 1863 1021 TCTGTCCTCAAAGAGAAAAAAATGCAACCCAGCCCTGCCAGTGGGTATCTGCAGTCAATG 1060 1864 TCCGGAACCGGTACATCTATGTGGCCCACCCAGCACTGAGCAGAGTCCTTGTGGTCGACA 1923 1081 TCCGGAACCGGTACATCTATGTGGCCCAGCCAGCACTGAGCAGAGTCCTTGTGGTCGACA 1140 1924 TCCAAGCCCAGAAAGTCCTACAGTCCATAG'GTGGACCCTCTGCCGGCTAAGCTGTCCT 1983 1141 TCCAAGCCCAGAAAGTCCTACAGTCCATAGGTGTGGACCCTCTGCCGGCTAAGCTGTCCT 200 1984 ATGACAAGTCACATGACCAAGTGTGGGTCCTGAGCTGGGGGGACG TGCACAAGTCCCGAC 2043 1201 ATGACAAG'rCACATGACCAAGTGTGGGTCCTGAGCTGGGGGGACGTGCACAAGTCCCGAC 1260 2044 CAAGTCTCCAGGTGATCACAGAAGCr-AGCACCGGCCAGAGCCAGC-ACCTCATCCGCACAC 2103 1261 CAAGTCTCCAGGTGATCACAGAAGCCAGCACCGGCCAGAGCCAGCACCTCATCCGCACAC 1320 2104 CC'TTGCAGGAGTGGATGATTTCTTCATTCCCCCAACAAACCTCATCATCA-ACCACATCA 21 63 1321. CCTTTGCAGGAGTGGATGATTTCTTCATTCCCCCAACAAACCTCATCATCAACCACATCA 1380 2164 GGTTTGGCTTCATCTTCAAeP.AGTCTGATCCTGCAGTCCACAAGGTGGACCTGGAeJXA 2223 1381 GGTTTGGCTTCATCTTCAACAAGTCTGATCCTGCAGTCCACAAGGGGACCTGGAAAA 1440 2224 TGATGCCCCTCAAGACCATCGGCCTGCACCACCATGGCTGCGTGCCCCAGGCCATGGCAC 2283 1441 TGATGCCCCTCAAGACCATCGGCCTGCACCACCATGGCTGCGTGCCCCAGGCCATGGCAC 1500 16 QUERY: 2284 SBJCT: 1501 QUERY: 2344 SBJCT: 1561 QUERY: 2404 SBJCT: 1621 QUERY- 2464 SBJCT: 1681 QUERY; 2524 SBOCT: 1741 QUERY: 2584 SBJ7CT: 1801 QUERY: 2644 SBJCT: 1661 QUERY: 2704 SBjc-: 1921 QUERY: 27C4 i199 QUERY: 28 4 SBJC': -'U41 QUERY: Z864 selc:; 'lC! cuEP.Y: :944 SB,7C-: 21C QUERY: 3004 SEJC'-: 2221 QUERY: 3064 SlBjCT: 2281 QUERY: 3124 SBJCTi: 2341 QUERY: 3184 SBJCT: 2401 QUERY: 3244 SBJCT: 2461 QUERY: 3304
ACACCCACCTGGGCGGCTACTTCTTCATCCAGTGCCGACAGGACAGCCCCGCCTCTGCM
ACACCCACCTGGGCGGCTACTTCTTCATCCAGTGCCGACAGGACAGCCCCGCCTCTGCTG
CCCGACAGCTGCTCGTTGAAGTCACAGCCTGTGCTGGCCCCATGTGATGTAA
CCCGACAGCTGCTCGTTGACAGGTAAGACTCTGTGCTGGCCCCATGTGATGTAA
CAGGCACCCCACACACATCCCCCGACGGGCGCTTCATAGCAGTGCTGAGCGACAGCC
CAGGCACCCCACACATCCCCCGACGGGCGCTTCATAGTCAGTGCTGCAGCGAQAGCC
CCTGGCTGCACGTGAGGAGATCACAGTGCGGGGCGAGATCCAGCCTGTATGACCTGC
CCTGGCTGCACGTGCAGGAGATCACAGTGCGGGGCGAGATCCAGACCCTGTATGACCTGC
AACATCTACGCGCTCTGCACACGGAGCCGGACCGCTGTTCCTGGAGTGTCCACGG
GGAGGGAGTAGATAAGGCCCCGCCACCGCTN
GGAAG.GTGGGCATGCTGAAGAACTTAAAGGAGCCACCCGCAGGGCCAGCTCAGCCCTGGN
GGA.AZGTGCCCACAATCTGAGGACTGGCTTGGACCAGGCCTGCTCACCCAG
GGGTACCCACAGATCATGAGGGACAGTGGGCTGTTGGACAGTACCTCTCACACAG
CCCaAGAGTCACTGTTCCTCATCAATGGGAGACAAAAr-ACGCTGCGGTGTr.AGGTGTCAG "CC &AGACTCACTGTTCCTCATCAATGGGAGACAAAACACGCTGCGGTGTGAGGTGTC G7A7ANN-NNNNNNACCACAGTGGTGTGGGTGGGTGAGGTATGAAGGGCCCAGAGCAG III Iii 11111111! 11111111 111111 11111111111111111 liiCAGA
CC-CCCAGAACCTGCTAATCGCCACGTCCGA
CCZ-GCGCCAAGGAACACCCCCTAGTCCTGACACTGCAGCCTCAAGCAGGTACGCTGTAC
ATTG-TCCAGACACCCCTAGCCTGAACTGCAGCTCCGGTTAACGCTCCT
CA.A-tTTCCTAGTATAAGGTATGCGCTGCTACCAGATTGGGCTTT1T1TCCTTAGGAGT
CAAGTTTCCTAGTATAAGGTATGCGCTGCTACCAAGATTG.GGGTTTTTVCGTTAGGAAGT
ATGATTTATGCCTTGAGCTACGATGAAACATATGCTGCTGTGTAGGGATQATTTCTG
TGCCAAGCTGCACACCGAGGACCTGGGGACATCATGGAACCAGGGATCCTGCTCTCCA
AGCAGACACCTCTGTCAGTTGCCTTCACATAGTCATTGTCCCTTACTGCCGACCCAGCC
AGCTTGCCCTGCGCAGTGGCCTCAACAAGcTGCCTACGCAGGCCCGCCT
CCCGAACTGAAAGCCCATCCGTCCTCGCGTGGGACCGATCTCTCCCTCQCAGCTGC.TT
17 2343 1560 2403 1620 2463 1680 2523 1740 2583 1800 2643 1860 2703 1920 2763 1980 2823 2040 2883 2100 2943 2160 3003 2220 3063 2280 3123 2340 3183 2400 3243 2460 3303 2520 3363 t SBJCT:
QUERY:
SBJCT:
n QUERY:
SBJCT:
QUERY:
SBJCT:
Cs 5 QUERY:
SBJCT:
QUERY:
to
SBJCT:
QUERY:
S13JCT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBjCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUER.Y:
SBJCT:
QUERY:
SBjCT:
QUERY:
SBJUT:
QUERY:
SBJ7CT:
QUERY:
SBJCT:
QUERY:
SBJCT:
2521 CCCGAACTGAAAGCCCATCCGTCCTCGCGTGGGACCGCATCTTCTCCCTCGCAGCTGCTT 2580 3364 CTTGCTTTTCTTTCCATTTGACTTGCTGTAAGCCTGAGGGAGAGCCAACAAGACTTACTG 3423 2581 CTTGCTTTTCTTTCCATTTGACTTGCTGTAAGCCTGAGGGAGAGCCAACAAGACTTACTG 2640 3424 CATCTTGGGGGATGGGGAATCACTCACTTATTTTGAAATTTTGATTNNNNNNNT 3483 2641 CATCTTGGGGGATGGGGAAATCACTCACTTTTTTTGAATTTTGATTAAAp.AAAT 2700 3484 TTTATAATCTCAAATGCTAGTAAGCAGAAAGATGCTCTCCGAGGTCCAACTATATCCTTC 3543 2701 TTTATAATCTCAAATGCTAGTAAGCAGAAAGATGCTCTCCGAGGTCCAACTATATCCTTC 2760 3544 CCTGCCTTAGGCCGAGTCTCGGGGGTGGTCACAACCCCACATCCCACAGCCAGAAAGAAC 3603 2761 CCTGCCTTAGGCCGAGTCTCGGGGGTGGT-ACAACCCCACATCCCACAGCCAGAAAGAJAC 2820 3604 AATGGTCATCTGAGAATACTGGCCCTGTCGACTATT CCACCCTGCTTCTCCAAGAGCAG 3663 2821 AATGGTCATCTGAGAATACTGGCCCTGTCGACTATTGCCACCCTGCTTCTCCAAGAGCAC 2880 3664 ACCAGGCCACCTCATCCGTAAC-GACTCGGTTCTGTGTTGGGACCCCAAA.AAACCAGAACA 3723 2881 ACCAGGCCACCTCATCCGTAAGGACTCGGTTCTGTGTTGGGACCCCAAAAAACCAGAACA 2940 3724 AGTTCTGTGTGCCTCCTTC GCACAGAA GGAGACATCTCATTAGTCAGGTCTGGTACC 3783 2941 AGTTCTGTGTGCCTCCTTTCAGCACAGA.AGGGAGACA rCTCATTAGTCAGGTCTGGTACC 3000 3784 CC-AGATTCAGGGCAGACTGGGCTTGCCTGGCAAGGTATGGGTGGCCTCCA]GGCTCAATGC 3843 3001 CCAGATTCAGGGCAGACTGGGCTTGCCTGGCAAGGTATGGGTGGCCTCCAGGCTCAATGC 3060 3844 AGAAACCCCAAGGACACGAGTGGGGCCAGGTGAGTTCCTG AGCTATACCTTTTCAAAAC 3903 3061 AGAAACCCCAAGGACACGAGTGGGGCCAGGTGAGTTCCTGAAGCTATACCTTTTCAAAAC 3120 3904 AGATTTTGTTTTCCTACCTGTGGCCCATCCACTCCTCTCTGGTACCCCATCCCCGCATCA 3963 3121 AGATTTTGTTTTCCTACCTGTGGCCCATCCACTCCTCTCTGGTACCCCATCCCCGCATCA 3180 3964 Gc ACTGCAGAGAGAACACATTTCGGCGAGGGTTTTCTTACCCACATTCCCCAATCAATAC 4023 3181 GCACTGCAGAcAGAACACATTCGGCGAC-GGTTT'CTTACCCACATTCCCCAATCAATAC 3240 4024 ACACACACTGCAGAACCCAGAACAGAAGGCCACAGGCTGGCACTACTGCATTCTCCTTAT 4083 3241 ACACACACTGCAGAACCCAGAACAGAAGGCCAC 3GCTGGCACTACTGCATTCTCCTTAT 3300 4084 GTGTCTCAGGCTGTGGTGACTCTCACATGGGCATCGAAGAAGTACAACCCACATAGCCCT 4143 3301 GTGTCTCAGGCTGTGGTGACTCTCACATGGGCATCGAAGAAGTACACCCACATAGCCCT 3360 4144 CTGGAGACCGCCTAGATCAGAGACTCAGCAAA1AACAGGCTCGCCTTCCCTCTCCCACATA 4203 3361 CTGGAGACCGCCTAGATCAGAGACTCAGCAAAAACAGGCTCGCCTTCCCTCTCCCACATA 3420 4204 TGGGACTCTTTCGTTAAG2ATTCACAAGGTG 4263 3421 TGAGTGGAACTTACATGTGTCCTGGTTTGAATGATCATTTTGCAAGCCACACGGGTTGGG 3480 4264 AGAGGTGGTC rACCACAGACGTCTTTGCTAATTTGGCCACCTTCACCTACTGACATGAC 4323 3481 AGAGGTGGTCTCACCACAGACGTCTTTGCTAATTTGGCCACCTTCACCTACTGACATGAC 3540 4324 CAGGATTTTCCTTTGCCATTAGGAATGAACTCTTTCAGGAGAGGAAACCCTAG.ACTCT 4383 3541 CAGGATTTTCCTTTGCCATTAAGGAATGAACTCTTTCAAGGAGAGGAAACCCTAGACTCT 3600 18
QUERY:
CK1 SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:-
QUERY:
SBJCT:
QUERY.
SBJCT:
QUERY:
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJC':
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUJERY;
SBJCT:
QUERY:
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SSJCT:
QUERY:
4384 GTTATTACCCCGTCTCATCGCGCGCACACGA 3601 GTTATTACCCCGTCTCATCGCGCGCACACGA 4444 CCCCCGCCCCAGATCTCATGAGATCATCATTGTATGTCTCACGCACTTGTCCACCA 3661 CCCGCCGTTAGGTATACTTTTTAGACTGCAC 4504 AACGCCTGTCCCCTGTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTATTT 3721 AACGCCTGTCCCCTGTAACTCCTAGGGGTGCGCCTAGACAGGTACGTCTGTTTTTTATTT 4564 TAAGTTCAGAAAAGTAGRGTACCAACTGAGA 3781 TAAGTTCAGAAAAGTAGAGTACCAACTGAGA 4624 TTTCACAGTAGCTGGGATGCATGGATGACCCATCTCACCCCNNNNNNNNNCCTGCCTA 3841 TTTCACAGTAGCTGGGATGCATGGATGACCCATCTCACCCCTTTTTTTTTCCTGCCTCAA 4684 TATCTTGATATGTTATGTTTACTCCCAATCCCATTTTTACCACTATTCTCAAC 3901 TATCTTGATATGTATGTTTACTCCCAATCTCCCATTTTTACCACTATCTCCAC 4744 TTAAAtN.MNGAAATCATGACGCCGCGAAGAC 3961 TTCATAAACTTTTTTTTGGAAAAATTCCATTGTATCAGCCCCTGACAGAAGGATCT 4804 CTACTAGAGAATCACATC~GCAACCACCTTG 4021 CTGAG'CCTAAAGGAGGAAAGTCCCACCAACTACCAGACCAGACACGACCCC1'CTGGG 4864 CAGCAGGATTCCTAAGTCAAAGACCAGTTGACCCAACTGGCCTTTTAAATAATCAGG 4081 CAGCAGGATTCCTAAGTCAGACCAGTTTGACCCAAACTGGCCTTTTAATATCAGG 4924 AGTGACAGAGTCAACTTCTGCAGCACCTGCTTCTCCCCCACTGTCCCTTCCATCTT3GA 4141 AG-GACAGAGTCACTTCTGCAGCACCTGCTTCTCCCCCTGTCCCTTCCATCTTGA 4984 TGTGTCTAAAAAAc-CATAGCTGCCCTTTGCTGTCCTCAGAGTGCATTTCCTGGAGACGGC 4201 TGTGTCTAAAAAAGCATAGCTGCCCTTTGCTGTCCTCAGAGTGCATTTCCTGGAGACGGC 5044 AGCTGTTATAACTCAACCATATGACGCTAGC 4261 AGCTGTTATAACTCAACCATATGACGCTAGC 5104 AGGTCAGGGTTTCAGGAGTCCAGCCCC:GAGGCWAGTCACCAATGCAGGGAGGTAT 4321 AGGTCAGGGTTTCAGGAGTCCAGCCCCAGGAGGC
GTCACTGCAGGAGGTAT
5164 GCCTTTTGGCAGGAAAACCAATAGAGTTGGTTGGGTGGGGAGTCAGGGGTGGGAGGAGAA 4381 GCCTTTTGGCAG-GAAAACCAXTAGAGTTGGTTGGGTGGGGAGTCAGGGGTGGGAGGAGAJA 5224 GGAGGAGAGGAGGAGCCAGACTGGCCTGCCCTTCTCCCATACTTCACCCCACAGA 4441 GGAGGAAGAGGAGGAAGGCCAGACTGGCCTGCCCTTTCTCCCATACTTCACCCCAGCAGA 4501 GGTTCATGGGACACAGTTGGAAAGCCACTGGGAGGAAATGCCTCACTACAGGGGGGCCTC 5344 CTTGAGCACGTACTCAAGACAAGTATCCATA 4561 CTTGAGCACGTACTCAAGACAAGTATCCATA 5404 ATCTTAGCTATTAAAGAAGTACTGACTrACCAAAAGAATCATCAAGAGCTATTTATA 19 4443 3660 4503 3720 4563 3780 4623 3840 4683 3900 4743 3960 4803 4020 4863 4080 4923 4140 4983 4200 5043 4260 53103 4320 5163 4380 5223 4440 5283 4500 5343 4560 5403 4620 5463 SBJC'I: 4621 ATCTTAGCTATTAAAGAAGTACTGACTTTACCAAAAGAATCATCAAGAAAGCTATTTATA 4680 QUERY: 5464 TAAACCCCCTCAGTCATTTTGAAATAAAATTAATTTTAC 5502 SBJCT: 4681 TAAACCCCCTCk3TCATTTTGAAATAAAATTAATTTTAC 4719 The FCTR2 amino acid sequence has 473 of 8 10 amino acid residues identical to, and 616 of 8 10 residues positive with, the 850 amino acid residue proteins fim Homo sapiens KIAA1263 Protein fragment (ptnr TREMBLNEW-ACC:BAA86577) (SEQ I) NO:47) gTable 2D).
Table 2D. IILASTP of FCTR2 against Homno sapiens K14A1263 Protein fragment (SEQ ID NO:47) ptnr: TRElIBNEW-ACC:5BAAS86577 KIAA12G3 PROTEIN Homo sapiens (Human) 850 aa (fragment) Lenq-h 850 Score 2573 (905.7 bits), Expect -2.0e-267, P 2.0e-267 rden~tis 473/B10 Positives -6161610 (76%)
QU;ERY:
58CC?:
QU'ERY:
SbC7: Qimy. Y
SS.W?:
QUERY:
SBJC?!:
Q:tP Y Q-E F Y: SBujCf:
QUERY:
SBJCT:
QUERY:
SBJC?-:
QUERY:
SBJCT:
QUERY:
SBJCI:
QUERY:
SBJCT:
LFR LBLKRALSSCFDLFGLSSRNELLASCGIIFCSRGSRCVLSRRTGEPSCQCLEACRPS 1 11 1 4 I II1 1+1 I 1I lI-+-Il+ Ii 1+ 12* L.HKEKNQESSRVICGFMIQD)GPFGSCEllKYCGLiGRHCVTSRETGQAE.CAQI4DLCKRi YV P':*CSDGRFYENHCKCLHRAACLLCKR17VISKDCFLKGDTCMAGYALRNVLL1Q I 'I ;II1 111111+'+111111 I44t1+11 III 1 j+4+j +1 1 YE P;VCGS UGS YENECEVHAACLZEQKI'I 1VUIISDCFFEGDKCKTTEYSq4KMLLDLQ Th QEGDSR-DPASQICRLLVESLF.DLDADGNC-HLSSSELAQHVLGCODLDEDLLG +11 I (+1+111 Ii! I1 +11 1 +11 N&:Y 1MQ WENPNGDDI SRKKLLVDOMF-KYFDAOSNGLVINELTQ-VIKOEELGKDLFD cS VG)LLRFEDDYNSDSSLTLREPYMAFQVVQLS LAPEDRVSVTTVTVGLSTVLTCAVHGD 1, l+'1 1+1+1 I 1 111 111 141;1f I I III 1 11 II+ I Lr 'LLKYDDENADRELALEEFYRAFQV2QLSLP0QCLSITAATVGQSAVLSCAIQG1 Lfl2I IWKRNGL'ILNFLDLEDINDFGEDUSLYITKVTTIHMGNYTCHASGHEQLFQTHVL IIi ((lii II 111111 I 1f-I I 1111111 I+ 11 1+ l 1+ 4f f Lit r::IWKRNWIILNNLDLDINDGDDCSLYITKVTTTHVNYTCYADGYEQVYQTHI F cfl'":VPVIRvYFESQAQSPGvIALRCIAEG: PZPRITWLKNGVDVSTQMSKQLSLLANG 1 .1111 1 111III 11111111111 J+ ii I-fff J1-fill I-II I III CVJV) VIRVYPESQARE PGVTASLRCHAEGIPCPQLGWIJKNGIDITKLSI QLTLQANG SELJI ISSVRYEDTGAYTCIA@IEVGVDEDI SSLFIEDSAICTLANILWREGLSVGME'Y SEVIl SNVRYEDTGAYTCIAKNEAGVDEDI SSLFEDSAKTLAQILWREEGLGIGNMFY VFS DDGI IVIHPVDCEIQRHLKPTEKIFMSYEICQREKNATQPCQWVSAVNVRNRyIy 1:+111 ii 1 1II+II+I1 +It1 4I-Il I I I iii VFYEDG IKVIQPIECEEQRHIKPSEKLLGFDEVCPKAEGDEVQRCVWASAVNVKDCFIY VAQPAJ ,SRVLVVDIQAQKVLQSIGVDPLPAKLSYDKSHDQVWVLSWGDVIIZSRPSLQVIT iii I 1 i- 1 4+1-+4-I 11+ l-l- I1 IH~ l ii 11 f+ 1+111 VAQTLDRVLIVDVQSQKVVQAVSTDPVPVKI nYDcSH-DQVWVLSWGTLEKSPTLoVIT EASTGOSQRLIRT--PFAGVDDFFIPPTNLI INIIFGFIFNKSDPAVhKVDLETM if I I I I 111111 I I 111 I-111I 41i +I 1+ I III LAS CNVPRIIT IHlQPVCKQFDRVDDFFI P7TTLI ITHQEFFLKDEAALQKI DLETKS PLKTIGLHHGCVPQAMAHTHLGGYFFIQCRQDSPASAARQLLVDSVTDSVLGPNGDV2iG +111 I III +I4-'If Ilii I -II 1 I +ii 1 1 11 1 till YIKTINLKDYI CVPQSLAYTHLGGY-YFIGCKPDSTGAVSPQVNVDGVTDSVIGFNSDV-TG QUERY: 664 TPH S PDGRFIVSAAADS PWLHVQE ITVRGEIQTLYDLQIN4S GIS DLAFQRS FTESNQYN 723 11 1 111 +It4- 1f 1 1+11111i 1 111111 I I II I SBJCT: 699 TPYVSPDGBYLVSINDVKGLVRVQYITIRGEIQEAFDIYTLHISDAFQPSFTEIIQYN 758 QUERY: 724 IYAAHTE PDLLFLELSTGKVGMLKNLE PPAGPAQPWGGTHRIMRDSGLFGQmLLTPAR 783 11 1+1+11+ 111 1+I1+1111I 11 +1++11111fI+Il++ SBJCT: 759 IYGSSSTQTDVLFVELSSGKVKAIKSLKEPLKAEEWPWNRKRQIQDSGLFGQYLMTPSK 818 QUERY: 784 ESLFLINGRQNTLRCEVSGIKGGTTVVWVGE: 814 +H+11-f 11 1 11+111+ SBJCT: 82.9 DSLFILDGRLNKLNCEITEVEKGNTVIWVGD 849 Amino acids 123-8 15 of FCTR2 also have 693 of 693 amino acid residues (100%) identical to,the 693 amino acid residue protein fragment ofKIJAA1 061 Protein from Hoino sapiens (ptnr: TREMIBLNEW-ACC: BAA83013) (SEQ ID NO:48) (Table 2E).
Table 2E. BLASTP of FCTR2 against KIAA1O6I Protein [Fragment] (SEQ ID NO:48) ptnr:TREHBLNEW-ACC:BAA93O13 KIAA1061 PROTEIN Hamo sapiens (Human), 693 aa (fragment).
Length 693 Score 3623 (1275.4 bits), Expect P 0.0 Identities 693/693 Positives =693/693 (1.00%)
QUERY:
SBJCT:-
QUERY:
SBJCT:
QUERY:
SS9JCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
123 NVLLAQTRLQPLQEGDSRQDPASQKRLLVESLFRDLDADGNGHiLSSSELAQHVLio(QDL 12 1 NVLLALQTRLQPLQEGDSRQDPASQR1RLLVESLFRDLDADGNGHLSSSELAQHVLKKQDL 183 DEDLLGCS PG DLLRFDDYN SDSSLTLRE FYh-AFQVVQLSLAPEDRVSVTTVTVGLSTVLT 242 61 DEDLLGC S PGDLLRFDDYNSDSSLTLREFY"AFQVVQLSLAPEDRVSVTTVTVGLSTVLT 120 243 CAVHGDLR PPI IWKRNGLTLNFLDLEDINDFGEDDS LYITKVTTIMGNYTCHASGH 7EQL 302 121 CAVHGDLRPPIIWKRNGLTLNFLDLEDINDFGEDDSLYITVTTIENGNYTCHASGqEQL 180 303 FQTHVLQVNVPPVIRVYPESQAQEPGVAASLRCHAEGIPMPRITWLKNGVDVSTQMSKQL 362 181 FQTHVLOVNVPPVIRVYPESQAQEPGVAASLRCHAEGIPMPRITWLKJGVDVSTQMSKQL 240 S LNSLISVYDGYCANVVED SFESRTA LREL 2 363 SLLANGSELHISSVRYEDTGAYTCIAKNEVGVDEDISSLFIESA.BXTLANILWRIEEGLS 322 423 VGNNFYVFSDDGIIVIHPVDCEIQRELKFTEKIFMSYEEICPQREKNATQPCQWVSAVNV 482 301 VGNMFYVFS DDGI IVI RVDCIQRHLKPEKI FMSYEEIC PQREKNATQPCQWVSAVNV 360 483 RNRYIYVAQPALSRVLVVDIQAQKLQSIGVDPLPALSYDKSHDQVVLSWGDVH(SRP 542 361 RN.RYIYVAQPALSRVLVVDIQAQKVLQSIGVDPLPKSYDKSHDQVWVLSWGDVHKSRP 420 543 SLQVITEASTGQSQHLIRTPFAGVDDFFIPPTNLIINHIRFGFIFNKISDPAVRiKVDLETM 602 421 SLQVITEASTGQSQHLIRTPFAGVD0FFIPPTLIINHIRFGFIFKSDPAVHKVDLETM 480 603 MPLKTIGLHHHGCVPQAMAHTHLGGYFFIQCRQDSPASAARQLLVDSVTDSVLGPNGDVT 662 481 MPLKTIGLHHHGCVPQAMAHTHLGGYFFIQCRQDSPASAARQLLVDSVTDSVLGPNGDVTI 540 663 GT PHTS PDGRFIVSAAADS PWLHVQEITVRGE IQTLYDLQINSGI SDLAFQRS FTE SNQY 722 SBJCT: 541 GTPHTSPDGRFIVSAAADSPWLHVQEITVRGEIQTLYDLQINSGISDLAFQ.SFTESNQY 600 QUERY: 723 NIYAA HTEPDLLFLELSTGKVGMLKN'LKEPPAGPAQPWGGTHPRIMRDSGLFGQYLLTPA 782 Iill illlii1111 li iiII 111111111111111 SBJCT: 601 NIYAALHTEPDLLFLELSTGKVGMLKNLKEPPAGPAQPWGGTHRIMRDSGLFGQYLLTPA 660 QUERY: 783 RESLFLINGRQNTLRCEVSGIKGGTTVVWVGEV 815 SBJCT: 661 RESLFLINGRQNTLRCEVSGIKGGTV'VWGEV 693 The amino acid sequence of the FCTR2 protein has 451 of 772 amino acid residues identical to, and 586 of 772 residues positive with, the 773 amino acid residue proteins hypothetical protein DKFZp566D234. I from Homo sapiens (fragments) (ptnr: SPTRENML-ACC: CAB70877.l) (SEQ DD NO:49) (Table 2F).
Table 2F. BLASTP of FCTR2 against hypothetical protein DKFZp566D234.1 (SEQ ID NO:49) >GII113601921PIR11T46283 HYPOTHETICAL PROTEIN DKFZP5660234.1 HUJMAN (FRAGMENTS) G1168080531EMBICAB70877.11 (AL137695) HYPOTHETICAL PROTEIN [HOMO SAPIENS] LENGTH 773 SCORE 911 BITS (2354), EXPECT 0.0 IDENTITIES =451/772 POSITIVES =586/772 GAPS -7/772 QUERY: 49 C-VLSRKTGEPECQCLEACRPSYVPVCGSDGRFYENHCKLHPAACLLGKRITVIHSKDCFL 11 11+1 II+ I 11- 1+ 1111111 111111++111111 I+I- I SBJCT: 2 CVTSRETGQAECACMDLCKRHYKPVCGS DGEFYENHCEVHRPACLKKQKITIVHNEDCFF QUERY: 109 KGDTCTM4AGYAPLKNVLLALQTRLQPLQEGDSRQ-DPASQKRLLV-ESLFRDLDADGNGHL III 1 -++11+11 11 411I 1 I1 1 1 111 1 SBJCT: 62 KGDKCKTTECSKMKN MLDLQNQRYIMQENENPNGDDI SREKKLLVDQMFKYFDADSNDLV QUERY: 168 SS SELAQHVLKKQDLDEDLLGCSPGDLLRFDDYNSDS SLTLREFYMAFQVVQLSLAPEDR +11 1 I +i1 I+ I11+++1+ I I 111 1111+1111 SBJCT: 122 DINELTQ-VIKQEELGKDLFDCTLYVLLKYDD)FNADKHLALEEFYRAEQVIQLSLPEDQK QUERY: 228 XXXXXXX)XXXXXX',XCAVHiGDLRPPIIWKRNGLTLNFLDLEDIND'GEDDSLYITKVTTI 11+ 1 I I1 1f 11111111+ 1-I- I l 111 SBJCT: 181 LSITAATVCQSAVLSCAIQGTLRPPIIWKRNNIILNNLGLEDINDFGDDGSLYITKVTTT QUERY: 288 HMGNYTCHASGHEQLFQTHVLQVNVPPVIRVYPESQAQEPGVAASLRC~iAEGIPMPRITW SBJCT: 241 HVGNYTCYADGYEQVYQTHIFQVNVPPVIRVYPESQA.REPGVTASLRCHAEGIP(PQLGW QUERY: 348 LKNGVDVSTQMSKQLSLLANGSELHISSVRYEDTGAYTCIAKNEVGVDEDISSLFITEDSA SBJCT: 301 LKNGI DITPKLSKQLTLQANGSEVHI SNVRYEDTGAYTCIAKNEAGVDEDISSL MEDSA QUERY: 408 RXTI.ANILWREEGLSVGNMFYVFSDDGI IVIHPVDCEIQRHLKPTEKI FMSYEEIECPQRE 1111111111111 I +HI1111 1 -I 11 I4+1I 111+11+11+ +-I-fl 1 SBJCT: 361 RKTLAN ILWREEGLGIGNMFYVFYEDGIKVIQPIECEFQRHIKPSEI(LLGFQDEVCPIAE QUERY: 468 KNATQPCQTAVSAVNVRNRYIYVAQPALSRVLVVDIQAQKVLQSIGVDPLPAXLSYDKSHD I I I 11I III I 111+11+1+11+ 11+ 11l I-I I 111111 SBJCT: 421 GDEVQRCV1WASAVNVKDKFIYVAQPTLDRVLIVDVQSQKVVQAVSTDPVPVKLHYDKSHD QUERY: 528 QVWVLSWGDVHXSP.PSLQVITEASTGQSQHLIRT--PFAGVDDFFIPPTNLIINHIR Ii~~l---4IIIIIII +I 1+11111 II I 111111 1+1 SBJCT: 481 QVWVLSWGTLEKTSPTLQVITLASGNVPHHTIHTQPVGKQFDRVDFFIPTTTLIITH4R QUERY: 583 FGFIFNKSDPAVHKVDLETMMPLKTIGLiHHGCVPQAMAHTHLGGYFFIQCRQDSPASAA 1111 +1 1+ 1+-I11111 +111 1 111144I+11 111+11 1+ II 22 108 61 16'? 121 2 27 180 2 87 240 347 300 407 360 467 420 527 480 582 540 642 SBJCT: 541 FGFILHKDE ALQEIDLETMSYIKTINLKDYKVPQSLYTHLGGYYFIGCKPDSTGAVS 600 QUERY: 643 RQLLVDSVTDSVLGPNGDVTGTPHTSPDGRFIVS AASPWLHVQEITVRGEIQTLYDLQ 702 1+ 1 11111+ 111111+ 1111 11- 11 11 1 i i 1+ SBJCT: 601 PQVMVDGVTDSVIGFNSDTGTPYVSPDGHYLVSINDGLVYITIRGEIQEAFDIY 660 QUERY: W03 I 4 SGISDIL STSQNI~AlTPLFLLTKGLNL PAPQW 762 SBJCT: 661 TNLHISDLAFQPSFTEAYQYNIYGSSSTQTDV'FVELSSGKVKIKSLKEPLKA.EWPWN 720 QUERY: 763 GTHRIMRDSGLFGQYLLTPRESLFLINGRQNTRCEVSGIKGGTTWVKGE 814 +1 ++11IIH1HI+I++++++Ii 1 1 11+111+ SBJCT: 721 RK RQIQDSGLFGQYLM4TPSKDSLFILDGRPNLNCEITEEKGNTVIWVGD 772 The amino acid sequence of the FCTR2 protein has 61 of 194 amino acid residues (3 1 identical to, and 90 of 194 residues positive with, the 306 amino acid residue protein Follastin-Related Protein 1 Precursor from Rattus Noiivegicus (ptnr: GeniBank Acc:Q62632) (SEQ i1D NO:50) (Table 2G).
Table 2G. BLASTP of FCLTR2 against Follastatin-Related Protein 1 Precursor from Rattus Norvegicus (SEQ ED NO: >GII2498392ISPIQ626321FRP RAT FOLLISTATIN-RELATED PROTEIN 1 PRECURSOR GI110836691PIRIIS51361 FOLLISTATIN-RELATED PROTEIN PRECURSOR RAT GI1536900IGBIAAA66063.a I (U06864) FOLLISTATIN-RELATED PROTEIN PRECURSOR [RATTUS
NORVEGICUS]
LENGTH 306 SCORE -85.4 BITS (213), EXPECT IDENTITIES 61/194 POSITIVES 90/194 GAPS 26/194 (13%) QUERY: 38 CGKKFCSRGSRCVLSRKTGEPECQCLEACRPSYVPVCGSGRFYENHCKLHACLLGKR 97 I 11 1 1 I III 1 -I 1+ 1+ 1 1111 1+ 1 111 11 111 1 +I I 4 SBJCT: 29 CAN\VFCGAGRECAVTEK-GEPTCLCIEQCKPHKRPVCGSNGKTYLNHCELHRDACLTGSK 87 QUERY: 98 ITVIHSKDCFLKGD TCTMAGYARLKNVLLA-LQTRLQPLQEGDSRQDPASQK 148 1I I I I* I I+ I+ I I I SBJCT: 88 IQVDYDGHCKEKKSVSPSAS VCYQANRDELRRRIIQWLEAEIIP DGWFSKGSNY 143 QUERY: 149 RLLVESLFRDLDADCMGHLSSSELAQHVLK KQLDEDLLGCSPGDLLRF 197 1 11 111 I 1+ I 1 1+ SBJCT: 144 SEILDKYFKSFD-NGDSHLDSEFLKVQNETAVITAYPNQENKLLRGLCVDALIEL 202 QUERY: 198 DDYNSDSSLTLREF 211 1 1+1 1+ +11 SBJCT: 203 SDENADWEOLSFQEF 226 The amino acid sequence of the FCTR2 protein has 61 of 194 amino acid residues (3 identical to, and 89 of 194 residues positive with, the 306 amino acid residue protein Follastin-Related Protein 1 Precursor from Mus miusculus (Genl~ank Acc:Q62356) (SEQ ID NO:5 1) (Table 214).
Table 21H. BLASTP of FCTR2 against Follastatin-Related Protein 1 Precursor from Mus inusculus (SEQ ID NQ:51) >GI166798711REFINP 032073.11 FOLLISTATIN-LIKE [MUS MUSCULUS) GI124983911SPIQ623561FRP MOUSE FOLLISTATIN-RELATED PROTEIN 1 PRECURSOR (TGF-BETA- INDUCIBLE PROTEIN TSC-36) GI14811861PIR1 1538251 FOLLISTATIN-RELATED PROTEIN MOUSE G113490061GBIAAC37 3.1 (M91380) TGF-BETA-INDUCIBLE PROTEIN [MUS MUSCULUS] LENGTH 306 SCORE 85.2 BITS (210), EXPECT 3E-15 IDENTITIES 61/194 POSITIVES 89/194 GAPS 26/194 (13%) QUERY: 38 CGXKFCSRGSRCVLSRTGEPECQCLEACRPSYVPVCGSDGRFYENHCKLRAACLLGKR 97 1 II 1 1 -4 I III 1 +1 1+1 11111+1+ 1 111+111 111 1 SBJCT: 29 CANVFCGAGRECAVTE-GEPTCLCIEQCKPHKPVCGSGKTYLNCELHRDACLTGSK 87 QUERY: 98 ITJIHSKDCFLKGDT--------CTAGYARLKNVLLA-LQTRLQPLQEGDSRQDPASQK 148 1 1 I I I I I+ 1+ 1+ I I I SBJCT: 88' IQVDYDGHCKEKKSASPSAS PVVCYQANRDELRRLIQWEAEI IP----DGWFSKGSNY 143 QUERY: 149 RLLVESLFRDLDADGNCHLSSSELAQHVLKK------------QDLDEDLLGCSPGDLLRF 197 I+ +1+I II III I I+ I I+ SBJCT: 144 SEILDKYFKSFD-NGDSHLDSSEFLKFVEQNETAINITTYADQENNELLRSLCVDALIEL 202 QUERY: 198 DDYNSDSSLTLREF 211 1 1+1 1+ +11 SBJCT: 203 SDENADWKLSFQEF 216 The amino acid sequence of the FCTR2 protein has 63 of 193 amino acid residues identical to, and 89 of 193 residues positive with, the 299 amino acid residue protein Follastatin-Related Protein from the African Clawed Frog (GenBank Acc:JG0187) (SEQ ID NO:52) (Table 21).
Table 21. BLASTP of FCTR2 against Follastatin-Related Protein from the African Clawed Frog (SEQ ID NO:52) >GI1751262)PIRI IJG0187 FOLLISTATIN-RELATED PROTEIN AFRICAN CLAWED FROG LENGTH- 299 SCORE 81.8 BITS (201), EXPECT 3E-14 IDENTITIES 63/193 POSITIVES 89/193 GAPS 25/193 (12%) QUERY: 38 CGKKFCSRGSRCVLSRTGEPECQCLEACRPSYVPVCGSDGFENHCKLHRAACLLGKR 97 1 II 1 I 1+1 1+1 1+ 11111+ 1 111+111 111 1 SBJCT: 28 CANVFCGAGRECAVTEK-GDPTCCCIEKCKSHKRPVCGSNGKTYLNCELHRDACLTGSK 86 QUERY: 98 ITVIHSKDCFLK-GDT-------CTMAGYARL-KNVLLALQTRLQPLQEGDSRQDPASQK 148 11+ II 111+ I I SBJCT: 87 IQVDYDGHCEKTSDTPAAVPVACYQSDRDEMRRVIHWLQEITP-----GWSKGSDY 142 QUERY: 149 RLLVESLFRDLDADGNCHLSSSELAQHVLKKQDL- DED----LLGCSPGDLLRFD 198 v I+1+ 11 1+11 I II+ 1 1+ SBJCT: 143 SEILDRYFKKFD-DGDS'LLDSAELQSFLEQSCSTNITTYDEETNRNLKSLCVEALIELS 201 QUERY: 199 DYNSDSSLTLREF 211 1 1+1 I I SBJCT: 202 DENADWKLNKNEF 214 The amino acid sequence of the FCTR2 protein has 59 of 194 amino acid residues identical to, and 90 of 194 residues positive with, the 308 amino acid residue protein Follistatin-Related Protein 1 Precursor from Horno sapiens (GenBank Acc:Q12841) (SEQ ED NO:53) (Table 2J).
Table 2J. BLASTP of FCTR2 against Follistatin-Related Protein 1 Precursor from Honto sapiens (SEQ ID NO:53) >GI59019561REFINP 009016.11 FOLLISTATIN-LIKE 1 [HOMO SAPIENS] G1124983901SPIQ128411FRP HUMAN FOLLISTATIN-RELATED PROTEIN 1 PRECURSOR 5 G1110823721PIRI I5362 FOLLISTATIN-RELATED PROTEIN HUMAN GII536898IGB1AAA66062.11 (006863) FOLLISTATIN-RELATED PROTEIN PRECURSOR [HOMO
SAPIENS]
G1131843931DBJ1BAA28707.11 (D89937) FOLLISTATIN-RELATED PROTEIN (FRP) [OMO
SAPIENS]
GIII2652619)GBIAAH0oOSS.1AA.!OO05 (BC000055) FOLLISTATIN-LIKE 1 [HOMO SAPIENS] LENGTH =308 SCORE 82.9 BITS (204), EXPECT -1E-14 IDENTITIES 59/194 POSITIVES 90/194 GAPS 26/194 (13%) QUERY: 38 CGKKFCSRGSRCVLSRKTGEPECCLEACRPSV D EHL A G 97 1 I I I I II 1I 1+1 1+1 11111+1+ 1 111+111 111 1 SBJCT: 31 CANVFCGAGRECAVTEK-GEPTCLCIEQCIPHRPVCGSNGKTYLNHCELHRDACLTGSK 89 (Y1ERY: 98 ITVIHSKDCFLKGD--------TCTMAGYARLKNVLLA-LQTRLQPLQEGDSRQDPASQK 148 11+ II I I+ +I I SBJCT: 90 IQVDYGHCKEKKSVSPSASPQSNRELRRRIIWLE 145 QUERY: 149 RLLVESLFRDLDADGNGHLSSSELAQHVTKK -ODLDEDLLGCSPGDLLRF 197 1+ 1+ 111 I I+ I 1 SBJCT: 146 SEILDI.FKNFD-NGDSRLDSSEFLKVEQNETAINITTYPDQENNLLRGLCVDATIEL 204 QUERY: 198 DDYNSDSSLTLREF 211 1 1+1 1+ +11 SBJCT: 205 SDENADWKLSFQEF 218 The amino acid sequence of the FCTR2 protein has 35 of 69 amino acid residues identical to, and 45 of 69 residues positive with, the 315 amino acid residue Flik protein [Gallus gallus] (EMBL Acc:CAB42968.1) (SEQ ID NO:54) (Table 2K).
Table 2K. BLASTP of FGTR2 against Flik protein [Gallusgallus] (SEQ iD NO:54) >GI14837645IEMBICAB42968.1( (AJ238977) FLIK PROTEIN [CALLUS GALLUS] LENGTH 315 SCORE 79.8 BITS (196), EXPECT =1E-13 IDENTITIES 35/69 POSITIVES 45/69 GAPS 1/69 QUERY: 38 CGKKFCSRGSRCVLSRKTGEPECQCLEACRPSYVPVCGSDGREYENHCKLAACLLGM 97 I 1I I I+ 1+ 1 1 11 11111+1+ 1 I 11+I11 111 1 SBJCT: 31 CANVFCGRGAECAVTEK-GEPCLCIEQCKPHGRPVCGSNGKYLNHCEL{DACLTGSK 89 QUERY: 98 ITVIHSKDC 106 SBJCT: 90 IQVDYDGRC 98 The amino acid sequence of the FCTR2 protein has 49 of 152 amino acid residues identical to, and 65 of 152 residues positive with a 272-420 amino acid fragment and, 31 of 83 residues identical to and 44 of 83 residues positive with a 248-329 amino acid fragment, both of the 1375 amino acid residue Frazzled gene protein [Drosophila melanogaster] (GenBankAcc:T13822) (SEQ ID NO:55) (Table 2L).
Table 2L. BLASTP of FCTR2 against Frazzled gene protein [Drosophila melmawgaster] (SEQ ID >GI175118611PIR11T13822 FRAZZLED GENE PROTEIN FRUIT FLY (DROSOPHILA MELANOGASTER) G1116211151GB1AAC47314.11 (U71001) FRAZZLED [DROSOPHILA MELANOGASTER n 5 LENGTH 1375 SCORE 69.4 BITS (169), EXPECT 2E-10 IDENTITIES 49/152 POSITIVES 65/152 GAPS 4/152 0 QUERY: 243 CAVHGDLRPPIIWKRNGLTLNFLDLEDINDEGEDDSLYITKVTTIHNGNYTCHAGH-EQ 301 1 +1 +1 1 1 111+ 1+1 11+ II 1+ 1 111 1 11 SBJCT: 272 CVANGVPKPQIKWLRNGMDLDFNDLDSRFSIVGTGSLQISSAEDIDSGNYQCPASNTVDS 33.
QUERY: 302 LFQTHVLQVNVPPVIRVYPESQAQEPGVAASLRCHAEGIPMPRITWLKNGVDVSTQMSKQ 361 0 5 1 +1j 11 1 1+1 1 1 1 11111 I SBJCT: 332 LDAQATVQVQEPPKF KAPKDTTAHEKDEPELKCDIWGKPKPVIRWLKNGDLITPNDYMQ 391 QUERY: 362 LSLLANGSELHISSVRYEDTGAYTCIAXNEVG 393 1 +1 1 I+ I I SBJCT: 392 LVDGNLKILGLLNSDAGMFQCVGTNAAG 420 SCORE 52.9 BITS (126), EXPECT 1E-05 IDENTITIES 31/93 POSITIVES 44/83 GAPS 2/83 QUERY: 311 NVPVIRVYPESQAQEPGV~kSLRCHAEGIPMPRITWLKNGVDVS-TQMSKQLSLLANGS 369 +I I I i I +I 1 1+1 1+1 11+11+1+ Ii SBJCT: 248 SVAPSFLVGPSPKTVREGDTVTLDCVANGVPKPQIKWLRNGN4DLDFNDLDSRFSIVGTGS 307 QUERY: 370 ELHISSVRYEDTGAYTCIAKNEV 392 0 1 111 1+1 1 1 1 I SBJCT: 308 -LQISSAEDIDSGNYQCRASNTV 329 The amino acid sequence of the FCTR2 protein has 53 of 177 amino acid residues identical to, and 78 of 177 residues positive with a 366-539 amino acid fragment, 51 of 170 residues identical to and 74 of 170 residues positive with a 276-438 amino acid fragment, 46 of 165 amino acid residues identical to, and 74 of 165 amino acid residues positive with a 185-341 amino acid fragment, 48 of 167 amino acid residues identical to and 70 of 167 amino acid residues positive with a 77-243 amino acid fragment, and 28 of 84 amino acid resiO -s and 37 of 84 amino acid residues positive with a 56-139 amino acid fragment all of the protein 1395 residue Roundabout I protein [Drosophila melanogaster] (GenBankAcc:AAC3 8849.1) (SEQ ID NO:56) (Table 2M).
Table 2M. BLASTP of FCTR2 against Roundabout 1 protein [Drosophila ittelanogaster] (SPQ ID NO:56) >GI12804782IGBIAAC38849.1i (AF040989) ROUNDABOUT 1 (DROSOPHILA MELANOGASTER] LENGTH 1395 SCORE 69.8 BITS (170), EXPECT IDENTITIES 53/177 POSITIVES 78/177 GAPS 11/177 QUERY: 243 CAVHGDLRPPI IWKRNGL-TLNFLDLEDINDF-GEDDSLYITKVTTIHMGNYTCHA---- 296 I 1+ 1 I I I 1 1 +I II 1 1 1 1 1 SBJCT: 366 CMASGNPPPSVEMTKEGVSTLMFPNSSHGRQYVAADGTLQITDVRQEDEGYWCSAFSVV 425 QUERY: 297 SGHEQLFQTHVLQVNVPPVIRVYPESQAQEPGVAASLRCHGI PMPRITWLKNGVDV 354 1 I 11+1++ 1 +I I 1+1 I I I 1 111 1 +I 26 SBJCT: 426 DSTRFQSVEPPIIPNTLESALCAGPPIWHGA 485 QUERY: 355 STQMSKQLSLLANGSELHISSVRYEDTGAYTCIA EVGVDEDISSLFIEDAPXL 411 1 1+ 11 1 1+1 111 1 1 1 +1 +1 SBJCT: 486 ANYI-GSRDLLDGYCAGRESATTEPSS 539 SCORE 56.3 BITS (135), EXPECT IE-06 IDENTITIES 51/170 POSITIVES 4/170 GAPS =12/170 QUERY: 243 CAVHGDLRPPIIWRNGLTLNFLDLEDINDFGEDDLYITTTIGNYTCAGH-EQ 301 1+1 11 1 +4 I1 1+ 1 1 1 j I SBJCT: 276 CSVGGDPPP JLWKKEEGNIPVSRARI iD EKSLEISNITPTDEGTYVCEAJHJNVGQ 332 QUERY: 302 LFTVQNPVRYEQQPVASRHEIMRTLNVVTM- J58 I 1+ 11 1u i ++IIIIII+III
II
SBJCT: 333 ISRSIIAPFKPNKGLGVLCAGPPVWKG-VSTLMFPN 390 QUERY: 359 -SKQLSLLANGSELHISSVRYEDTGAYTCIAKNEVGVDEDISSLFIEDSA 407 1 +1 1 1+ 11 11 1 1 1 1 11 I+ SBJCT: 391 SSHGRQYVAADGTLQITD)VRQEDEGYYVCSAFSV...VDSSTVRVFLQVSS 438 SCORE 51.7 BITS (123), EXPECT =3E-05 IDENTITIES -46/165 POSITIVES 74/165 GAPS 20/165 QUERY: 251 PPIIWKPNGLTLNFLDLEDINDFG EDDSLYITKVTTIHMGNYTCHASJG---- 298 I +1-I ++41+4 1+ 11+ if +1I 1+4 1 1 i 11 I SBJCT: 185 PTLIWIKDCVPLD--DLKANS-FGASSR7VRIVDGGNLLISNVEPIDEGNYKCIAQNLVGT 241 QUERY: 299 HEQLFQTHVLQVNVPPVIRVYPESQAQEP VASLRCHAEGIPMPRITWLKNCVDVSrQM 358 1 I I I I+ I I 1 I SBJCT; 242 RES SYAKLIVQVK-- PY F1N PI(DQVMLYGQTAT FHCSVGGDPPPKVLWKKEEGN I PVSR 299 QUERY: 359 SKQLSLLAN\GSEHISSVRYEDTGAYTCIAKNEVGVDEDISSLFI 403 +ii 4 I +14I I I I I I I 1 i 11-Il SBJCT: 300 AR ILHDEKSLEISNITPTDEGTYVCEHNNVGQISRSLIV 341 SCORE 44.0 BITS (103), EXPECT 0.007 IDENTITIES =48/167 C28t), POSITIVES 70/167 GAPS 13/167 QUERY: 243 CAVHGDLRPPIIWKNGLTLNFLD)LEDINDFGEDDSLYITKVTTIH-1 GNYTCHASG 29 8 I 1 1 I I I I I I SBJCT: 77 CKVEGKPEPT IEWFKDGEPVSTNEKKSHRVQFKDGALFFRTMQGKKQDGGEYWCVAKN 136 QUERY: 299 H-EQLFC HV-LQVNV-PPVIRVYPESQAQEPGVALRCH-AEGIPMPRITWLKNGVDV 354 I 1 t 1 1 11 1+ 1 1 I +111 1 1+ 1+ 11 SBJCTr: 137 RVQVRALIVRDREKTVAGTLEGPGPPLWKGP 196 QUERY: 355 STQMSKQLSL--- LNGSELHISSVRYEDTGAYTCq.,AKNEVGVDE 396 4I I 1- Y1+ i -e i fI I SBJCT: 197 DDLKA4SFGASSRVRIVDGGNLLISNVEPIDEGNYKCIAQNLVGTPE 243 SCORE 42.9 BITS (100), EXPECT 0.014 IDENTITIES 28/84 POSITIVES =37/84 GAPS -4/84 QUERY: 314 PVITRVYPESQAQEPGVAASLRCflGIPMIPRITTWLKNGVDVSTQSKQLSLAIGSEL -372 I 1 +I 1+1 1 11 1 1 1 I 1+41 111 1 I SBJCT: 56 PRI IEHPTDLVVI NPATLNCKVEGKPEPTIEWFKGEPVSTNEKSRVODGLFF 115 QUERY: 373 ISSVRYEDTGAYTCIAJQEVG 393 +11I 1+111 11 SBJCT: 216 YRTMQGKKEQDGGEYWCVAJCNRVG 139 The amino acid sequence of the FCTR2 protein has 55 of 157 amino acid residues (3 identical to, and 75 of 157 residues positive with a 620-775 amino acid fragment, 49 of 163 residues identical to and 71 of 163 residues positive with a 335-492 amino acid fragment, 32 of 85 amino acid residues identical to, and 48 of amino acid residues positive with a 1305-1388 amino acid fragment, 37 of 143 amino acid residues identical to and 60 of 143 amino acid residues positive with a 183- 319 amino acid fragment, 43 of 174 amino acid residues and 70 of 174 amino acid residues positive with a 711-884 amino acid fragment, and 46 of 165 residues (27%) identical to and 69 of 165 residues positive with a 83 1-884 amino acid fragment all of the protein 1395 residue Down Syndrome Cell Adhesion Molecule Precursor (CHD2) from Homo Sapiens (GenBankAcc:060469) (SEQ ID NO:57) (Table 2N).
Table 2N. BLASTP of FCTR2 against Down Syndrome Cell Adhesion Molecule Precursor (SEQ ID NO:57) >gi1126436191 sp1060469 1DSCA HUMAN DOWN SYNDROME CELL ADHESION MOLECULE PRECURSOR (CHD2) GI167400131GB)AAF27525.1AF217525 1 (AF217525) DOWN SYNDROME CELL ADHESION MOLECULE [HOMO SAPIENS] LENGTH 2012 SCORE 70.6 BITS (172), EXPECT 6E-11 IDENTITIES 55/157 POSITIVES 75/157 GAPS 7/157 QUERY: 245 VHGDLRPPIIWKR LTLNFLDLEDINDGEDDSLYITKVTTIHINYTCHASGHEQLFQ 304 III I 1+4I II I+ +1 11111 1 4- SBJCT: 620 VSGDLPITITWQKDGRPIPGSLGVTIDNIDFTSSLRISNLSLMJNGNYTCIARNEAAAVE 679 QUERY: 305 THV-LQVNVPPVIRVYPESQAQEPGVAASLRCF.EGIPMPRITW-LK1GVDVST QM 358 I I III I I I I I I I 111 1+1 I I I 1 SBJCT: 680 HQSQLIVRVPPK-VVQPRDODGIYGKAVILCSAEYPVPTIVWKFSKGAGVPQFQPIAL 739 QUERY: 359 SKQLSLLANGSELHISSVRYEDTGAYTCIANEVGVD 395 +1+111 1 1 1 11+ 11 1+11 1 SBJCT: 740 NGRIQVLSNGS-LLIKHVVEEDSGYYLCKVSNDVGAD 775 SCORE 50.6 BITS (120), EXPECT 7E-05 IDENTITIES 49/163 POSITIVES 71/163 GAPS 16/163 QUERY: 243 CAVIIGDLRPPIIWRNGLTLNFLDLEDINDFGEDDSLYITTIHM4NYTCHSGEQL 302 1+1 1 I 111 11 1 I I I I SBJCT: 335 CSVTGTEDQELSWYRNGEILNPGKNVRITGINHEN-LIMDHMVKSDGGAYQCFVRIDKLS 393 QUER 303 FQTH---VLQVNVPPVIRVYPESQAQEPGVAASLRCAEGIPMPRITW-------LKNGV 352 1 Il-I 1 +1 1 II 1 I+ I 11 111 11 1 SBJCT: 394 AQDYVQVVLEDGTPKIISAFSE-KVVS PAEPVSLMCNVKGTPLPTITWTLDDDPI LKGG- 451 QUERY: 353 DVSTQMSKQLSLLAN-GSELHISSVRYEDTAYTCIMUEVGV 394 I 1+111 I I I I I 1 II SBJCT: 452 SHRISQMITSEGNWSYLNISSSVRDGGVYRCTANNGV 492 SCORE 47.9 BITS (113), EXPECT 5E-04 IDENTIrIES 32/85 POSITIVES 48/85 GAPS 6/85 QUERY: 333 LRCHAEGIPMPRITWLK--NGVDVSTQSKQLSLLANGSELHISSVRYEDTGAYTCI 390 1 1 I 1 I 1 1+1 I) 1+ I -I 1+ 11+1 1+111 1 SBJCT: 1305 LPCKAVGDPSPAVKWMKDSNGTPSLVTIDGRRSIFSNGSFI-IRTVKAEDSGYYSCIANN 1363 QUERY: 391 EVGVDEDISSLFIE---DSARKTLA 412 I I 1 I I I+ SBJCT: 1364 NWGSDEIILNLQVQVPPDQPRLTVS 1388 SCORE 42.9 BITS (100), EXPECT 0.015 IDENTITIES 37/143 POSITIVES 60/143 GAPS 6/143 28 QUERY: 270 IN0 GFEDDSLYITTTIHMGNYTCHAS GHEQLFQTHVLQVNVPPVIRVY P QAQEPGV 329 1 +1 11 I I I +11 I I I SBJCT: 183 1KDVQNEDGLYNYRCITRHRYTGETRQSNSARL 'VS PANSAPSILDGFDH AMGQ 240 QUERY: 330 AASLRCHA!TGIPNPRITW KNGVDVSTQMSKQLSLLA4GSEIaISSVRYEDTGAYTCIA( 389 I 1 1 1 1 111+ I I I 1+1+1 1 SBJCT: 241 RVELPCKLGHPEPDYRWLKD--NMPLELSGRFQKTVTG 296 QUERY: 390 NEVGVDEDISSLFIEDSARKTlA 412 1 1 I1 1+4-4- I++ SBJCT: 297 NRYGTAKVIGRLYVKQPLKATIs 319 SCORE 41.3 BITS EXPECT 0.047 IDENTITIES 43/174 POSITIVES 70/174 GAPS 11/174 QUERY: 243 CAVHGDLRPPIIWK--RNGLTLNF--LDLEDINDFGEDDSLYITKVTTIHM 298 1+ I 1 1+11 I I 1 1 11 1 SBJCT: 711 CSAEGYPVPTIVWKFSKAGVPQFQPIALNGRIQVLSNGSLLIKHVVEEDSGYYLCKSN 770 QUERY; 299 if--EQLFQTHVLQVNVPPVIRVYPESQAQEPGVAASLRCIIAEGIPL4PRITWLKNGVDVST 356 I 1I +1 II I j I I SBJCT: 771 DVGADVSKSMYLTVKI PMITSYPNTTLATQGQKEMSCTAiGEKPI IVRWEKEDRI IN 830 QUERY: 351 QMSKQLSLLANGSELISSVRY---EDTGAYTCIANEVGVDEDISSLFIED 405 I I 11+1 I I I I I SBJCr: [31 EM.A!YLVSTKEVGEEVISTLQILPTVREDSGFFSCHAINSYGEDRGIIQLTVQE 884 SCORE 4C.6 2ITS EXPECT 0.074 :o-N*7JT:Y 46!165 POSITIVES 69/165 GAPS 7/165 QUERY: 20 43 VCDLRPPI IWKRNGLTLNFLDLEDINDFGEDDSLYITKVTT-I GNYTCRSGHEQ 301 1 1 I 1 1 1 j +I I I III+ I SBJZ: ZV'IGYPYYS IKWYKNSNLLPFNHRQVA-- FENNGTLKLSDVQKEVDEGEYTCNVLVQPQ 582 QUERY: 32 LFCHVLQVN--VPVIRVESQP.QEPGVAASLRC 356 *4 I 111 1++I I +I1114-+ SBJZ': 563 LZTSQSVHVTVKVPPFIQPF-E PRFS IGQRVFIPCVVSGDLPITITWQKDGRPIPGSL 641 QUZKY.: 35 rf:.Ls ;LANGSELHiSSRY EDTGAYTCIAKNEVGVDEDISSLFI 403 4 I I 1 11111+11 1 I i SB:=r: 64. IDNIDFSSLRISNLSLMHNGNYTCIARNEAAAVEHQSQLIV 686 The amino acid sequence of the FCTR2 protein has 55 of 194 amino acid residues identical to, and 86 of 194 residues positive with Limbic System-Associated Mernbrne Protein Precursor (LSAMP) from Homno sapiens (SWISSPROT Acc:QI 3449) (SEQ ID NO:58) (Table Table 20. BLASTP of FCTR2 against Limbic System-Associated Membrane Protein Precursor (SEQ ID NO:58) PTNR:SWISSPROT-ACC:Q13449 LIMBIC SYSTEM-ASSOCIATED MEMBRANE PROTEIN PRECURSOR (LSAMP) HOMO SAPIENS (HUMAN), 338 AA.
LENGTH 338 SCORE 191 (67.2 BITS), EXPECT 6.7E-12, P 6.7E-12 IDENTIIES 55/194 POSITIVES 86/194 (44%) The amino acid sequence of the FCTR2 protein has 68 of 190 amino acid residues identical to, and 92 of 190 residues positive with Putative Neuronal Cell 29 Adhesion Molecule, Short Form from Mus Yinusculus (SPTREMBL Acc:070246) (SEQ ID NO:59) (Table 2P).
Table 2P. BLASTP of FCTR2 against Putative Neuronal Cell Adhesion Molecule, Short Form from Mus ,isusculus (SEQ ID NO:59) PTNR:SPTREMBL-ACC:O70246 PUTATIVE NEURONAL CELL ADHESION MOLECULE (PtJNC) (PUTATIVE NEURONAL CELL ADHESION MOLECULE, SHORT FORM) MUS MUSCULUS (MOUSE), 793 AA LENGTH 793 SCORE 203 (71.5 BITS), EXPECT 7.OE-12, SUM P(2) 7.05-12 IDEN'TITIES 68/190 POSITIVES 92/190 (48%) The amino acid sequence of the FCTR*2 protein has 58 of 199 amino acid residues identical to, and 91 of 199 residues positive with CHLAMP, G1 I-Isoform Precursor from Gallus gallus (SPTREMBL Acc: 002869) (SEQ ID NO:60) (Table 2Q).
Table 2Q. BLASTP of FCTR2 against CILLAMP, GiI-Isoform Precursor from Gallus gallus (SEQrD PTNR:SPTREMBL-ACC:002869 CH-LAYIP, Gl1-ISOFORN PRECURSOR GALLUS GALLUS (CHICKEN), 350 AA.
LENGTH 350 SCORE 191 (67.2 BITS), EXPECT 7.7E-12, P 7.7E-12 IDENTITIES 58/199 POSITIVES -91/199 The amino acid sequence of the FCTR2 protein has 55 of 194 amino acid residues identical to, and 86 of 194 residues positive with Limbic System-Associated Membrane Protein Precursor (LSAMIP) from Rattus uci-vegicus (SW[SSPROT Acc:Q628 13) (SEQ ID NO:6 1) (Table 2R).
Table 2R_ BLASTP of FCTR2 against Limbic System-Associated Membrane Protein Precursor (LSAMP) from Rattus naorvegicus (SEQ ED NO:61) PTNR:SWISSPROT-ACC:Q62813 LIMBIC SYSTEM-ASSOCIATED MEMBRANE PROTEIN PRECURSOR (LSANP) RATTUS NORVEGICUS (RAT) 338 AA.
LENGTH 338 SCORE 16 (66.2 BITS), EXPECT 1.55-11, P 1.5E-11 IDENTITIES 55/194 POSITIVES 86/194 (44%) FCTR2 protein has similarity to cell adhesion molecules, follistatin, roundabout and frazzled (see BlastP? results). These genes are involved in neuronal development and reproductive physiology. Frazzled encodes a Drosophila member of the DCC imniunoglobulin subfamily and is required for CNS and motor axon guidance (Cell 87:197- 204(1996)). Characterization of a rat C6 glioma-secreted follistatin-related protein (FRP) and cloning and sequence of the human homologue is described in Eur. J. Biochem. 225:937- 946(1994). This protein may modulate the action of some growth factors on cell proliferation and differentiation. FRP binds heparin. The follistatin-related protein is a secreted protein and has one follistatin-like domain. The cloning and early dorsal axial expression of Flik, a chick follistatin-related gene and evidence for involvement in dorsalization/neural induction is presented in Dev. Biol. 178:327-342(1996). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors, as shown in Cell 92:205-215(1998). cDNA cloning and structural analysis of the human limbicsystem- associated membrane protein (LAMP) is described in Gene 170:189-195(1996).
LAMP, a protein of the OBCAM family that contains three immunoglobulin-like C2-type domains, mediates selective neuronal growth and axon targeting. LAMP contributes to the guidance of developing axons and remodeling of mature circuits in the limbic system. This protein is essential for normal growth of the hippocampal mossy fiber projection. LAMP is attached to the membrane by a GPI-Anchor. It is expressed on limbic neurons and fiber tracts as well as in single layers of the superior colliculus, spinal chord and cerbellum.
Characterization of the human full-length PTK7 cDNA encoding a receptor protein tyrosine kinase-like molecule closely related to chick KLG is disclosed in J. Biochem. 119:235- 239(1996). Based upon homology, FCTR2 proteins and each homologous protein or peptide may share at least some activity.
Functions and therapeutic uses: The OMIM gene map has identified this region which the invention maps to (5q21- 5q31) as associated with susceptibility to the following diseases (OMIM Ids are underlined): Allergy and asthma Hemangioma, capillary infantile Schistosoma mansoni infection, susceptibility/resistance to Spinocerebellar ataxia Bronchial asthma Plasmodium falciparum parasitemia, intensity of Corneal dystrophy, Groenouw type I, 121900; Corneal dystrophy,lattice type I, 122200; Reis-Bucklers corneal dystrophy;Comeal dystrophy, Avellino type Eosinophilia, familial Myelodysplastic syndrome; a Myelogenous leukemia, Acute Cutis laxa, recessive, type 1, Deafness, autosomal dominant nonsyndromic sensorineural, 1 Contractural arachnodactyly, Congenital Neonatal alloimmune thrombocytopenia; 9 Glycoprotein la deficiency Male infertility; 0 Charcot-Marie-Tooth neuropathy, Demyelinating Gardner syndrome; a Adenomatous polyposis coli; Colorectal cancer; Desmoid disease, hereditary, 135290; Turcot syndrome,276300; 0 Adenoniatous. polyposis coli, attenuated Colorectal cancer Therefore the invention is implicated in at least all of the above mentioned diseases and may have therapeutic uses for these diseases.
This sequence has similarity to cell adhesion molecules, follistatin, roundabout and frazzled (sec BlastP results). These genes are involved in neuronal development and reproductive physiology. Therefore the invention is also implicated in disorders such as or therapeutic uses for: Neurodegenerative disorders, nerve trauma, epilepsy, mental health conditions 0 Tissue regeneration in vivo and in vitro Female reproductive system disorders and pregnancy FCTR3 FCTR3, is an amino acid type 11 membrane, neure! Kn--like protein. The FCTR3a nucleic acid of 1430 nucleotides (also designated 10129612.0.118) is shown in Table 3A- An ORF was idcntificd beginning with an ATG initiation codon at nucleotides 69-71 and ending with a TAG codon at nucleotides 1212-1214. A putative untranslated region upstream from the initiation codon and downstream from the termination codon is underlined in Table 3A, and the start and stop codons are in bold letters.
Table 3A. FCTR3a Nucleotide Sequence (SEQ ED NO:S)
AAAAAAGGCGGGGGGTGGACTTAGCAGTGTAATTTGAGACCGGTGGTAAGGATTGGAGCGAGCTAGAGATGCTGCACGCTGCTA
ACAAGGGAAGGAAGCCTTCAGCTGAGGCAGGTCGTCCCATTCCACCTACATCCTCGCCTAGTCTCCTCCCATCTGCTCAGCTGC
CTAGCTCCCATAATCCTCCACCAGTTAGCTGCCAGATGCCATTGCTAGACAGCA.ACAiCCTCCCATCAAATCATGACACCAACC CTGATGAGGAATTCTCCCCCAATTCATACcTGCTcAGAGCATGCTCAGGGCCCAGCAALGCCTCCAGCAGTGGCCCTCCGAACC ACC:ACAGCCAGTCGACTCTGAGGCCCCCTCTCCCACCcC-CTCACAACCAC-ACGCTGTcccATC-ACCACTCGTCCGCCAACTCCC TCAACAGGAACTrCACTGACCAATCGGC-GGAGTCAGATCCACGCCCCGGCCCCAGCGCCCAATC~ACCTGGCCACCACACCAGAGT
CCGTTCAGCTTCAGGACAGCTGGGTGCTAAACAGCAACGTGCCACTGGAGACCCGC-ACTTCCTCTTCAAGACCTCCTCGGGGA
32
CCCTTCGACCTCCGGTC'TTACCGACGTTCCCCCCCGCGTCC
GGAATTTCGAGCTCACGAAGCTCBAATCGTGATTCGCTTCCAT
CCCGCTCCTGTTTGTGGATCTGTCCGTGTAAAACGAAAATGGA
CAAGTGCGGGACCAAGCCCAGGGTTGGTAAATAACGCGCrATC
AATCAACCCCGAGAGTTTTGGTTCTAAGGATCACTTAGCATT
CA
The FCTR3 polypeptide (SEQ ID NO:5) encoded by SEQ ED NO:5 is 381 amino acid residues and is presented using the one-letter code in Table 3B.
Table 313. Encoded FCTR3a protein sequence (SEQ ED NO:6).
MLIIAANKGRKPSAEAGRPI PPTS S PSLLPSAQLPSSHNPPPVS CQ1MPLLDSNTSHQIMDTNPDEE FSPNSYLLRACSGPQQAS S
SGPHSSLPLPHHLHHSNLRSTRRQRPPPDATEVLDWLSVLTHL
KTS SGST PLFS SSPYLSTY PRLRTSKFLK KCWCASIALLILAFVWLN IDGAVRVQVFVWSIIQQLFILKAFVIRLPHQD7ELGEWVEPER I QTLVQNE.AVFVQYLDVGLWHLAFYNDGKDKEMVSNTWLDGTI In an alternative embodiment, the 5' end of the FCTR3 a nucleic acid could be extended as it is in the 9826bp FCTR3b (also referred to herein as 101296 12.0.405) shown in Table 3C. An ORE was identified beginning with an ATG initiation codon at nucleotides 280- 282 and ending with a TAA codon at nucleotides 8479-848 1. A putative untranslated region upstreamn from the initiation codon and downstream from the termination codon is underlined in Table 3C, and the start and stop codons are in bold letters. Italicized bases 1-201 refer to a variable 5' region that will be fuirther discussed below.
Table 3C. FCTR3b Nucleotide Sequence (SEQ ID NO:7) rTrTATCCTcATACCTpAGGAGArGTGTArATAGGGAGTrGGAccAGCA
TTAGATGAGTTGACAAAAATGCAGTT
TCGTTGGTTGGA
CAACAGTCGCGTTGGATTCCCCGTGAGGGCTTTCTTCCTGGCTTGA
AGTGTCTCTCCAATCCTGAAAM~-TGAATAAGGCAATAGCG
CTTTTCTGAAACATCAGCATTCTGCCATATCTGGATATGGATGTAA.GGACCGGCGACACCGCTCTTTGACCAGAGG
ACCGGCAGGGCCAAA=TCCCGGCGGGATCGGGCAAAAACTC
GCTCCAG3TGAGATCTGA.JGGCCTATGACCATGACAGCAGGATGCACTATGGACCGAGTCACAACCTCATCCCCGG
GAGTCAGATGAGTTTCCTAGACAGGAACCAACTACCCTTGCCGAACTGGGCATCTGTGAGCCCTCCCCACACCGAAG
CGCATCCGCTGGTCTACGGTCCCTGAAGTT-CCGCCGCCGG
GAGGGATGTCTCCAGAACACGCCATCAGACTGTGGCAGAGGGATTCCAGGCGQAGTTCCGGCCTGTCCGTCGT
GAACCGCTACTATATTAACAAAAACGTAGGAGTGCCTCACA
ATCCCTGCCTCACGTACGCACTCAATCCACGTGTCAAGCTG
TAAACAACCCTAACTGCCACCTAGGATCCCCATAACGTAAC
TGTAGCCACACTCGATGCTCAACCAACATGCCGGCCCCCCC
CCTAACAAGTTCAC~-CCTCCACCCCAAGATATACACGGAT
AGTCCCCGCCACCCAGCTGCCCCCAATCTCGTCGAACGGGT
AAACAGrCATGGCCGATCTTCAGCTCCGGG:CCCTTCGACCT CCGGTC=GCTAGAGTTCCCCCCCGCGTCrAGAATTTCGAG
CTTAGTAGACCCAAATCGTGATTCGCTTCCATC-CGCTCCT
GCATTCGCTTTAATCCGTGTAAACGACTGCGGTAGAAGTGC
GCGTAAAGATCACGGTTTGAGCCATrAACGCGCCGTTAATC ArAr~cTGGAGCCCCTGTTTCTAGAAGCTCCACCTCCGAGCT
ATGGAACGTCTGGACGGGAAGGAGAGTGGAGTGTGGTTGAGTCTCCCGGACGCCGGAGCATACAGACCTTGGTTCA
GATAGCTTTTCGACGAGGGCGTGACGCTCAATAGAAGCAGG
TGTTCTATCGTTCAATATCGACCCACACCCTGATGGAGGGC
GGGGGCCGTCrAGTTTGACGCGGTAGTCTCCGCTTCGGGAG ACAATATTCTAAAGGGACGTGCCAGTGCTACAGCGGCTGGAAGGTCAATGCGACTGCCCATAATCAGTGCATcC.
ATCCTTCCTGCGGGGGCCACGGCTCCTGCATTGATGGGAACTGTGTCTGCTCTGCTGGCTACAAAGGCGAGCACTGTGAG
GAAGTTGATTGCTTGGATCCCACCTGCTCCAGCCACGGAGTCTGTGTAATGGAGAATGCCTGTGCAGCCCTGGCTGGGG
TGGTCTGAACTGTGAGCTGGCGAGGGTCCAGTGCCCAGACCAGTGCAGTGGGCATGGCACGTACCTGCCTGACACGGGCC
TCTGCAGCTGCGATCCCAACTGGATGGGTCCCGACTGCTCTGTTGAAGTGTGCTCAGTAGACTGTGGCACTCACGGCGTC
TGCATCGGGGGAGCCTGCCGCTGTGAAGAGGGCTGGACAGGCGCAGCGTGTGACCAGCGCGTGTGCCACCCCCGCTGCAT
;ZTGAGCACGGGACCTGTAAAGATGGCAAATG3TGAATGCCGAGAGGGCTGGAATGGTGAACACTGCACCATTGGTAGGCAAA t CGGCAGGCACCGAAACAGATGGCTGCCCTGACTTGTGCAACGGTAACGGGAGATGCACACTGGGTCAGAACAGCTGGCAG
TGTGTCTGCCAGACCGGCTGGAGAGGGCCCGGATGCAACGTTGCCATGGAAACTTCCTGTGCTGATAACAAGGATAATGA
GGGACP.TGGCCTGGTGGATTGTTTGGACCCTGACTGCTGCCTGCAGTCAGCCTGTCAGAACAGCCTGCTCTGCCGC-GGGT
CCCGGGACCCACTGGACATCATTCAGCAGGGCC-AGACGGATTGGCCCG.CAGTGAAGTCCTTCTATGACCGTATC.GCTC
TTGGCAGGCAAGGATAGCACCCACATCATTCCTGGAGAGAACCcTTTCAACAGCAGCTTGGTTTCTCTCATCCGAGGCCA
AGTAGTAACTACAGATGGAACTCCCCTGGTCGGTGTGAACGTGTCTTTTGTCAAGTACCCAAAMTACGGCTACACCATC?.
CCCGCCAGGATGGCACGTTCGACCTGATCGCAAATGGAGGTGCTTCCTTGACTCTACACTTTGAGCGAGCCCCGTICATG
AGCCAGGAGCGCACTGTGTGGCTGCCGTGGAACAGCTTTTACGCCATGGACACCCTGGTGATGAAACCGAGGAGAACTC
CATCCCCAGCTGTr.AcCTCAGGGCTTTGTCCr.GCCTGATCCALATCATC-ATCTCCTCCCCACTGTcr-AcCTTCTTTAGTG
CTGCCCCTGGGCAGAATCCCATCGTGCCTGAGACCCAGGTTCTTCATGAAGAAATCGAGCTCCCTGGTTCCAATGTGAAA
CTTCGCTATCTGAGCTCTAGAACTGC-AGGGTACAAGTCACTGCTGAAGATCACCATGACCCAGTCCACAGTGCCCCTGAA
CCTCATTAGGGTTCACCTGATGGTGGCTGTCGAGGGGCATCTCTTCCAGAAGTCATI'CCAGGCTTCTCCCAACCTGGCCT
CCACCTTCATCTGGGACAAGACAGATGCGTATGGCCAAAGGGTGTATGGACTCTCAGATGCTGTTGTGTCTGTCGGGTTT
GAATATGAGACCTGTCCCAGTC7AATTCTCTGGGAGAAAAGGAC-AGCCCTCCTTCAGGGATTCGAGCTGGACCCCTCCAA
CCTCGGTGGCTGGTCCCTAGACAAACACCACATCCTCAATGTTAAAAGTGGAATCCTACACAAAGGCACTGGGGAAAACC
AGTTCCTGACCCAGCAGCCTGCCATCATCACCAGCATCATGGGCAATGGTCGCCGCCGGAGCATTT.CCTGTCCCAGCTGC
AACGGCCTTGCTGAAGGCAACAAGCTGCTGGCCCCAGTGGCTCGGCTGTTGGAATCGATGGr.ACC-CTATGTGGGTGA
CTTCAATTACATCCGACGCATCTTTCCCTCTCGAAATGTGACCAGCATCTTGGAGTTACGAAATA.AGAGTTTAAACATA
GCAACAACCCAGCACACAAGTACTACTTGGCAGTGGACCCCGTGTCCGGCTCGCTCTACGTGTCCGACACCAALCAGCAGG
AGAATCTACCGCGTCAAGTCTCGAGTGGAACCAAAGACCTGGCTGGGAATTCGGAAGTTGTGGCAGGGACGGGAGAGCA
GTGTCTACCCTTTGATGAAGCCCGCTGCGGGGATGGAGGGAAGC-CCATAGATGCAACCCTGATGAGCCCGAGAGGTATTG
CAGTAGACAAGAATGGGCTCATGTACTTTGTCGATGCCACCATGATCCGGAAGGTTGACCAGAATGGAATCATCTCCACC
CTGCTGGGCTCCAATGACCTCACTGCCGTCCGGCCGCTGAGCTGTGATTCCAGCATGGATGTAGCCCAGGTTC GTCTGGA GTGG3CCAACAGACCTTGCTGTCAATCCCATGGATAACTCCTTGTATGTT-TAGAGAACAATGTCATCCTTCGAATCACCG
AGAACCACCAAGTCAGCATCATTGCGGGACGCCCCATGCACTGCCAAGTTCCTGGCATTGACTACTCACTCAGCAAACTA
GCCATTrCACTCTGCCCTGGAG'ICAGCCAGTGCCATTGCCATTTCTCACACTGGGGTCCTCTACATCACTGAGACAGATGA
GAAGAAGATTAACCGTCTACGCCAGGTAACAACCAACGGGGAGATCTGCCTTTTAGC:TGGGGCAGCCTCGGACTGCGACT
GCAAAACCATGTC;LTCAACTGCTATTCAGAGATGATGCCTACGCACTGATCCATCTT--AATTCCCCATCATCC
TTAGCTGTAGCTCCAGATGG'TACCATTTACATTGCAGACCTTGGAAATATTCGGATCAGGGCGGTCAGCAAGAACAAGCC
TGTTCTTAATGCC-TTCAACCAGTATGAGGCTGCATCCCCCGGAGAGrCAGGAGTTATATGTTTTCAACGCTGATGGCATCC
ACCAATACACTGTGAGCCTGC-TGACAGGGGAGTACTTGTACAATTTCACATATAGTACTGACAATGATGTCACTGAATTG
ATTGACA-ATAATGGGAATTCCCTGAAGATCCGTCGGGACAGCAGTGGCATGCCCCGTrCACCTGCTrCATGCCTGACAACCA
GATCATCACCCTCACCGTGGGCACCAATGGAGGCCTCAAAGTCGTGTCCACACAGAACCTGG.GCTTGGTCTATGACCT
ATGATGGCAACACTIGGGCTCCTGGCCACCAAGAGCGATGAAACAGGATGGACGACTTTCTATGACTATGACCACGAAGGC
CGCCTGACCAACGTGACGCGCCCCACGGGGTGGTAACCAGTCTGCACCGGGAAATGGAGAAATCTATTACCATTGACAT
TGAGAACTCCAACCGTGATGATGACGTCACTGTCATCACCAACCTCTCTTCAGTAGAGGCCTCCTACACAGTGGTACAAG
ATCA.AGTTCGGAACAGCTACCAGCTCTGTAATAATGGTACCCT-AGGGTGATGTATGCTAATGGGATGGGTATCAGCTTC
CACAGCC-AGCCCCATGTCCTAGCGGGCACCATCACCCCCACCTTGGACGCTGCAACATCTCCCTGCCTATGGAGAATGG
CTTAAACTCCATTC-AGT-GGCGCCTAGAA.AGGAACAGATTAAAGGCAAAGTCACCATCTTTGGCAGGAAGCTCGGGTCC
ATGGAAGAAATCTCTTGTCCATTGACTATGATCGAAATATTCGGACTGAAAAGATCTATGATGACCACCGGAAC-TTr-ACC
CTGAGGATCATTTATGACCAGGTGGGCCGCCCCTTCCTCTGGCTGCCCAGCAGCGGGCTGGCAGCTGTCAACGTGTCATA
CTTCTTCAATGGGCGCCTGGCTGGC-CTTCAGCGTGGGGCCATGAGCGAGAGGACAGACATCGACAAGCAAGGCCGCATCG
TGTCCCGCATGTTCGCTGACGGG: AGTGTGGAGCTACTCCTACCTTGACAAGTCCATGGTCCTCCTGCTTCAGAGCCAA
CGTCAGTATATATTTGAGTATGACTCCTCTGACCGCCTCCTTGCCGTCACCATGCCCAGCGTGGCCCGGCACAGCATGTC
CACACACACCTCCATCGGCTACATCCGTAATATTTACAACCCGCCTGAAAGCAATGCTTCGGTCATCTTTGACTACAGTC
ATGACGGCCGCATCCTGAAGACCTCCTTTTTGGGCACCGGACGCCAGGTGTTCTACAAGTATGGGAAACTCTCCAAGTTA
TCAGAGATTGTCTACGACAGTACCGCCGTCACCTTCGGGTATGACGAGACCACTGGTGTCTTGAAGATGGTCAACCTCr-A AAGTGGGGGCTTCTCCTGCACCATCAGGTACCGGAAGATTGGCCCCCTGGT6ACAAGCAGATCTACAGGTTCTCCGAGG
AAGGCATGGTCAATGCCAGTTTGACTACACCTATCATGACAACACTTCCGCATCGCAAGCATCAAGCCCGTCATAAGT
GAGACTCCCCTCCCCGTTGACCTCTACCGCTATGATGAGATTTCTGGCAAGGTGGAACACTTTGGTAAGTTTGGAGTCAT
CTATTATGAr-ATCAACCAGATCATCACCACTGCCGTGATGACCCTCAGCAAACACTTCGACACCCATGGGCGGATCAAGG AGGTCCAGTATGAGATGTTCCGGTC2TCATGTACTGGATGACGGTGCAATATGACAGCATGGCAGGGTGATCAAr.AGG GAGCTAAAACTGGGGCCCTATGCCA ATACCACGAAGTAr-ACCTATGACTACGATGGGGACGGGCAGCTCCAGAGCGTGGC
CGTCAATGACCGCCCGACCTGGCGCTACAGTATGACCTTAATGGGAATCTCCACTTACTGAACCCAGGCAACAGTGTGC
GCCTCATGCCCTTGCGCTATGACCTCCGGGATCGGATAACCAGACTCGGGGATGTGCAGTACAAAATTGACGACGATGGC
TATCTGTGCCAGAGAGGGTCTGACATCTTCGAATACAATTCCAAGGGCCTCCTAACAAGAGCCTACACAAGGCCAGCGG
GTGGAGTGTCCAGTACCGCTATGATGGCGTAGGACGGCGGGCTTCCTACAAGACCAACCTGGGCCACCACCTGCAGTACT
TCTACTCTGACCTCCACAACCCGACGCGCATCACCCATGTCTACAATCACTCCAACTCGGAGATTACCTCACTGTACTAC
GACCTCCAGGGCCACCTCTTGCCATGGAGAGCAGCAGTGGGGAGGAGTACTATGTTGCCTCTGATAACACAGGGACTCC
TCTGGCTGTGTTCAGCATCAACGGCCTCATGATCAAACAGCTGCAGTACACGGCCTATGGGGAGATTTATTATGACTCCA
ACCCCGACTTCCAGATGGTCTTGGCTTCCTGGGGGACTCTATGACCCCCTGACCAGCGGTCCACTTCACTCAGCGT
GATTATGATGTGCTGGCAGGACGATGGACCTCCCCA3ACTATACCATGTGGAAAAACGTGGGCAAGGAGCCGGCCCCCTT
TAACCTGTATATGTTCAAGAGCAACAATCCTCTCAGCAGTGACTAGATITGAAGAACTACGTGACAGATGTGAAAAGCT
GGCTTr.TGATGTTTGGATTTCAGCTTACCAACATCATTCCTGGCTTCCCAGAGCCAAA.ATG;TATTTCGTGCCTCCTCCC
GATTAAATAACATAATGCGTCTAAGGCACGAACGGGCTAC
GGCTAGCCGAGAAGCTATAAGCCAGCGACGGGAGAGCCGTT
CCCAC G~-TATGAAGACTTTCACAGAGCGTACCGCTT:ACT
CCACAGTGCCAGGCTTTCGAAAGCATCTGCAAGATCGACAG
AGAACATCTGGAATGTACGTGGCTGCCCAGACCACGCCAG
TGTGGGGGTA=ACTTCACCCCGTGCAGCGATGAG~-CACT
ATCATCCAGTCGTACTCCATGCCCCCAACTGCAGGAGCGG
CCGACGCAAAAGCCGGAGCTGGCAGGACGAGCGGCGAAAGG
GCGCGGATAGCAAGACGTCGGCCGGGGGAGGAGGGTTAGGT
CCTGGATCCGGTGA~-GACGCAACATTTAAAATAAGGAGGT
0AGTCAACAAATCCCATCCGATTAACTTAACCCJCGCTGGAACGAGTAAAATTGAGCGAAGA ri AAGACGCAACAGTGT
GCTGTTCTAATTGCACCCTTCTGGGTTATCGCYAGAAGGGCGCATC
CATCCGAATTTAGGTCCAACAGTTGCTGTTACATACTTGCTCT~TGTGAATTC
TTCTThe FCATAApolypetTTdeA(SEQGADTNO:8)GencodedGbyTSEQGCD NO: is 2733 amino GGGGGGCCGAaci esde adipeeteduitheeltt er AAAAAcode in Tae 3D. Te prtei a aAA MDVKDRHRTACGRTAAGTTGCTAATCGKECRYTGSSSLDSTCCGVPTQKSYSSSETLKAYDDSJYGRVDIGRE
EFRGCTFL
GTAATTTCACGSRENSCGTACCGAAACTACGAAGA-ATLTDSDNENKSDDEN
RPIPPT SLLPSAQLPSSHNPPPVSCQPLSTSHQIMDATNPDEEFS
PNSYLLCACSGGPQASGPNRHSTAJP
23
TTGATTCTTTATGTACATTTTATATTATGTCAGAAATGGCG
MDVPLDIIQQGLrDGARKSFYDRITSSADSCVTI PGEPFS SLVSLIHDRGQVVTiGTLGVNVSDFVPRYGTIETLAQ PPTHNHLSNGASLN"SERAPESQRAWPSFYNDAT1PESPLQSCDLSGTPERHPIS
SSTLFSSPG
PGRRSIIScNGLAEGNL VAAVGIGSVFYIRRPHAYFFPSRN LELR1VVEFKSRERAHLAVPVGLD VS LDTGLCRSCRVKSLGPTKDLAGNSVGTVIGAEOCFEGGACDATPRCGTDGDATMRK.NGHC
IGQATTGPLNNRTGNWCCTWGGNAESANDEDLDLPC~QAQSLR
DIQQTWAKEYRILAKSHIPEPNSVSIGV~
TPVVVFKPSSLAVAPR
MSTHTS IGYIP.NIYNPPESNASVSRLTS
VNMNYLGTGQVFVGLSKLSEIVYDSTIAGRPMHCETGVDLSLA
GFALSAIYPIPLVDKQIYREEKN~YHDSI
KPSEPLPQVTGILAASCCNVLNYRYSGKVEATDI{FCKFGVIYYDI
DGYLLPGNIISRLMPLNADLRDRIPGQYKI
DDGCQGDYTSGLLYNKSTDVQYRYDNNGS
MTTTIIGGIHFINPPVTTVIDGSpJ 'TGRNAYYLDIOA.HYS EGKDTYDVISTATGDTTGKVLESG GVNVTVSQPTLLVNGRTRRFTNIEFQYSTLLLSIRYGLTPDTLDEEKARVLDQARQRALGTAWAKEQQKARDGREG S RLWTEGE
KQQLLSTGRVQGYEGYYVLPVEQYPELADSSSNIQFLRQNEMGKR
In further alternative embodiments the italicized bases in the 5' end of the FCTR3b sequence in table 3C is a variable region. This region can be substituted for in other 0 embodiments of FCTR3. The nucleotide sequence for 9823bp FCTR3c (also referred to herein as 10129612.0.154) has the same nucleotide sequence as FCTR3b except that the italicized region is replaced with the 201 base sequence shown in Table 3E. An ORF for the total FCTR3c nucleotide sequence was identified beginning with an ATG initiation codon at 10 nucleotides 277-280 and ending with a TAG codon at nucleotides 8473-8475. This is the same open reading frame that is shown in Table 3C, with the corresponding base numbers for SFCTR3c. This open reading frame will translate the same amino acid sequence as shown in C Table 3C for FCTR3b.
Table 3E. Encoded FCTR3c 5'end nucleotide sequence (SEQ ID NO:9).
GCTCCAAAGCGAGCTGGGACCGAAGACTCTAGGCTAAGTTATCTATGTAGATGGTGTCAGAGCGAAGCTACGACCGA
GCTGCTGTTACATCCAGCTTTTTAATTGCCTAAGCGGTCTGGGGCTTGCTTCGTCATTTGGCTTTGCTGTGGAGCACTCC
TGTAAAGCCAGCTGAATTGTACATCGAAGATCCACCCTTTT
In yet another embodiment, the italicized region shown in the 5' end of the sequence in Table 3C can be replaced with the sequence shown in Table 3F to form 9823bp FCTR3d (also referred to herein as 10129612.0.67). An ORF was identified beginning with an ATG initiation codon at nucleotides 277-280 and ending with a TAG codon at nucleotides 8473- 8475. This is the same open reading frame that is shown in Table 3C, with the corresponding base numbers for FCTR3d. This open reading frame will translate the same amino acid sequence as shown in Table 3D for FCTR3b.
Table 3F. Encoded FCTR3d 5'end nucleotide sequence (SEQ ID
GCTCCAAAGCGAGCTGGGACCGAAGACTCTAGGCTAAGTTATCTATGTAGATGGTGTCAGGGAGCGAAGCTACTGACCGA
GCTGCTGTTACATCCAGCTTTTTAATTGCCTAAGCGGTCTGGGGCTTGCTTCGTCATTTGGCTTTGCTGTGGAGCACTCC
TGTAAAGCCAGCTGAATTGTACATCGAAGATCCACCCTTTT
In yet another embodiment, the italicized region shown in the 5' end of the sequence in Table 3C can be replaced with the sequence shown in Table 3G to form 9765 bp FCTR3e (also referred to as 10129612.0.258). An ORF was identified beginning with an ATG initiation codon at nucleotides 210-212 and ending with a TAG codon at nucleotides 8408-8410. This is the same open reading frame that is shown in Table 3C, with the corresponding base numbers for FCTR3e. This open reading frame will translate the same amino acid sequence as shown in Table 3D for FCTR3b.
Table 3G. Encoded FCTR3e 5'end nucleotide sequence (SEQ ID NO:11).
In yet another embodiment another FCTR3a homolog, FCTR3f (also referred to as 10129612.0.352) was found having the 9729bp sequence shown in Table 3H. An ORE was identified beginning with an ATG initiation codon at nucleotides; 2 10-212 and ending with a TAG codon at nucleotides 8382-8384. A putative untranslated region upstream from the initiation codon and downstream from the termination codon is underlined in Table 3G, and the start and stop codons are in bold letters.
Table 311. Encoded FCTR3f nucleotide sequence (SEQ ID NO:12).
CCGATGTATGCAAT-ATTACCGAGCGAGTCGTCATAGTTAG
TTTCAACAGCTCTTCCCC-
'AGCGAGAAAGTGAATAAGGCAA
TCGCTATTCGAAACGATTCA'TTGAATGTTAGACGGCCGTT
TGCAAGCCGGCAGGGCCAAAGCCTTTGCGGGATCGGGCAAA
AATCAACCATAATTAGCTTACAGCGAGTCCAGAACATAAAC
CAOACGATAAGGTCTGCAGLCACTACTGCACGGACGGGCTC
CAACAGGCATCCGCTGGTCTACAGCATCTACCGGCGCCGCC
GAACAGAGAGC~-GAAGCTAATTGGAAGAAATCGCCGTCGC
GTCGCTAACCCCCTCCGCrATTGCAGAAAACGTAGGAGTGCC
TTCCTCTCCCTGCCTCACGTAGTCTGTCAATCCACGTGTCA
ATCATCAAACAACCCTAACTGCCACCGTAGATTCCALTAAC
GCCGGAGTAGCCACACTCGATGCCCGACCAACATGCCGGCC
CTTCACCTAACAAGTTCACCACCTCCACCCCAAGATATACA
CGCGGCGTCCCCGCCACCCAGCCGCArAA:AATCTCGTCGAA
CTGGGTGCTAAACAGCAACGTGCCACTGGAGACCCGGCACTTCCTTCAGACCTCCTCGGGGAGACACCCTTGTTCA
GCAGCTCTTCCCCGGGATACCCTTTGACCTCAGGAIACGGTTTACACGCCCCCGCCCCGCCTGCTGCCCAGGAATACTTTC
TCAGAGTTAGTAGACCCAAATGACGAAGGTCCCCGCTGCCG
CCCTTGCATTCGCTTTAATCCGTGTAAAACGAAAATGGACA
AATGTGCGTAA:AAGCCCAGGGTTGAGCCATCC~-GCGCCGT
TTAGTACTTCTGG-GAGTTTTGGTAAAGAAGCTCCACCTCC
GTTATCTGAGCGAGGAGGATGATTGTATTCAGACCGACTCG
CCTGTAATAGCTTTTCGACGATTGCTTGACGCTCAATAGAA
GAAAAAGTTCTATCGTTCAATCGGAGCGCAGACGCTGATGG
ATGTGTGTCCGGGGTGTGTCACTGTTTCCCAGGATTTCTAGGAGCAGACTGTGCTAGCTGCCTGCCCTGTCCTGTGC-A
GTGGGA
7
TGGACAATATTCTAGGGACGTGCCAGTGCTAAGCGGTGGAAGGTGCAGAGTGCGACGTGCCCATGAAT
CAGTGCATCGATCCTTCCTGCGGGGGCCACGCTCCTGCATTGATGGAGTGTCTGCTCTGTGGCTACAWGGCGA
GCACTGTGAGGAGTTGATTGCTTGGATCCCACCGCTCCAGCCACGGAGTCTGTGTGATGGAGATGCCTGTGCAGCC
CTGTGGGTTACGGGTGGGGCAGGCAACGGATGCTGAGACGC
GAAGGCCGACGGTCACGAGGCCGCGTTTGATTCCGAATTGA
TCACGGCGTCTGCATCGGGGAGCCTGCCGCTGTGAGAGGGCTGGACAGGCGCAGCGGTGACCAGCGCGTGTGCQACC
CCGTCTGGAGGCTTAGTGAAGTATCGGGGTGAGTACCGACT
GAGCGCTATGGACGACGAAGACCGGCGAACGCGGGCGCGCG
CTGGGGCGAGACTGCTGACTCTTCGTAAGAATAGAAGCTGG
ATGTGA-CGCGTCTCGCGCGCGAACTCCGCGGTCGGCCCGA
ATATACGGCGCGTGCCCGGATCTCAGCGACACCTGAGAGAA
CACAACTCTGGGLCCTCAACGTGTTTTACGGCAGATATCGT
GACCCTGCGGGAGGCTTTAGACCAAAGCAACTACGCGAGCC
TTGCTACCATGGTCTCTATTCATTACACCGTAGGCGACCCG
GTGTCGGACGTTAGCTGCCCGGGTAGCGGAACCACCACGGC
TCGGCTGCGCTACATACTTCCCCCGCACTTTGGTCCTGCGA
CCACTCTAACAGTTCTAGATGACCCGTCATTAATCCACGGT
TAACGAGTCATATCGAACCAGCCG~-CGGCCGACCTAGTCC
TGTGGCGCAGGACCTCGATATCGCTTCACTGCCACTACGA
AAAAAGGAGCA~.GCAGATTAAGTTGGCGCGTTATTAACGC
CATTATTTGAAAGAACCCTCGGATGGTGCCTCACCGGCGTC
TAAAAACCTCCAGTAATGACTAAAAGATGGAACGTCGCCGA
CCGCTAC~-GACTGCAGTGCCCACTTCGCCGTCAGCTGTAG
CACACGTGCCATGTTGTTGATGTGACTTTTGTATCATCTCA
GCTTTCTTGATTACGACTGGTAGATAGGTAAAACAACCGAA
37
AAGTACTACTTGGCAGTGGACCCCGTGTCCGGCTCGCTCTACGGTCCGACACCAACAGCAGGAGAATCTACCGCGTC
GTCTCTGAGTGGAACCAAAGACCTGGCTGGGAATTCGGAAGTTGTGGCAGGGACGGGAGAGCAGTGTCTACCCTTTGATG
AAGCCCGCTGCGGGGATGGAGGGAAGGCCATAGATGCAACCCTGATGAGCCCGAGAGGTATTGCAGTAGACAAGAATGGG
CTCATGIACTTTGTCGATGCCACCATGATCCGGAAGGTTGACCAGAATCGAATCATCTCCACCCTGCTGGGCTCCALATGA
CCTCACTGCCGTCCGGCCGCTGAGCTGTGATTCCAGCATGGATGTAGCCCAGGTTCGTCTGGAGTGGCCAACArGACCTTG ;Z CTGTCAATCCCATGGATAACTCCTTGTATGTTCTAGGAACAATGTCATCCTCGAATCACCGAGAACCACCAAGTCAGC -n ATCATTGCGGGACGCCCCATGCACTGCCAAGTTCCTGGCATTGACTACTCACTCAGCAAACTAGCCATTCACTCTGCCCT GGAGTCAGCCAGTGCCATTGCCATTTCTCACACTGGGGTCCTCTACATCACTGAkGACAGATGAGAAGAAGATTAACCGTC
TACGCCAGGTAACAACCAACGGGGAGATCTGCCTTTTAGCGGGGCAGCCTCGGACTGCGACTGCAAAAACGATGTCAAT
TGCAACTGCTATTC-AGGAGATr.ATGCCTACGCGACTGATGCCATCTTGAATTCCCCATCATCCTTAGCTGTAGCTCCAGA TGGTACCATTTACATTGCAGACCTTGGXAATATTCGGATCAGGCGGTCAGCAAGAACAAGCCTG NTCTTAATGCCTTCA
ACCAGTATGAGGCTGCATCCCCCGGAGAGCAGGAGTTATATGTTTTCAACGCTGATGGCATCCACCAATACACTGTGAGC
CTGGTGACAGGGGAGTACTTGTACAATTTCACATATAGTACTGACAATGATGTCACTGAATTGATTGACAATAATGGGAA
TTCCC'IGAAGATCCGTCGGGACAGCAGTGGCATGCCCCGTCACCTGCTCATGCCTGACAACCAGATCATCACCCTCACCG
C* 15 TGGGCACCAATGGAGGCCTCAAAGTCGTGTCCACACAGAACCTGGAGCTTGGTCTCATGACCTATGATGGCAACACTGGG C1 CTCCTGGCCACCAAGAGCGATGAAACAGGATGGACGACTTTCTATGACTATGACCACGAAGGCCGCCTGACCAACGTGAC
GCGCCCCACGGGGGTGGTAACCAGTCTGCACCGGGAAATGGAGAAATCTATTACCATTGACATTGAGAACTCCAACCGTG
ri ATGATGACGTCACTGTCATCACCAACCTCTCTTCAGTAGAGGCCTCCTACACAGTGGTACAAGATCAAGTTCGGAACAGC TACCAGCTCi'GTAATAATGGTACCCTGAGGGTGATGTATGCTAATGGGATGGGTATCAGCTTCCACAGCGAGCCCCATGT
CCTAGCC-GGCACCATCACCCCCACCATTGGACGCTGCAACATCTCCCTGCCTATGGAGAATGGCTTAAACTCCATTGAGT
GGCGCCTAAGAAAGGAACAGATTAAAGGCAAAGTCACCATCTTTGGCAGGAAGCTCCGGGTCCATGGAAGAAATCTCTTG
Ci TCCATTGACTATGATCGAAATATTCGGACTGAAAAGATCTATGATGACCACCGGAAGTTCACCCTGAGGATCATTTATGA
CCAGGTGGGCCGCCCCTTCTCTGGCTGCCCAGCAGCGGGCTGGCAGCTGTCAACGTGTCATACTCAATGGGCGCC
?GGCTGGGCTTCAGCGTGGGGCCATGAGCGAGAGGACAGACATCGACAAGCAAGGCCGCATCGTGTCCCATGTTCGCT
G;ACGGGAAAGTGTGGAGCTACTCCTACCTTGACAAGTCCATGGTCCTCCTGCTTCAGAGCCAACGTCAGTATATATTTGA
GTALTGACTCCTCTGACCGCCTCCTTGCCGTCACCATGCCCAGCGTGGCCCGGCACAGCATGTCCACACACACCTCCATCG
GCTACATCCGTAATATTTAC-AACCCGCCTGAAAGCAATGCTTCGGTCATCTTTGACTACAGTGATGACGGCCGCATCCTG
AAG'ACCTCCTTTTTGGGCACCGGACGCCAGGTGTTCTACAAGTATGGGAAACTCTCCAAGTATCAGAGATT-TCTACGA
CA,3TACCGCCGTACCTTCGGGTATGACGAGACCACTGGTGTCTTGAAGTGGTCAACCTCCAAAGTGGGGGCT7CTCCT
GCACCATCAGGTACCGGAAGATTGGCCCCCTGGTGGACAALGCAGATCTACAGGTTCTCCGAGGAAGGCATGGTCAATGCC
AGGTTTGACTACACCTATCATGACAACAGCTTCCCATCGCAAGCATCAAGCCCGTCATAAGTGAGACTCCCCTCCCCGT
TGACCTCTACCGCTATGATGAGATTTCTGGCAAGGTGGAACACTTTGGTAAGTTTGGAGTCATCTATTATGACATCAACC
AGATCATCACCACTGCCGTGATGACCCTCAGCAAACACTTCGACACCCATGGGCGGATCAAGGAGGTCCAGTATGAGATG
TTCCGGTCCCTCATGTACTGGATGACGGTGCAAkTATGACAGCATGGGCAGGGTGATCAAGAGGGAGCTAACTGGGGCC
CTATGCCAATACCACGAAGTACACCTATGACTACGATGGGGACGGGCAGCTCCAGAGCGTGGCCGTCAATGACCGCCCGA
CCTGGCGCTACAGCTATGACCTT1AATGGGAATCTCCACTTACTGAACCCAGGCAACAGTGTGCGCCTCATGCCCTTGCGC
TATGACCTCCGGCATCGGATAACCAGACTCGGGGATGTGCAGTACAAMATTGACGACGATGGCTATCTGTGCCAGAGAG
GTCTGACATCTTCGAATACAATCCAAGGGCCTCCTAACAAGAGCCTACAACAAGGCCAGCGGGTGGAGTGTCCAGTACC
GCTATGATGGCGTAGGACGGCGGGCTTCCTACAAGACCAACCTGGGCCACCACCTGCAGTACTTCTACTCTGACCTCCAC
AACCCGACGCGCATCACCCATGTrCTACAATCACTCCAACTCGGAGATTACCTCACTGTACTACGACCTCCAGGGCCACCT CTTTGCCATGGAGAGCAGCIAGTGGGGAGGAGTACTATGTTGCCTCTGATAACACAGGGACTCCTCTGGCTGTGTrTCAGCA
TCAACGGCCTCATGATCAAACAGCTGCAGTACACGGCCTATGGGG;AGAT'TTATTATGACTCCAACCCCGACTTCCAGATG
GTCATTGGCTTCCATGGGGGACTCTATGACCCCCGACCAAGCTGGTCCACTTCACTCAGCGTGATTATGATGTGCTGGC
AGGACGATGGACCTCCCCAGACTATACCATGTGGAAAAACGTGGGCAAGGAGCCGGCCCCCTTTAACCTGTATATGTTCA
AGAGCAACAATCCTCTCAGCAGTGAGCTAGATTGAAGAACTACGGACA;ATG;TGAAAAGCTGGCTTGTGATGTT-TGGA
TTTCAGCTTAGCAACATCATTCCTGGCTTCCCGAGAGCCAAAATGTATTTCGTGCCTCCTCCCTATGAATTGTCAGAGAG
TCAAGCAAG'IGAGAATGGACAGCTCA'ITACAGGTGTCCAACAGACAACAGAGAGACATAACCAGGCCTTCATGGCTCTGG
AAGGACAGGTCATTACTAAAAAGCTCCACGCCAGCATCCGAGAGAAAGCAGGTCACTGGTTTGCCACCACC GCCCATC ATTGGCAAAGGCATCATGTTTGCCATCAAAGAAGGGCGGGTGACCACGGGCGTGTCCAGCATCGCCAGC% .AGATAGCCG
CAAGGTGGCATCTGTGCTGAACAACGCCTACTACCTGGACAAGATGCACTACAGCATCGAGGGCAAGGACACCCACTACT
TTGTGAAGATTGGCTCAGCCGATGGCGACCTGGTCACACTAGGCACCACCATCGG'CGCAAGGTGCTAGAGAGCGGGGTG
AACGTGACCGTGTCCCAGCCCACGCTGCTGGTCAACGGCAGGACTCGAAGGTTCACGAACATTGAGTTCCAGTACTCCAC
GCVGCTGCTCAGCATCCGCTATGGCCTCACCCCCGACACCCTGGACGAAGAGAAGGCCCGCGTCCGGACCAGGCGAGAC
AGAGGGCCCTGGGCACGGCCTGGGCCAAGGAGCAGCAGAAAGCCAGGGACGGGAGIGAGGGGAGCCGCCTGTGGACTGAG
GGCGAGAAGCAGCAGCTTCTGAGCACCGGGCGCGTGCAAGGGTACGAGGGATATTACGTGCTTCCCGTGGAGCAATACCC
AGAGCTTGCAGACAGTAGCAGCAACATCCAGTTTTAAGACAGAATGAGATGGGAAAGAGGTAACAAAATAATCTGCTGC
CATTCCTTGTCTGAATGGCTCAGCAGGAGrrAACTGTTATCTCCTCTCCTAAGGAGATGAAGACCTAACAGGG(-CACTGCG GCGGTCTAGGCAGGCAAACCCTTTTATCATCATTCACaAGC CTCATCCTGAAr.TAGACTAAAGCCCGGCTGAAATTCCGAGGAACAAACAAACAATGAATGAACAAACACACAA TG-cAGTCCAATTACATGTTGTTCCGAAAAGAATTCAAGAA AAGAAAAAAACGAATAGCAAAGzAGAAAACAAACAAAAACAAAACAAAACAAACACACGGACCGATAACAAAGAAGC
GAAGATAAGAAAGAAGGCCTCATATCCAATTACCTCACTCATTCACATGTGAGCGACACGCAGACATCCGCGAGGGCCAG
CGTCACCAGACCAGCTGCGGGACAAACCACTCAGACTGCTTGTAGGACAAATACTTCTGACATTTTCGTTTAAGCAAATA
CAGGTGCATTTAAAACACGACTTTGGGGGTGATTGTGTGTAGCGCCTGGGGAGGGGGGATAAAAGAGGAGGAGTGAGCA
CTGGAAATACTTTTTAflAAb. AAlCATGAGGGAATAAAAGAAATTCCTATCAAATCAAGTGAAAAATACCAT
CCAGCACTTAACTCTCAGGTCCCAACTAAGTCTGGCCTGAGCTAATTTATTTGAGCGCAGAGTGTAAAATTTAATTCAAA
ATGGTGGCTATAATrCACTACAGATWATTTCATACTCTTTTGTCTTTGGAGATTCCATTGTGGACAGTAATACGCAGTTA
CAGGGTGTAGTCTGTTTAGATTCCGTAGTTCGTGGGTATCAGTTTCGGTAGAGGTGCAGCATCGTGACACTTTTGCTAAC
AGGTACCACTTCTGATCACCCTGTACATACATGAGCCGAAAGGCACAATCACTGTTTCAGATTTAAAATTATTAGTGTGT
TTTTGCAAATAAATAAGCGCCCCAGGGAATAAATAATAACA
AAAGTGTTTAATTGTTTATACATAGTCTCTAACTCCGTG
The FCTR3fpolypeptide (SEQ I1D NO: 13) encoded by SEQ ID NO:12 is 2724 amino acid residues long and is presented using the one-letter code in Table 31. This sequence differs from FGTR3b in that it is missing amino acids 758-766 from that polypeptide.
Table 3M. Encoded FCTR3f protein sequence (SEQ ID NO:13) MlDVKDRRIRSLTRGRCGCRYTSSSLDSEDCRVPTKSYSSSETYDHDSRYQNRTDLIHREDFRGTEUE GICEPSPHRSGYCSDMGILHQGYSLSTGSDDSDGGMSPFHiARLWGRGIKSRRSSGLSSENSALLDDENSDN RPI PPTS SPSLLPSAQLPSSHNPPPVSCQMPLLDSNTSIIQIMDTN PDEE FS PNSYLLACSGPQQAS
SSGPNHQTRL
PPGVFWRSQI HISQPQFLKNIS LGDLGYRGPPHQDMRDKKSV PRERRS IQrLVQNEAVFvQYLD VGLWILAEYNDGKDKEMVS
FNTVVLDSVQDCPRNCHGNGECVSGVCHCFPGFLGADCKACPCSGGQYSKGTCQYSGWK
GAECDVPMNQCIDPSCGGHGSCI
DGNCVCSAGKGEHCEEVLDPTCSSHGVCNGECLCSPGWGGLNCELAVQCPQCSGH
EILGNKRLSTGYSLIMQTPNIR MAERFKFAPNLASTFIWDKrDAYGQRVYGLSDA VVVFYTPLLERALGEDSLGSDHINKGLiGGNFTQA
ITSIMCNGRRRSISCP
SCNGLAEGLAPVAVGIDGSLYVGDNYIRIFPRVSLLNEKSNARYLVPSSYSTSR
YRKLGKLGSVATECPD.RGGGADTMPGAD LYVAMRVQGISTLLGS4D LTAVRPLSCDSSMDVAQVRLEWPTDL VPMDNSLYENNvIrLRITENHQVSI IAGRPMHCQVPGI
DYSLSKLAIHSALESAS
AIASTVYTTE
IRRVTGILLGADDKDNCCSDAADINSSLVPGIAD
GN IRIRAVSKNKPVLNANEAA PGQLVNDIHYVLTELNFYTNDTL
DNNGNSLKIRRDSSGMP
PJILLMPDNQIITTGNGKVTNEGMYGTLAKOEGTFDDERTVRTVTLRMK
ITIDIENSNRDDDVTVITNLSSVEASYTVWQDQVNSYQLCUNGTLRVYNGMGISFHSE
PHVLAGTITPTIGRCNISLPMEN
GLNSIEWRLRKEQIKGKYTI GXRHRLSDDNRTKYDMTRIDV;RFiLSGAVVYF GRLAGLQRGANSERTDI DKQGRI VSRM~FADGKVWSYSYLDKSMAVLLLQSQRQYI FEYDS SDRLLAV'rMPSVARHSMSTHTS
IGY
IRN IYN PPESNASVI FDSDGIK LTRVYYKSLEVDTVFYETVKVLSGFC
Y
KIPVKIRSEMNRDTfDSRAI
VSTLVLRDIGVHKGIYIQITTAVNTL
SKFTGIEQEFSMW7ODMRIRLLPATKTDDEGLSANRTRSDNNH LNIPGNSVRLMPLRYDLRDRITRLGDVQYKI DDDGYLCQPGsD~i
FENKLTANAGSQRDVRAYTLH
LQYFYs DLHN TI THVYNHSNSEITS LYYDLLFMSSSGEEYYAS DNTGTPLAVFS INGLMI KQLQTAYGEIYYDSN PDQ4IFGLDLKVFQDDLGWSDTWNGEAFLMKNPSEDKYTVSLM G QS GFRIYVPYLESQSNQIGQTTRIQFAE4VTKHSIRKGWATPIIG GIMFAIKEGRVTT-GVS SIASEDSRKVASVLNNAYYLD1MHYSIEGKDTHYFIGSADGDLVTLGTTIGRVLESGVNWVSQP TLVGTRTI QSLL RGTDLEK-VDAQAGAVKQKR)RGRWEEQLSG VQGYEGYYVLPVEQYPEDSS
SNIQFLRQNEMGKR
In a BLASTN search it was found that the FCTR3a nucleic acid has homology to three fragments of Mus niusculus odd Oz/ten-m homolog 2. It has 634 of 685 bases identical to bases 614-1298, 365 of 406 bases identical to bases 1420-1825, and 93 of 103 bases identical to bases 1923-1925 of Mus nusculus odd Ozlten-m homolog 2 (GenBank Acc: NM_01 1856.2) (Table 3M).
Table MJ. BLASTN of FCTR3a against Mus inusculus odd Ozlten-m homolog 2 (SEQ ID NO:62) >GII7657414IPEFINM 01156.21 MUS MUSCULUS ODD OZ/TEN-M HOMOLOG 2 (DROSOPHILA) (ODZ2), MRNA LENGTH -8797 SCORE -954 BITS (481), EXPECT -0.0 IDENTITIES 634/685 (92%) STRAND PLUS PLUS QUERY: 114
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
614 174 674 234 734 294 "794 354 854 414 914 474 974 534 1034 594 1094 654 1154 714 1214 '774 1274 GGTCGTCCCATTCCACCTACATCCTCGCCTAGTCTCCTCCCATCTGCTCAGCTGCCTAGC 173 1111 11111111 11111 111 fill1111111111111 I GGTCGTCCCATTCCACCTACATCCTCGTCTAGCCTCCTCCCATCTGCTCAGCTGCCTAGC 673 TCCCATAATCCTCCACCAGTTAGCTGCCAGATGCCATTGCTAGACAGCAACACCTCCCAT 233 TCCCATAATCCTCCACCAGTTAGCTGCCAGATGCCATTGCTAGACAGCAACACCTCCCAT 733 CAAATCATGGACACCAACCCTGATGAGGAATTC'ICCCCCAATTCATACCTGCTCAGAGCA 293 CAGATCATGGACACCAACCCTGATGAGGAATTCTCCCCCAATTCATACCTGCTCAGAGCA 793 TGCTCAGGGCCCCAG3CAAGCCTCCAGCAGTGGCCCTCCGAACCACCACAGCCAGTCGACT 353 TGCTCAGGGCCCCAGCAAGCCTCCAGCAGTGGCCCTCCAAACCACCACAGCCAGTCAACA 853 CTGAGGCCCCCTCTCCCACCCCCTCACAACCACACGCTGTCCCATCACCACTCGTCCGCC 413 CTGAGGCCCCCTCTGCCACCCCCTCATAACCACACCCTGTCCCACCACCACTCCTCGGCC 913 AACTCCCTCAACAGGAACTCACTGACCAATCGGCGGAGTCAGATCCACGCCCCGGCCCA 473 AACTCCCTCAACAGGAACTCACTGACCAATCCGCGGAOTCAAATCCACGCCCCAGCTCCT 973 GCGCCCAATGACCTGGCCACCPACACCAGAGTCCGTTCAGCTTCAGGACAGCTGGC-TGCTA 533 GCGCCCAACGACCTGGCCACCACCCCAGAGTCTGTTCAGCTCCAGGATAGCTGGGTGCTG 1033 AACAGCAACGTGCCACTGGAGACCCGGCACTTCCTCTTCAAGACCTCCTCGGGGAGCACA 593 AACAGTAACGTCCCACTGGAGACTCGGCACTTCCTTTTCAAAACGTCGTCTGGAAGCACA 1093 CCCTTGTTCAGCAGCTCTTCCCCGGGATACCCTTTGACCTCAGGAACGGTTTACACGCCC 653 CCCCTGTrCAGCAGCTCTTCTCCGGGATACCCTTTGACCTCAGGGACCGTTTATACACCA 1153 CCGCCCCGCCTGCTGCCCAGGAATACTTTCTCCAGGAAGGCTTTCAAGCTGAAGAAGCCC 713 CCACCCCGCCTGCTGCCACGGAATACATTCTCCAGGAAGGCCTTCAAGCTGAAGAAACCC 1213 TCCAAATACTGCAGCTGGAAATGTGCTGCCCTCTCCGCCATTGCCGCGGCCCTCCTCTTG 773 lIlI I illIIIII llIIIIlIIIll I 11 illHil IlHIMl 11111 TCCAAATACTGCAGTTGGAAATGTGCTGCCCTGTCTGCCATCGCCGCCGCCCTCCTCTTG 1273 GCTATTTTGCTGGCGTATTTCATAG 796 GCCATTTTGCTGGCATATTTCATAG 12 9F SCORE 480 BITS (242), EXPECT E-132 IDENTITIES 365/406 (89%) STRAND PLUS PLUS QUERY: 797 AGTGCCC2'GGTCGTTGAAAAACAGCAGCATAGACAGTCGGGAAGCAGAAGTTGGTCGGCG 856 SBJCT: 1420 AGTGCCCTGGTCATTCAAAAAr-AGCAGrCATAGA.CAGTGGCGAAGCACGAAGTTGGTCGGCG 1479 QUERY: 857 GGTAACACAAGAAGTCCCACCAGGGGTGTTrrGGAGGTCACAAATTCACATCAGTCAGCC 916 111 i III~I~iIIiIlI 11 IIIIIIIII1IIIIIII SBJCT: 1480 GGTGACACAGGAAGTCCCACCAGGGGTGTTTTGGAGGTCCCAGATTCACATCAGTCAGCC 1539 QUERY: 917 CCAGTTCTTAAAGTTCAACATCTCCCTCGGGAAGGACGCTCTCTTTGGTGTTTACATAAG 976 11 1I1I1 I1 III11I1I1111111 11 11 11 111 1 11111 1 1111 11 11111 SBJCT: 1540 TCAATTCTTAAAGTTCAACATCTCCCTGGGCAAGGATGCCCTCTTCGGTGTCTATATAAG QUERY: 977 AAGAGGACTTCCACCATCTCATGCCCAGTATGACTTCATGGAACGTCTGGACGGGAAGGA 103Z SBJCT; 1600 GAGAGGACTACCACCGTCTCATGCCCAGTATGACTTCATGGAACGCCTGGATGGAAAGGA, 1659 QUERY: 1037 GAGGATTGTATTCAGAAGCGGAAAACTGTAA 1096 SBJCT: 1660 GAAGACTGCATGCAGAAGCGGACAATTGGAA 1719 QUERY: 1097 TGACGGTGGATCTGTT~rC~.GCTTGCTTCAG 1156 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SflJCT. 1720 CGAGGCTGTGTTTGTGCAGTACTTGGATGTGGGCCTGTCCCTGCCTTCTAATGA 1779 QUERY: 1157 TGGAAPAGACAAGAGATGGTTTCCTTCATACTGTTGTCCTAGAT 1202 SBJCT: 1780 CGGCAAGGACAAGGAGATGGTCTCCTTCAACACTGTTGTCTTAGAT 1825 SCORE 125 BITS EXPECT 7E-26 IDENTITIES 93/103 STRAND PLUS PLUS QUERY: 1258 GATTCAGTGCAGGACTGTCCACGTACTGCCATGGGATGTGATGTGTGTCCGGGGTG 1317 11 II 1 11 1 1 1111111III11 11i)I 11111 i1iiiiii 11111 11 11 SBJCT: 1823 GATTCAGTGCAGGACTTCCACGGAACTGTCACGGGAACGGTGATGCGTGTCTGGACTG 1882 QUERY: 1318 TGTCACTGTTTCCCAGGATTTCTAGAGCAGACTGTGCTAG 1360 SBJCT: 1883 TGTCACTGTTTCCCAGGATTCCTAGGTGCAACTGTGCT-kG 1925 In another BLASTN search it wvas found that the FCTR3a nucleic acid has homology to three fragments of Gal/us gal/us mRNA for teneurin-2. It has 541 of 629 bases (86%) identical to bases 502-1130, 302 of 367 bases identical to bases 1330-1696, and 87 of 103 bases identical to bases 1711-1 813 of Gal/us ga/his mRNA for teneurin-2 (EMBL Ace: AJ245 711. 1) (Table 3K).- Table 3K BLASTN of FCTR3a against Gallus gal/us mRNA for teneurin-2 (SEQ ID NO:63) >GII601004DIEMBlAJ245711.11GGA245711 GALLUS GALLUS MRNA FOR TENEURIN-2, SHORT SPLICE VARIANT (TEN2 GENE) LENGTH 2496 SCORE 549 BITS (277), EXPECT E-153 IDENTITIES 541/629 (86%) STRAND PLUS PLUS
QUERY:
SBJCT:
QuERY:
SBJCT:
QUERY:
s0
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY;
GGTCGTCCCATTCCACCTACATCCTCGCCTAGTCTCCTCCCATCTGCTCAGCTGCCTAGC 173 GGTCGTCCCATTCCACCTACATCCTCGTCTAGCCTTCTCCCATCGCTCAGCTGCCCAGT 561 I1 11111111 filli III I III)I II fill1 I 11111111111111111 I 11 H IM TCT CATAATCCTCCACCAGTTAGCTGCCAGATGCCTTGCTAGAGATACGTCCCAT 621 CAATCATGGACACCACCCTGATGAGGATTCTCCCCCATTCATACCTGCTCAGAGCA 293 II11 Il1l1 ll1l1 1 111111 1 H I CAAATCATGGACACCTCCTGACGAGGTTCTCTCCTATTCTACCTACTAGAGCA 681 TGTAGCCACACTCGATGCCCGACCAACATGC 353 CTGAGGCCCCCTCTCCCACCCCCTCACAACCACACGCTGTCCCATCCCTCGTCCGCC 413 CTGAGGCCACCTCTCCCCCCTCCTCACACCTCGCTGTCCCATATCCTCGTCTGCC 801 AACT CCCTCAACAGG-AACTCACTGACCAATCGGCGGAGTCAGATCCACGCCCCGGCCCCA 473
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
802 474 862 534 922 594 982 654 1042 714 1102 AACTCCCTCAACAGGAACTCGCTCACCAACCGCCGCAACCAGATCCACGCGCCTGCTCCC 861 GCGCCCATGACCTGCCACCACACCAGAGTCCGTTCAGCTTCAGGACAGCTGGGTGCTA 533 GCTCCCZAATG.ACCTGGCGACCACGCCTGAGTCTGTGCAGCTGCAGGACAGCTGGGTGCTC 921 AAACAGGCCGAACGCCTCTTCAACCTGGACC 593 AACAGCAACGTGCCGCTGGAGACCAGGCATTTCTTGTTTAGACATCTTCTGACGACT 981 CCTGTACGTTCCGAACTTACCGACGTAAGC 653 11 1111111 IIJIIIIIIIII Hil Ill lII1II11iI1jii CCGCTGTTCAGTAGCTCTTCCCCTGGCTACCCACTGACCTCAGGACAGTTTATAC,.CCA 1041 CCGCCCCGCCTGCTGCCCAGGATACTTTCTCCAGGAGGCTTTAGC-.GAAAGCCC 713 111111111 11111 11 11111111 IIIIIIIIlI 111IIIII1j1IIII1I1i CCTCCCAGGCTGTTACCTAGAAATAATTTTCCAGGAATGCATTCAGCTGAAAG CCC 1101 TCCAAATACTGCAGCTGGAAATGTGCTGC 742 TCCAAGTATTGTAGCTGGAAATGTGCTG" 1130 SCORE 212 BITS (107), EXPECT -4E-52 IDENTITIES 302/367 (82%) STRAND PLUS PLUS QUERY: 819
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJcr:
QUERY:
SBJC-T:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUJERY:
SBJCT:
1330 879 1390 939 1450 999 1510 1059 1570 1119 1630 1179 1690 AGCAGCATIGAijrGITGAIGCIiAGTTGITCII GGTiACACAuAAGTCCCACi AGCAGCATAGATAGTGGAGAAACAGAAGTTGGCCGCAAGGTCACCCAAGAGGa'GCCCCCT
GGGGTGTTTTGGAGGTCACAATTCACATCAGTCAGCCCGTTCTTAAGTTQAACTC
11 11111 1 1 fll i I I li? li I 11 111Hll11111HI I I II I I
GGAGTGTTCTGGCGGTCTCAGATCCATATCAGCCAGCCACAGTTCCTGAGTTCACATA
TCCCTCGGGAAGGACGCTCTCTTTGGTGTTTACATAAGAAGAGGACTTCCACCATCTCAT
liii 11H1I 11 11 1 Miii Ii I lIII III III GCACAGTATGATTTCATGGAACGCTTGGATGGGAA GAGA TGGAGTGTGGTGGAATCC
CCCAGGGAACGCCGGAGCATACAGACCTTGGTTCAGATGAGCCGTGTTTGTGCAGTAC
11 1111111 11 11 11 11111 1Il 1lil 1ll 1l 1 1I 11111111 111111
CCACGGGACGGCGAAGTATTCAGACTCTTGTTCAGATGAGGTGTGTTTGTTCGTAC
CTGC"ATGTGGGCCTGTGGCATCTGGCCTTCTACATGATGGAAGACAAGAGATGGTT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 f l l
TTGGATGTGGGTTTGTGGCACCTGGCGTTTTACAATGATGGCAGGACAAAGAAGTGGTC
TCCTTCA 1185 1111111 TCCTTCA 1696 878 1389 938 1449 998 1509 1058 1569 1118 1629 1178 1689 SCORE 77.8 BITS EXPECT 1E-11 IDENTITIES -87/103 (84%) STRXND PLUS PLUS QUERY: 1258 GTTCAGTGCAGGACTGTCCACGTACGCCATGGGATGGTGATGTGTGTCCGG.GGTG 1317 SBJCT: 1711 GATTCAGTGCAAGACTGTCCACGTATTGTCAGGATGGCGAGTGTGTTTCTGGTGTC 1770 QUERY: 1318 TGTCACTGTTTCCCAGGATTTCTAGGAGCJAGACTGTGCTAAAG 1360 11 11 11 11 1 1111111 hIIII 1 11 11lt1 SBJCT: 1771 TGCCAOCGTTTTCCCGGATTTCATGGAGAGATTGTGCTAG 1813 In this search it was also found that the fragments of FCTR3bcd and e nucleic acids had homology to three fragments of Homo sapiens mRNA for KIAAl 127 protein. It has 5537 of 5538 bases identical to bases 1-553 8, 705 of 714 bases identical to bases 5609-6322, and 176 of 176 bases (100%) identical to bases 6385-6560 of Hoino sapiens mRNA for KIA 127 protein (GenBank Acc: AB032953) (Table 3L).
Table 3L. BLASTN of FCTR3 b, e, d, and e against Honto sapiens KIAA1 127 mnRNA (SEQ ED NO:64) >GI16329762IDBJIABO32953.1lBO.32953 HOMO SAPIENS MRNA FOR KIAA1127 PROTEIN, PARTIAL Cos LENGTH 6560 SCORE -1.091E+04 BITS (5534), EXPECT -0.0 IDENTITIES 5537/55.38 (99%) STRAND PLUS PLUS QUERY: 3267
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
1 3327 61 3367 121 3447 181 35D7 241 3567 301 3627 361 3687 421 3747 481 3807 541 3867 601 3927 661 CACCTTCTTTAGTGCTGCCCCTGGGAGATCCCATCGTGCCTGAACCCAGTTCTTCA 3326 CACCTTCTTTAGTGCTGCCCCTGGGCAGAATCCCATCGTGCCTGCACCCAGGTTCTTCA TGAAGAAATCGAGCTCCCTGGTTCCATGTGAACTTCGCTATCTGAGCTCTAGAACTGC 3386 AGGGTACAAGTCArGCTGAAGTCACCATGACCCAGCCACAGTGCCCCTACCTCAT 3446 AGGGTACAAGTCACTGCTGAAGATCACCATGACCCAGTCCACAGTGCCCCTGAACCTCAT 180 TAGTCCTAGTG GCAGGACCTCGATATCGCT 3506 TCCCAACCTGGCCTCCACCTTATCTGGCAAGACGATGCGTATGGCCAAGGGTGTA 3566 TCCC;LCCTGGCCTACACCTTCATCTGGACAGACAGATGCGTATGGCCAAGGGTGTA 300 TGGACTCTCAGATGCTGTTGTGTCTGTCGGGTTTGATATGAGCTGTCCCAGTCTAAT 3626 TGGACTCTCAGATGCTGTTGTGTCTGTCGGGTTTGAATATGAGACCTGTCCC-AGTCTAAT 360 TCTCTGGGAGAAAAGGACAGCCCTCCTTCAGGGATTCGAGCTGGACCCCTCCAACCTCGG 3686 TCTCTGGGAGAAAAGGACACCCTrCCTrTCAGGGATTCGAGCTGGACCCCTCCACCTCG- 420 TGCGTCTGCACCAACTCAGTAATGACTCCAG 3746 CATGGAACGTCGCCGAGCGCTACCACTAGGA 3806 TGTGCCGACTTCGCCGTC.CGCTCGAGACAC 3866 TGGTCGCCGCCGGAGCATTTCTGTCCCAGCTGCAACGGCCTTGCTGMGGCARGCT 600 GCGCCATGTTGTTGATCAGGGCCAGGGGCTA 3926 GCTGGCCCCAGTGGCTCTGGTGTTGGMTCGATGGGCCTCTATGTGGGTGACTTCAA 660 TTACATCCGACGCATCTTTCCCTCTCTGTGACCAGCATCTGGAGTTACGAAATAA 3986 43
QUERY:.
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT,
QUERY:
SBJCT:
QUERY:
SBJ-T:
QU7RY:
SBJ=:
QuEry: SnBzC-r:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUI*iRY: S3JCT:
QUERY:
SBJCT:
QUERY-
SBJCT:
QUERY:
StBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
3987 721 4047 781 4107 841 41.67 901 4227 961 4287 1021 4347 1081 4407 44 ยฃ7 47 :32'.
4 IL 1391 4*137 1441 4767 1501 4827 1561 4887 1621 4947 1681 5007
PAGAGTTTAACATAGCAACAACCCAGCACACAAGTACTACTTGGCAGTGGACCCCGTGTC
AGAGTTTAAACATAGCAACAACCCAGCACACAAGTACTACTTGGCAGTGGACCCCGTGTC
CGGCTCGCTCTACGTGTCCGACACCAACAGCAGGAGAATCTACCGCGTCAAGTCTCTGAG
cGGCTCGCTCTACGTGTCCGACACCAACAGZAGGAGAATCTACCGCGTCAAGTCTCTGAG
TGGAACCAAAGACCTGGCTGGGAATTCGGAAGTTGTGGCAGGGACGGGAGAGCAGTGTCT
TGGAACCAAAGACCTGGCTGGGAATTCGGAAGTTGTGGCAGGGACGGGAGAGCAGTGTCT
ACCCTTTGATGAAGCCCGCTGCGGGGATGGAGGGAAGGCCATAGATGCAACCCTGATGAG
ACCCTTTGATGAAGCCCGCTGCGGGGATGGAGGGAAGGCCATAGATGCAACCCTGATGAG
CCCGAGAGGTATTGCAGTAGACAAGAATGGGCTC.ATGTACTTTGTCGATGCCACCATGAT
CCCGAGAGGTATTGCAGTAGACAAGAATGGGCTCATGTACTTTGTCGATGCCACCATGAT
CCGGAAGGTTGACCAGAATGGA.AT CAT CTCCACCCTGCTGGGCTCCAATGACCTCACTGC
CCGGAAGTTGACCAGAATGGAATCATCTCCACCCTGCTGGGCTCCAATGACCTCACTGC
CC-TCCGGCCGCTGAGCTGTGATTCCAGCATGGATGTAGCCCAGGTTCGTCTGGAGTGGCC
CGTCCG3CCGCTGAGCTGTGATTCCAGCP.TGGATGTAGCCCAGGTTCGTCTGGAGTGGCC
AACAGACCTTGCTGTCAATCCCATGGATAACTCCTTGTATGTTCTAGAGAACAATGTCAT
AACAGAZCTTGCTGTCAATCCCATGGATAACTCCTTGTATGTTCTAGAGAACAATGTCAT
CCT--CGAATCACCGAC-AACCACCAAGTCAGCATCATTGCGGGACGCCCCATGCACTGCCA
Cc:T."CGAACACCGAGAACCACCAAGTCAGCATCATTGCGGGACGCCCCATGCACTGCCA
ACTTCTGGCATTGACTACTCACTCAGCAAACTAGCCATTCACTCTGCCCTGGAGTCAGC
C:AC ;TGCCATTGCCATTTCTCACACTGGGGTCCTCTACATCACTGAGACAGATGAGAAGAAk
CAGTGCCATTGCCATTTCTC-ACACTGGGGTCCTCTACATCACTGAGACAGATAGAAGAA
CA7AACCGTCTACGCCAGGTAACAACCAACGGGGAGATCTGCCTTTTAGCTGGGGCAGC
GATACCGTCTACGCCAGGTAACAACCAACGGGGAGATCTGCCTTTTAGCTGGGGCAGC
CTCGGACTGCGACTGCAAAAACGATGTCAATTGCAACTGCTATTC-AGGAGATGATGCCTA
CTCGGACTGCGACTGCAAAAACGATGTCAATTGCAACTGCTATTCAGGAGATGATGCCTA
CGCGACTGATGCCATCTTGAATTCCCCATCATCCTTAGCTGTAGCTCCAGATGGTACCAT
CGCGACTGATGCCATCTTGAATTCCCCATCATCCTTAGCTGTAGCTCCAGATGGTACCAT
TTACATTGCAGACCTTGGAAATATTCGGATCAGGGCGGTCAGCAAGAACAAGCCTGTTCT
TTACATTGCAGACCTTGGAAATATTCGGATCAGGGCGGTCAGCAP.GAACAAGCCTGTTCT
TAATGCCTTCAACCAGTATGAGGCTGCATCCCCCGGAGAGCAGGAGTTATATGTTTTCAA
TAATGCCTTCAACCAGTATGAGGCTGCATCCCCCGGAGAGCAGAGTTATATGTTTTCAA
CGCTGATGGCATCCACCAATACACTGTGAGCCTGGTGACAGGGGAGTACTTGTACAATTT
CGCTGATGGCATCC-ACCAATACACTGTGAGCCTGGTGACAGGGGAGTACTTGTACAATTT
CACATATAGTACTGACAATGATGTCACTGAATTGATTGACAATAATGGGAATTCCCTGAA
44 4046 780 4106 840 4166 900 4226 960 4286 1020 4346 1080 4406 1140 4466 1200 4526 1260 4586 1320 4646 1380 4*70 6 1440 4766 1500 4826 1560 4886 1620 4946 1680 5006 1740 5066 SB3JCT: 1741 CAAAATCGCAGTTATATGTGCAATGATrCTA 1800 QUERY: 5067 GACGCGAACGGCTCCGTACCTAGCGCACGTA 5126 SBJCT: 1801 GACGCGAACGGCTCCGTACGTAGCGCACGTA 1860 QUERY: 5127 CACTACTGCCATGGCTAATGCTCCCGACGAC 5166 Il,11111l 111111111 1111111i1 11111111111111111 H ill I 1111111 I SBJCT: 1861 CACTACTGCCATGGCTCAGCTTCCCGACGAC 1920 QUERY: 5187 TGTTAGCTTAGCAATGGTCGCACAACAGACG 5246 SBJCT; 1921 TGTTAGCTTAGCAATGGTCGCACAACAGACG 1980 QUERY: 5247 ATGGACGACTTTCTATGACTATGACCACGAGGCCGCCTGACCACGGACGCGCCCCAC 5306 SBJCT: 1981 ATGGACGACTTTCTATGACTATGACCACGAAGCCGCCTGACCAACGTGACGCGCCCCAC 2040 QUERY. 5307 GGGTGACATTCCGGATGGATTTACTGCLTAA 5366 SBJC'F: 2041 GGGGGTGGTAACC -GTCTGCACCGGGAAATGGAGAATCTATTACCATTGACATGAGAA 2100 QUERY: 5367 CTCACTAGTAGCCGCTCCACTTTCGAAGCCT 5426 11fI 1111 11111111111111111111111f SBJCT: 2101 CCACCGTGATGATGACGTCACTGTCATCCCACCTCTCTTCAGTAGAGGCCTCCTA 2160 QUERY: 5427 CAATGAAGTAGTGACGCACGTTTAATGACTA 54186 SBJCT: 2161 CAATGAAGTAGTGACGCACGTTTAATGACTA 2220 QUERY: 5487 GGTGATGTATGCTAATGGGATGGTATCAGTTCCACAGCGAGCCCTGTCCTAGCGGG 5546 SBJCT: 2221. GTGATGTATGCTAATGGGATGGGTATCAGTTCCACAGCGAGCCCATGTCCTAGCGGG 2280 QUERY: 5547 CACTACC~CTGAGTC~-TTCTCTTGGAGCTA 5606 SBJCT: 2281 CACTACCACTGAGTCACTTCTCTTGGACCTA 2340 QUERY: 5607 CTCCATTGAGTGGCGCCTAAGAAAGGAACAGATTAAAGGCAAAGTCACCATCTTTCGCG 5666 SBJCT: 2341 CTCTGGGCCTAAAGAAGTAAGAATACTTTGA 2400 QUERY: 5667 GAAGCTCCGGGTCCATGGAAGATCTCTTGTCCATTGACTATGATCGATATTCGGAC 5726 II 1ffIfI111f 1ff11fff111fff11If111f1 SBJCT: 2401 GAAGCTCCGGGTCCATGGAAGAAATCTCTTGTCCATTGACTATGATCGAJATATTCGGAC 2460 QUERY: 5727 TGAAAAGATCTATGATGACCACCGGAAGTTCACCCTGAGGATCAATGACCGGTGGG 5*7 86 SBJCT: 2461 TGAA GTTTAGCACGAGTACTAGTCTTTACGTG 2520 QUERY: 5787 CCGCCCCTTCCTCTGGCTGCCCAGCAGCGGGCTGGCAGCTGTCAACGTGTCATACTTCTT 5846 SBJCT: 2521 CCGCCCCTTCCTCTGGCTGCCAGCAGCGGCTGGCAGCTGTCACGTGTCATACTTCTT 2580 QUERY: 5847 CAATGGGCGCCTGGCTGGGCTTCAGCGTGGGCATGGCGAG GACGCATCGACAA 5906 SBJCT: 2581 CATGCCTGTGCTACTGGCAGGGGCAAAACAA 2640 QUERY: 5907 GCAAGGCCGCATCGTGTCCCGATGTTCGTGCGGGAAGTGTGCGCTACTCCTACCT 5966 SBJCT: 2641 GCAAGGCCGCATCGTGTCCCGCATGTTCGCTGACGGGAAAGTGTGGAGCTACTCCTACCT 2700 QUERY: 5967 TGACAACTCCATGGTCCTCCTGCTTCAGGCCACGTCGTATATATTTGAGTATGACTC 6026 SBJCT: 2701 TGAC AGTCCATGGTCCTCCTGCTTCAGAGCCAACGTCAGTATATATTTGAGTATGACTC 2760 QUERY: 6027 CTTACCTCTCGCCAGCCGGGCCGAACTTCCC 6086 SBJCT: 2761 CTTACCTCTCGCCAGCCGGGCCGAACTTCCC 2820
QUERY:
SB.JCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:.
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SB JCT
QUERY:
SBJCT:
QUERY:
6087 CACCTCCATCGGCTACATCCGTAATATTTACAACCCGCCTGAGCAATGCTTCGGTCAT 62.46 2821 CACCTCCATCGGCTACATCCGTAATATTTACAACCCGCCTGAAAGCAATGCTTCGGTCAT 2880 6147 CTTTGACTACAGTGATGACGGCCGCATCCTGAAGACCTCCTTTTTGGGCACCGGACGCCA 6206 111 1 1 111111111111111111111111111 11111111111111 11111 lllii 1i 2881 CTTGACTACAGTGATGACGGCCGCATCCTGAAGACCTC-CTTT'TTGGGCACCGGACGCCA 2940 6207 GGTGTTCTACAAGTATGGGAAACTCTCCAAGTTATCAGAGATTGTCTACGACAo-ACCGC 6266 2941 GGTGTTCTACAAGTATGGGAAACTCTCCAAGTTATCAGAGATTGTCTACGACAGTACCGC 3000 6267 CGTC-ACCTTCGGGTATGACGAGACCACTGGT rTTGAAGATGG1'CAACCTCCAAAGTGG 6326 11t 11 11 1 1111 111111 t1111111111 11111111 111 til1111 1 1111 11 111 3001 CGTCACCTTCGGGTATGACGAGACCACTGGTGTCTTGAAGATGGCACCTCCAGTGG 3060 6327 GGGCTTCTCCTGCACCATCAGGTACCGGAACATTGGCCCCCTGGTGGACAAGCAGATCTA 6386 ill1 ff11111 Iil I1111 tI 11 ii1111111111111111 3061 GGGCTTCTCCTGCACCATCAGGTACCGGAAGATTGGCCCCCTGGTGGACAAGC-AGATCTA 3120 6387 CAGGTTCTCCGAGGAAGGCATGGTCAATGCCAGGTTTGACTACACCTATCATGACAACAG 6446 3121 CAGGTTCTCCGAGGAAGGCATGGTCAATGCCAGGTTTGACTACACCTATCATGACAACAG 3180 6447 CTTCCCATCGCAAGCATCAAGCCCGTCATAAGTGAGACTCCCCTCCCCGTTGACCTCTA 6506 3181 CTTCCGCATCGCAAGCATCAAGCCCGTCATAAGTGAGACTCCCCTCCCCGTTGACCTCTrA 3240 6507 CCGCTATCATGAGATTTCTGGCAAGGTGGAACACTTTGGTAAGTTTGGAGTCATCTATTA 6566 3241 CCGCTATGATGAGATTTCTGCAAGGTGCAACACTTTGGTAAGTTTGGAGTCATCTATTA 3300 6567 TGACATCAACCAGATCATCACCACTGCCGTGATGACCCTCAGCAAACACTTCGACACCCA E626 Hill1f I1 1IIII II11111ff1111111111111111111111 i ft1111111 fill l 3301 TGACATCAACCAGAITCATCACCACTGCCGTGATGACCCCAGCAAACACTTCGACACCCA 3360 6627 TGGGCGGATCAAGGAGGTCCAGTATGAGATGTTCCGGTCCCTCATGTACTGGATGACGGT 6686 1111111 l ~fl 111111111 II il f il 1tf1111 i fII 3361 TcGGCGGArCAAGGAGGTCCAGTATGAGATGTTCCGGTCCCTCATGTACTGGATGACGGT 3420 6687 CGCAATATGACAGCATGGGCAGGGTGATCAAGAGGGAGCThAAACTGGGGCCCTATGCCAA 6746 3421 GCAATATGACAGCATGGGCAGGGTGATCAAGAGGGAGCTAAAACTGGGGCCCTATGCCAA 3480 6747 TACCACGAAGTACACCTATGACTACGATGCGGACGGGCAGCTCCAGAGCGTGGCCGTCAA 6806 3481 TACCACGAAGTACACCTATGACTACGATGGGGACGGGCAGCTCCAGAGC('TGGCCGTCAA 3540 6807 TGACCGCCCGACCTGGCGCTACAGCTATGACCTTAATGGGAATCTCCACTTACTGAACCC 6866 3541 TGACCGCCCGACCTGGCGCTACAGCTATGACCTTAATGGGAATCTCCACTTACTGAACCC 3600 6867 AGGCAACAGTGTGCGCCTCATGCCCTTGCGCTATGACCTCCGGGATCGGATAACCAGACT 6926 3601 AGGCAACAGTGTGCGCCTCATGCCCTTGCGCTATGACCTCCGGGATCGGATAACCAGACT 3660 6927 CGGGGATGTGCAGTACAAAATTGACGACGATGGCTATCTGTGCCAGAGAGL,GTCTGACAT 6986 11 ll1f111111 111f!I 1111111111 11 ifIIIIIIIIII 3661 CGGGGATGTGCAGTACAAAATTGACGACGATGGCTATCTGTGCCAGAGAGGGTCTGACAT 3720 6987 CTTCGAATACAATTCCAAGGGCCTrCCTAACAAGAGCCTACAACAAGGCCAGCGGGTGGAG 7046 fi1111I1fi1l111111111f1I1t11t11 1ill11ff fill 11111111 3721 CTTCGAATACAATTCCAAGGGCCTCCTAACAAGAGCCTACAACAAGGCCAGCGGGTGGAG 3780 7047 TGTCCAGTACCGCTATGATGGCGTAGGACGGCGGCCTTCCTACAAGACCAACCTGGGCCA '7106 3781 TGTCCAGTACCGCTATGATGGCGTAGGACGGCGGGCTTCCTACAAGACCAACCTGGGCCA 3840 7107 CCACCTGCAGTACTTCTACTCTG.ACCTCCACAACCCGACGCGCATCACCCATGTCTACAA 7166 46
SBJCT.
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT;
QUERY:
SBJOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
sBJcT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:4
QUERY:
SBJCT:4 3841 71 6 3901 7227 3961 7287~ 4021 7347 4081 7407 4141 *74 67 4201 7527 4261 7587 4321 '764 7 4381 7707 4441 7767 4501 7 82 7 4561 7887 4621 7947 4681 8007 4741 8067 1801 8127 L861 CCACCTGCAZGTACTTCTACTCTGACCTCCACMCCCGACGCGCATCACCCATGTCTACA .3900 1TCACTCCAACTCGGAGATTACCTCACTGTACACGACCTCCAGGCCACCTCTTTGCCAT 7226 TCACTCCAACTCGGAGATTACCTCACTGTACTACGCCTCCAGGGCCCCTCTTTGCCAT 3960 GGGGACGGGAGGATTTTCTTAACCGGCCTTG 7286 TGGTACTACGCCTACAAACGATCCGCAGGAA 7346 TTATTATGACTCCAACCCCGACTTCCAGATGGTCATTGGCTTCCATGGGGACTCTATGA 4140 CCCCCTGACCAAGCTGGTCCACTTCACTCAGCGTGATTATG-ATGTCTGGCAGGACGATG 7466 lill lIi II Hill IIIilI ii11111111 111 I HIM1 CCCTACACGTCCTATAGGGTAGTTCGCGAGT 4200 GAcCTCCCCAGACTATAcCATGTGGAACGTGGGCAGAGCCrCCCCCTTTACCT 7526 GACCTCCCCAGACTATACCATGTGGAAACTGGGCAAGGAGCCGGCCCCCTTTAACCT 426D GTTTTCAACAATCCCGCGGGTGTTAGATCTA 7566 GTTTTCAACAATCCCGCGGGTGTTAGATCTA 4320 AGTTAAGTGTGGTTTGATCGTACAACTCTGT 7646 AGATGTGAAAAGCTGGCTTGTGATGTTTGGATTTCAGTTAGCACATCATTCCTGGCTT 4380 CCGGGCAAGATCTCTCTCTTATGCGGGCACA 7706 CCGGGCAAGATCTCT-TCTTATGCGGGCACA 4440 TGAGAATGGACAGCTCATTACAGGTGTCCACAGACACAGAGAGACATACCAGGCCTT 7-766 TGGAGAACCTAAGGCAAAAACGGGCTACGCT 4500 CATGGCTCTGGAAGGACAGGTCATTACTAGCTCACGCCAGATCCGAGAGAGC 7826 CATGGCTCTGGAAGGACAGGTCATTACTAAAGCTCCACGCCAGCATCCGAGAGAGC 4560 AGGTCACTGGTTTGCCACCACCACGCCCATCATTGGCAGGCATCATGTTTGCCATCAA 7886 AGGTCATGGTTTGCACCACCACGCCCATCATTGGCAGGCATr-TGTTTGCCATCAA 4620 AAAGGGCGGTGACCACGGGCGTGTCCAGCATCGCCAGCGAAGATAGCCGCAGGTGGC 7946 AGAAGGGCGGGTGACCACGGGCGTTCCACTCGCCAGCGAAGATAGCCGCAGGTGGC 4680 ATTTCGAACCTCACGAAGTCCrC~-TGGGAG, 8006 ATTTCGAACCTCACGACAAGATCGACAGCAG 4740 CACATCTGGAATG~-GCAGCACGTAATGCCA 8066 CACATCTGGAATGTA CAGCACGTAATGCCA 4800 CATCGGCCGCAAGTGCTAGAGAGCGGGGTGACGTGACCGTGTCCCAGCCCACGCTGCT 8126 CATCGGCCGCAAGGTGCTAGAGAGCGGGGTGACGTGACCGTGTCCCAGCCCACGCTGCT 4860 GGCAGCGATGAGTAGCTGGTCGATCCCGTC 8186 GGCAGCGATGAGTAGAATATCATCrCCCGTC 4920 47
;Z
-n
INO
QUERY:
SBJCT:
QUERY:
SBJCT:
10 QUERY:
SBJCT:
QUERY;
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT!
QUERY:
SBJCT:
QUERY-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
8187 4921 8247 4981 8307 5041 8367 5101 8427 5161 8487 5221 8547 5281 8607 5341 8667 5401 8727 5461 8787 5521 CAGCATCCGTATGGCCTCACCCCCGACACCCTGGACGAAGAGAAGGCCCGCGTCCTGGA 8246 CAGCATCCGCTATGGCCTCACCCCCGACACCCTGGACGAAGAGGCCCGCGTCCTGGA 4980 CCAGGCGAGACAGAGCGCCCTGGCACGGCCTGGCCAAGGAGCAGAAGCCGGGA 8306 CCAGGCGAACAGAGGGCCCTGGGCACGGCCTGGGCCGGCAGCAGAGCCGGGA 5040 CGGGAGAGAGGGGAGCCGCCTGTGG.ACTGAGGGCGAGAAGCAGCAGCTTCTGAGCACCGG 8366 CGGGAGAGAGGGGAGCCGCCTGTGGACTGAGGGCGAGAAGCAGCAGCTTCTGAGCACCGG 5100 GCGCGTGCAAGGGTACGAGGGATATTACGTGCTTCCCGTGGAGCAATACCCAGAGCTTGC 8426 GCCTCAGTCAGAATCTGTCCTGGATCCGGTG 5160 AGACAGTAGCAGCAACATCCAGTTTTTAAGACAGAATGAGATGGG GAGGTACAA 8486 AGCGACGACTCGTTAGAAATAAGGAGGTAAA 5220 TATCTGCTGCCATTCCTTGTCTGAATGGCTCAGCAGGAGTAACTGTTATCTCCTCTCCT 8546 TAATCTGCTGCCATTCCTTGTCTCJAATGGCTCAGCAGGACTAACTGTTATCTCCTCTCCT 5260 AGGAGATGAGACCTACAGGGGCACTGCGGCTGGGCTGCTTTAGGAGACCAGTGGCA 8606 AAGGTAGCTAAGGATCGCGGTCTAGGCAGGC 5340 AGAAGCTCACATTTTTTGAGTTCATGCTACTGTCCGCGAGAAGTCCCTCTCTG 8666 AGAAAGC-TCACATTTTTTGAGTTCAATGCTACTGTCCAGCGAGAAGTCCCTCTCCTG 5400 AATGCAACCGTAATCGGGAAAACAZCATATAC 8726 AATGCA.GCGCGAATCAG-AAAACACATATAC 5460 GACACACACAATGTTCCAAGTTCCCCTAAAATATGACCCACTTGTTCTGGGTCTACGCAG 8786 GACACACACAATGTTCCAAGTTCCCCTAAAATATGACCCACTTGTTCTIGGGTCTACGCAG 5520 AA.AAGAGACGCAAAGTGT 8804 AAAAGAGACGCAAAGTGT 5538 SCORE 1362 BITS (687), EXPECT 0.0 IDENTITIES 705/714 (98%) STRAND -PLUS PLUS QUERY: 8875 CACGGACCGATAAACAAAGAAGCGAAGATAAGA LGAAGGCCTCATATCCAATTACCTCA 8934 SBJCT: 5609 CACGGACCGATAAACAAAGAAGCGAAGATAAGAAAGAAGGCCTCATA7CCATTACCTCA 5668 QUERY: 8935 CTCATTCACATGTGAGCGACACGCAGCATCCGCGAGGGCCAGCGTCCGACCAGCTG 8994 SBJCT: 5669 CTATAAGGGGCCCGCTCGGGGCGGCCAACGT 5728 QUERY: 8995 CGGCACATAATUfGAGCATCTTAATTGTAGA 9054 ssJcT: 5729 CGGGACAAACCACTCAGACTGCTTGTAGGACAA TACTTCTC-ACATTTTCGTTTAAGCAA 5788 QUERY: 9055 ATCGTCTTAAAGCTGGGTATGGGACCTGGGG 9114 SBJCT: 5789 ATACAGGTGCATTTAA CACGACTTGGGGGTGATTTGTGTGTAGCGCCTGGGGG 5848 QUERY: 9115 GGATAAAAGAGGAGAGTGAGCACTGGAAATACTTTTTAAAGNN
T
bNNNNCATGAGGGA 9174 SBJCT: 5849 GGATAAAAGAGGAGGAGTGAGCACTGGATACTTTTTAAGAAAAACATGAGGGA 5908 QUERY: 9175 ATAAAAGAAATTCCTATCAAAATCAAAGT AATAATACCATCCAGCACTTAACTCTCA 9234 48
;Z
INO
CA
SBJCT:
QUERY:
SBJCT:
QUERY:
10 SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
-5909 ATAGATCTTAAACAGGATAACTCGATACCC 9235 GGTCCCAACTAAGTCTGGCCTGACTTTTATTTGAGCGCAGAGTGTTTATTC 5969 GGTCCCAACTAGTCTGGCCTGAGCTATTTATTTGAGCGCAGAGTGTATTATTC 9295 AAAGTGTTACCAAAAATTAATTTGCTGAATC 6029 AAAGTGTTACCAAAAATTAATTTGCTGAATC 9355 TGTGGAC-AGTATACGCAGTTACGGGTGTAGTCTGTTAGATTCCGTAGTTCGTGGGT 6089 TTGTGGACAGTAALTACGCAGTTACAGGGTGTAGTCTGTTTAGATTCCGTAGTTCGTGGGT 9415 ATATTGTGGTCGACTACC~TCACGTCATCGT 614 9 ATATTGTGGTCGACTAATTGT.CGTCATCGT 9475 ACCGAAAAGGCAAGAAACCGTCGTTAATTAT 6209 ACCGAAAAGGCAAGAAACCGTCGTTAATTAT 9535 TGTTTGTTTGGTCCAGmACTGAGACATCACATGACAGTCACCACGAGGAGAG 9588 6269 TGTTTGTTTGGTCCAGA.AACTGGACATCACATACAGTCACCACGAGGAGAG 6322 5968 9294 6028 9354 6088 9414 6148 9474 6208 9534 268 SCORE 349 BITS (176), EXPECT -2E-92 IDENTITIES 176/176 (100%) STRAND PLUS PLUS QUERY: 9651 GTTAAGATTGAAGATTTTTAAAAGAGATTCT 9710 SBJCT: 6385 GTTAAGATTGAAGATTTTTkAAAGAGATTCT 6444 QUERY: 9711. GATTTTTATTTATGTC GRAGCAGAAGAAGATAAT 9770 SBJCT: 6445 GAGTTTTTATATTA ATTTTAATTTGCTG TAGCAAGACTAGGGACAGGCAAAGATp.AT 6504 QUERY: 9771 TTTGAATTTATGTAACTATAGCCAACCTT 9826 SBJCT: 6505 TTATGGCAAAGTGTTTAA TTGTTTATACATAAATAAAGTCTCTAA.CTCCTGTG 6560 In this search it was also found that the FCTR3bcd and e nucleic acids had homology to five fragments of Mus miusculus mR.NA for Ten-m2. It has 5498 of 61 08 bases identical to bases 2504-8610, 1095 of 1196 bases (91 identical to bases 103-1298, 1000 of 108 8 bases (9 identical to bases 1420-2540, 8 1 of 89 bases (91 identical to bases 8655 8743, and 30 of 32 bases identical to bases 7-38 of Mus inusculus rnRNA for Ten-m2 (Table 3M).
Table 3M. BLASTN of FCTR3b, c, d, and e against Mlus inusculuis mRNA for Teu-iu2 Mrna (SEQ 10D >GI14760777toBilASO25411.11jBO 2 5 4 11 MUS MUSCULUS MRNA FOPR TEN-M2, COMPLETE CDS LENGTH 8797 SCORE 7263 BITS (3664), EXPECT =0.0 IDENTITIES -5498/6108 GAPS 1/6108 STRAND PLUS PLUS QUERY: 2578 GATGGCGCTATGG ACGACGAAGAACGGCGAACG 2637 49
SBJCT.
QUERY S13JCT: t QUERY:
SBJCT:
QUERY:
SBJ-CT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY SB3JCT:-
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY.
SBJC
QUERY:
SBJCT:
QUERY:-
SBJCT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
2504 2638 2564 2698 2624 2758 2684 2818 2744 2878 2804 2938 2864 2998 2924 3058 2984 3118 3044 3178 3104 3238 3164 3298 3224 3358 3284 3418 3344 3478 3404 3538 3464 3590 3524
GATGGCTGCCCTGATTTGTGCAACGGTAACCGGAGATGCACACTGGGTCAGAACACTGG
CAGTGTGTCTGCCAGACCGGCTGGAGAGGCCCGGATGCAACGTTGCCATGGAAACTTCC
ill 111111111i l li li li1lltItil111111111111 111111 111
CAGTGTGTCTGCCAGACCGGCTGGAGAGGGCCTGGATGCAACGTTGCCATGGAAACCTCC
TGTGCTGATAACAAGGATAATGAGGGAGATGGCCTGGTGGAPTTGTTTGGACCCTGACTGC
11 111111111111111111111111111111 fil Iii iIII I I 1111 TGCGCTGA'rAACAAGGATAATGAGGGAGATGGCCTGGTGGACTGCCTGGACCCTGACTGC
TGCCTGCAGTCAGCCTGTCAGAACAGCCTGCTCTGCC-GGGGGTCCCGGGACCCACTGGAC
Ii 11111111111111111 ill I11 IIII I l I 1 1ii li 1 11t III lii I 1
TGCCTACAGTCALGCCTGTCAGAACAGCCTGCTCTGCCGGGGGTCTCGGGACCCCTTGGAC
ATCATTCAGCAGGGCCAGACGGATTGGCCCGCAGTGPAAGTCCTTCTATGACCGTATCAAG
ATCATTCAGCAAGGTCAGACAGACTGGCCTGCAGTGAAGTCCTTCTATGACCGCATCAAG
CTCTTGGCAGGCAAGGATAGCACCCACATCATTCCTGGAGAGAACCCTTTCAACAGCAGC
CTCTTGGCAGGCAAGGACAGCACCCACATCATTCCTGGAGACAACCCCTTCAATAGCAGC
TTGGTTTCTCTCATCCGAGGCCAAGTAGTAACTACAGATGGAACTCCCCTGGTCGGTGTG
I III IIII Il lifilll 1 1 11 1111l 111111 CTGGTGTCTCTGATCCGAGGCCAAGTAGTAACCATGGATGGGA-ZTCCCTTGG3TCGGTG TG
AACGTGTCTTTTGTCAAGTACCCAAAATACGGCTACACCATCACCCGCCAGGATGGCACG
AATGTGTCTTTTGTCAAGTACCCAAAATATGGCTACACCATCACTCGCCAGGATGGCACG
TTCGACCTGATCGCAAATGGAGGTGCTTCCTTGACTCTACACTTTGAGCGAGCCCCGTTC
it 111t il l 1i 11111 111 11 111111111i IIl iIH I I III lI III TTTGACC2'GATTGCCAATGGGGGTTCTGCCTTGACTCTTCACTTTGAGCGAGCCCCTTTC
ATGAGCCAGGAGCGCACTGTGTXGGCTGCCGTGGAACAGCTTTTACGCCATGGACACCCTG
ATGAGCCAGGAGCGCACAGTGTGGCTG'CCATGGAACAGCITTCTATGCCATGGACACCCTG
GTGATGA-AGACCGAGGAGAAC1'CCATCCCCAGCTGTGACCTCAGTGGCTTTGTCCGGCCT
GTAATGAAGACCGAGGAAAACTCCATCCCCAGCTGTGACCTCAGTGGCTTTGTCCGGCCA
GATCCAATCATCATCTCCTCCCCACTGTCCACCTTCTTTAGTGCTGCCCCTGGGCAGAAT
1ii111111111i 1111iiiti1i11iIMiitttltll 111H M ItI GATCCAA'rCATCATCTCCTCTCCTCTGTCCACCTTCTTCAGCGCTTCCCCTGCCTCGAAC
CCCATCGTGCCTGAGACCCAGGTTCTTCATGAAGAAATCGAGCTCCCTGGTTCCAATGTG
I )I IIIIII I I1 1111111 illil 111111111 i1t filt u iitl ill i lii 11111111 CCCATrTGTGCCTGAGACCCAGGTTCTTCATGAAGAAATTGAGCTCCCTGGTACCAATGTG
AAACTTCGCTATCTGAGCTCTAGAACTGCAGGGTACAAGTCACTGCTGAAGATCACCATG
I I 1 illtittlliltIIItIfilllitiHll IMtt
AAGCTC-CGTTATCTCAGCTCTAGAACTGCAGGGTATAAGTCGCTGCTGAAGATCACCATG
APCCCA3TCCACAGTGCCCCTGAACCTCATTAGGGTTCACCTGATGGTGGCTGTCGAGGGG
ACGCAGTCCACAGTGCCCTTGAACCTCATCAGGGTTCACTTGATGGTTGCGTAGAGGGG
CATCTCTTCCAGAAGTCATTCCAGGC2'TCTCCCAACCTGGCCTCCACCTTCATCTGGGAC
CATCTCTTCCAGAAGTCATTCCAGGCTTCTCCCAACCTAGCCTACACATTC-ATCTGGGAC
AAGACAGATGCGTATGGCCAAAGGGTG'ATGGACTCTCAGATGCTGTTGTGTCTGTCGGG
11 11 il I I II II I II I 11111 11 11 111iil l i ii i
AAGACAGATGCTTATGGCCAAAGGGTTTATGGCCTATCGGATGCTGTTGTGTCTGTTGGG
TTTGAATATGAGACCTGTCCCAGTCTAATTCTCTGGGAGAAAGGACAGCCCTCCTTCAG
TTTGAATATGAGACCTGCCCCAGTCTCATCCTGTGGAGAAAAGGACAGCCCTGCTTCAG
2563 2697 2623 2757 2683 2817 2743 2877 2803 2937 2863 2997 2923 3057 2983 3117 3043 3177 3103 3237 3163 3297 3223 3357 3283 3417 3343 3477 3403 3537 3463 3597 3523 3657 3583
;Z
QUERY: 3651 SBJ7CT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
sBjcT: QUERY
SBJCT:
QUERY:
SBJCT:
QUERY:
S13JCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:4 QUERY:4 SBJCT:4 QUERY: 4 358 371 3644 3778 3704 383B 3764 3898 3824 3958 3884 4018 3944 4078 4004 4138 4064 4198 4124 4258 4184 4318 4244 4378 4304 4438 4364 4498 4424 4558 1484 1618 1544 678 3 GGATTCGAGCTGGACCCCTCCACCTCGGTGGCTGGTCCCTAGACCACCAATCCTC 3717 4 GGTCACGACTC~ACTGGCGTCTGCACCAACT 3643 3 AATGTTAAAAGTGGAATCCTAACAAGGCACTGGGGAACCAGTCCTGACCCAGCAG 3777 IAATGTGAAAAGCGGAATACTACACA GGGACAGGGGAGAACCAGTTCCTGACCCAGCAG 3703 CCTGCCATCATCACCAGCATCATGGGATGGTCGCCGCCGGAGCATTTCCTGTCCCAGC 3837 TGCAACGGCCTTGCTAGGCACGCTtTGCCCCGTGGCTCTGGCTGTTGATC 3897 11111 I H l 1 11 1 1 1i 1 1 fi l 1 1 1 i I ITGCAATGGCCTTGCTGAAGGCAACAAACTGTTAGCCCCTGTGGCCCTGGCTGTGGGGATC 3823 GAGGGCCAGGGTATCLTAAC CGACTCCCCAA 3957 GATGGGAGCCTCTTTGTTGGTACTTCCATATCCGGCGCATCTTTCCCTTCGAT 3883 GTGACCAGCACTTGGAGTTACGATAAGAGTTTACATAGCAACAACCCAGCACAC 4017 111111 Hill11111 111111111 11 liii GTGACCAGTATCTTGGAGTTACGAATA AGTTTAACATAGCAACAGCCCGGACAC 3943 AAGTACTACTTGGCAGTGGACCCCGTGTCCGCTCGCTCTACGTGTCCGACACCA.CAGC. 4017 AAGTACTACTTGGCTGTGGACCCCGTGACTGGCTCATCTACGTTCTGACACCAACAGT 4003 AGAATTCGGCATTTATGACAAACGCGGATGA 4137 CGCATTCGGCATTTACGACAAACGCGAATGAr 4063 GTTGTGGCAGGGACGGGAGAGCAGTGTCTACCCTTTGATGAAGCCCGCTGCGGGGATGGA 4197 111111111II[ i 1 11i II II H i i III 1111111111111111111 111111111 GTGGCGGCGCACAGCACCTGTAGCGTTGGTG 4123 GGGAAGCCATAGATGcAMcccEGATGAGCCCGAGAGTATTGCAGTAGACAGATGGG 4257 GGGAAGGCTGTGGACGCCACCCTGATAGCCCCAGAGTATTGCAGTAGACAGATGGG 4183 CTCATGTACTTTGTCGATGCCACCATGATCCGGAG3TTGACCAGAATGGAATCATCTCC 4317 1 1 1 1 1 1 1 1 1 1 1 1 H l l 1 1 1 1 1 1 1 1 1 CTTATGTACTTTGTTGATGCCACCATGATCCGGAGGTGGACCAAAACGGAATCATCTCC 4243 ACCCTGCTGGGCTCCAATGACCTCACTGCCGTCCGGCCGCTGAGCTGTGATTCCAGCATG 4377 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M l i l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ACCCTGCTGGGCTCCATGACCTCACAGCGTCCGACCCTGAGCTGTGACTCGAGCATG 4303 GATGTAGCCCAGGTCGTCTGGTGGCCAACAGACCTTGCTGTCATCCCATGGATAAC 4437 GAGGCCGTCTTGAGCGCGCTGCTACCA'GCA 4363 TCCTTGTA.TGTTCTAGAGACAATTCATCCTTCGATCACCGAACCACCAGTCAGC 4497 TCCGAGTTGGAACTACCGGACCGGACCAGCG 4423 ATATCGAGCCTrATCAGTCGCTGCATATACA 4557 ATCATCGCGGACGGCCTATGCTGCAGTTCCCGGCATCGACTACTCGCTCAGCAAA 4483 CTAGCCATTCACTCTGCCCGGGTCAGCCGTGCCATTGCCATTCTCACACTGGGGTC 4617 CTGCTCCCGGTGACGCACCATCATCCCCGGT 4543 CTTCTATAAAAGGAAGATACTTCCAGACACA 4677 lI1llIII1liI1 lI11 llll1 lIIII1lII1lllII l1l 1111 11Hl CTTCTATAAGAGGAAGACACCTCCAGCCACA 4603 GGGGTTCTTACGGCGCTGATCATCAACAGCA 4737 11111II I il 11111 H ill1 Hill 51
C
C
C
C
C
SBJCT: 4604 GGAGAGATCTGCCTCTTAGCCGGGGCGGCCTCAGACTGTGACTGCAAACGATGTCAAC 4663
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
D
QUERY:
SBJCT:
QUERY:
SBLJCT:
QUERY:
0
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT;
QUERY:
SBJCT:
4738 4664 4798 4724 48358 4784 4918 4844 4978 4904 5038 4964 5098 5024 5158 5084 5218 5144 5278 5204 5338 5264 5398 5324 5458 5384 5518 5444 55"78 5504 5638 5564 5698 5624
TGCAATGCTATTCAGAGATGATGCCTCGCGACTCATGCCATCTTGATTCCCCATCA
TGCATCTGCTACTCGGGAGATGACGCTThCGCCACGGACGCCATCCTAACCGCCGTCC
TCCTTAGCTGTGCTCCAGATGGTACCATTTACATTGCAGACCTTGGAAATATTCGGATC
TCCTTAGCCGTGGCTCCGGATGGCACCATCTACATTGCAGACCTTGGGAATATCCGGATC
AGGGCGGTCAGCAAGAACAAGCCTGTTCTTAATGCCTTCAACCAGTATGAGGCTGCATCC
AGGGCGGTCAGCAZAATAACCCGTTCTTAACGCATTCAACCAGTATGAGGCTGCATCT
CCCGGAGAGCAGGAGTTATATGTTTTCAACGCTGATGGCATCCACCAATCCTGTGAGC
CCGGGAGAACAGGATTGTACGTGTTCAACGCTGATGGTATCCATCAGTAACTGTGAT
CTGGTGACAGGGAGTACTTGTACATTTCACATATAGTACTGACATGATGTCACTGA
CTGGTGACT'GGGGAGTACTTGTACAATTTCACATACAGCGCTGACAATGACGTCCCGAG
TTGATTGACAATAATGGGA.ATTCCCTGAAGATCCGTCGGGACAGCAGTGGCATGCCCCGT
TTGATTGACACAACGGGATCCCTAAAGATCCGCCGGGACAGCAGTGGCATGCCCCGC~
CACCTGCTCATGCCTGACAACCAGATCATCACCCTCACCGTGGGCACCAATGGAGGCCTC
CACCTGCTCATGCCGGATAATCAGATTATCACCCTTACTGTGGGCACCAATGGAGGCCTC
AAAGTCGTGTCCACACAGAACCTGGAGCTTrGGTCTCATGACCTATGATGGCAACACTGGG
CTCCTGGCCACCAAGAGCGATGAAACAGGATGGACGACTTTCTATGACTATGACCACGAA
CTCCTAGCCACCAAGAGTGATGAAACCGGATGGACAACTTTTTATGACTATGACCACGAG
GGCCGCCTGACCAACGTGACGCGCCCCACGGGGGTGGTAACCAGTCTGCACCGGGAAATG
ill I hhhlhIh 11111 IlhhhhhhlI 111 hhhhIhhIuhhh
GGCCGTCTGACCAATGTGACCCGCCCCACGGGCGTGGTGACCAGTCTGCACCGGGAAATG
GAGAAATCTATTACCATTGACATTGAGAACTCCAACCGTGATG.ATGACGTCACTGTCATC
I I III Ihh h lI I 11I 11111 I II IIII 111 III I i I I 11111 III
GAGAAATCTATCACCATTGACATTGAGAACTCCAACCGGGATGATGACGTCACTGTGATC
ACCAACCTCTCTTCAGTAGAGGCCTCCTACACAGTGGTACAAGATCAAGTTCGGAACAGC
111l11l1111 11 11 III11II1I1I IIII IIIIIIIIIIIIIII II H IM11
ACCAACCTCTCCTCCGTGGAGGCCTCCTATACAGTGGTACAAGATCAAGTGCGAA.ACAGC
TACCAGCTCTGTAATAATGGTACCCTGAGGGTGATGTATGCTAATGGGATGC-GTATCAGC
uhhhhllIhlhl111 IIIIIIIII MIM HIM 111111 11 1 11111 1 11
TACCIAGCTCTGCAATAATGGAACCCTGCGGGTGATGTACGCCAACGGCATGGCTGTCAGC
TTCCACAGCGAGCCCCATGTCCTAGCGGGCACCATCACCCCCACCATTGGACGCTGCAAC
TTCCACAGTGAGCCCCACGTCCTCGCA.GGCACCATCACCCCCACCATCGGGCGCTGCAAC
ATCTCCCTGCCTATGGAGAATGGCTTAAACTCCATTGAGTrGGCGCCTAAGAAAGGAACAG
ATCTCTCTGCCCATGGAGAATGGCCTGAACTCCATCGAGTGGCGCCTGAGGAAGGAACAG
ATTAAAGGCAAAGTC.ACCATCTTTGGCAGGAAGCTCCGGGTCCATGAAGAAATCTCTTG
ATCAAAGGCAAAGTCACCATCTTTGGGAGGAAGCTTCGGGTCCACGGAAGAATCTCTc'G
TCCATTGACTATGATCGAAATATTCGGACTGAAAAGATCTATGATGACCACCGAGTTC
lhl11il1 11111 1llhhhhl 11 11 11 11111111 IIIIHIIIIIIIii III TCCATTGATTATGACCGATATCCGTACGGAAAATCTACGATACCCGAAAoGTC 4797 4123 4857 4783 4917 4843 4977 4903 5037 4963 a0 97 5023 5157 5083 5217 5143 5277 5203 5337 5263 5397 5323 5457 5383 5517 5443 5577 5503 5637 5563 5697 5623 5757 5683
;Z
QUERY:
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
S13JCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJO7':
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT.
QUERY:
SBJCT:
QUERY:4
SBJCT:
QUERY:
SBJCT:
575' 568 5811 574~ 5871 5804 5938 5864 5998 5924 6058 5984 6118 6044 6178 6104 6238 6164 6298 6224 6359 6284 6418 6344 6478 6404 6538 6464 6598 6524 6568 6584 6718 6644 8 ACCCTGAGATCATTTATGACCGTGGGCCGCCCCTTCCTCTGGCGCCCAGCGCGGG 581 4 ACCCTGAGGATCATCTATGC CAGGTGGGCCGCCCCTTCCTGTGGTCCCGGCAGTGGG 574 liii itII 11111 1 11 1 1 11 H l III 8 GCAGGGGGAAAACAAGCAGCCTGGCCCTTCC 593 IGCCATGAGCGAGAGGACAGACATTGACGGGCCGTCGTGTCCCGCATGTTCGCC 586 3GACGGGAAGTGTGGAGCTACTCCTACCTTGAGTCATGTCCTCCTGCTCAGAGC 599 ICACGTCAGTATATATTTGAGTATGACTCCTCTGACCCCTCCTTGCCGTCCTGCCC 605 CAACGTCAGTACATATTTGATATGACTCCTCCGATCGCCTCCACGCAGTCACTATGCCC 598 AGCGTGGCCCGGCACAGCATGTCCACAACCCTCCATCGGCTACATCCGTAATATTTAC 611 11 :1 1l1t11il1lll 1i 111i 11 1llill11lil 11 11111111 It H IM AGGCCCGAACTTCCCCACCATGTCTCAAATA 604 AACGCGAGATCTGTACTTATCGGTAGCGACT 617 Hill 11I 1h1~ 1 1111 hiltli 11111111111 AACCCACCCGAAAGCAATGCATCGGTCATCTTTGACTACAGTGATACGGCCCATCCTA 610.
AAACCTTTGCCGAGCGGGTTCATTGAATTCA 623 H i l 11 1 11111111 11II I I I I I II I I H lI II IIt AAAACTCTGCCGGGCGGGTTCATTGAATTCA 616: TTATCAGAGATTGTCTACGACAGTACCGCCGTCACCTTCGGGTATGCGAGACCACTGGT 629 TTATCAGAGATAGTCTACGACAGCACAGCCGCACCTTTGGGTATGACGAGACCACCGGT 622: GT~'~AAGTACTCAGGGGCTTCGACTAGACGA 6357 GTCCTAAGATGGTCTCTCAGTGGGCTTCTCCTGTACCTCAGGTACCGAG 628 ATGCCCGTGCACGTTCGGTTCAGVAGAGTATC 6417 III H ill1 IllIIt IItII itIItIIt I II ItII III iltI III GTGGCCTTCAAGAATAAGTTTAGAGAGTACC 6343 AGTTATCCTTAGCAACTCGACCACTAGCGCT 6477 AGGTTTGATTATACCTATCACGATAGTCCGCATTGCCAGATCAACCCGTCATT 6403 AGTGAGATCCCCTCCCCGTTGACCTCTACCGCTATGATGAGATTTCTGGCAAGGTGGAA 6537 AGCGAGATCCCCTTCCTGTTGACTCTACCGCTATGACGAGATTCCGGAGGTGGAA 6463 CATTGAGTGA-CTTTAGCTACAACTACCGCT 6597 CATCGAGTGGTACATCGCTACAACTACCGCT 6523 ATGACCCTCAGCAACACTTCGACACCCATGGGCGGATCAGGAGGCCAGTATGAGATG 6657 ATG;ACGCTTAGCAGCACTTTGACACCCATGGGCGCATCAGAGTGCAMTATGAGATG 6583 TTCGCCCTTCGAGCGGCAAGCGAGGAGTACA 6717 TTCGCCCTTCGAGCGGCAAGCGAGGAGTACA 6643 AGGGTAATGGCTTCATACCAGAACAGCAGTG 6777 AGGATAATCCCTTCACACCAGAACAGCAGCG 6703 GAGGACCAGGGGCGCAGCGCGCTGGTCGTTA 6837 53 .7 3 '3 7 3 7 3 7 3 7 3 7 3 7 3 QUERY: 6778 SBJCT: 6704 GACGGCCAGCTCCAGAGTGTGGCCGTCAATGACCGGCCTACCTGGCGCTATAG--ATGAC 6763 QUERY: 6838 CTTAATGGGAATCTCCACTTACTGA CCCAGGCAACAGTGTGCGCCTCATGCCCTTGCGC 6897 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SBJCT: 6V64 CTCAATGGGAACCTGCACCTTCTAAACCCAGG ACAGTGCTCGCCTCATGCCCTTACGC 6823 QUERY: 6898 TATGACCTCCGGGATCGGATAACCAGACTCGGGGATGTGAGTACAAATTGACGCGAT 6957 SBJCT: 6824 TATGACCTCCGTGACCGGATAACCAGGCTAGGGGACGTGTAAAATCGATGCGAT 6883 QUERY: 6958 GGCTATCTGTGCCAGAGAGGGTCTGACATCTTCGATACATTCCAGGGCCTCCTAACA 7017 SBJCT: 6884 GGCTATTTGTGCCAGAGAGGGTCAACATCTTTGATACTCAGCCCTTCTGACG 6943 QUERY: '7018 AGAGCCTACAACAAGGCCAGCGGGTGGAGTGTCCAGTACCGCTATGATGGCGTAGGACGG 7077 11111 H I IIIiIIiI III I 1111 11 l~~lil If 11 11 11 SBJCT: 6944 AGAGCATACAACAAGGCCAGCGGATGGAGCGTGCAGTACCGCTATACGGAGTGCCGC 7003 QUERY: 7078 CGGGCTTCCTACAAGACCACCTGGGCCACr-ACCTGCAGTACTTCTACTCTACCTCCAC 7137 2 0 1 11 1 1 1 1 1 1 1 1 1 1 SBJCT: 7004 CGGTCTCAACACGGCCCCTCGATCATCACCA 7063 QUERY: 7138 ACCCGACGCGCATCACCCATTCTACATCCTCCAACTCGGAGATTACCTACGTAC 7197 SBJCT: -7064 AACCCCTTACAGTAACCCCACCGGTACCCCA 7123 QUERY: 7198 TACGACCTCCAGGGCCACCTCTTTGCCATGC-AGAGCAGCAGTGGGGAGCAGTACTATGTT 7257 1 1 1 f l 1 1 1 1 i i III I I I I I I I I 1 1 1 1 1 1 1 SBJCT: 7124 TATGACCTCCAGGGCCACCTATTGCCATGGAGAGCAGTAGTGGTGAAGATACTATGTC 7183 QUERY: 7258 GCCTCTGATAACAC-AGGGACTCCTCTGGCTGTGTTCAGCATCAACGGCCTCATGATCAAAJ 7317 SBJ7CT: 7184 GCTAAACCGGCCTTGTTTCGAC-TGCCTACA 7243 QUERY: 7318 CAGCTGCAGTACACGGCCTATGGGGAGATTTATTATGACTCCACCCCGACTTCCAGATG 7377 1 1 1 1 1 1 f l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SBJCT: 7244 CAACTGCAGTACACAGCCTATGGGGAGATCTACTATGACTCCAATCCAGACTTCCAGATG 7303 QUERY: 7378 GTCATTGGCTTCCATGGGGGACTCTATGACCCCCTGACCAAGCTGGTCCACTTC-ACTCAG 7437 SBJCT: 7304 GTCATTGGCTTCCACGGAGGCCTCTATGACCCCCTCACCAAGCTCGTCCACTTTACTCAA 7363 QUERY: 7438 CGTGATTATGATGTGCTGGCAGGACGATGGACCTCCCCAGACTATACCATGTGGA.A.AAC 7497 SBJCT: 7364 CGGTAGCTCGCGAGTGAGCCCATCCAGGAGA 7423 QUERY: 7490 GTGGGCAAGGACCGGCCCCCTTTAACCTGTATATTCAGAGCACATCCTCTCAGC '7557 SBJCT: 7424 GTGGGCAAGGAGCCAGCCCCCTTCACCTGACATGTT A(AGAACAACAATCCTCTGAGC 7483 QUERY: 7558 AGTGAGCTAGATTTGAAGAACTACGTGACAGATGTGAAAAGCTGGCTTGTGATGTTTGGA 7617 1 111111 1 1 H i l1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 SBJCT: 7484 ATGAGCTGGACTTAAAGMCTACGTGACAGACGTGAAGAGCTGGI'TGTGATGTTTGGA 7543 QUERY; 761.8 TTTCAGCTTAGCAACATCATTCCTGGCTTCCCGAGAGCCAA TGTATTTCGTGCCTCCT 7677 1111 iili! 11 11111111111 fill 11111111 SBJCT: 7544 TTTCAGCTCAGCAACATCATTCCTGGATTCCCGAGAGCCAATGTATTTTGTGCCTCCC 7603 QUERY: 7678 CCCTATGAATTGTCAGAGAGTCAAGCAAGTGAGAATGGACAGCTCATTACAGGTGTCCAA 7737 SBJCT: 7604 CCCTATGAACTGTCAGAGAGTCAAGCAAGCGAGAACGGACAGCTCTTACAGGTGTCCAG 7663 QUERY: 7738 CAGACAACAGAGAGACATAACCAGGCTTCATGGCCTGGAGCAGGTATTACTA 7797 SBJCT: 7664 CAGACAACTGAGAGGCATAACCAGGCCTTCCTGGCTCTGGAAGGACAGGTCATCACTA 7723 QUERY: 7798 AAGCTCCACGCCACCATCCGAGAGAAA~rCAGGTCACTGGTTTGCCACCACCACGCCCATC '7857 SBJCT: 7724 AAGCTCCATGCCAGCATCCGAGAGAAACAGGCCACTGGTTTGCTACCACCACACCCATC 7783
QUERY:
SEJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT;
QUERY:
SE JOT
QUERY:
SBJCT:
QUERY:
SBJC*1:
QUJERY:
SBJCT
QUEIY:
SBJCT:
QUERY:
QUERY:
SBJC7: QuERY: S3,7CT.
QUERY:
S13JCT:
QUERY:
SBJCT.
7858 7784 7918 7 84 4 7978 7904 8038 7964 E098 6024 8158 8084 E2-8 (144 E 21 E20.1 6338 82164 p 3 op E3E 4 8.8 8578 6503 8638 8563
ATTGGCAAAGGCATCATGTTTGCCATCGAGGGCGGTGACCACGGGTGTCAGC
ATCGCCAGCGAATAGCCGCAAGGTGGCATCTGTGCTGACACGCCTACTACCGGAC
AAGATGACTACAGCATCGAGGGGGACACACTACTTGTGAAGTCGGCGCCGCG
ACGTGACCGTGTCCCAGCCCACGCTGCTGGTCACGGCAGGACTCGAGGTTCACAC
ATTGAGTTCCAGTACTCCACGCTGCTGCTCAGCATCCGCTATGGCTACCCC'-GCACC
ATTGAGTTCCAGTACTCCACGCTGTGCTCATATCCGTACGGCCTACCCCCGCACG
CTGGACGAAGAGAAGGCCCGCGTCCTGGAC~CAGGGAACGAGGGCCCTGGGCACGGCC
rC.GGACGANAGAAAGGCCCGCGTCCTGGACCAGCGGGACGAGAGCCCTGGGTACTGCC Go- 7
CGAGAAGCAGCACTCCTGAGCACGGGACGGGTACAJAGGTTATGAGGGCTATTACGTA
CA0 WTGAGATGGGAAAGAGGTAACAAAATAATCTGCTGCCAnTTCCTTGTCTGAATGGCT CA0 %ATGAGATGGGAAAGAGGTAACAA
TAACCTGCTGCCACCTCTTCTCTGGGTGGCT
ZACCGGAGCAACTGTGACCTCCTCTCCTAAGGAGACGAAGACCTACGGGGCACTGAG
J;CCGGGCTGCTTTAGGATCCCAAGTGGCAAGCTCACATTTTTTGAGTTCATGCI
ATGTCCAGCGAGAAGTCCCTCATCCTGAAGTAGACTAAGCCCGGC 8685 ATGTCTAAGCGCAAAGTCCCTCATCCTGAAGTAGACTAGAGCCCGGC 8 610 7917 7843 7977 7903 8037 7963 B097 8023 8157 8083 B217 B143 8277 8203 8337 8263 8397 8323 8457 8383 8517 8443 8577 8502 8637 8562 SCORE 1570 BITS (7921, EXPECT 0.0 IDENTITIES 095/1196 (91%) STRAND -PLUS PLUS QUERY: 270 ATCTGGAATAATGGATGTAAGGACCGGCGACACCGCTTTTGACCAGAGGACGCTGTGG 329 SBJCT: 103 ATTGAATGTTAGACGGAACCCTGCAGGCGGG 162 QUERY: '330 CAAAGAGTGTCGCTACAAAGCTCCTCTCTGGAAGTGAGGACTGCCGGTGCCCACACA 389 SB JOT: 163 CAAAGAGTGTCGCTACACCAGCTCCTCTCTCGACAGTGAGGACTGCCGTGTGCCCACTCA 222 QUERY: 390 GAACTCGTCGGGCCGAGCTTACTAACGAGAT 449
;Z
INO
SBJCT:
QUERY:
SBJCT:
QUERY.
SBJCT:
QUERY:
SBJCT;
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:-
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCI:
223 450 283 510 343 570 403 630 463 690 523 750 583 810 643 870 703 930 763 990 823 1050 883 1110 943 1170 1003 1230 1063 1290 1123 1350 1183 1410 1243 GAAGTCCTACAGTTCCAGTGAGACCT'IGAAGGCTTATGACCATGAC-AGCAGATGCACTA 2B2 TGGAAACCGAGTCACAGACCTCATCCACCGGGAGTCAGATGAGTTTCCTAGAAAGGAC 509 TGGAAACCGAGTCACAGACCTGGTGCACCGGGAGTCCGATGAGTTTTCTAGACGGGC 342 CAACTTCACCCTTGCCGAACTGGGCATCTGTGAGCCCTCCCCACACCGAAGCGGCTACTG 569 11 11 1 1 11 11 liii il 1111 11ll 11111llll 11lli 1i 11 11111 AACTTCACCCTGGCAGAATTGGGAATCTGCGAGCCCTCCCCACACCGAAGTGGTTACTG 402 CTCCGACATGGGGATCCTTCACCAGGGCTACTCCCT'.AGCACAGGGTCTGACGCCGACTC 629 TTCCGACATGGGTATCCTCCACCAGGGCTACTCCCTGAGCACTGGGTCTGATGCAGACTC 462 CGACACCGAGGGAGGGATGTCTCCAGACACGCCATCAGACTGTGGGAGAGATA 689 I 111 lii 111111111 II I11111111111iii lii 111111111l GGCCGGGGGTTTCGAATCACGCGGGAGGGTA 522 ATCCAGGCGCAGTTCCGGCCTGTCCCTCGTGAAAACTCGGCCCTTACCCTGACTGACTC 749 ATCCAGGCGCAGCTCTGGCTTGTCCAGCCGCGAGACTCGCCCTTACTCTGACTGACTC 582 TGACAATGAAAACAAATCAGATGAGAAAGGTCGTCCCATTCCACCTIACATCCICGCC 642 HIM ll 1I11111 1 Ilt 1111 II 111111 111 1 TAGTCTCCTCCCATCTGTCAGCTGCCTyAGCTCCCATAAkTCCTCCACCAGTTACTGCCA 702 GATGCCATTGCTAGACAGCAACACCTCCCATCAATCATGGACACCACCCTGATGAGGA 929 GATGCCATTGCTAGACAGCAACACTCCCATCAGATCATGGACACPCCCTGATGGA 762 ATTCTCCCCCATTCTACCTGCTCAGAGCATGCTCAGGCCCCAGAAGCCTCCAGCAG 989 ATTCTCCCCCAATTCATACCTGCTCAGAGCATGCTCAGGGCCCCAGAGCCTCCAGCAG 822 TGGCCCTCCGAACCACCACAGCCAGTCGACTCTGAGGCCCCCTCTCCCACCCCCTCACAA 1049 TGGCCCTCCAA)ACCACCACAGCCAGTCAACACTGAGGCCCCTCTGCCACCCCCTCATAA 882 CCCCCrTCACCATGCGCATCTACGACCCGCA 1109 CCACACCCTGTCCCACCACCACTCCTCGGCCAACTCCTCACAGAACTCACTACCAA 942 TCGGCGGAGTCAGATCCACGCCCCGGCCCCAGCGCCCATGACCTGCCACCACACCAGA 1169 TCGGCGGAG' 2AAATCCACGCCCCAGCTCCTGCGCCCAACGACCTGGCCACCACCCCAGA 1002 GTCCGTTCAGCTTCAGACAGTGGGTGCTACACA.ACGTGCCACGGAGACCCGGCA 1229 111 11111111 Hil11 111ll~l111 il Hll11Illllii H11ll GTCTGTTCAGCTCCAC-GATAGCTGGGTGCTCAACAGTAACGTCCCACTGGAGACTCGGCA 1062 CTCTTCAACCTGGACCACTGTACGTTCCGGT 1289 H I1 Hl111l 111 1 111111 I I 111111111 1 1 1 1 1 1 1 CTCTTC~AGCTTGACCACCGTACGTTCCGGT 1122 CCCTTTGACCTCAGGJAACGGTTTACACGCCCCCGCCCCGCCTGCTGCCCAGGAATACTTT 1349 CCCTTTACCTCAGGACCGTTATACACCACCACCCCGCCTGCTGCCACGGAATACATT 1182 CTCGAGCTCACGAAGCCCAAATCGTGATTCG 1409 CTCCAGGAAGGCCTTCAAGCTGAAGAAACCCTCCAAATACTGCAGTTGGAAATGTGCTGC 1242 CCTCTCCGCCATTGCCGCGGCCCTCCTCTTGGCTATTTTGCTGGCGTATTTCATAG 1465 111 II HilHl 1111111 111111ill1lh 1lllhl 11 llh CCTGTCTGCCATCGCCGCCGCCCTCCTCTTGGCCATTTTGCTGGCATATTTCATAG 1298 56 SCORE -1455 BITS (734), EXPECT 0.0 IDENTITIES -1000/1088 GAPS 3/1088 STRAND =PLUS PLUS QUERY: 146~
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:-
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:2 SBJCT:2 QUERY:2 142( 1524 1480 1584 1540 1644 1600 1704 1660 1764 1720 1824 1780 1884 1840 1944 1900 2004 1960 2064 2020 2124 2080 2184 2140 2244 2200 2304 2260 2364 2320 '424
IGGTAACACAAGAAGTCCCACCAGGGGTGTTTTGGAGGTCATTACATCAGTCAGCC
GGTGACACAGGAAGTCCCACCAGGGGTGTTTGAGGTCCCAGATTCCATCAGTCAGCC
ICCAGTTCTTAAAGTTCAACATCTCCCTCGAGGACGTCTCTTTGC7TGTTTAATAAG
IAAGAGGACTTCCACCATCTCATCCCAGTATGACTTCTGCACGTCTGGACGGAAGGA
IGAGAGGACTACCACCGTCTCATGCCCATATACTTCATGGACGCCTGGATCJ.AGGA
GAAGTGGAGTGTGGTTGAGTCTCCCAGGGACGCCGGAGCATACACCTTGTCAGAA
11 1 11 1 11 1 11 H ll liii H ill1 GAAATGGAGCGTGGTCGAGTCGCCCAGGGAACGCCGGAGCATCCAGA i CTGGTGCAGAA
CGGCAAGACAGGAGTGGTTCCTTCATCGTTGCTAGATTCAGTGCGGACTG
TCCACGTAACTGCCATGGGAATGGTGATGGTGTCCGGGTGGTCACGTTTCCCAGG
ATTTCTAGGAGCAGACTGTGCTAGCTGCCGCCCTGTCCTGTGCAGTGGGATGGACA
ATATTCTAAAGGGACGTGCCAGTGCTACACGGCTGGAGGTGCAGAGTGCGACGTGCC
11Il11i1lI11 1 III1111II 111111 11 HillI
GTATTCTAAAGGAACGTGCCAGTGCTACAGCGGCTGGAAGGTGCAGAGTGTGATGTGCC.
CTAATCAGTGCATCGATCCTTCCTGCGGGGGCCACGGCTCCTGCATTGATGGACTG
CGTGTGTGCTGCTGGCTACAGGGCGAGACGTGAGGAAGTTGATTGCTTGGTCCTAC2 IIIii 1111111iii 1111111111111ifllillill, lllI l 11111111 11 TTCAACTGTGAGCTGGCGAGGGTCCAGTGCCAGACCAGTGTAGTGGGCATGCACTTA 2 CCTGCCTGACACGGCCTCTGCAGCTGCGATCCACTGGATGGGTCCCGACTGCTCTGT 2 III HIM IIII~IIIIIIIIIII H11i IIlIIIIIIlil TGAAGAGGGCTGGACAGGCGACGTGTGACAGCGCGTGTGCCACCCCCGCATTGA 2 57 1523 1479 1583 1539 1643 1599 1703 1659 1763 1719 1823 177 9 1883 1839 1943 1899 2003 1959 2063 2019 2123 2079 2183 2139 2243 199 303 '259 363 319 423 376 483 SBJCT: 2377 TGAAGAGGGCTGGACAGGCGCAGCTTGTGACCAGCGCGTGTGCCACCCCCGCT(ITTGA 2436 QUERY: 2484 GCACGGGACCTGTAAAGATGGCAAATGTGAATGCCGAGAGGCTGGjATGGTGAACACTG 2543 SBJCT: 2437 GCACGGGACCTGTAAAGATGGCAAATGTGAATGCCGAGAGGCTGGTTGAACACTG 2496 QUERY: 2544 CACCATTG 2551 SBJCT: 2497 CACCATTG 2504 SCORE 105 BITS EXPECT =5E-19 IDENTITIES 81/89 GAPS -1/89 STRAND -PLUS PLUS QUERY: 8711 AACGAATGAATGAACAGACACACACAATGTTCCAAGTTCCCCTAAATATGACCCACTTG 8770 H M I I I I I I I SBJCT: 8655 AACGAACGAATGAAAACACACACAA ATGTTTCAAGTTCCCCTAAAATATGACCCACTTG 871.4 QUERY: 8771 TTCTGGGTCT-ACGCAGAAAAGAGACGCA 8798 II I I I I I I I I I I I I SBJCT: 8715 TTCCGGGTCTAAGGCAC-AAAAGAGACGCA 8743 SCORE -48.1 BITS EXPECT 0.093 IDENTITIES 30/32 (93%) STRAND PLUS PLUS QUERY: 475 C-ACCGGGAGTCAGATGAGTTTCCTAGACAAGC 506 SBJCT: 7 CACCGGGAG TCCGATGAGTTTTCTAGACAAGG 38 In this search it was also found that the FCTR3bcd and e nucleic acids had homology to thrcc fragnicnts of Rattus norvegicus neurestin alpha. It has 5498 of 6132 bases (89%) identical to bases 2527-8658, 1081 of 1196 bases identical to bases 123-131IS, 996 of loss bascs (91 identical to bases 1440-2527 of Ratfus norvegicus neurestmn alpha (GenBazik Acc:NM_020088.1) (Table 3N).
Table 3N. I1LASTN of FCTR3b, c, d, and e against Rattus norvegicus Neurestin alpha mRNA (SEQED NO:66) ~3I99I3:~FE~t~M020088.11 RATTUS NORVEGICUS NEURESTIN A.LPHA (L0C56762), NRNA 4CH 8689 SCORE 7:29 BITS (3596), EXPECT =0.0 IDENTITIES 5498/6132 (89%) STPA14E PLUJS PLUS QUERY: 2 578 GATGGCTGCCCTGACTTGTGCAACGGTAACGGGAGATGCACACTGGGTCAG~rCAGCTGG 2637 111111111 II I111 11 1111111I1111111IIIII SBJCT: 2527 GA GTCCGTTTCAGTAGGGTCCCGGCGAACG 2586 QUERY: 2638 CAGTGTGTCTGCCAGACCGGCTGGAGAGGGCCCGGATGC CGTTGCCATGGAP.ACTTCC 2697 Rt SBJCT: 2587 CAGTGTGTCTGCCAGACCGGCTGGAGAGGGCCCGGATGCAACGTTGCCATGGACCTCC 2646 QUERY: 2698 TGGTAACAGTAGGGGTGCTGGATTTGCCGCG 2757 SBJCT: 2647 TGCGCTGATAACAGGATATGAGGGAGATGGCCTGGTGGACTGCCGGACCCTGACTGC 2706 QUERY: 2758 TGCCTGCAGTCAGCCTGTCAGAACAGCCTGCTCTGCCGGGGGTCCCGGGACCCACTGGAC 2817 11111 IIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111111 11111111 11111 SBJCT: 2707 TGCCTCCAGTCAGCCTGTCAGAACAGCCTGCTCTGTCGGGGGTCTCGGGACCCCTTGGAC 2766 QUERY: 2818 ATCATTCAGCAGGGCCAGACGGATTGGCCCGCAGTGAAGTCCTTCTATGACCGTATCAAG 2877 SBJCT: 2767 ATCATTCAGCAAGGCCAGACAGACTGGCCTGCGGTGIAAGTCCTTCTATGATCGTATCAAG 2826 58 QUERY: 2878 SBJCT: 2827 QUERY: 2938 SBJCT: 2887 QUERY: 2998 SBJCT: 2947 QUERY: 3058 SBJCT: 3007 QUERY: 3118 SBJCT: 3067 QUERY: 3178 SB.YCT: 3127 QUERY: 3238 SBJC-T: 3187 QUERY: 3298 SBJCT: 3247 QUERY: 3358 SBJCT: 3307 QUERY: 3418 SBJCTr: 3367 QUERY: 3478 SBJCT: 3427 QUERY: 3538 SBJCT: 3487 QUERY: 3598 SBJCT: 3547 QUERY: 3658 SBJCT: 3607 QUERY: 3718 SBJCT: 3667 QUERY: 3778 SBJCT: 3727 QUERY: 3838 SBJCT: 3787 QUERY: 3898 CTCTTGGC-AGGCAAGGATAGCACCCACATCATTCCTGGAGAGACCTTTCAACAGCAGC 2937 J~iI~iIIjII,~iIiI~~j~jj~jI~jjj 1jI 1lIHIIIjI CTCTTGGCAGGCAAGGACAGCACCCACATCATTCCTGGAGAACCCCTTCATAGCAGC 2886 TTGGTTTCTCTCATCCGAGGCCAAGTAGTAACTACAGATGGAACTCCCCTGGTCGGTGTG 2997 CTGGCCGTCAGCATGAACCGTG~CCCGTGTT 2946 AACGTGTCTTTTGTCAAGTACCCAATACGGCTACACCTCACCCGCAGGATGGCACG 3057 AATGTGTCTTTTGTCAAGTACCCAAAATATGGCTACACCATCACTCCCAGGACGGCACC 3006 TTCGACCTGATCGCAAATGGAGGTGCTTCCTTGACTCTACACTTTGGCGAGCCCCGTTC 3117 TTTGACCTGATTGCCAATGGGGCTCTGCCTTGACTCTTCCTTTGGCGAGCCCCTTTC 3066 ATGAGCCAGGAGCGCACTGTGTGGCTGCCGTGGACAGTTTTACGCATGGACCCCTG 317 ATGAGCCGGGAGCCCAGTATGGCCGCCGTGGACAGCTTCTATGCCATGGACCTG 3126 GTGATGAAGACCGAGGAGAACFCACCCCAGCTGTGACCTAGTGGCTTTGTCCGGCCT 3237 GTAATGAAGACGGAGGAGAACTCCATCCCCAGCTGTGACCTCAGTGGCTTTGTCCGGCCT 3186 GATCCATCATCATCTCCTCCCCACTGTCCACCTTCTTTGTGCTGCCCCTGG(QCAGAAT 3297 H ill1 Ill II IlIlIllI 11 l ll i 11 1 1 11 1 1 1 111 l 11 11 1 11 GACGTACTTCCCTTTCACTTCGGTCCTCGGA 3246 CCCATCTGCCTGAGACCCAGGTTCTTCATGAAGAAATCGAGCTCCCTGGTTCATGTG 3357 CCCATTGTGCCTGAGACCCAGGTTCTT'CATGAGGAGATCGAGCTCCCTGGCACCACGTG 3306 AACTTCGCTATCTGAGCTCTAGAATGCAGGGTACAGTCACTGCTGAGATCACCATG 3417 AAGCTCCGTTACCTCAGCTCCAGAACAGCAGGGTACAAGTCACTGCTGAAGATCACCATG 3366 ACCCAGTCCACAGTGCCCCTGAACCTCATTAGGGTTCACCTGATGGTGGCTGTCGAGGGG 3477 ACCCAGTCCACGGTGCCCTTGAACCTCATCCGGGTTCACTTGATGGTTGCCGTGGAGGGG 3426 CATCTCTTCCAGAAGTCATTCCAGGCTTCTCCCAJACCTGGCCCACCTCATCTGGGAC 3537 CATCTC'rCCAGAAGTCGTTCCAGGCTTCTCCCACCTGGCCTACACATTCATCTGGGAC 3486 AAGACAGATGCGTATGGCCAAAGGGTGTATGGACTCTCAGATGCTGTTGTGTCTGTCGGG 3597 AAGACAGACGCTTATGGCCAAAGGGTTTATGGCCTATCGGATGCTGTTGTGTCTGTTGGA 3546 TTTGAATATGAGACCTGTCCAGTCTAATTCTCTGGGAGAAAGGACGCCTCCTTCAG 3657 TTTGAATATGAGACCTGCCCCAGTCTCATCCTGTGGGAAGGACAGCCCTACTTCAA 3606 GGATTCGAGCTGGACCCCTCACCTCGGTGGCTGGTCCTAGACACACCACA3.CCC 3717 GGATLTCGAGCTGGACCCTTCCAACCTTGGTGGCTGGTCCCTGGATAAGCACCACACCCTC 3666 .LTTAAGGATCAAAAGATGGAACGTCGCCGA 3777 AAGGA.GG.AATCCAGCAAGGGACGTCGCCGA 3726 CCGCTACCACTAGGATGTGCCGACTTCGCCG 3837 CCGCTACCACTAGGACGCC~-GACTTCGCCG 3786 TGACGCTCGAGACACGCGCCATGTTGTTGAT 3897 TGATGCTCGAGACACGTGCCCTG-CGCGGG.T 3846 GATGGGAGCCTCTATGTGGGTGACTTCATTACATCCGACGCATCTTCCCTCTCGAAT 3957 59
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:.
QUERY:
SBJCT:
QUERY:
SBJCT;
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY-
SBJCT;
QUERY:
SBJCT:
QUERY:
SBJCT:
3B47 3958 3907 4018 3967 40'78 4027 4138 4087 4198 4147 4258 4207 4318 4267 4378 4327 4438 4-387 4498 4447 4558 4507 4618 4567 4678 4627 4738 4687 47 98 4747 4858 4807 4918 4867
GATGGGAGCCTCTTTGTCGGTGACTTCAATTATATCCGGCGCATCTTCCTCTCGAC
GTGACCAGTATCTTGGAGTTACGAAATAAAGAGTTTACATAGCACAGCCCAGGACAC
AAGTACTACTTGGCAGTGGACCCCGTGTCCGGCTCGCTCTACGTG,-CCGACACC~rGC
AAGTACTACTTGGCTGTGGACCCTGTGACTGGCTCGCTCTATGTCTCTACACCACAGT
CGCCGGATCTACCGAGTCAAGTCTCTAAGCGGACCAGACCTGGCTGGGATTCGGAA
GTTGTGGCAGGGACGGGAGAGCAGTGTCTACCCTTTGATGAAGCCCGCrGCGGGGATGGA III1 1 1 11111 11 11 1 I I t I I II iI III 1 III I I 11 11111111
GTTGTGGCCGGGACTGGCGAACAATGTCTACCCTTTGATGAAGCCCGCTGTGGGGATGGC
GGGAGGCCATAGATGCAACCCTGATGAGCCCGAGAGGTATTGCAGTAGACAGATGGG
GGGAGGCTGTGGATGCCACCCTGATGAGCCCTAGAGGTATTGCAGTAGACAGACGGG
CTCATGTACTTTGTCGATGCCACCATGATCCGGAAGGTTGACCAGAATGGAAI'CATCTCC
CTTATGTATTTrTGTTGATGCCACCATGATCCGAAGGTCACCAAATGC0TCATCTCC
ACCCTGCTGGGCTCCAATGACCTCACTGCCGTCCGGCCGCTGAGCTGTGATTCCAGCATG
I I IIIIIIil l II I 11 1 11 1 1 11 1 1 111it11 111 11 t~li ill 11 111111 ACCCTGCTGGGC'rCCAATGACCTCAAGCTGTCCACCACTGAGCTGTGACTCTAGCA.'G G.ATGTAGCCCAGGTTCGTCTGGAGTGGCCAACAGACCTTGCTGTCAAkTCCCATGGATAAC 11 11 11111111 H ill11 H i 1111 1 H ill~l~l 1111 l i I GACGTGGCCCAGGTCCGTCTAGAAkTGGCCGACAC-ACCTTGCGGTCAACCCCATGGACAMT
TCCTTGTACGTCCTGAGACAGTCATCCTGCGATCACCGAGACCAATCAGC
TCCTTCACGCCAGATCAATTCCTGGGCACTGACATCACGTCAC
ATCATCGCGGGACGCCCATGCACTGCCAAGTTCCTGGCA'ICGACTACTCACTCAGCAAG
CTAGCCATTCACTCTGCCCTGGAGTCAGCCAGTGCCATTGCCATTTCT1CACACTGGGGPC
CTCGCCATCCACTCTGCTCTGGAGTCGCCAGCGCCATCGCCATTTTCACACCGGTG
CTCTACATCACTGAGACAGA-iGAGAGAAGATTAACCGTCTACGCCAGGTACACC)
\C
1 11 1 11 11111 11 11111I111 I111H i l1 11 1 j11l ll I
CTCTACATCACCGAGACGGACGAAAGAAGATCACCGCCTACGCCAGGTCACACCAAC
GGGGAGATCTGCCTTTTAGCTGGGGCACCTCGACTGCGACTGCAACGATGTCAAT
111 i ll til ll 1111111 III ]tillIII1IIII11I11i111I11111 11
TGCATCTGCTATTCGGGAGATGACGCATACGCCACGGATCCATCTTGAACTCCCCGTLC
TCTACGACOAAGTCATTCTGAACTGATTCGT
IIIII111II 111IIIillI illill fII1f11II 11 HllHI
TCCTTAGCTGTGGCTCCGGATGGCACCATCTACATCGGCCTCGGATATCCGGATC
AGGGTACAACACTTCTATCTCACGAGGCGAC
II II II I H illlIIII I lilf 1 I1 AGGCGGTCAGCAAAAACAAACCGTTCTTACGCGTTCAACCAGTATGAGGCTGCGTrCT CCCGGAGAI3CAGGAGTTATATGTTTTCAACGCTGATGGCATCCACCAATACACTGTGAGC 111111111Hil11 II1 I1IIII1III 11111 H111i 11 ill HI
CCGGGAGAACAGGAACTGTACGTGTTCJACGCCGATGGTATCCATCAGTACACCGTGAGC
3906 4017 3966 4077 4026 4137 4086 4 197 4146 4257 4206 4317 4266 4377 4326 4 437 4386 4497 4446 4557 4506 4617 4566 4677 4626 4 737 4686 4797 4746 4857 4006 4917 4866 4977 4926 QUERY: 4978
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
4927 5038 4987 5098 5047 5158 5107
CTGGTGACCGGGGATACTTATACTTTCCCTACAGCGCTGACATGATGTCACCGAG
TTATAATAGGATCTAGACGCGAACGGCTCCG
TTATAACAGGATCTAGACGCGAACGGCTCCG
CACGTRGCGCACGTACACTACTGCCATGGCT
CACGTAGCGTACrACTACTAGTGCCACGGCT
AAGCTTCCCGACGACTGTTAGCTTAGCAATG
IIII H I M 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AAAGCCGTGTCAACGCAGAACCTGGAGCTGGGCCTCATGACTTATGATGGGAACACTGGA
5037 4986 5097 5046 5157 5106 5217 5166
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
5218 5167 5278 5227 5338 5287 5398 5347
GGCCTGACCAAGGGATGACGGTGQCGACTCAGCTGACCCGAAT
GAGAAATCTATTACCATTGACTTGAGAACCCACCGTGATGATGACGTCACTGTCATC
ACCAACCTCTCTCGTAGAGGCCTCCTACACAGTGGTACAGATAGTTCGGACAGC
ACCAA1C1111C1 lAGTGGAGGCC11C111ACCG1T111A1A1G1TC1AGTGlGiiACAG1 5277 5226 5337 5286 5397 5346 5457 5406
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBOJCT:
QUERY:
SBJCT:
QUERY:
5458 5407 5518 5467 5578 5527 5638 5587 5698 5647 5758 5707 5818 5767 5878 5827 5938
TACCAGCTCTGTAATAATGGTACCCTGAGGGTGATGTATGCTATGGGATGGGTATCAGC
TACCGCTCTGCAGCAACGGGCCCTGCGCGTCATGTACGCCAACGGCATGGGCGTCAGC
IIIIIIII 11111 II11 llllllI 11 iIII
TTCCACAZGCGAGCCCCACGTCCTCGCAGGCACCCTCACCCCCACCATCGGGCGCTGTAAC
ATTAAAGGCAAGTCACCATCTTTGGCAGGAGCTCCGGGTCCATGGGATCTCTTG
TCCATTGACTATGATCGATATTCGGACTGAATCTATGATGACCACCGGAGTTC
11111111 liiIli 11111? 11111111111 11 H i l 11I1III IIII I I I I I 11111 II il 11111 li IlIIi I~JII ii 111 11 I GCGGAGTGTGAACC TC CTACTTTGACGTCCTTCTGCTTCAGC Hll 11 11111 I 11111 11I111111111 ii1 1 1111 Miili II iiI
GACGGGAAAGTCTGGAGCTATTCCTACCTTGACAGTCCATGTCCTCTGCTGCAC-,GC
61 5517 5466 5577 5526 5637 5586 5697 5646 5757 5706 5817 5766 5877 5826 5937 5886 5997 5946 S5JC'T: 5887
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUER~Y
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
5998 5947 6058 6007 6118 6067 6178 6127 6238 6187 6298 6247 6358 62307 6418 6367 6476 6427 6538 6487 6598 6547 6658 6607 6718 6667 6778 6727 6838 6787 6898 6B47 6958 6907 7018
CAACGTCAGTATATATTTGAGTATGACTCCTCTGACCGCCTCCTTGCCGTCACCATGCCC
r-AGCGTCAGTACATATTTGAATATGACTCCTCTGACCGCCTCCACGCAGTCACCATGCCC AGCGTGGCCCGGCACAGCATGTCcACACACACCTCCATCGGCTACATCCGTAATATTTAC
AGGTCGCCCGGCACAGCATGTCCACGCACACCTCCATTGGCTACATCCGGAACATTTAC
AACCCGCCTGAAAGCAATGCTTCGGTCATCTTTGACTACAGTGATGACGGCCGCATCCTG
AACCCACCGGAAAGCAACGCCTCGGTCATCTTTGACTACAGTGATGACGGCCGC-ATCCTG
AAGACCTCCTTTTTGGGCACCGGACGCCAGGTGTTCTACAAGTATGGGAAACTCTCCAAG
AAG.ACGTCTTTCCTGGGCACCGGGCGCCAGGTGTTCTATAAGTACGGAAAACTG'ICCAAG
TTATCAGAGATTGTCTACGACAGTACCGCCGTCACCTTCGGGTATGACGAGACCACTGGT
TTATCGGAC-ATCGTCTACGACAGCACTGCCGTCACCTTCGGCTATGACGAGACC-ACTGGC
GTCTTGAAC-ATGGTCAACCTCCAAAGTGGGGGCTTCTCCTGCACCATCAGGTACCGGAAG
GTCCTGAAGATGGTGAATCTCCAAAGCGGGGGCTTCTCCTrGTACCATCAGGTACCGAAAG ATTGGCCCCC1'GGTGGACAAGCAGATCTACAGGTTCTCCGAGGAAGGCATGGTCAATGCC I I IllI I I I I I I I I I I I I I I I J l 1 1 1 1
GTCGGGCCCCTCGTGGACAAGCAGATTTACAGGTTCTCTGAGGAAGGCATGATCAACGCC
AGGTTTGACTACACCrATCATGACAACAGCTTCCGCATCGCAAGCATCAAGCCCGTCATA
AGGTTCGATTACACCTACCACGACAACAGCTTCCGCATCGCCAGCATCAAGCCCGTCATC
AG'TGAGACTCCCCTCCCCGTTGACCTCTACCGCTATGATGAGATTTCTGGCAAGGTGGAA
I III111l1 ll II IIiIII 11111111111IlllIlli il I l AGTGAGACTCCCCTTCCCGTTGACCTCTACCGCT ACGATGAGATTTCTrGGCAAGGTGGAA
CACTTTGGTAAGTTTGGAGTCATCTATTATGACATCAACCAGATCATCACCACTGCCGTG
CACTTCC-GCAAGTTCGGGGTCATCTACTACGACATCAACCAGATCATCACCACTGCCGTC
ATGACCCTCAGCAAACACTTCGACACCCATGGGCGGATCAAGGAGGTCCAGTATGAGATG
11111 11111111 11J ll11 Ill 11l1ll 1111 11111111 1 1 1 1 1 1 1 ATGACACTCAGCAAGCACTTTGACACCCATrGGGCGCATCAAGGAAGTGCAGTATGAGATG TTCCGGTCCCTCATGTACTGGATGACGGTGCAATATGACAGCATGGGCAGGG3TGATCAAG
TTCCGGTCCCTCATGTACTGATGACGGTP".AATATGACAGTATGGGCAGGGTCATCAAG
AGGGAGCTrAAAACTGGGGCCCTATGCCAATACCACGAAGTACACCTATGACTACGATGGG
AGGGAACTGAAACTGGGGCCCTATGCCAACACCACAAAGTACACCTATGACTACGACGGG
GACGGGCAGCTCCAGAGCGTGGCCGTCAATGACCGCCCCGACCTGGCGCTACAGCTATGAC
GACGGCCAGCTCr-AGAGTGTGGCCGTCAATGACCGGCCTACCTGGCGTTATAGCTATGAC
CTTAATGGGAATCTCCACTTACTGAACCCALGCAACAGTGTGCGCCTCATGCCCTTGCGC
C'TCAATGGGAACCTGCACCTGCTAAACCCAGGAAACAGTGCTCGCCTCATGCCGTTACGC
TATGACCTCCGGGATCGGATAACCAGACTCGGGGATGTGCAGTACAAAATTGALCGACGAT
TATGACCTCCGTGACCGGATAACCAGGCTAGGGGACGTGCAGTACAAAATCGATGATGAT
GGCTATCTGTGCCAGAGAGGGTCTGACATCTTCGAATACAATTCCAAGGGCCTCCTAACA
GGCTATTTATGCCAGAGAGGATCTGACATCTTTGAATACAACTCCAAGGGCCTTCTAACG
AGAGCCTACAACAAGGCCPLGCGGGTGGAGTGTCCAGTACCGCTATGATGGCGTAGGACGG
62 6057 6006 6117 6066 6 177 6126 6237 6186 6297 6246 6357 6306 6417 6366 6477 6426 6537 6486 6597 6546 6657 6606 6717 6666 6777 6726 6837 6786 6897 6846 6957 6906 7017 6966 7077 SBJCT: 6967 AGAGCGTACAACAAGGCCAGCGGGTGGAGTGTGCAGTACCGCTATGATGGCGTGAGCCGC 7026 2~QUERY:
SBJCT:
QUERY.
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SB JCT
QUERY:
SBJCT;
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
7079 7027 7138 7087 '7198 7147 1258 '7207 7318 7267 7378 7327 7438 7387 7498 7447 7558 7507 7618 7567 7678 7627 773B 7687 '7798 7747 7858 *7 807 7918 7867 7978 7927 8038
AACCCGACGCGCATCACCCATGTCTACATCCTCCACTCGGAGATTACCTCACTGTAC
CACCCCACACGTATCACCCATGTTTAC CCACTCC CTGATCACACCTAC
TACGACCTCCAGGGCCACCTCTTTGCCATGGAGAGCAGCAGTGGGGAGGAGTACTATGTT
TATGACCTCCAGGGCCCCTCTTTGCCATGGAGGGTAGTGGGGAAGAGTACTATGTT
GCCTCTGATAACACAGGGACTCCTCTGGGTGTTCAGCATCCCCTCATGATCA
CAGCTGCAGTACAGGCCTATGGGGAGATTTATTATGATCCACCCCGACTTCCAGATG
CACTCCAATACACAGCCTATGGGGAGATTTACTATGACCTCCAGACTTTCAGTG
GTCATTGGCTTCCATGGGGGACTCTATGACCCCCTACAGCTGGTCCACTTCACTCAG
1111I III I III 11111 H II I lI IIIIIIII 1 1 II1 i 1111 1 11
GTCATCGGCTTCCACGGAGCCTCTACGACCCCCTCACAGCTCGTCACTTTACGCAG
CGTGATTATGATGTGCTGGCAGGACGATGGACCTCCCCAGACTATACCATGTG.AAAC
GTGGGCAAGGAGCCGGCCCCCTTTAACCTGTATATGTTAGAGCAACAATCCTCTCAGC
I H I M H ill 11111111 1 1 1 1 1 H l I I I I I I I I I
TTTCAGCTTAGCAACATCATTCCTGGCTTCCCGAGAGCCAATGTATTTCGTGCCTCCT
1111III 111 I IfllI IIII IIIII11
CCCTATGACTTGTCAGGAGCAGCAGTGAGATGGACAGCTCATTACAGGTGTCCAA
CAGACAAC:AGAGAGACATAACCAGGCCTTCATGGCTCTGGGGAGGTATTACTA
AAGCTCCATGCAGGATCCGAGAGAGCAGGCCACTGTTTGCTACGACCACGCCATC
ATTGGCAAAGGCATCATGTTGCCATCPGAGGGCGGTGACCACGGGCGTGCCAGC
ATCGGCAAAGGCATCATGTTCGCCATCAAAAGGCGGTGACCACGGCGTGTCTAGC
ATCGCCAGCGAAGATAGCCGCAGGTGGCATCTGTGCTCACGCTACTACCTGGAC
1 1 1 1 1 1 1 1 1 1 1 1 1 H l I 1 1 11i1 1 1 1 1 1
ATGCGGGAACGAGTGATCTTGAACCTCATGA
AAAGATCGACAGCAGCACATCTGGAATGTAC
63 71372 7086 7197 7146 7257 7206 7317 7266 7377 7326 7437 7386 7497 7446 7557 7506 7617 7566 7677 7626 7737 7686 7797 7746 7857 7806 7917 7866 7977 7926 8037 7986 1097
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SB.JCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SB.JCT:
QUERY:
SBJCT:
QUERY:
SBJ7CT:
QUERY:
SBJCT:
QUERY:
SBJCT:
7987 8098 8047 8158 8107 8218 8167 8278 8227 8338 8287 8398 8347 8458 8407 8518 8467 8578 8527 8638 8587 8698 8647 GACGTGACTGGTACCTGGGACACCTTGGCGCAGGGCTGAGACGGGTG8046 AACGTGACCGTGTCCCAGCCCACGCTGCTGGTCAACGGCAGGACTCGAAGGTTACGAAC 8157 I I1111 till 1111111 I 1111 11111111111111 111 II Il AACGTGACCGTGTCACAGCCCACGCTGCTGGTGACGGCAGGACTCAMGGTTACCAC 8106 ATTGAGTTCCAGTACTCCACGCTGCTGCTCAGCATCCGCTATGGCCTACCCCGCA~CC 8217 11111 tIIII111)11Illiiill)1tllli 111li ATTGATCCAGTACTCCACGCTGCTGCTCAGCATACGTACGGCCTACCCCCCA 8166 CTGGACGAGAGAAGGCCCGCGTCCTGGACCACGAGAAGGGCCGGCCGCC 8277 11111 iIIIIIIII11IIIIIIIIIiI1 III 11IIIIIIII1iI1iI 11 111 CTGCATGAAGAGACCCCGCGTCCTGGACCAAGGCGCGAGGGCCCTGGGTACTGCC 8226 TGGGCCAAGGAGCAGCAGAAAGCCAGGGACGGGAGAGAGGAGCCGCTGTGGACTGAG 8337 TGGGCCAAGGAGCAGCAGAAAGCCAGGGACGGGGAGGGCAGCCGTCTGTGGCGGAG 8286 GGCGAGAAGCAGCAGCTTCTGAGCACCGGGCGCGTGCAGGGTACGAGGGATATTACGTG 8397 GGGGACGACCTACCGACGTCAGTTAGCATCT 8346 CTCCTCACAACAACTCGCGACGACTCGTTAG 8457 11111 11111 11 1 1 1 1 1 tII il I 11111i 1111 1111111i 111111 CTCGTGAATCCGGTGAGCCACGACTCGTTAG 8406 CAGAATGAGATGGGAAAGAGGTAACAAAATAACCTGCTGCCATCCTTCTCTGAATGGCT 8466 CAGCAGGAGTACTGTTATCTCCTC7CCTAAGGAGATGAGACCTMACAGGGCTGCG 857 7 I I 1111 1111 111111 II HIM 111111 I IIIIIIIIII GCCGGGCTGCTTTAGGACCCCAAGTGGCAAGAAGCTCACATTTTTTGAGTTCAATGCT 886 ACTGTCCAAGCGAGAkAGTCCCTCATCCTGAAGTAGACTAAGCCCGGCGAAAAT7CCGA 8697 ACTGTCCAAGCGCAAAGTCCCTCATCCTGAAGTAGACTAGAGCTCGGCCATTCTGA 8646 GGAAAACAAAAC 8709 11,1I IIIII GGAAAACAAAAC 8658 SCORE 1459 BlITS (736), EXPECT 0.0 IDENTITIES -1081/1196 STRAND P iS PLUS QUERY: 270 ATCTGGAATAATGGATGTAAAGGACCGGCGACACCGCTCTTTGACAGGGACGCTGTGG liii1 1111l11111 iI~lfll lIIilIIi ill Hiillii SBJCT: 123 ATCTGCAATAATGGATGTGAAGGATCGGCGACATCGCTCTTTGACCGGGGACGGTGTGG QUERY: 330 CAAAGAGTGTCGCTACACAAGCTCCTCTCTGGACAGTGAGGACTGCCGGGTGCCCACACA SBJCT: 183 CAGGAGTGTCGCTACACCAGCTCCTCTCTGACAGTGAGGCTGCCGTGTGCCCACGCA QUERY: 390 GAATCCTACAGCTCCAGTGAGAC'CTGAAGGCCTATGACCATGACAGCAGGATGCACTA SBJCT: 243 GAGTCCTACAGTTCCAGTGAGACCCTGAGGCTTATGACCATGACAGCAGATGCACTA QUERY: 450 TGAACATAAACCTCCGGATAAGGTCTGCAGA SBJCT: 303 TGAACATAAACGTCCGGATCAGGTTTGCAGG QUERY: 510 CACTACTGCACGGACGTACCCCAACAGGCAT Ii I I ItiI I II II l111 tlItilIII ll itill lIil 1 111 il SBJCT: 363 TATTACTGAATGGACGCACCCCAACAGGTAT 64 QUERY: 570 SBJCT: 423 QUERY- 630 SBJCT: 483 QUERY: 690 SBJCT: 543 QUERY: 750 SBJCT: 603 QUERY: 810 SBJCT: 663 QUERY: 870 SBJCT: 723 QUERY: 930 SBJCT: 783 QUERY: 990 SBJCT: 843 QUERY: 1050 SBJCT: 903 QUERY: 1110 SBJCT: 963 QUERY: 1170 SBJCT: 1023 QUERY: 1230 SBJCT: 1083 QUERY: 1290 SBJCT: 1143 QUERY: 1350 SBJCT: 1203 QUERY: 1410 SBJCT: 1263 CTCCGAC.ATGGGGATCCTTCACCAGGGCTACTCCCTTAGCACAGGGTCTGACGCCGACTC 629 TTCCGACATGGGGATCCTCCACCAGGGCTACTCCCTGAGCACTGGGTCTGATGCGGACTC 482 CGCrACCGAGGGAGGGATGTCTCCAGAACACGCCATCAGACTGG;AGAGGGATA 689 fi lI 11111111 l 111111111111 1Il 111111111111 fll 1111111111 GGACACCGAGGGAGGGATGTCTCCAGAACATGCCATCAGACTGTGGGCGAGGTk 542 ATCCAGGCGCAGTTCCGGCCTGTCCAGTCGTGAACTCGGCCCTTACCCTGACGACTC 749 II I 1 1 1 1 1 1 1 1 1 11 1111111 11 1 i l i l 11 1 11i1 1 1 ATCGAGGCGCAGCTCTGGTTGTCCAGCCGCGAGACTCAGCCCTTATCGACTGATTC 602 TGACAACGAAAACAAATCAGATGATGAGAACGGTCGTCCCATTCCACCTACATCCTCGCC 809 HIM1 illil 11111 1 11 11 iI Hli ill llllll TGACAATGAAAATAAATCGGATGACGACAATGGTCGACCCATTCCACCTACATCCTCGTC 662 TAGTCTCCTCCCATCTGCTCAGCTGCTAGCTCCCATATCCTCCACAGTTAGCTGCCA 869 GATGCCATTGCTAGACAGCAACACCTCCCATCAAATCATGGACACCAACCCTGATGAGGA 929 1111111111lii1111 IIHIII 1111111I GATGCCATTGCTAGACAGCAACACCTCCCATCAGATC.CfGGACACCAJACCCCGATGAGGA 782 ATTCTCCCCCAATTCATACCTGCTCAGAGCATGCTCAGGGCCCCAGtUAGCCTCCAGCAG 989 ATTCTCCCCTAATTCATACCTGCTCAGAGCATGCTCAGGGCCCCAGAGCCTCCAGTAG 842 TGGCCCTCCGAACCGCCACAGCCAGTCGACTCTGAGGCCCCCTCTCCCACCCTCACAA 1049 TGGCCCTCCGAACCACCACAGCC:AGTCAACGCTGAGGCCCCCTCTGCCACCTCCTCATAJA 902 CCACACGCTGTCCCATCACCACTCGTCCGCCAACTCCCTCACAGCTCATGACCA 1109 H IM11 11111111 11111111 111 11 1 11 1 1 CCCCCGCCCAC-TCCGCATOTACGACCCGCA 962 TCGGCGGAGTCAGATCCACGCCCCGGCCCCAGCGCCCAATGACCTGGCCACCACACCAGAr 1169 TCGGCGGAGTCAAATCCACGCCCCAGCTCCTGCACCCTGACCTGGCCACCACGCCGGA 1022 GTCCGTTCAGCTTCAGGACAGCTGGGTGCTAAACAGCAACGTGCCACTGGAGACCCGGCA 1229 GTCCGTTCAGCTCCAGGACAGCTGGGTGCTGAACAGTAACGTGCCGCTGGAGACGCGGCA 1082 CTTCTCTTCAAGACCTCCTCGGGGAGCACACCCTTGTTCAGCAGCTCTTCCCCGGGATA 1289 CTTCCTCT'ICAAGACGTCCTCCGGAAGCACACCCCTGTTCAGCAGCTCTTCTCCAGGATA 1142 CCCTTTGACCTCAGGAACGGTTTACACGCCCCCGCCCCGCCTGCTGCCCAGGATACT~i 1349 111 Illl111111 11 ill~ll i1 1 11 iI111iiii1 1111111 11 CCCCTTGACCTCAGGGACCGTTTATACACCACCACCCCGCCTGCTGCCACGGAATACATT 1202 CTCCAGGAAGGCTTTCAAGCTGAAGAAGCCCTCCAAATACTGCAGCTGGAAATGTGCTGC 1409 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 f l CTCTAGGAAGGCCTTCAAGCTGAAGAAACCCTCCAAATACTGCAGTTGGAAATGCGCCGC 1262 CCTCTCCGCCATTGCCGCGGCCCTCCTCTTGGCTATTTTGCTGGCGTATTTCATAG 1465 111 1 11 11 11 1 ll11tj llI I l II fl l 1 1 1 1 1 11 1 1 CCTGTCTGCCATTGCCGCTGCCCTCCTTCTGGCCATTTTGCTGGCC2ATTTCATAG 1318 SCORE 1427 BITS (720), EXPECT 0.0 IDEN~TITIES 996/1088 (91%) STRAN~D =PLUS PLUS QUERY: 1464 AGTGCCCTGGTCGTTGAAAAACGAAGCGGTAGAGATGTGC 1523 SBJCT: 1440 AGTGCCCTGGTCGTTGA AAACAGCAGCATAGACAGCGGCGAGGCAGAAGTCGTCGACG 1499 QUERY: 1524 GGTAACACAAGAAGTCCCACCAGGGGTGTTTTGGAGGTrCACAAATTCACATCAGTCAGCC 1583
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT;
QUERY:
SBJCT:
QUERY:
SBLJCT:
1500 1584 1560 1644 1620 1,704 1680 1764 1740 1824 1800 1884 1860 1944 1920 2004 1900 2064 2040 2124 2100 2184 2160 2244 2220 2304 2280 2364 2340 2424 2400 2484 2460 2544 2520 GGTGACACAGGAGTCCCACCAGGGGTGTTTTGAGGTCCAGATTCAATCAGTr-GCC
CCAGTTCTTAAAGTTCAACATCTCCCTCGGGAGGACGCTCCTTGGTGTTTACATAAG
TCAGTTCTTAAAGTTCAACATCTCCCTGGGGAGGATGCC
TCGTCTAATAG
AAGAGGACTTCCACCATCTCATGCCCAGTATGACTTCATGGAACGTCTGGACGGGA~rGA
AAGAGGACTGCCACCATCTCATGCACAGTATGACTTCATGACGCCTGGACGGAG
GAAGTGGAGTGTGGTTGAGTCTCCCAGGGAACGCCGGAGCATACAGACCTTGGTTCAGAA
GAAGTGGAGTGTGGTCGAGTCACCCAGGGAACGCCGGAGCATCCAGACCCTGGTGAGAA
TGAAGCCGTGTTTGTGAGTACCTGGTGTGGGCCTGTGGTCTGGCCTCTAATGA
11i 1Hilll lll1 ltlllilt1lhll1hllll1ili TGGAAAAGACAAAGAGATGGTTTCCTTCATACTGTTGTCCTAGATTr-GTGCGGACTG CGGCAAGGACAAGGAGATrGGTCTCCTTCAATACGGTTGTCTTAGATTCAGTGCAGGACTG TCCACGTAACTGCCATGGGAATGGTGAATGTGTGTCCGGGGTGTGTCAC2.GTTTCCCAGG
TCCACGAAACTGCCACGGGAACGGCGAATGCGTGTCTGGACTGTGTCACTGTTTCCCAGG
ATTTCTAGGAGCAGACTGTGCTAAAGCTGCCTGCCCTGTCCTGTGCAGTGGGATGGACA
AATTCTAGTGCAGACTGCCTAAGCTGCCGCCTGGTCTGTGCAGTGCGACGTGCC
GTATTCTAAAGGGACATGCCAGTGCTACAGGGCTGGAAAGGGCAATGCGACGTGCC
CATGAATCAGTGCATCGATCCTTCCTGCGGGGGCCACCTCCTGATTGATGGCTG
1111 I Illtl I ltl III liii liliIH Hill Iiil
CGTGTGTGCAGCTGGCTACAGGGCGAGCACTGCGAAGTGGAGCTTGATCCAAC
CTGCTCAGCCACGGAGTCTTGTGAATGGGTGCTGTGCAGCCCTGGCTGGGGTGG
CTGCTCCAGCCATGGTGTCTGTGTGAACGGAGAGTGTCTATGCAGCCCCGGCTGGGGCGG
TCTGAACTGTGAGCTGGCGAG3GGTCCAGTGCCCAGACCAGTGCAGTGGGCATGGCACGTA GCTCAAC'rGCGAGCTGGCGAGGGTCCAGTGCCCAGACCAGTGTAGTGGGCATGGCACTTA
CCTGCCTGACACGGCCTCTGCAGCTGCATCCCAACTGGATGGGTCCCGACTGCTCTGT
TGAAGTGTGCTCAGTAGACTGTGGCACTCACGGCGTCTGCATCGGGGGAGCCTGCCGCTG
TGAAGTGTGCTCAGTAGACTGTGGCACTCACGGCGTCTGCATCGGGAGCCGCCGCTG
TGAAGAGCCCTGACAGCGAGCGTGTGACCAGCGCGTGTGCCACCCCCTGCATTGA
11 it111 1 ii 1ll 11 1 11 1 I l l l i f 11 1 1i lill 111111111
TGAAGAGGGCTGGACAGGCGCGGCTTGTGACAGCGCGTGTGCCACCCCCGCTGCATTGA
GCCGACGAAAGCATTAAGCAAGCGATGGAAT
I li t1 111 1 1 1 1 1 1 1 111111111 11111 111 111 11111111 11 1i 111 1 GCACGGGACCTGrAAAGATGGCAATGTGAATGCCGAGAGGGCTGGAATGGTGAACACTG CACCATTG 2551 ill ill CACCATTG 2527 1559 1643 1619 1703 1679 1763 1739 1823 1799 1883 1859 1943 1919 2003 1979 2063 2039 2123 2099 2183 2159 2243 2219 2303 2279 2363 2339 2423 2399 2483 2459 2543 2519 In this search it was also found that the FCTR3bcd and e nucleic acid had homology to six fragments of Gallus gallus partial mRNA for teneurin-2. It has 2780 of 3449 bases identical to bases 3386-6834, 1553 of 1862 bases identical to bases 1414-3275, 540 of 628 bases identical to bases 587-1214, 593 of 725 bases (8 identical to bases 7084- 7808, 429 of 515 bases identical to bases 7895-8409, and 397 of 475 bases (83%) identical to bases 20-494 of Gallus gal/us partial mRNA for teneurin-2. (EAML Acc: GGA278031) (Table Table 30. BLASTN of FCTR3b, c, d, and e against Gallus gallus Teneurin-2 niRNA (SEQ ED NO: 67)
>GII
1 Q241573IEMDIAJ279n)31.1(GGA279031 GALLUS GALLUS PARTIAL MI(NA FOR TENEEJRIN-2 T EN2 GENE) LCNG SLC
VARIANT
LENGTH 8409 SCORkE 1532 BITS (773), EXPECT 0.0 IDENT171ES 218013449 STFRkNC PLUS PLUS QUERY: 2459
SBJCT:
QUE'kY:
SBJCT:
QUERY:
SBicTr:
QCERY:
SHJ C,- QU7E; 5133cr: QuEikY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
388 3746 3938 3866
TAPTGGTGGCTGTCGAGGGGCATCTCTTCCAGTCATTCCAGCTTCTCCCACCGG
7T;ATGGTAGCAGTAGAAGGGCATATTTAAAATCATTTCTGGCATCTCCCACTTGG
'IATACATTCATCTGGGACAAACAGATGCATATGGTCAGAAGGTTTATGGGTTGTCAG
AT ;C-GTTGTGTCTG12CGGGTTTGATATGAGACCTGTCCCAGTCTATTCTCTGGGAGA AIA-(ACTGCGCTGCTGCAAGGATT7GAGCTAGATCCTTCCJTCTAGGAGGATGGTCTT
ACCGTTCCTGACCCAGCAGCCTGCCATATCCCAGCATCATGGGCATGGTCGCCGCC
ATCAGTTTCTAACTCGCAGCC1AGCTGIllAAlCAlCllT111GG1A11GG1G1C11A
GGGATCTTCACGACGCTGTAGCAAGTCGCCA
II I 'l 11 11 1 11111 11111 1111111 111 if 1I 11 11111111 11 1
TAGCACTGGCAGTGGGATTGATGGAGCCTCTTTGTTGGATTTTATTACATTCGGC
GCTTTCTTGATTACGATTGATAGATAGGT~A
I 1 1 1 i 1 1 1 1 1 1 1 1 1 1 3517 3445 3577 3505 3637 3565 3697 3625 3757 3685 3817 3745 3877 3805 3937 3865 3997 3925
QUERY:
SBJCT:
3998 ATGACACACCCATCATTGATGCCGGCGCCCC 4057 11 1 11 1 11 1 11111 11111 11lt It1l 111l 11t 1 11 11111 11 1 3926 ATGACACTCCCATCACTGCTGCCGTCGCCCG 3985 67
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
4058 3986 4118 4046 4178 4106 4238 4166 4298 4226 4358 4286 4418 4346 4478 4406 4538 4466 4598 4526 4658 4586 4718 4646 4778 4706 4838 4766 4898 4826 4958 4886 501B 4946 5078
ACGTGTCCGACACCAACAGCAGGAGAATCTACCGCGTCAAGTCTCTGAGTGGACCAG
fll 11 Il111 l1 ll1 l 11111 1 1 1 H il~l 11ll 1 1ill 11 1111
ACGTATCAGACACCAACAGCCGACGGATATCAAAGTCAATCTCTTACTGGACGAG
ACCTGGCTGGGAATTCGGAAGTTGTGGCAGGGACGGGAGAGCAGTGTCTIACCCTTTGATG
1111111111 ihhhh 1111111 1 1 H 111iI 1h1hhhhih jih 1iiI)1i
ACCTGGCTGGTAATTCTGAATGGTAGCGGGGACTGGAGAGCAATGCCTGCCCTTTGATG
IHil~ I~hhhh~i 1I11I1 I1 h1hI11 hh11 hI 111il1
TTGCAGTAGACAAGAATGGGCTCATGTACTTTTCGATGCCACCATTCCGAGGTTG
1111111 1 i lfill 11111hl111 H il 11111111 H ill11 11 11 1l
TTGCAGTGGATAAGTATGGACTCATGTATTTTGTTGATGCCACTATGATTCGAAAGTGG
ACCAGAATGGAATCATCTCCACCCTGCTGGGCTCCAATGACCTCACTGCCGTCCGGCCGC
ATCAGAATGGAATTATATCAACTCTGCTGGGCTCCAATGACCTAACTGCCGTCCGACCTC
TGAGCTGTGATTCCAGCATGGATGTAGCCCAGGTTCGTCTGGAGTGGCCAACAGACCTTG
TAAGCTGTG ATTCCAGCATGGATGTCAGCCAGGTACGGCTGGAGTGGCCTACTGATCTCG CTGTCAATCCCATGGATAACTCCTTGTATGTTCTAGAGAACpATTCATCCTTCAATCA
CTGTCGATCCCATGGACAACTCACTTTATGTCCTAGAGAACAATGTTATT'TTACGGATCA
CCGAGAACCACCAAGTCAGCATCATTGCGGGACGCCCCATGCACTGCCAAGTTCCTGGCA
CAGAAAACCATCAAGTTrAGCATTATTGCTGGACGCCCCATGCACTGCCAGGTTCCTGGTA TTGACTACTCACTCAGCAAACTAkGCCATTCACTCTGCCCTGGAGTCAGCCAGTGCCATTG I111111111 11 hlh1hllI 111ill11 11 11 1Ih1 hiIhhhI
TAGACTACTCTCTTAGCAAACTGGCTATTCATTCCGCACTTGAATCAGCCAGTGCCATTG
CC-ATTTC1'CACACITGGGGTCCTCACATCACTGAGACAGATGAGAAGAAGATTAACCGTC
CCATCTCACACACAGGAGTTCTTTACATCAGTGAGACAGATGAAAAAAAAATTAATCGGC
TACGCCAGGTAACAACCAACGGGGAGATCTGCCTTTTAGCTGGGGCAGCCTCGGACTGCG
TACGCCAGGTAACTACCAATGGAGAAATATGCCTTCTTGCAGGGGCAGCTTCAGACTGTG
ACTGCAAAAACGATGTCAATTGCAACTGCTATTCAGGAGATGATGCCTACGCGACTGATG
ATTGCAAAAATGATGTCAACTGTAATTGCTATTCTGGGGATGATGGGTATGCCACTGATG
CCATCTTGAATTCCCCATCATCCTTAGCTGTAGCTCCAGATGGTAC A'TTTACATTGCAG
CCATCTTAAATTCACCATCTTCCTTAGCTGTGGCCCCAGATGGTACCATCTACATAGCTG
ACCTTGGAAATATTCGGATCAGGGCGGTCAGCAAGAACAAGCCTGTTCTTAATGCCTTCA
1I 11 1 l1111 11 I 11 l11 ill 11 i 11 1 11 1 II1 1
ATCTCGGAAATATCCGCATTAGGGCTGTCAG-TAAAAACAGGCCCATTCTTAATTCTTTTA
ACCAGTATGAGGCTGCATCCCCCGGAGAGCAGGAGTTATATGTTTTCAACGCTGATGGCA
1ii111 lI I hhhh Il 11 11 IlH111 Ill 1ih 11 i Il Ihi
ACCAATATGAAGCTGCATCTCCAGGAGAACAGGAGCTGTATGTCTTCAATGCTGATGGGA
TCCACCAATACACTGTGAGCCTGGTGACAGGGGAGTACTTGTACMATTTCACATATAGTA
I11 Hill HM IHill 11 1 hh1hi~~hhihh 1111 1
TTCACCAGTACACTCTCAGCCTTGTTACCGGGGAGTACTTGTACAATTTCACCTATAGCA
CTGACAATGATGTCACTGAATTGATTGACAATAATGGGAATTCCCTGAAGATCCGTCGGG
I if I I HI Mh hl 1 liii liii Ill 11 11 111 111i l Il11l l
GTGATAACGATGTCACCGAGGTGATGGACAGCAATGGCAACTCCTTGAACGTCCGTCGGG
ACAGCAGTGGCATGCCCCGTCACCTGCTCATGCCTGACAACCAGATCATCACCCTCACCG
I illiIhhhh 1 11 1I1h111I hh hI 111111 ill 68 4117 4045 4177 4105 4237 4165 4297 4225 4357 4285 4417 4345 4477 4405 4537 4465 4597 4525 4657 4585 4717 4645 477 7 4'705 4837 47 4897 4825 4957 4885 5017 4945 5077 5005 5137
SBJCT:
QUERY:
sBJcT:
QUERY:
SBJCT:
QUERY:
SBJtT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT!
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJTCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
5006 5138 5066 5198 5126 5258 5186 5318 5246 5378 5306 5438 5366 5498 5426 5558 5486 5618 5546 5678 5606 5738 5666 5798 5726 5858 5786 5918 5846 5978 5906 6038 5966 6098 6026 ATGCCAGCGGAATGCCCCGCCATTTACTGATGCTGATATCAGATTGTCACGCGGCCG 5065 TGGGCACCAATGGAGGCCTCAAGTCGTGTCACACAGACCTGGAGCTTGGTCCATGA 5197 1 11111 H ill11 I 111111 1 11 11 11 111i 111111 fill[1 I lii TTGATAGTGCCACATTCAGAACTGATGATAG 5125 CCAGTGACCGGTCGCACAGGGTAAAGTGCAT 5257 CTTATAACGGAACAGTGGTCTCTTAGCCGAGAGTGATACAGGATGACACAT 5185 TCTATGACTATGACCACGAGGCCGCCTGACACGTGACGCGCCCr-CGGGGGTGGTAA 5317 TTAGCAGTAGAGCCTACATTAAGCCCGATGA 5245 CCGCGACGAAGAAACATCATCTGGATCACT 5377 1 11 1 1111il11 HIIIIIIIIIIIIIIII~IIIii 111111 11111 CTAGCCTTCATCGAGAATGGAAGTCTATTACCATCGZCATTGAGAATTCTATCGGG 5305 ATGATGACGTCACTGTCATCACCACCTCTTTCGTAGAGGCCCCTACCAGTGGTAC 5437 AkTGATGATGTCACGGTCATCACATCTCTCCTCTGTGGGGCTTCCATACAGTTGTTC 5365 AAACATCGAACACGTTGATAGTCCGGGGTTT 5497 AAA-AGGGACGTCACCGTAATGATT~,GGTTT 5425 CTAATGGGATGGGTATCAGCTTCCCAGCGAGCCCCATGTCCTAGCGGGCACCTCACCC 5557 1 H l l I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CCAATGGCATGAGTATTAGCTTCACAGCGACCTCATGTCCTGGCTGGGACAGTAACTC 5485 CCCATGCCGACTTCTCCAGAATGTAATCTGG 5617 1 11111 i 1 11 11 11 11 Ill1 ll1 ll1l111 11 H il 11111 1 CCACCATAGGACGATGTAATATTTCTCTACTGGAATGGTTTGAACTCATTGAAT 5545 GGGCAGAGACGTAAGAAGCCACTGCGAGTCG 5677 GGGCGGAAACGTAAGAAGGCGGTGAGAGTAG 5605 TCCATGCGAAGAATCTCTGTCCATTGACTATGATCGTATTGACGAAJGATCT 5-737 TTCATGGAAGGAATTTGCTGTCCATTGATTACGACCGTATACGCACAGAATCT 5665
A
2 GATGACCACCGGAAGTTCACCCTGAGGATCATTTATGACCAGGTGGGCCGCCCCTTCC 5797 ACGATGATCACCGCAAGTTCACCCTGAGGATATTTACGATAGCTGGGACGCCCTTCC 5725 TCTGGCTGCCCAGCAGCGGGCTGGCAGCTGTCAJACGTGTCATACTTCTTCATGGCGCC 5857 TCGCGCACGGCTGTCGTACTTCATCTACGCC 5785 TGCGGTCGGGGCAGGGGGAAAACAAACAGCC 5917 TGGCTGGGCTTCACGCGGAGCCATGAGCG GAGACATCACAGCAGGCAGGA 5845 TCGTGTCCCGCATGTTCGCTGACGGGAGTGTGGAGCTACTCCTACCTTGACAGTCCA 5977 TCTTGGAGTGAAGGAGTTGGTCCTCTGAATC 5905 TGGTCCTCCTGCTTCAGAGCCACGTCAGTATATATTTGAGTATGACTCCTCGACCGCC 6037 1111 11 1II1111IIIIIII II 11111 1I I11I1II1I11 1I 11 11111 1 TGTCATCTAACACGATAACTGGAGTCTAACG 5965 TCTGCTACTCCGGGCCGCCGAGCAAAACCAC 6097 III 111 11 I 11 i1 11 11 IIIIIIIII111111i ij1ii II 1I TCCATGCTGTTACTATGCCTAGTGTTGCTCCTGCTGTCACTCACACGTCTGTTG 6025 GCAACGATTTCACGCGAACAGTCGCTTTATC 6157 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i l 1 1 G~~CTAGAATAATCCTAACAGACGrATTGTA; 6085 69
;Z
-n 'No
CIA
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
10
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SDJCTl:
QUERY:
SBJCT
QUERY:
SBJC:
QUERY:
SBJZ-T.
QUEIY:
SB QuzERy: Sajzr: QUElY: sBicr: 6158 6086 6228 6146 6278 6206 6338 6266 6398 6326 6458 C386 6446 6518 6628 6626 6873 680-B
GTGATGACGGCCGCATCCGAAGCCTCCTTTTTGGGCACCGGACGCCAGGTGTTCTACA
I III I II I I I II fl l 1 1 11 11111 11 1 1 11 1 1 1 1 1 1 11 1 1 11
GTGATGATGGGAGGATTTTGAAAACATCATTTTTAGGTACTGGTCGACAAGTCTTT.TACA
AGTATGGGAAACTCTCCAAGTTATCAGGATTGTCTACACAGTACCCGTCACCTTCG;
1 1 1 1 1 1 1 1 1 1 1 1 i l l 1 1 i l l 1 1 1 1 1 1 1 1 1 1 1 1 1 AGTATGGAAGCTATCCAAATTATCTGA).ATTGTTTATGACAGTACTGCGGTTACTTTGr
GGTATGACGAGACCACTGGTGTCTTGAAGATGGTCAACCTCCAAAGTGGGGGCTTCTCCT
1 11111 11111 H~i IMIIjII 1i I III 11 11111 1 11
GAAGTAATCGTTCAAATGGATGAATGGATTT
GCACCATCAGGTACCGGAAGATTGGCCCCCTGGTGGACAAGCAGATCTACAGGTTCTCCG
1 11 111 111 11 11 II11I1II 11 I If fillil1111 1f1 11111 1
GTACAATCCGCTATCGTAAAATTGGCCCTCTTGTTGACAAACAAATCTACAGATTCTCTG
AGGAAGGCATGGTCAATGCCAGGTTGACTACACCTATCATGACACGCTTCCGCATCG
I1 11 il l II I i I 11111111 11 11 11111 Il1l i f 11 i ll AC-AAGGTATGGTCAATGCAAGGTT'rGATTATACATATCACGACAATAGTTTTCGCATTG
CAAGCATCAAGCCCGTCATAAGTGAGACTCCCCTCCCCGTTGACCTCTACCGCTATGATG
CP.AGCATCAAACCCATCATAAGTGAGACTCCTCTTCCAGTTGA-ICTTTACCGTTATGATG
AGATTTCTGGCAAAGTTGAGCATTTTGGCAAATTTGGAGTTATTTATTATGATATATC
NAPTCATCACCACTGCCGTGATGACCCTCAGCAAACACTTCGACACCCATGGGCGGATCA
1I 11 11 11 11 11 1 11111 11 11 I 11 i 1 11111 11 II I AAA7TATTACTACAGCAGTTATGACACTGAGTAAGCACTTTGATACCCACGGACGCATTA
ACCAGGTCCAGTATGAGATGTTCCGGTCCCTCATGTACTGGATGACGGTGCAATATGACA
.??;,IGTTCAATATGAGATGTTCCGATCCCTGATGTATGGATGACTGTGCATATGACA
.;c.VrGGCAGGGTGATCAAGAGGGAGCTAACTGGGGCCCTATGCCATACCACGAAGT
AA;CCTATGACTACGATGGGGACGGGCAGCTCCAGAGCGTGGCCGTCAATGACCGCCCGA
I1 111111 11jj 1111 1j ill j 1 ]fi i llI 1 1 1 l i ii
IATACCTATGATTATGATGGAGATGGGCAATTGCAAAGGTAGCAGTAAATGATAGGCCTA
CC7CGCTACAGCTATGACCTAATGGGAATCTCCACTTACTGAJACCCAGGCAA~CAGTG ~TGCGCCTCATGCCCTTGC' ,rATGACCTC 6906 rTCGATTGATGCCCCTGCGCTACGACCTC 6834 6217 6145 6277 6205 6337 6265 6397 6325 6457 6385 6517 6445 6577 6505 6637 6565 6697 6625 6757 6685 6817 6745 68'77 6805 SCORE 1241 BITS (626), EXPECT 0.0 IDEN'rTMEs 1553/1862 (83%) STPAND PLUS PLUS QUERY: 1486 ACCAGCATAGACTGTGAGCAGAGTTGGTCGGCGGGTAACAAGAGTCCCACCA SBJCT: 1414 AGACTGTGGAAAAAGTGCGAGTACAGGTCCC QUERY: 1546 GGGGTGTTTTGGAGGTCACAAATTCACATCAGTCAGCCCCAGTTCTTAAAGTTCAACATC 11 i l III liii 1 i f I f I 11111 11111 111111I1III1lI11i1I SBJCT: 1474 GGAGTGTTCTGGCGGTCTCAGATCCATATCAGCCAGCCACAGTTCCTGAAGTTCAACATA QUERY: 1606 TCCCGAGAGTTTTGGTTCTAAGGATCACTTA SBJCT: 1534 TCCAGAGAGTTTCGGTTTTAAGGATCACTAA QUERY: 1666 GCCCAGTATGACTTCATGGAACGTCTGGACGGGGGAGAGTGGAGTGTGTGGTCT 1545 1433 1605 1533 1665 1593 1725
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
sBJcT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY;
SBJCT:
QUERY:
SBJCT:
QUERY:2 SBJCT:2 QUERY: 2 SBJCT1: 2 159~ 172 1654 17 8 1714 186 1774 1906 1834 1966 1894 2026 1954 2086 2014 2146 2074 2206 2134 2266 2 4 2326 2254 2386 2314 2446 2374 2506 2434 2 566 ~494 ~626 ~554 ~686 614 4 GCACAGTATGATTTCATGGAACGCTTGGATGGGAAGAGAAATGGAGTGTGGTGGAATCC 1653 6 CCAG;AGCGGAAAACTGTAATAGCTTTTCGA 1785 CCCGACGGIGATAATTG CGAGGCGTTTTCGA 1713 6CTGGATGTGGGCCTGTGGCATCTGGCCTTCTAQATGATGAAAGACAAJGAGATGGTT 1845 ITTGGATGTGGGTTTGTGGCACTGGCGTTTTAAT GATGGCAAGGACAAGAAGTGGTC 1773 TCTCAATTGCTGTCGGCGATTCCTATCAGGA 1905 1111111 III III I lII~II III1lI1lII1i 1111111 1H l III TCTCGAATATTGTCGGCAATTCCTATTAGCA 1833 GGGAGGGCGGTTTATTTCCGATCAGGAATTC 1965 11 1 H ll 11 1 1 1 11 11 11 1 111 11 11111111 111111 GGCGAGTGTGTTTCTGGTGTCTGCCACTGTTTTCCCGATTTCATGGGCAGATTGTGCT 1893 AAGTCTCCGCTTCGGGATGCAATTAGGCTCA 2025 AAGCTGCCTGCCCGGTGCTGTGCAGTGGCATGGTCAGTACTCCAGGAACCGCTTG 1953 TGTCGGCTGAGTCAATCAGTCITATCGGAC'CCT 2085 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i l l 1 1 H i l TGTCGGCCAAGCGATTAGACACGCGGATTC 2013 TCTCGGCAGCCTCTGTGGATTTTCCGTGTCA 2145 11l 11 11 11 11 11 il~ 11 11 1 I11i ij i i 11 1 1 11 1 1 1 III TCTTGGTAGTCTCTGAGGATTTTTCATGTTA 2073 GGGGATTA TGTGTGGTCACGTCGCCGGCG 2205 11l II11I~~fIiIi Hill111 1111111 11111 111111 GGGAATTAGATGTGTAGTCAAGTCACCGGCG 2133 GTGAATGGAGAATGCCTGTGCA3CCCTGGCTGGGGTGGTCTGAACTGTGAGCTGGCGAGG 2265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 GTGAACGGAGATGTCTCTGCA 'CCCAGGCTGGGGTGGATAACTGTGAGCTTCCCAGA 2.193 GTCCAGTGCCCAGACCAGTGGGGGCATGCACGTACCTGCGCACGGGCCTCTGC 2325 1 1111fIII1lI1IflIff~l~iiii 11111 H l GCCCAGTGCCCAGACCAGTGCAGTGGGCATGCACATACCTGTCTGCACCGGTCTCTPGT 2253 AGCTGCGATCCCACTGGATGGGTCCCGA--GCTCTGTTAGTGTGCTCGTAGACTGT 2385 AGTC TCACGAGGCCATCCGTAGGGTTTGCG 2313 GGCACTCACGGCGTCTGCATCGGGGAGCCTGCCGCTGTGAAGAGGCTGGACAGGCGCA 2445 GCACCCATGGGGTGTGCATTGGCGGAGCGTGTCGCTGTGGAGTGGACAGGAGTG 2373 GCTTACGGGGGCCCCCTCTGGAGGCTTAGTG 2505 GCTTACGGGGGCTCCGTTCGGAGACTTAGTG 2433 AATTATCGGGGTGAGTGAATCCATGAGAAGC 2565 AATTATCGGGGTGAGGGGATCCATGAGAAGC 2493 GGACAAAAGCGCTATGTCAGTAGGGTCCCGG 2625 GGACAAAAGCGCTATGTCAGCAGGGTCCCGG 2553 CAACGTGATTTTCAACGCGAAGCCGTCAGTC 2685 CAGAACAGCTGGCAGTGGTCTGCCAGACCGGGAGGGCCGGATGCACGTTGCC 2613 ATGACTCGGTAACAGTATAGAAGCTGGATTT 2745 111III1II1lIII111IMfIIII 111 111 1f 11 ifi li 11 11 ATGACTCGGCAACAGTAGGGGTCCTGTATCT 2673 71
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
2746 GACCCTGACTGCTGCCTGCAGTCAGCCTGTCAACAGCCTGCTCTGCGGGGGTCCCGG 2674 GTCCCAGATTGCTGCCTCCAGTCCACTTGTCCAGCCGCTGTGCGGGGTTCCCGC 2806 GACATGCTATACGGCGAGATGCGATAGCTCA 2734 GACTTGCTAAACGGCTTTGTACGTTAGCTCA 2794 GATCGAATCAAGCTCTTAGTGGGGAAGGACAGCACTCATATCATTCCAGGAATCCC 2854 TTCAACAGCAGCCTTGTGTCTCTTATAAGAGGCCAGTGGTjGACTACAGATGGAACGCCT 2986 CTGGTCGGTGTGAACGTGTCTTTTGTCAAGTACCCAAAATACGGCTACACCATCACCCGC 11 1 1 1 111111)1H ~HI IIIIh IIH ill 11 11111 11111111 1 2914 CTAGTTGGGGTCAACGTGTCATTTGTCAAGTATCCAGTATGCTATACATCCTCGT 3046 CAGGATGGCACGTTCGACCTGATCGCATGAGGTGCTTCCTGCTCTACATTGAG IIIhhhIhi hII hjIjjI i11!1 1 i 1 1i111 11 iii1111 2974 CAGGATGGCATGTTTGACTTGGTTGCTACGGTGGATCATCCCACTTGCCTTTGA 3106 CGAGCCCCGTTCATGAGCCAGGACGCACTGTGTGGCTGCCGTGGACGCTTACGCC I IhhIhhhhh 1111 11 Hill Hill 1 11 h1hI1r11 3034 CGGGCCCCATTTATGAGTCAGGAAGGACAGTATGGCTGCCGTGGACACTTCTATGCC 3266 ATGGACACCCTGGTGATGAGACCGAGGAGAACTCCATCCCCAGCTGTGACCTCGTGGC 11111111 11 11 11111 I1 II11111111I1II 111I1hI1111h1hhhhiji 3094 ATGCCCTTAGAAAAGGACCATCACGGTTATG 3226 TTTGTCCGGCCTGATCCATCATCATCTCCTCCCCACTGTCCACCTTCTTTAGTGCTGCC HI HI 11111 11 IHIIH1 11111 i IIHI H I 3154 TTTGTCAGACCTGATCCAGTCATCATTTCATCACCACTGTCAACTTTCTTCAGTGATGCT 3286 CCGGAA- CACTCTAACCGTCTAGAAACACCC Hill1I 11111 11 11 11 IIih1IIII1hhhh I 11 3214 CCGCGATCATTCAAACCGTCTAGAAATAGCC 3346 GG 3347 11 3274 GG 3275 2805 2733 2865 2793 2925 2853 2985 2913 3045 2973 3105 3033 3165 3093 3225 3153 3285 3213 3345 3273 SCORE 547 BITS (276), EXPECT E-152 IDENTITIES 540/628 ST'AND -PLUS PLUS QUERY: -782 GTCGTCCCATTCCACCTACATCCTCGCCTAGTCTCCTCCCATCTGCTCAGCTGCCTAGCT 841 S13JCT: 587 GTCGTCCCTTCCACCTACATCCTCGTCTAGCCTTCTCCCATCTGCTCAGCTGCCCGTT 646 QUERY: 842 CCAATCCACGTGTCAATCATCAAACAACCCT 901 SBJCT: 647 CTCATAATCCTCCACCAGTTAGCTGCCAGATGCCATTGCTAGACAGATACTCCCTC 706 QUEkl: 902 AATAGAACACTAGGATTTCCATCTCTCCGGA 961 sBJC-T: -707 AAATCATGGACACCAATCCTGACGAGGAGTTCTCTCCTAATTCATACC'iACTAAGAGAT 766 QUERY: 962 GCTCAGGGCCCCACAAGCCTCCAGCAGTGGCCCTCCCGIACCACCACAGCCAGTCGACTC 1021 1 1lhih11 11Hil11 Ii 1111111 1hI~~I~I~II H i III 11111111 SBJTCT: 767 GTTCAGGGCCACAGCAGGCATCCAGCAGTGGCCCTTCACCATACGCCAGTCACGC 826 QUERY: 1022 TGGCCCCCCCCCCCACAAGTTCACCATGCGC 1081 SBkJUT: 827 TGAGGCCACCTCTCCCCCCTCCTCACACCACTCGCTGTCCCATCATCACTCGTTGCCA 886 QUERY: 2082 ACCCCAAGATATACACGCGGCGTCCCCGCCA 1141 72
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT7: 887 1142 947 1202 1007 1262 1067 1322 1127 1382 1187
CTCCCAATGACCTGGCGACCACGCCTGAGTCTGTGCAGCTGCAGGACAGCTGGGTGCTCA
ACAGCACGTGCCACTGGGACCCGGCACTCCTCTTCAGACC.CCTCGGGAGCACAC
lililil~l IIIII fll III I i 11111 11 11 111 11 1
CCTTGTTCAGCAGCTCTTCCCCGGGATACCCTTGACCTCAGGACGTTTACACGCCCC
1 1 1 1 1 1 1 1 1 1 1 1 1 H ll 1 1 1 1 11 11 1 11111 i f 1 1 1 CCAAATACTGCAGCTGG-AAATGTGCTGC 1409 CCAAGTATTGTAGCTGGAATGTGCTG' 1214 946 1201 1006 1261 1066 1321 1126 1381 1186 SCORE 391 BITS (197), EXPECT E-105 IDENJTITIES 593/725 (81%) STRAND PLUS PLUS QUERY: 7156 CATGTCTACAATCACTCCAACTCGGAGATTACCTCAC:TGTACTACGACCTCCAGGGCCAC 7215 III II IIfI I fill H 1 I II I i l il 11 11 11 11 11 I 1 11 1 1 1111 SBJCT: '7084 CAGCAATATCATAAATACCCGATTACGAGCA 7143 QUERY: 7216 CTCTTTGCCATGGAGAGCAGCAGTGGGGAGArTACTATG.TTGCC.CTGATACACAGGG 7275 11 11 1 11 11 1 111 111 11 (1ilt Hilll 11 1 11 1 1 SBJCT: 7144 CTTTCAGAATGATGGAGAATTTGCCGTAAGG 7203 QUERY: 7276 ACTCCTCTGGCTGTGTTCAGCATCACGGCCTCATGATCAACAGCTGCAGTACACGGCC 7335 Hill t 11 11I l~l(I llIlIltIll 11111111 11 SBJCT: 7204 ACTCCGCTAGCCGTATTCAGCATCATGGCCTCATGATCAACAGCTTCAGTACACTGCA 7263 QUERY: 7336 TAGGAATATTATCACCGCTCGTGCTGCTC G -7395 SBJCT: 7264 TACGGAGAGATTTATTATGACCACCGATTTCCAGCTGGTTATTGGGTTCCATGGA 7323 QUERY: 7396 GGACTCTATGACCCCCTGACCAGCTGGTCCACTTCACTCAGCGTGAT-ATGATGTGCTG 7455 SBJCT:- 7324 GGGCTGTATGATCCTTTAACCAAACTCGTCCATTTTACCCAAAGGGACTACGATGTCCTT 7383 QUERY: 7456 GCAGGACGATGGACCTCCCCAGACTATACCATGTCGG AACGTGGGCAAGGAGCCGGCC 7515 11 fi l H ll 11 1 1 1 1 11 11 111 11 1 1 1 11 11 11 SBJCT: 7384 GCGAGTGC7TCGTAAAAGGAAAATGAAACTC 7443 QUERY: 7516 CCCTTTAACCTGTATATGTTAGAGCACATCCTCCAGCAGTGAGCTAGATTTGA 7575 H ill11 I 11111 1t1t111 11111 i l~llll 11 1 1 1 1 111 1111 SBJCT: 7444 CCTCACGAAGTAGGACACCCCGATACGACAA 7503 QUERY: 7576 AACTACGTGACAGATGTGAA AGCTGGCTTGTGATGTTTGGATTT'0AGCTTAGCAACATC 7635 SBJC'I: *7504 AATTATGTAACAGATGTCAA GTGTGGAGTGATCACTGACT 7563 QUERY: 7636 ATTCCTGGCTTCCCAGAGCCAATTTTCTCTCTCTTAATTAA 7695 111 1 1 111 11 1 1 1 1 H il 11 1 11 1111 SBJTCT: 7564 ATTCCTGGCTTCCCTAGAGAAAATGTACTTTGTGTACCTCCAIACGAGCTGACGAG "7623 QUERY: 7696 AGTCPAGCA GTGAGAATGGACAGCTCATTACAGGTGTCCAACAGACAA GAGAGACAT 7755 SBJCT: 7624 AGTCAAGCGTGTGAA ATGGACAGCTAATTACAGGAGTCCAGCAGAC~AACAGACAC 7683 QUERY: 7756 AACCAGGCCTTCATGGCTCTGGAGGACAGGTCATTACTAAAGCTCCACGCCAGCATC 7815 11 1Ii1ii1i1iii11i1iiiti1i1it1i11 111111 11 ili SB.JCT: 7684 ATCAAGCTTTCATGGCTCTTGAGGGAr-AGTCATATCTAAAGATTACATGCCAGTATT 7743 73 QUERY: 7816 CGAGAGAAAGCAGGTCACTGGTTTGCCACCACCACGCCCATCATTGGCAAAGGCATCATG 7875 fll IIlIII II I II II 1111I1I II I 1 11111 11111 111111 SBJCT: 7744 AGAGAAAAAGCAGGCCACTGGTTTGCAACAAGCACTCCTATTATTGGGAAAGGATCATG 7803 QUERY: 7876 TTTGC 7880 SBJCT: 7804 TTTGC 7806 SCORE =339 BITS (171), EXPECT -2E-89 IDENTITIES =429/515 (83%) STRAND -PLUJS PLUS QUERY: 7967 ACTACCTGGACAGATGCACTACAGCATCGACGGCAAGGACACCCACTACTTTGTCAGA SBJCT: 7895 ACTACCTGGAAAAAATGCACTACAGCATCGAGGGGAAGGATACTCACTACTTTGTCAAGA QUERY: 8027 TTGGCTCAGCCGATGGCGACCTGGTCACACTAGGCACCACCATCGGCCGCAAGGTGCTAG SBJCT: 7955 TAGGCTCAGCCGATAGCGACCTCGTCACCCTCGCGATGACCAGCGCGAGGAACGTCCTG QUERY: SOB 7 AGAGCGGGGTGAACGTGACCGTGTCCCAGCCCACGCTGCTGGTCAACGGCAGGACTCA I 11 11 1 11 111 1111 111 1111 If 1 If III111 1111II SBJCT: 8015 ACAGCGGAGTAAACGTGACCGTCTCCCAGCCAACCCTCCTTATCAACGGAAGGACTCGAC QUERY: 8147 GGTTCACGAAATTAGTrTCCATACTCCACCTCTCTCAGCATCCGCTATGC;CCTCA SBJCT: 6075 GGTTCACAAACATCGAGTTTCAGTATTCCACCCTGCTGATCA.CATCCGCTACGGGCTCA QUERY: 8207 CCCCCGACACCCTGGACGAAGAGAAGGCCCGCGTCCTGGACCAGGCGAGAC-AGAGGGcC SBJCT: 8135 CCGCCGACACGCTGGATGAGGAGAAGGCACGAGTGCTAGACCAGGCTCGGCAGCGAGCCC QUERY: 6267 TGCGCACGGCCTGGGCCAAGGAGCAGCAGAAAGCCAGGGACGGGAGAGAGGGGAGCCGCC SBJCT: 8195 TGGGGTCGGCCTGGGCCAAAGAGC-AGCAGAAGGCACGGGATGGCCG-CGAGGGCAGCCGCG QUERY: 8327 TGTGGACTGAGGGCGAGAAGCAGCAGCTTCTGAGCACCGGGCGCGTGCAAGGGTACGAGG SBJCT: 8255 TAT GGACAGACGGAGAGAAGCAACAGCTTCTGAACACGGGAAGGGTTCAAGGTTACGAGG QUERY: 8387 GATATTACGTGCTTCCCGTGGAGCAATACCCAGAGCTTGCAGACAGTAGCAGCAACATCC SBJCT: 8315 GATATTATGTCTTGCCTGTGGAGCAGTACCCAGAGCTAGCAGACAGTAGCAGCAACATCC QUERY: 2447 AGTTTTTAAGACAGAATCAGATGGGAAAGAGGTAA 8481 SBJCT: 8375 AGTTTTTAAGACAGAATGAAATGGGAAAGAGGTAA 8409 8026 7954 8086 8014 B146 8074 2206 8134 8266 8194 8326 8254 8386 8314 8446 8374 u SCORE 323 BITS (163), EXPECT IE-84 IDENTITIES 397/475 (83%) STRAND PLUS PLUS QUERY: 299 GACACCGCTCTTTGACCAGAGGACGCTGTGGCA)AGAGTGTCGCTACACAAGCTCCTCTC 358 111111ll111II11 11lt 1I 11 It 11 Ilt11h 1H 1lt 11 11 11 It 1 SBJCT: 20 GACACCGCTCTTTGACGAGAGGCCGGTGCGGGAAGGAGTGTCGCTATACTAGTTCTTCAC 79 QUERY: 359 TGGACAGTGAGGACTGCCGGGTGCCCACACAGAAAkTCCTACAGCTCCAGTGAGACTCTGA 418 SBJCT: 80 TCGAC-AGTGAAGACTGCAGAGTACCAGCTCAGAAGTCCTACAGCTCCAGTGAGACCCTGA 139 QUERY: 419 AGGCCTATGACCATGACAGCAGGATGCACTATGGAAACCGAGTCACAGACCTCATCCACC 478 1I t1 ill ItIItI IhthIIIIt il III Ittlill III SBJCT: 140 AAGCATATGGCCATGACACGAGGATGCACTACGGAAATCGAGTTTCAGACCTGGTTCACA 199 QUERY: 479 GGGAGTCAGATGAGTTTCCTAGACAAGGAACCAACTTCACCCTTGCCGAACTGGGCATCT 538 SBJCT: 200 GGGAGTCGGATGAGTTTCCAAGGCAAGGMCGAACTTCACCCTTGCAGACTGGC-ATCTI 259 QUERY: 539 GTGAGCCCTCCCCACACCGAAGCGGCTACTGC~TCCGACATGGGGATCCTTCACCAGGGCT 598 74
SBJCT:
QUERY:
SEJOT:
QUERY:
SBJCT:
QUERY:
SBJCT;
260 GTACCCCCACAGGCATGTGAAAGAATCTAGC 319 599 ACTCCCTTAGCACAGGGTCTGACGCCGACTCCGACACCGAGGGAGGG TTCTCCAGAAC 658 320 ATTCCTTGAGCACTGGCTCTGATGCTGACTCAGACACGGAGGCGGGATGTCTCCGAGC 379 659 ACCACGCGGGCGGGTAATCGCCGTCGCGCAT 718 380 ACGCGATCAGGCTGTGGGGAAGAGGGATCTCCAGCCGTTCTGCCTGTAGTC 439 719 GTGAAAACTCGGCCCTTACCCTGACGACTCTACACGAAA ATCAGATGA 773 440 GTAU CGTTACCCCGCCGCATAACATAAG 494 The full FCTR3a amino acid sequence also has 342 of 383 am-ino acid residues (89%) identical to, and 342 of 383 residues positive with, the 276 amino acid residue Odd Oz/ten-m homolog 2 (Drosophila) (GenBank Ace: NP_035986.2) (SEQ ED NO:68) (Table 3P).
Table 3P. BLASTP of FCTR3a against Odd Oz/ten-ni honiolog 2 (SEQ ID NO:68) >GI176574I5IREFINP 035986.21 ODD OZ/TEN-M HOMOLOG 2 (DROSOPHILA); ODD OZ/TEN-M HOMOLOG 3 (DROSOPHILA) (MUS MUSCULUS] GII4760?78ID8J1BAA77397._11 (AB025411) TEN-M2 (NtIS MLYSCULLJS] LENGTH 2764 SCORE 495 BITS (1274), EXPECT E-139 IDENTITIES 342/393 POSITIVES 342/383 GAPS 41/363 QUERY: 37 HNPP PVS CQMPLLDSNTS.QIMDTN PDEE FS PNSYLLRACSGPQQAS SSG PPNjHH5QSTL 96 11111111 111 111111111111111 1111111111111111 ii 11111111 111111 SBJCT: 189 HNPPPVSCQO2PLLDSNTSHQIMDTNPDEE FSPNSYLLRACSGPQQASSSGPPNHJISQSTL 248 QUERY: 97 RPLPHHLHHSNLRSTRRQHPPPDATEVLDWL 156 3 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SBJCT: 249 RPPLPPPHNHTLSHHSSANSLNRNSLTNRSQIHAJPAPAPNDLATTPESVQLQDSWVLN 308 QUERY: 157 SNVPLETRHFLFKTS 5GSTPLFSSSS PGYPLTSGTVYTPPPRLLPRNTFSRKAFLjKPS 216 SBJCT: 309 SNVPLETRHIiFKlTSSGSTPLFSSSS PGYPLITSGTVYTPPRLLPRNTFSRKAFKLKKPS 368 QUERY: 217 243 SBJCT: 369 KYCSWKCAALSAIAAALLLAILLAYFIAMHLLLNWQLQPADGHTE'NGTGLPGNDDV 428 QUERY: VPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQPQFLKNI SLGKD 295 SBJCT: 429 ATPGKPSKSISEEGRTQVPVWSIIQQLFILK 48 QUERY: 296 ALFGVYIRRGLPPSHAQYDMELDGKE WSVVESPRERRSIQTLVQNEAVFVQYLD)VGL 355 SBJCT: 489 ALGYRGPSAYFELGEWVEPER9QLQEVVYDG 548 QUERY: 356 WHLAFYNDGKDKEMVSFNTVVLD 378 1 11 1 1 1 1 1 1 1 1 SBJCT: 549 WHLAFYNDGKDKEMVSFNTVV.D 571 The full FCTR3b amino acid sequence has 2442 of 2802 amino acid residues (87%) identical to, and 2532 of 2802 residues positive with, the 2802 amino acid residue teneurin-2 [Gallus gallus] (GenBank Acc: AJ27903 1) (SEQ ED NO:69) (Table 3Q).
Table 3Q. BLASTP of FCTR3a against Teneurin-2 (SEQ ID NO:69 >GI11O241574IEMBICAC09416.ll (AJ279031) TENEURIN-2 (GALLUS GALLUS] LENGTH 2802 SCORE 4853 BITS (12589), EXPECT 0.0 IDENrITIES =2510/2802 POSITIVES 2600/2802 (90t), GAPS =69/2802 QUERY: 1 SBJCT: 1 QUERY: 61 SBJCT: 61 QUERY: 121 SBJCT: 121 QUERY: 169 SBJCT: 181 QUERY: 213 SBJCT: 241 QUERY: 233 SBJCT: 301 QUERY: 333 SBJCT: 36].
QUERY: 393 SBJCT: 421 QUERY: 412 SEJOT: 481 QUERY: 472 SBJCT: 541 QUERY: 532 SBJCT: 601 QUERY: 592 SBJCT: 661 QUERY: 652 SBJC1': 721 QUERY: 712 SBJcT: -781 11+ 1- i 1111 1111111 111111111 i 11111 1111 11 I 11+1 111111 MDIKDRRHRSLTRGRCGKECRYTS S S LDSEDCRVPAQKsys S SET LKAYGHDTRMHYGNR
VTDLIHRESDEFPRQGTNFTLALGICESPHRSGYCSDGILQGYSLSTGSDADSDTE
VSDLVHRESDEFPRQGTNFTLAELGI CE PSPHRSGYCS DIGI LHQGYS LSTGS DADS DTE
GGNSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDENG-------------
GGMS PEH'AIRLWGRGIKS SRSSGLS SRENSALTLTDSDNENKSDEENDFHTHLSEKLKDR RPIPPTSSPSLLPSAQLPSSHNPPPVSCC.1PLLDSNTSHQIMDT QTSWQQL.AETKSLIRRPI PPTSSSSLLPSAQLPSSHNPPPVSCQM4PLLDSNTSHQIMDT NPDEE FS PNSYLLRACSGPQQAS SSGPPNHSQSTLRPPLP PPHNHT LSHHHS SANSLNR NPDEE FSPNSYLLRIACSGrQQASSSGPSN$HSQSTLRPPLPPPNHSLS.HSSANSLNR )O()XXXXXQIHAPAPAPNDLATT PESVQLQDSWVLNSNVPLETRHFLFKXooXXXXYjXX SS PGYPLTSGTVYTPPPRLLPRNTFSRNAFKLPSYCSWKCLSAIVLAILLA
PWSLKNSSIDSGEAE
YFIAMHLLGLNWIQLQPADGHTFSNGLRPGAAGAEDGAPPAGRGPWVTRNSSI
OSGETE
VGRRVTOEVPPGVFWRSQIHI SQPQFTLKFNI SLGKDALrGVYIRRGLPPSHAQYDMERL VGRKVTQEVPPGVFWRSQIHISQPQFLKFNI SLGKDiALFGVYIRRGLPPSHAQYDFMERL DGKEKWSVVESPRERRS IQTLVQNEAVFVQYLDVGLWHLA2FYNDGKDKmEMVSFNTVVLDS DGKEKWSVVESPRERRS IQTLVQNEAVFVQYLDVGLWHLAFYNDGKDEVVSFSTVILDS VQCRCGNEVGCCFG
SCAACVGNGQYSKGTCLCYSGWKGPE
CDVPMNQCI DPSCGGHiGSCIDGNCVCSA3YKGEHCEEVDCLDPTCSSHGVCVNGECLCSP CDVPI SOC DPSCGGHGSCIEGNCVCS IGYKGENCEEVDCLDPTCSNHGVCVNGECLCSP GWGGLNCELARVQCPDQCSGHGTYLPDTGLCSCDP
GPDCSCSVDCTHCIGG
GWGGINCELPRAQCPDQCSGHGTYLSDTGLCCDPFGPDCSVCSVDCGTHGVCIGG
ARCEEGTGAACDQRVCHPRCIEGTCDGKCECREGWNGEHCIGRQTAGTETDGCPD
1l1111llII 11111111111 111111111111111111111111111l 11111HIM
ACCEWGADRCPCEGCDKCCEWGHTGQTTTGP
76
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
77 2 841 832 901 892 961 952 1021 1012 1081 1072 1141 1132 1201 1192 1261 1252 1321 1312 1381 1372 1441 1432 1501 1492 1561 1552 1621 1612 1681 1672 1741 1732 1801 1792 LCNGNGRCTLGQNSWQVCQTGWRGPGCNVTSCA-NKNEGDGLVDCLDPDCCLQSA 831 LCNGNGRCTLGCNSWQCVCQGWRGPGCVAMTSCADMK0NEGDGLVDCLVPDCCLQST 900 ti1111 +t111 4 IIII lIII IM liiIl illil l CQSLRSDLIQSSSAKFYRKLGDTIPEPNSVL 960 RGQVVTTDGTPLVGVNVSEFVKYPKYGYTITRQDGTFLINGGASLTLFEAPFSQER 951 1 1 1111 11 111 111111 11 111 1 11111 1 111 11 1 1 1 I I I +IIIl IIII I11I11I1I1 I RGQVVTTDTPLVGVNVSFVKYPKYGYTITRQDGMFDLVGGSSLTLHPAPFSQER 1020 TVWL PWN SFYA1IDTLVK1TEE NS IPS CDLS GVR PD PI II S SPLST FFSAAPGQN PIVPE 1011 TVWLPWNSFYADTLY EENSIPSCDLSGFVRPDPVIISSPLSTFFSDAPGNPIVPE 1080 TQVLREEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLIRVHLMVAVEGHLFQK 1071 TQVLHEEIEVPGSSIKLIYLSSRTAGYKSLLKIIMTQSLVPLNLIVHLVAVEGHLFQK 1140 1 113M SFAPLYFWKDYQVYLDVSGEECSIWKTLQFL 1200 PSNLGGWSLDKHHILNSGILHKGTGENQFJLTQQPAIITSIMGGRS ISCPSCNGLA 1191 P SN LGGWSLDRHHiVLNVKSG ILH(GNGENQF'T QQPAVIT S IGNGRRS I S CPS CNGLA 1260 EGKLFAAGDSYGFYRIFSNTIERKFHNPHYL 1251 EGKLPAAGDSFGFYRIFSNTIERKFHNPRYL 1320 VD PVS GSLVS DTNSRRIYRS LS GTKDLAGN S EVWATGE QC L FDERCG GGKI D 1311 AT LMS PRG IAVDK1GLMY FV DATM I KV DQNG I I STL LGSN DLTAVR PL S CDSSMDVAQV 1371 ATLMS PRGICAVDKYGIMYFVDATMI RKVDQNG I IS TLLG SN DLTAVR P LS CDS SmDV SQV 1440 RLEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQVPGIDYSLSKXXXXX 1500 1 1 1 11 11 11 +II I -IIIII I 11 1 1111 11 1 11111 1 1 1111111 11 ALE SASAIAl SHTGVLYI SETDEKKINRLRQVTTNGE ICLLAGAA DCDCKNDVNCNCYS 1560 GD DAYATDAILNS PS SLAVAPDGT I YADIGN I RIRAVSKNKPVR FNQYEAAS PGEQE 1551 1l1 11111111 111111111111111 iii I 1111111 1+4lI1-+-1+1111111 Hill I LYFAGHYVLTELNTSDDTLDNNLIPDSMRLM 1611 1 11 11111 1111 11 ti+ I l Iii I I111 III+IIII I I*I I I1 I Il I 4 Il II 1II11II1 LYFAG~QTSVGYYFYSNVEMSGSKRDSMRLM :1680 DNQIITLTVGTNGGLKVSTQNLELGLMTYIYNTGLLATKS DETGWTTFYDYD0EGRLTN 1671 DNITAGNGKVTTEGMYNNGLTSEGTFDDER7 1740 VTPGVSHEESTDESRDVVTLSEST QQRSQC 1731 VTPGVSHEiKIIINNDDTINSVAYVQQRSQC 1800 NGLVYNMIFSPVA~TTIRMSPEGNIWLKQKK 1791 Il 1ii1111 11111 tilII111111 111111111111 1+IIIIIIIIIIIIIIII NGTLNV~YANGMSISFHSEPI1VLAGTVTPTIGRISLPMENGLNSIEWRLRKEQIKGKV 1860 T I FGRKaLPVHGRNLLS I DY DRNIRTEKI Y DRFTLR~-I I YDQVGRP FLWLPS 3GLAAJVq 1851 77 SBJCT: 1861 TVFPLRVHGRNLLSIYDRNIRTEKIYDD11K1TLRI IYDQLGRPFLWLPSSGLAAVN 1920 QUERY: 1852 VSYFFNGRLAGLQRGMSERTDIDKQGRIVSRFADGJWSYSYLDKSMJLLLQSQRQYI 1911 SBJCT: 1921 VSYFFNGRLAGLQRGAM~SERTDIDKQGRIISRM ADGKWSYTYLEKSMVLLLQSQRQYI 1980 QUERY: 1912 FEDSRLVMSAHMTTIYINYPEHSIDSDRLTF 1971 SBJCT: 1981 FEDSRHVMSAHMTTVYINYPENS OSDRLTFL 2040 QUERY: 1972 GTGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVIKJMVNLQSGGFSCTIRYPJ(IGPLV 2031 SBJCT: 2041 GTGRQVFYKGKLSKLSEIVYDSTAVTFGYDETTGVLJG4VNLQSGGFSCTIRYPJIGPLV 2100 QUERY: 2032 DKIRS-GVAFYYDSRA KP1STPPDYYEISKEFK 2091 SBJCT: 2101 DKIRSEMNRDTHN RA KP E LVLRD GVHFK 2160 QUERY: 2092 GVIYYDINQIITTAVMTLSK{FDTHGRIKEVQYEMFRSLMYWM TVQYDSMGRVIKRELKL 2151 11111 ii IIIiI II IIIII IIII IIIIIIII HiI M111 SBJCT: 2161 GVIYYDINQI ITTAVMTLSKHFDTHGRIKEVQYEMFRSLMWMTVQYDSMGRVTKPELK 2220 QUERY: 2152 GPYANTTKYTYDY DGGQLQSVAVNDRPTWRYSYDXXXXXXXXXXXXSVRLMPLRYDLRD 2211 tt i,11111111111!iuui SBJCT: 2221 CPYANTTKYTYDYDGDGQLQSVAVDRPTWRYSYDLNGNLLLNPGNSVRMPYDLRD 2280 QUERY; 2212 RITRLGDVQY1IDDDGYLCQRGSDIEEYNSKGLLTR.YNKASGWSVQYRYDGVGRPASYK 2271 11111 1 1+I 11111 11+11 1111 1+-9I111111 1111111111+1 1+11 11111+ 1111 1ii SBJCT: 2281 RITRLGDIPYKIDDDGFLCQRGSDVFEYNSKGLLTRAYNKAGNVQYRYDGLGRRASCK 2340 QUERY: 2272 TNLGRHLQYFYSDLHNF$TRITHVYNHSNSEITSLYYDLQGHLFAJESSSGEEYYVASDNT 2331 SBJCT: 2341 TNLGHHLQYFYADLBNPTRVT1YNHSNSEITSLYYDLQGLFAESSSGEEYYVJASDNT 2400 3S QUERY: 2332 GTPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHGGLYDPLTKJVHFTQRDYDV 2391 SBJCT: 2401 GTPLAVFSINGLMIKQLQYTAYGEIYYSNPDFQLVIGFHGGLYDPLTKLVHFTQRDYDV 2460 QUERY: 2392 LAGRWTSPDYTMWKNVGKEPAPNLYM1FKSNNPLSSELDLKNYVTDVKSW- VMFGFQLSN 2451 SBJCT: 2461 LAGRWTSPDYTMHKIGREPAPnLYMFKSNNPLSNELDLYVTDVKSWLVMFGFQLSN 2520 QUERY: 2452 11 PGFPRAY YFVPPPYELSESQASENGQLITGVQQTTER1{NQAFMALEGQVITKcJLpAS 2511 415 iii1111 +1 1111111111111111 111111 +1+1111 SBJCT: 2521 IIGPAMFSPETSAEGLIGQTEHQFAEQIKLA 2580 QUERY: 2512 IREYAGHWFTTTPIIGKGIMFAIKEGRVTTGVSSIASEDSPKVASVLNNAYYLDKMUYS 2571 SBJCT: 2581. IREKAGHiWFATSTPIIGKGIMFAVKKGRVTTGISSIATDDSRKIASVLNSHYEKMYS 2640 QUERY: 2572 IEGKDTHYFVKIGSADGDLVT GTIGRKVLESGVNVTVSQPTLLJNGRTRRFTNIEFQY 2631 SBJCT: 2641 IEGKDTHYFVKIGSADSDLVTLA TSGRKVLDSGVNVTVSQP'rLLI4GRTRRFTNIEFQY 2700 QUERY: 2632 STLLLS IRYGLTPDTLDEEKAVLDQARQRAGTAWACQQARDGREGSRLWTEGEKQQ 2691 SBJCT: 2701 STLLINIRYcG., ADTLDEEKARVLDQARQRALGSAWAI(EQQKARDGREGSRVWTDGEKQQ 2760 QUERY: 2692 LSTGRVQGEGYYVLPEQYPELADSSSNIQFLRQNEMGKR 2733 SBJCT: 2761 LLNTGRVQGYEGYYVLPVEQYPELADSSSNqIQFLRQHEMGKR 2802 The FCTR3bcde and f amino acid sequences have 1524 of 2352 amino acid residues identical to, and 1881 of 2532 residues positive with, the amino acid residues 429-2771, 93 of 157 residues identical to and 118 of 157 residues positive with amino acid residues 1-155, and 59 of 152 residues identical to and 68 of 152 residues positive with amino acid residues 211-361 of Ten-m4 [Mus inusculus] (ptnr: GenBank Ace: BAA77399.1) (SEQ ID NO:70) (Table 3R).
Table 311- BLASTP of FCTR3b, c, d, e, and f against Mus musculus Ten-m4 (SEQ 111 >GI14760782IDBJIBAA77399.11 (AB025413) TEN-M4 [MUS MUSCULUS) LENGTH -2771 SCORE 3089 BITS (8008), EXPECT -0.0 IDENTITIES 1524/2352 POSITIVES 1881/2352 GAPS -28/2352 QUERY: 40.1 SBJCT: 429 QUERY: 46;.
SBJCT: 489 QUERY: 516 SBJCT: 549 QUERY: -7 SBJCT: 6C9 QUERY: C3C SBJ.-r: 665 QUERY: 696 SBJ-T: 729 QUE'RY: SBJC T: -169 Q:JERY: 8 1 SBJ--T: 849 QUERY: 874 SBJCT: 909 QUERY: 934 SBJCT: 969 QUERY: 994 SBJCT: 1029 QUERY: 1054 SBJCT: 1089 KNS SI DSGEAEVGRRTQEVPPGVFWRSQIHISQPQFLKNI SLGKDALFGVYITRRGLPP '160 1 1+11 1+1 1 1 11 1 1 lII+III 1 +1 1+ 11ii E-DSF:-DSGEIDVGASQKIPPGTFWRSQVFIDHPVHLKNVSLGKALVGIYRGP 488 SHAQYDFMERLDGK--EKWSVVESPRERRSIQTLVQNEAVE- 2YLDVGLWHA'YND 515 11 1~ 111+ 1 1+ I1+ 1 +1 1+1111 1+11111111 SHTQFDFELLDGRR1LTQEASLEGPQRQSRGPVPPSSHETGFIQYLDSGIWHLM 548 GKKMSNVLSQCRCGGCVGCCPFGOAACVCGG 575 I11+ 1+11 1 I *I 11 111+14- 11 I Iil I 1111 1 11 1 11 1 SKE EWVS FLTTAIESVDNCPSNCYGNGDCISGTCHCFE FLGPDCGRASCPVLCScNGQ 608
YSKG
7 CQCYSGWKGAECDVPMNCIDPSCGGHGSCIDGNVCSAGYKGEHCEEVDLP 635 YMG-.CRCLCHSGWKGACDVPTNQCIDVACSSHGTCIMGTCINPGYKGESCEEDMP 668 ZSS IISVCVNGECLCS PGWGGLNCELRVQCPDQCSGHTYLPDTGLCSCDPNWYGPDCSV 695 ,1 111 11 11 111 11 1 1ii II 1111111 1+1-1l11114Il11+I 1 111- CfSRGV-VRGECHCSVGWGGTNCETP14ATCLDQCSGHo-FLPDTGLCNCDPST~DS 728 EVSDGHVIGCCEWGADQVHRIHTKGCCEWGH 755 E CADCGGHGVCVGGTCRCEDWkMGAACDQPACHPRCAHGTCRDGRCECSPGWGC 788 TI CRQTAGTETDGCPDLCNGNGRCTLGQNSWQCVCQTWRGPGCVAETSCADNDE 815 4-li! il~liilli I I 1111 i 1+ +111- 14j 1 111+1I IAHYLDRVVKEGCPGLCNGNGRCTLDLNGWHCVCQLGWRGTGCDTSMETGCGDGDD 848 Ix -LVI)CLDP)CCLQSACQNSLLCRGSRDLDIIQQGQTDWPAKSFYDRKLG 8-73 111 11+1111111 1 I I 1111111+ 1 1I~ l 1+11 DGLVDCMDPDCCLQPLCHIPLCLGSPDPLDIIQETQAPVSQQNNPFDRIKFLGD 908 TliIIPGENPFNSSLVSLIRGQVTTDGTPLVGSVKPKGYITRQDGTFDLIN 933 SASLTLHFERPQERTVW LPWNSY FYDLVM!ESI PSCDLSGFVRPDPI IISS 993 1 I+ IlIII4--eII 1+1111+ 1+ 1+1+11+ 111 1111111 I 11+1++ 1 GIILFRPIQHLLWRFMEIMHEEPCLNARPVP 1028 PLTFAPQPVEQLiEEPSNKRLSTGrSLIMQTP 1053 I-H-I I+ 11111 1 1 111 I H IM 111I++ 1+1 PLTSFASSCAKGPIVPEIQQEEIVIAGCKRLSYLSSRTPGYESVLRISLHT 1088 NLIRVHLMVAVEGHLFQKS FQASPNLASTFIWD1 DAYGQRVYGLSDAVVSVGEYETCP 1113 NLKHMAERE.WAADS'FWKDYQVGSAVVYYEC 1148 QUERY: 1114 SLLERALGEDSLGSDMINKG KTEQLQP:IS11L73 SBJCT: 1149 DLLERALGEDSLGSDRHLISIHGGNFSQPIS 1208
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJCT:
QUERY:
SBJCT:
QUERY:
SEJCT:
QUERY:
SEJUT:-
QUERY:
1174 MGNGRRSISCPSCNGLAEGNKLLAVALAVGIDGSLYVGDFNYrRRIFPSNJTSILEL 1209 MGGRSI PCGAGKLAVLCSDSYGFYIR FPS GNVTN ILEM 1234 RNKEFKHSNNPAHKYYLAVDPVSGSLYVSDTNSRRIYRVXSLSGTKDLAGWSEWVAGTGE 1269 RNKDFRHSBSPAHKYYLATDPMSGAVFLSDTNSRRVFKVXSTTVVICDLVKIISEWVAGTGD 1294 QCLPFDEARCGDGGKAIDATLMSPRGIAVDKN'GLHYFVDATMIRKVDQNGIISTLLGSND 1329 QCLPFDDTPCGDGGKATE-ATLTNPRGITVDKFGLIYFVDGTHIRRVDQNGIISTLLGSND 1354 LTAVRPLSCDSSMDVAQVRLEWPTrDLAVNPMDNSLY-VLENNVILRITENHQVSI
IAGRPM
11+ 1111111 is-- 11.1.1111jil111+++ i 1+11111 1389 LTSARPLSCDSVMEISQVRJEWPTDSAINPNDNSLYVLDNNVVLQISENRQVRIVAGRPM 1414 HCQVPGID-YSLSICXXXXXXXXXXXXXXXXTGVLYITETDEKKINRLRQVTTNGEICLL lillill1 11 i 111 H l i lii1- i -lI+ 1449 HCQVPGIDHFLLSKVAIHATLESATALAVSHNGVLYIAETDEKKINRIRQVTTSGEISLV 1473 AGAASX)XIUCOCJCJOXYSGDDAYATDAIN~SPSSIJAVAPDGTIYIADLGNIRIPVSKN IlI 1 +1111 i1 11 11+111111l ii +I+lII1llill 1I 1509 AGPGDKDNDFGDYKALNPSACDEYALNRRIK 1533 KPVLNAFNQYEASPGEQELYVFNADGIHQYTVS:VTGEYLYNpFyYSTDNDVJflEL~IDNJ 11 11 1 11 +11i +1i 1i+1+- 1 1 11 11 11+11i1111i4 1 I Is- 11ii 1569 rBFLNTQNNYELSSPI DQELYLEDTSGKHLYTQSLTGDYLYNErYTGDGDITHITDNNG 1593 NSLKIRRDSSGMPRHLIIPDNQIITLTVGTNGGLKVVSTQNLELGLTYDGNTGLJATKS -I i- +1 1 1+111 1+ I +f-I4* 1 1+ I +11 i-1 +11 ii1+i 114 Ili 1 1629 NMNVRRDSTGMPLWLVVPDGQVYWVTMGTNSARSVTTQGHELA4NTYHGSGLJ\TKS 1653 DETGWTTFYDYDHEGLTNVTRPTCWVTSLHREMESITIDIENSNRDDDV,1ThITNLSSV s-I M 1 1 1 1111Ii1 11 1+1 s+ IJill+ Jili+ 1689 NENGWTTFYEYDSFGRIJTNVTFPTGQVSSFRSDTDSSVHVQVETSSK-
DDVTITTNLSAS
1713 EASYTVVQDQVRNSYQLCINNTLRVMYAGGISWHSEPHVIJPGTITPTIGRCNISLPME 1748 GAFYTLLQDQVRNSYYIGADSLRLLLANGMEVALQTEPHLLAG'VNPTVKNVTLPID 1773 NGLNS IEWELRlCEQIKGKVTIFEGRKLRVHGRNLLS
IDYDRNIR-TEKIYDDHRKFTLRIIY
lilt +si i 1 1 i l 11+1 1 1 Iii lii +I 11 I i 1111 i i1l1 iI11+1 1808 NGNVWQKQRQTFRLVNRLSDDVREIDRKTRL 1833 DQVGRPFLWLPSSGLAAVNVSYFFNGRLAGLQRGAMSERTDIDKOGRIVSRFADGKVWS 11 111 Ii liii 11 1 1111 I4-I-~ ii 1I1I 14-11111+11 1868 DQAGRPSLWS PS SRLNGVNVTYS PGGHIAGI QRG IMSERMEYDQAGRIT SRI FADGQ4WS 1893 YSLKMLLSRYFYSDLAVMSAHMTTIYRINPS 1+l1-Iii111iI iI11iis+1s+j11+1111+111-s is-I 1 +1Jill 111 1 1928 YTYLEKSMVLHLHSQRQYIFEFDErNDRLSSVTMPNVARQTLETIRSVGYYRNIYQPPEGN 1953 ASVIFDYSDDGRILKTSFLGTGRQVFYKYGKLSKLSEIVYDSTAVTFGYDETTGVhK4VN Ji ll I 1i +1i I +I i1 1+1 111ii 1 +11+ 1+1 IJi-- I- i l 1+11 -4i 1988 ASIDTDHLTYGGRIKGKSLELDTVFYEAMKV 2013 LQGFCIYKGLDQYFSEMNRDTRN RA IKPVI SET PLP 2048 LQNEGrCTIRYRQIGPLI DRQIR-EGVNARFDYNY- DNS FRVTSMQAVINET PLP 2073 VDLYRYDEISGKVEHFGKFGVIYYDINQIITTAVMTLSKIFDTHGRIKEVQYEMFRSLjY liii ii I liii iii l1ii? +111 +11+11111 ii iI-I +111-Iii?1 2107 IDLYRYDDVSGKTEQFGKFGVIYYDINQIITTAVMTHTKHFDAYGRMKJCVQYEIFRSLMY 2133 WMTVQYDSNGRVIKRELKLGPYAHTTKYTYDYDGDGQLQSVAVNDRPTWRYSYDXYJOXa 11111 11+1+? I lii II-1111~i 1 +1i i 1141-+ 111111? i 2167 WMTVQYDNMCRVVKKELKVPYANTTRYSYEYDADGQLQTVSINDKPLWRYSYDLNGNLi 2193 XXXXXXSVRLMPLRYDLRDRITRLGDVQYKI DDDGYLCQRGSDIFEYNSKGLLTRAYNgA ii illiiiiillil-ii~iil +III 1233 1268 1293 1328 1353 1388 1413 1448 1472 1508 1532 1568 1592 1628 1652 1688 1712 1747 1772 1807 1832 1867 1892 1927 1952 1987 2012 2047 2072 2106 2132 2166 2192 2226 2252 OSBJCT: 2227 LLSPGNSARLTPLRYDLRDRITRLGDVQY KDEDGFLRQRGGDVFEYNSAGLLICAYNRA 2266 cIQUERY: 2253 SGWSVQYRYDGVGRRASYKTNLGRHLQYFYSDLHNPTRITHVYNHSNSEITSLYYD)LQGH 2312 S 5 SBJCT: 2287 SGWSVRYRY DGLGRRVS SRS SHSHRLQFFYADLTNPTKVTHLYNHSS SEITSLYyDLQGH 2346 -n QUERY: 2313 LFAM~ESSSGEEYYVASDNTGTPLAVFSINGLMIKQLQYTAYGEIYYDSNPDFQMVIGFHG 2372 'Noi 1 1 II 11111111 111)11+ It i111111 1+-Iji+jI-++i-I +11 SBJCT: 2347 LFANELSSGDEFYIACDNIGTPLAVFSGTGL4IKQILYTAYGEIYMvTNPNFQIIIGyjjG 2406 QUERY: 2373 GLYDPLTKLVHFTQRDYDVLAGRWTSPDYTMWIQVGEP-APNLn4FKSNNPLsSELDL 2431 1 111111111 l ,11111111111 I+I+11 I 1 1 11 1 414-1 -1 1+ llSBJCT: 2407 GLYDPLTKLVHMGRRT)YDVIAGRWTSPDHELPKRLSSNSIVPFHLYMFKNNNPISNSQDI 2466 CN 15 QUERY: 2432 K<NYVTDVKSWLVMFG;FOLSNIIPGFPRAKtAYFVPPPYELSESQAS EFNGQLrTGVQQ 2487 SBJCT: 26 CTTDNWL GQHV G KDDMEPYLHQKQWNSSILVC22 SBJCT: 2527 EVQKQLKAFVTLERFDQLYGSTITSCQQAPETEKK---- FAS SGS IFGKGVKFALKDGRVT 2582 QUERY: 2542 TGVSSIASEDSRCVAL .LNNAYYLDKMHYSIEGDTHYFVXIGSADGDLVTLGTTIGRKV 2601 -+4-I1 -III4-4-If11+I)II4-I++I+ I I II II I II++III1 11 +1I+ SEJOT: 2583 TDI ISVANEDGRRIAAILWNAHYLENLHPTIDGVDTHYF-VKPGPSEGDIAILGLSGGRRT 2642 QUERY: 2602 LESGVNVTVSQPTLLVNGRTRRFflIIEFQYSTLLLSIRYGLTPDTLDEECARVLDQARQR 2661 IIi) 111111) I III 1+141+ II I 111 1+1111 111 1i-- ii SBJCT: 2643 LENGVNVTVSQINTt4LSGRTRRYTDIQLQYRALCLNTRYG TTVDEEKVRVLELARQR 2699 QUERY: 2662 A.LGTAWAKEQQKARDGREGSRIMTEGEKQQLLSTGRVQCYEGYYVLPVEQYPEI.ADS SSN 2721 SBJCT: 2700 AVRQAWAREQQRLREGEEGLRAh'TDGEKQQVLNTGRVQCYDGFFVTSVEQYPELSDSANN 2759 QUERY: 2722 IOFLRONEMGKR 2733+ I 1+11+111+1i-I- SBJCT: 2760 IHFNRQSENGRR 2711 SCORE -161 BITS (407), EXPECT 2E-37 IDENTITIES 93/157 POSITIVES 118/157 GAPS 4/157 QUERY: 1 NDVYDRR-RRSLTRGRCGKECRYTSSSLDSEDCRVPTOESYSSSETLKAYDDSRMHYGN 59 ill +1 +11111- 14- l1i 111111 111+' I lil1lilli 11111 11+- SBJCT: 1 MDVKERKPYRSLTRRR- UAERRYTSS SADSEEGKGP-QKSYSSSETLAYDQDARLAYGS 58 QUERY: 60 RVT DL IHRE SDE FPRQGTN FTLAELG ICEPS- PHASGYCS DMGI LHQGYS LSTGS DADS D 118 I1I1 ji+ t++ii I jul11I III+ I +f II I I 111+ liii SBJCT: 59 RVKDMVPQEAEEFCRTGTNI'LRELGLGEMTPPIIGTLYRTDIGLPHCGYSMGASSDADLE 118 QUERY: 119 TEGGNSPENAIRLWGRGIKSRRSSGLSSRENSALTLT 155 SBJCT: 119 ADTVLSPERPVRIJWCRSTRSGRSSCLSSRANSNLTLT 155 SCORE -72.1 BITS (176), EXPECT 8E-11 IDENTITIES 59/152 POSITIVES -68/152 GAPS 42/152 (27%) QUERY: 285 PAPAPND--LATTP 316 1+111 I 1+s I I 1I1 1111+IIIII SBJCT: 211 PSPAPTDHSLSGEPPAGSAQEPTHAQDNWLLNSNIPLETRNLGKQPFLGTLQDNLIENDI 270 QUERY: HFLflOOXXXXXK)G(XXXXXYPLTSGTVYTPPPPLLPRNTFSRKAFK 363 SBO7CT: 271 LSASRHDGAYSDGHLFK-PGGSPLFCTTSPGYPLTSSTVYSPPPRPLPRSTFSRPAFN 329 QUERY: 364 LKKPSKYCSWKC]UOU'JDUUUOOUODUOUYFI 395 SBJCT: 330 LKXPSKYCUWKCAALSAILISATLVILLAYFV 361 t FCTR3F DOES NOT CONTAIN THESE AMINO ACIDS 81 The 997-2733 amino acid fragment of the FCTR3bcde and f protein was also found to have 1695 of 173 7 amino acid residues identical to, and 1695 of 173 7 residues (97%) positive with the amino a 1737 amino acid residue protein KIA 1127 protein [Homno sapiens] (GenBank Acc:(AB032953) (SEQ ED) NO:7 (Table 3S).
Table 35. BLASTP of FCTR3b, c, d, e, and f against Homo sapieris EAA1 127 protein (SEQ ID NO:71) >GI16329763IDBJIBAA86441.1i (A'B032953) KIAA1127 PROTEIN [HlOMO SAPIENS] LENGTH 1737 .0 SCORE 3295 BITS (8545), EXPECT 0.0 IDENTIT:ES 1695/1737 POSITIVES =1695/1737 (97%)
CIA
QUERY:
SBJCT:
997 1 TFFSAAPGQNPIVPETQVLHEEIELPGSNVKLRYLS SRTAGYKSLLKITMTQSTVPLNLI 1056 TFFSAAPGQNPIVPETQVLREEIELPGSNVKLRYLSSRTAGYKSLLKITMTQSTVPLNLI
QUERY:
SBJ-T:
QUERY:
SBJ-T:
QUERY:
SBJ-T
QUERY:
SBJT-:
QU'E:RY:
SBJ7-T: QU7ERY: SBJ 37:
QUERY:
SBJCTr:
QUERY:
SBJC-T:
QUERY:
SBJC-T:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
1057 RVHLMVAVEGHLFQKSFQASPNLASTFIWDKTDAYGQRVYGLSDAVVSVGFEYETCPSLI 1116 6: RVHLMVAVEGHLFQKSFQAS PNLAAYTFIWDKTDAYGQRVYGLSDAWSVGFEYETCPSLI 120 1117 LWEFRTALLQGFELDPSNLGGWSLDKHHILNVKSGILHKGTGENQFLTQQPAIITSIMGN 1176 121 LWEKRTALLQG FELDPSNLGGWSLDKHHI LNVSGILE{KGTGENQFLTQQPAI ITS IMGN 180 1:77 GRFRS ISCPSCNGLAEGNKLLAPVALAVGIDGSLYVGDFNYIRRI FPSRNVTSILELRNK 1236 181 GRF.R S ISCPSCNGLAEGNKLLAPVALAVG IDG SLYVGDFNYI RRI FPSRNVT SILE LRNK 240 1237 EFY.IISNNPHKYYLAVDPVSGSLYVSDTNSRRIYRVKSLSGTKDLAG-NSEVVAGTGEQCL 1296 :41 EFk-k!ISNNPAHKYYLAVDPVSGSLYVSDTNSRPRIYRVKSLSGTKDLAGNSEVVAGTGEQCL 300 17 PFZEARCGDGGKAIDATLMSPRGIAVDKNGU4YFVDATMIRKVDQNGIISTLLGSNDLTA 1356 30. iPFj)EARGDGGKAIDATLMSPRGIAVDKNGUfYFVDATMIRKVDQNGIISTLLGSNDLTA 360 1357 VP PLSCDSSMDVAQVRLEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQ 1416 36: VRPLSCDSSMDVAQVRLEWPTDLAVNPMDNSLYVLENNVILRITENHQVSIIAGRPMHCQ 420 1417 VFG1DYSLSKXXXXXXXXXXXXXUXXTGVLYITETDEKKINRLRQVTTNGEICLLGAA 147)6 42 1 VrGIDYSLSKI.AI{SALESASAIAISHTGVLYITETDEKKINRLRQVTTNGEICLLAGAA 480 1477 SXXXXXXXXXXXXYSGDDAYATDAILNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVL 1536 481 SDCDCKNDVNCNCYSGDDAYATDAIELNSPSSLAVAPDGTIYIADLGNIRIRAVSKNKPVL 540 1537 NAFNQYEAAS PGEQE YFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNGNSLK 1596 541 NA FNQYEA6AS PGEQELYVFNADGIHQYTVSLVTGEYLYNFTYSTDNDVTELIDNNG..LK 600 1597 IRRDSSGM1PRHiLMPDNQIITLTVGTNGGLKVVSTQNLELGLMTYDGNTGLLATKSDETG 1656 601 IRRDSSGMPRHLLMPDNQIITLTVGTNGGLKVVSTQNLELGLTYDGNTGLLATKSDETG 660 1657 WTTFYDYDIiEGRLTNVTRPTGVVTSLHREMEKSITIDIENSNRDDDVTVITNLSSVEASY 1716 661 WTTFYDYDkiEGRLTNVTRPTGVVTSLHREMEKSITIDIENSNRDDDVTVITNLSSVEASY 720 1717 TVVQDQVPJ SYQLCNNGTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLN 1776 721 TVVQDQVRNSYQLCNNGTLRVMYANGMGISFHSEPHVLAGTITPTIGRCNISLPMENGLN 780 82 QUERY: 177
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
(,'UERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJ-'T:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:I
QUERY:2 SBJCT: 1 QUERY: 2 SBJCT: 1 QUERY: 2 SBJCT: I 781 183 841 189 901 195 961 201 102.
207 108: 2137 1141 2197 1201 2257 1261 2317 1321 2377 1381 2437 1441 2497 1501 557 .561 617 .621 677 681 7 SIEWRLRKEQIKGKVTIFGRKLRVHGRNLLSIDYDRIRTEKIYDDHRKFLRIIYDQVG 1836 SIEWRLRKEQIKGRVTIFGRKLRVHGRN1,LSIDYDRNIRTEKIYDDHRKE-LRIIYDQV 840 7 RPFLWLPSSGLAAVNVSYFFGCI GLQRGAMSERTDIDKQGRIVSRMFAGKWSYSYL 1896 7 DKSNVLLLQSQRQYIFEYDSSDRP 7PVAHMTTSGINYNPSAV 1956 7 FDYSDDGRILKTSFLGTGRQVFKYGKLSKLSEIVYDSTAVTFGYDETTGVLMVLQSG 2016 FDYSDDGRILKTSFLGTGRQVFYYGKLSKLSEIVYDSTAVTFGYDETTGVLQK.LQSG 1020 7 GFSCTIRYRKIGPLVDKQIYRFSEEGMV RDYTYHDNSFRIASIKPVISETPLPVDLY 2076 1 GFSCTIRYRXIGPLVDKQIYRFSEEGMVNARFDYTYHDNSFRIASIKPVISETPLPVDLY 1090 7RYDEI SGKVEHFGKFGVIYYDINQI ITTAVMTLSKHFDTHGRIKEVQYEMFR LMYWMTV 2136 I RYDEISGKVEHFGKFVIYYDINQIITTAVTLSKHF~rHGRIKEVYEMFRSLMYWMTV 1140 QYDSMGRVIKR.ELKWGPYP NTTKYTYDYDGDGQLQSVADRPTWRYSYDXXCOXXX 2196 *QYDSMGRVIKRELK GPYANTTKYYDYDGDGQLQSVAVNDRPTWRYSYDLNGNLHLLNP 1200 XXSVRLMPLRYDLRDRITRLGDVQYKIDDDGYLCQRGSDI FEYNSKGLLTRAYNKASGWS 2256 *GNSVRLMPLRYDLRDIRITPJLGDVQYKI DDDGYLCQRGSDI FEYNSKGLLTRAYJ'KSGWS 1260 VQYRYDGVGRASYKTNLGHLQYYSDLNPTRITHVYNHSNSEITSLYYDLQGHLFAM 2316 VQYRYDGVGRRASYKTNLGHtYYSDLPTRITVYHSNSEITSLYYDLQGHLFq 1320 ES SSGEEYYASDNTGT PLAVFS INGLIKQLQYTAYI YY DSNPFQMVIGFHGGLYD 2376 ESSEYVSNGPAFIGMKQQTYEYDNDQVGHGY 1380 PLTKLVHFTQRDYDVLAGRSPDYTWKNGKEPAPFNLYMFKSNNPLSSELDLQYI' 2436 PLTKLVHFTQRDYVAGRWTSPDYWNGKEPAPFNLYMFSNNPLSSELDLKYT 1440 DVKSWLVMFGFQLSNIIPGFPAKMYFPPPYELSESQASENGQLITGVQQTTEUNQAF 2496 DVKSWLVMFGFQLSNIPGFPAKYEVPPYELSESQASEGQLITGVQQTTERHQA. 1500 MALEGQVITYLHASIREKAGE{WFATTTPIIGKGIMFAMEKGRVTTGVSS IAEDSRKVA 2556 MAEQIKLAIEAHFTTIIKIFIERTGSISDRV 1560 SVNAYDMYIGDHFKGADDVLTIRVEGNTSPL 2616 SVNAYDMYIGDHEKGAGLToTIRVEGNTSPL 1620 VNRRFNEQSLLIYLPTLEKRLQRRLTWKQKR 2676 VNRRFNEQSLLIYLPTLEKRLQRRLTWKQKR 1680 GRGRWEEQLSGVGEYVPEYEASSIFRNMK 2733 GRGRWEEQLSGVGEYVPEYEASSIFRNMK 1737 The amino acid sequences of the FCTR3bcde and f proteins were also found to have 2528 of 2774 amino acid residues (9 identical to, and 2557 of 2774 residues (92%) positive with, the 2765 amino acid residue protein neurestin alpha [Rattus norvegicus] (Gen~ank Acc:AF086607) (SEQ ID NO:72), shown in Table 3T.
Table 3T. BLASTP of FCTR3bcd and f against Rattus norvegicus Neurestin alpha (SEQ IED NO:72) >GII991032OiR.EFINP 064473.11 NEURESTIN ALPHA (RATTUS NORVECICUS] GI15712201IGBlAAD47383.11AF086607 1 (AF086607) NEURESTIN ALPHA (P.ATTUS NORVEGICUS] LENGTH 2765 SCORE -4988 BITS (12938), EXPECT -0.0 .0 IDENTITIES 2528/2774 POSITIVES -2557/2774 GAPS 50/2774
QUERY:
SEJOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
MDVIDPRSLTRGRCGECRYTSSSLDSEDCRVPTQSYSSSETLAYDHDSRLJHYG~
MDVKDRRHRSLTRGRCGKECRYTSS SLDSECCRVPTQKSYSSSETLKAYDHDsRMRYGNR
VTDLIHRESDEFPRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTE
VTDLVHRESDEFSRQGANFrLAELGICEPSPHRSGYCSDNGILHQGYSLSTGSDADSDTE GGMS PEHAIRLWGRGIKSRRSSGLSSRENSALTLTXXXXXXXXXXXGRXXXXXXXXXXX GGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDDNGRPI PL'T SS3SLL XXXXXXXHNP PPVSCQMPLLDSNTSHQIMDTNPDEEFSPNSYLLRACxXXXXXXXXXXX rSAQLPSSHNPPPVSCQMPLLDSNTSHQIIDTNPDEEFSPNSYLLPACSGPQQAS SSGPP NHHSQXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxXXXXQIHAPAPAPNDLATTPEzSvQ NHHSQSTLRPPLPPPHiNHTLSHEHS SANSLNRNSLTNRRSQIHAPAPAPNDLATTPESVQ LQDSWVLNSNVPLETRHFLEXXXXXDOXXXXXXYPLTSGTVY'IPPPRLLPRNT FSR< LQDSWVLNSNVPLETRHFLFKTSSGSTPLFSSSSPGYPLTSGTVYTPPPRLLPRNT FSRIK AFKL1KPSKYCSWKCXXXX~XXXXXX)QOOXYFI---------------------------
AFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIAMFLLGLNWQLQPADGHTFNNGVRT
VPWSLKNSSIDSGEAEVGRRVTQEVPPGVFWRSQIIIISQPQFLI<
GLPGNDDVATVPSGGKVPWSLKNSS IDSGEAEVGRkRV'TQEVPPGVFWRSQIHISQPQFL( FNI SLGKDALFGVYIRRGLPPSHAQY .l ERLDG-cEKWSVVESPRERRS IQ'ILVQNEAVF FNI SLGKDALFGVYIRRGLPPSAQYDENERLDGKEKWSVVESPRERRS IQTLVQ1JEAVF VQYLDVGLWHLAFYNDGKDKEI~2VSFNTVVLDSVQDCPRICHGNGECVSGVCHCFPGFLGA VQYLDVGLWHLAFYNDGKDKEIjVSFNTVVLDSVQDCPRNCHGNGECVSGLCHCFPGFLGA
DCAKAACPVLCSGNGQYSKGTCQCYSGWKGAECDVPMNQCIDPSCGGHGSCIDGNCVCSA
DCAKAACPVLCSGNGQYSKGTCQCYSGJKGAECDVPMNQCIDPSCGGHGSCIDGNCVCAA
GYKGEHCEEVDCLDPTCSSHGVCVNGECLCS PGWGGLNCELARVQCPDQCSGHGTYLPDT
GYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCELARVQCPDQCSGHGTYLPDS
GLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWTGAACDQRVCHPRCIEHGTC
GLCNCDPNWMGPDCSVEVCSVDCGTHGVCIGGACRCEEGWTGAACDQRVCHPRCIEHGTC
KDGKCECREGWNGEHCTIGRQTAGTETDGCPDLCNGNGRCTLGQNSWQCVCQTGRGPGC
84 SBJCT: 781 QUERY: 800 SBJCT: 832 QUERY: 860 SBJCT: 892 QUERY: 920 SBJCT: 952 QUERY: 980 SBJCT: 1012 QUERY: 1040 SBJCT: 1072 QUERY: 1100 SBJCT: 1 132 QUERY: 1160 SBJCT: 1192 QUERY: 1220 SBJCT: 1252 QUERY: 1280 SBJCT: 1312 QUERY: 1340 SBJCT: 1372 QUERY: 1400 SIBJCT: 1432 QUERY: 1460 SBJCT: 1492 QUERY: 1520 SBJCT: 1552 QUERY: 1.580 SBJCT: 1612 6D QUERY: 1640 SBJCT: 1672 QUERY: 1700 SBJCTr: 1732 QUERY: 1760 SBJC7: 1792 KDGKCECREGWNGEHCTI DGCPDLCNGNGRCTLGQNSWQCVCQTGWRGPGC 831 NVA~1ETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLCRGSRDPLDIIQQGQTDWPAK 859 NVAN4ETSCADNKDNEGDGLVDCLDPDCCLQSACNSLLCRGSRDPLDIIQQGQTDWPAVK 891 S FYDRIKLLAGKDSTHI I PGEN PFNS SLVSLIRGQVVTTDGTPLVGVNVS FVKYPKYGYT 919 SFYDRIKLLAGKDSTHII PGDNPR'NSSLVSLIRGQVVTTDGTPLVGVNVSFVKYPKYGYTI 951 ITQGFLAGALLTRPMSETWPNFADLMTESPSCD 979 ITQGFLAGSLLFRPMSETWPN ADLMTESPSCD 1011 LSG FRPDPI I ISS PLST FFSAAPGQNPIVPETQVTHEIELPGSWMLRYLS SRTAGYK 1039 LSGFVRPDPI IISSPLSTFFSASPAAPIVPETQVLHEEIELPGTNVKLRYLSSR.TAGYK 1071 SLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKSFQASPNASTFIWDKTDAYGQRYGLS 1099 SLKrMQTPNIVLVVGLQSQSNATIDTAGRYL 1131 DAVVFYTPLLERALGEDSLGSDHTNSILGG 1191 NQFLTQQPAI ITSIMGNGRRRSI SCPSCNGLAEGNKLLAPVALAVGIDGSLYVGDNYIR 1219 RIFPSRNVS ILELRNKE FKHSNPAHYYLAVDPVSGSLYVS DTNSRRIYRVKS LSGTK 1279 11111 fill 11 1 1 1 1 1 111111111l*1+ 111111111111111111111 RI FPS RVTS ILELRNKE FKHSNS PGHKYYLAVDPVTGSLYVS DTNSPRI YR.KSLSGAJ( 1311 DLGSVATECPDARGGKIALSRIVKGMFDTIK 1339 DLAGN SEVVAGTGEQCLP kY0EARCGDGGKAVDATL4S PRGIAVDKNGLMYFVDATENTPJK 13-71 DQGITLSDTVPSDSDAQREPDANMNLVENIR 1399 DQNGI ISTLLGSNDLTAVRPLSCDSSMDVAQVRLEWPTDLANPMDNSLYVLENVILRI 1431 TENHQVSI IAGRP MHCQVPGIDYSLSKXXXXXXXXXXXXXXXXXTGVLYITETDEFJKINR 1459 TENHQVSIIAGRPMCQVPGIDYSLSKLALSASAISHTGVLYITETDEKKINR 1491 LRQVTTNGEICLLAGAAS)CGCXZXXXXXXXYSGDDAYATDAILNSPSSAVAPDGTI YIA 1519 IittlII IlIiI tI i.j III I I lI IlI I I I I t 11 111111 II LRQVTTNGEICLLAGAASDCDCNDVNCICYDDAYATDAILNSPSSAVAPGTIYIA 1551 DLGNIRIRAVSKNKPVLNAFNQYEAAS PGEQELYVFNAIJGIHQYTVSLV'rGEYLYNFTYS 1579 DLGNIRIRAVSKNKPVLNAFNQYEAAS PGEQELYVNADGIHQYTVSLVTGEYIYNFTYS 1611 TDDTLDNNLIRSGPHLPNITTGNGKSQLLL 1639 ADNDVTELI DNNGNSLKIRRDSSGMPPJILLMPDNQI ITLTVGTNGGLKAVSTQNLELGLM 1671 TYGTLkKDTWTYYHERT RTVTLPVKITI:DIENSNR 1699 TYDGNTGLLATKSDETGWTTFYDYDIEGTNVTRPTGTSLHPKSITVDIENSNR 1731 DDVVTLSESTVIQRSQCNTRMAGGSHEHLGI 1,759 DNVVTLSESTVDVNYLCNTRMAGGSHEHLGL 1791 PTIGRCNISLPMENGLNS IEWRLRKEQIKGKVTIFGRKLRVHGRNqLLSI DYDRNIRTEKI 1819 PTIGRCNISLPMENGLSIEWRLKQIKGTIFGRKRVGRLLSIDYDRNIRTEKI 1851
QUERY.
SBJCT~
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
S13JCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
1820 YDDHRKrTLRIIYDQVGRPLWLPSSGI.AVVSYFFNGRLGLRGMSERTDIDKQGR 1852 YDDHRE-rLRI IYDQVGRPFLWLPS SGLAANVSYFFNGRLAGLQRASERTDI
DKQGR
1880 IVSRMFADGKWSYSYLDKSMVLLLQSQRQYIYDSSDLVTMESVRSMSTHTSI 1912 IVSRMFADGKWSYSYLDKSVLLLQSCRQYIFEYDSSLAVMPSVARSMSTHTSI 1940 GYIRNIYNPPESNASVIFDSDRLT
LTRVYYKSKSIYSAT
1972 GYRINPSAVFYDGIKSEGGQFKGLKSIYSAT 2000 GYDETTGVLMVLQSGGFSCTIRYPJKIGPLVDKQIYRFSEEGM
FDDNSFRI
2032 GYETVMVLSGSTRRVPVKIRSEMNRDTHN
R
2060 ASIKFVISETPLPVDLYRYDEISGKVEHFKFGVIYYDINQI ITTAVMTLSKHiFDTHGRI 2092 ASIKPVISET PLPVDLYRYDEISGKVEHFGIFGVIYYDNQI
ITTAVMTLSKHFDTHGRI
2120 KEQEFSMWTQDMRIRLLPATKTIYGGLSANR 2152 KEVQYEMFRSLMYWMTVQYDSMGRVIK
LGPAPTYYDYDDGQLQSVAVNDRP
2180 TWRYSYDXXXXXXOOOCXSVRMPLRYDLDRI TPGIVQYKI DDGYLCQRGS DI FY 2212 TWRYSYDLNGNLH LLNPGNSARLMPLRYDLRDRITRLGDVQYKI DDDGYLCQRGS DI-EY 2240 NSGLRYKSWVYYGG-MYTLHLYYDRPRTVNS 2272 NSGLRYKSWVYYGSRSKNGHOFSLETIH-NS 2300 SETLYLGLAFSGEYADNGPAFIGMKLYAGIY 2332 SETLYLGLAESGEYADNGPAFIGMKLYAGIY 2360 SNPFKI HGY LKVFQDDLGWSPYMI;GEPPFLM 2392 SND~4IFGLDIKVErRYDLGWSDTWNGEAFLM 2420 KSNNPLSSELDLKNYVTDVKSWLVNFGE-QLSNI
IPGFPRAKMYFVPPPYELSESQASENG
2452 KNNNPLSNELDLKNYVTDVKSWLVIMFGE.QLSNI
IPGFPRAKMYFVPPPYELSESQASENG
2480 QLITGVQQTTERHQAFMLEGQVITRS I REKGWFATTT I IGKGIFAIKEGR 2512 QLTVQTRNALLGVSKHAIEAHFTTIGGMAKG 254 C VTGSISDRVSLNYLKHYIGDHFKGAGLTGTG IIIIII I I I l I III f I IIIIIIIIIIIIIIIIII Ilfl f Il II I I III ll IlI I I f IfII 1 1 2572 VTTGVSSIASEDSRVASVLNNAYYLDKMYSIEGKDTHYFVKIGA1ADGDLVTLGTTIGR 2 2600 KVLESGVVTVSQPTLLVNRTPRFTNIEFQYSTLLLSIRYGLTPDTLDEEAVLDQAR 2632 EVI.ESGVNVTVSQPTLLVNGRTpJ~rNIEFQYSTLLLIRYGLTPDTLDEEKAJRVLDQAR 2 2660 QRLTWKQKRGESLTGKQLSGVGEYVPEYEAS 2 2692 )RALGTAWAKEQQKARDGREGSRLWTEGEKQQLLSTGRVQGYEGYLPEQYPEASS 2 2720 SNIQFLRQMEMGKR 2733 2752 SNIrQFLRQNEMGKR 2765 1879 1911 1939 1971 1999 2031 2059 2091 2119 2151 2179 2211 2239 2271 2299 2331 2359 2391 2419 2451 2479 2511 2539 2571 ~599 631 ~659 ~691 '719 351 FCTR3F DOES NOT CONTAIN TaESE AMINO ACIDS The amino acid sequences of the FCTR3bcde and f proteins were also found to have 2536 of 2774 amino acid residues identical to, and 2558 of 2774 residues (91%) positive with, the 2764 amino acid residue protein Odd Ozlten-mn homolog 2 (Drosophila) (GeriBank Acc:NP_035986.2) (SEQ 1ID NQ:65), shown in Table 3U.
Table 3U. BLASTP of FCTR3bcde and f against Odd Oz/ten-m homnolog 2 (SEQ ID >GII76574251REFINP 035986.21 ODD OZ/TEN-M HOt~jLOG 2 (DROSOPHILA); ODD OZ/TEN-M 140MOLOG 3 (DROSOPHILA) [MUS MUSCULUS] GI147601781DBJlBAA77397.1I (AB025411) TEI4-M2 [MUS MUSCULUS] LENGTH -2764 SCORE 4996 BITS (12961), EXPECT -0.0 IDEN4TITIES 2536/2774 POSITIVES 2558/2774 GAPS 51/2774
QUERY:
SBJCT;
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUJERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
sBJcT:
QUERY:
SBJCT,
QUERY:
SBJCT:
QUERY:
SBJCT MDVKDRRHRSLTRGRCGKECRYTSSSLDSEDCRV i!QKSYSS SETLKAYDHDSPRJ4YGNR MDVKDRRHSLTRGRCGKECRYTSSSLDSEDCRVPTQKSYSSSETLKAYDHDSRAJ{YGNR VTDLIHRESDEi'PRQGTNFTLAELGICEPSPHRSGYCSDMGILHQGYSLSTGSDADSDTE 120 VTDLVHRES DE FSRQGTN FTLAELGICE PSPHRSGYCSDMGI LHQGYS LSTGS DADS DTE 120 GGMS PEHAIRLWGRGI1(SRRS SGLSSRENSALTLTX OOOUXXKXGRXXXXXXXXX)O( 180 GGMSPEHAIRLWGRGIKSRRSSGLSSRENSALTLTDSDNENKSDDDNGRPIPPTSSSSLL 180 XXXXXXXXNPPPVSCQMPLLDSNTSHM IMTEFNPDESpsYLApXcytryXXX 240 PSAQLPSSHNrPPVSCQMP.LDSNTSHQIMDTNPDEEFSPNSYLLRACSGPQQASSSGPP 240 NHHSQXXOOOOXXXXOCXXXXXXXXXXXXXXXXXXXXXXQIHAPAPAPNDLATTPESVQ 300 11111 H111)1111111111111III NHHSQSTLRPPLPPPHNHTLSHH.S SAN SLNRNS LTNRRSQIHAYAPAPN DLPTT PESVQ 300 LQDSWVLNSNVPLETR1FLFOXXXXXXXXYPLTSGTVYTPPPRLLPRNTFSPJ( 360 LQDSWVLN4SNVPETRIiLFKTSSGSTPLFSSSPGYPLTSGVYTPPPRLLPRN-'FS.JK 360 AFKLKKPSKYCSWKCXXXXXXXXXXyXXXXYFI--------------------------- 395 AFKLKKPSKYCSWKCAALSAIAAALLLAILLAYFIAMHLLGLNWQLQPADGHTFNGVRT 420 VPWSLKNSSIDSGEAEVGRRV'rQEVPPGVFWRSQIHISQPQFL( 439 GLPGNDDVATVPSGGKVPWSLNSSIDSGEAEVGRRVTQEVPPGVFWRSQIHISQPQF'TK 480 ENI SLGKDALFGVYIRRGLPPSRAQYDFMER1LDGKEKWSVVESPRERRS IQTLVQNEAVF 499 FNSGDLGYRGPSAYDMRDI WVEPERIQTLVQNE.AVF 540 VQYLDVGLWHIAFDGKDKVSFTVVLDSVQDCPRN.CHGNGECVSGVCHiCFPGFLGA 559 VQYLDVGLWHLAFNDGKDKEMVSFNTVLDSVQDCPQCHGNGECVSGLCHCFPGFLGA 600 DCAKAACPVLCGGQYSKGTCQCYSGWGACDVPNQCIDPSCGGHGSCIDNCCSA 619 DCAKAACPVLCSGNGQYSKGTCQCYSGWKGCDVPQCIDPSCGGHGSCIDCCA 660 GYKGEHCEEVDCLDPTCSSHGVCVNGECLCSPGWGGLNCELAVQCPDQCSGHGTYLPDT 679 GYI(GEHCEVDCLDPTCSSHGVCVNGECLCSPWGLNCELAVQCPDQCSGHGTYLPDS 720
QUERY:
SBJCT:
QUERY:
SB JOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SB JOT:
QUERY:
SB JOT
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
600 721 740 780 800 831 860 891 920 951 980 1011 1040 1071 1100 1131 1160 1191 1220 1251 1280 1311 1340 1371 1400 1431 1460 1491 1520 2.551 1580 1611 1640 1671 1700 GLCSCDPNWMGPDCSVEVCSVDCGTHGVCIGACRCEEGTACDQRVCHPRCEHGTC 739 KDGKCECREGWNGEHCTIGRQTAGTETGCPLCNGNGRTLQNSWQCVCQTGWRGPGC 799 KDGKCECREGWNGEHCTIE---------DGCPDLCNGNGRCTLGQNSWQCVCQTGWRGPGC 830 NVAMETSCADNKDNEGDGLVDCLDPDCCLSACQNSLCGSRDPLDIIQGQTDWPAVK 859 NVAMETSCADNKDNEGDGLVDCLDPDCCLQSACQNSLLRGSRDPLDI IQQGQITDWPAVK 890 SFYDRIKLLAGKDSTHI IPGENPFNSSLVSLIRGQVVTTDGTPLVGVNVS FVKYPKYGYT 919 il111li1 1ii ill1111 I1111 1 HI iiiII 1111 i 111111111 ITQGFLAGSLLFRPMSETWPN ADLMTESPSCD 1010 LSGFVRPDPIIISSPLSTFFSAAPGQNPIVEETQVLIEIELPGSNVKLYLSSRTAGY< 1039 SLLKITMTQSTVPLNLIRVHMVAVEGHLFQSFQPNATFIWDKTDAYGQRVYGLS 1099 SLLKITMTQSTVPLNLIRVHLMVAVEGHLFQKS FQASPNLAYTFIWD1CTDAYGQRVYGLS 1130 DAVVFYTPLLERALGELPNGWLKHLVSIRGG 1159 DAVVSVGEFEYETCPSLILWEKRTALLQGFELDPSNLGGSLDKHHTLNVKSGILHKGTGE 1190 NQLQPIISIGGRSI SNLENLAVLVIDSLV NI 1219 111111111111111111111 1111 ill I 1111+11111111 NQ FLTQQPAI ITS IMNGGPRS I SCPSCNGLAEGNMKLLAPVAI.AVG I DGS LFVGDFNYIR 1250 RI FPSRNvTrsILELRNKEFKHSNNPAI{IYLAVDPVSGSLYVSDn'SRIYRVJKSLSGTK 1279 11i 1111 I141l il -ili!i1+1111111 11111111 1i RIPRVSL.RKFHNPHYLVPTSYSTSRYVSSA 1310 DLAGNSEVVAGTGEQCL PFDEARCGOGGKAI DATLMSPRGIAVDKNGLYFVATMIRV 1339 DLGSVATECPDACDGADTMPGEVKGMFDTIK 1370 DQNGIISTLLGSNDLTAVRPLSCDSSMDVAQVRLEWPTDAVPMDNSLY-rJENNVILRI 1399 DQNGI ISTLLGSNDLTAVPLSCDSSMDVAQVRLEWPTDLAVNPMDNSLYVLNNVILRI 1430 TENHQVSI IAGRPMHCQVPGIDYSLSK 0000 0XXXXXXTGVLYITETDEKKINR 1459 TENHQVS IIAGRPMHCQVPGIDYSLSKLAIHSAESASAIAI SHTGVLYITETDEKJI 1490 LRQVTTNGEICLLACO.AS1 'OXXXX YSGDDAYATDAILNSPSSLAVAPDGTIYIA 1519 LRQVTTNGEICLLAGADCDCI(DVNCICYSGDDAYATDILSPSSAVAPDGTIYIA 1550 DLNRRVKKVNFQEAPEEYFAGHYVLTEL~-Y 1579 DLNRRVKKVNFQEAPEQLVNDIQTSVGYYFY 1610 TDDTLDNNLIRSGPHLMDQILVTGLVSQLLL 1639 11i i I I I IIII 1111 111 1111111 i l Ii Hi ill 1iii i liii H IMIi ADDTLDNNLIRSGPHLPDQ:rLVTGLASQLLL 1670 TYGTLAKDTWTYYHGLTVRTVTLRMKIIINN 1699 TYDGNTGLLATKSDETGWTTFYDYDHEGLTVTRPVVSL.PE#EKSITI DIENSNR 1730 DDVVTLSESTVDVNYLCNTRMAGGSHEHLGI 1759 88
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SEJOT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJcT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:2 173.
176 179: 182' 185: 188( 194( 1971 2000 2031 2060 2091 2120 2151 2180 2211 2240 2271 2300 2331 2360 2391 2420 2451 2480 2511 2540 2571 2600 2631 2660 ?691 2720 ~751 L PTICRCNISLPMENGWNSIEWPRKEIQIKGKWTIFGRI(LJJEGPJLLSIDYDNIRTEKI 1 YDDRRKFTLRI IYDQVGRPFrLWLPSSGLAAVNSYFFNGPTJAGLQRASERTDIDKQGR 0 IVSRMFADG1CWSYSYLDKS4VLJLQSQRQYIFEYDSSDRJJVTMPSVAYUISMSTHiTSI 1IVSPMFADGKVWSYSYLDKSMVLLLQSQRQYIFEYDSSDRLHATVTMPSVAPHSMSTHTSI -GYIRNIYNPPEsNASvI
FDYSDDGRILKTSFLGTGRQVFYKYGKLSKLSEIVYDSTATF
GYDETTGVUGVNLQSOFSCTIRYIGPLVKQIFSEEMAFDYTYHDNS
FI
ASIKE VISETFLPVDLYRYDEISGKVEFGGVIYYDINQIITTAPMbTLSKHEDTHGRI *ASIKPVISETPLPVDLYRYDEISGKVEHFGKFGIYYDINQIITTAA4TLSQHFDTHGRI KEVQYEMFRSLMYWMTVQYDSMRVIKKGPYANTTnTYDYDGDGQLQSVAVNDRP TWRYSYDXXXXXXXXXXXXSVRJJ.PLRYDLRDRITRLGDVQYKI DDDGYLCQRGS DI FEY TTIYYLGLILPNALPRDRRTLDQK DDDGYLCQRGSDI FEY NSKGLLTRAYNKASGWSVQYRYDVGPSNLGN~iQYF-S DLiN PTRITHVYNHSN NSKGLLTRAYNKASGWSVQYRYDIGRRPSYKTNLGRHLQYFYS
DLI-NPTRITHVYNHSN
SEITSLYYDLQGHLFASSSGEEYYVASDNTGTPLVFSINGLMIKQLQYTAYGE
IYYD
SEISLYLGLAES EYVSNG PLAVYS INGLMIKQLQYTAYGE
IYYD
SNPDFQ MIGFHGGLYDPLTa, VHn'QRYDVLAGRWTSPDYTfd4KVGEPAPFNLYhF KSNNPLSSELDLKNYVTDVKSWLVMFGFQLSNI IPGFPRAKL4YFVPPPYELSESQASENG JNNPLSNELD@YVTDVKSWLVMFGFQLSNIIPGPRScYFmPPYELSESQASENG QLTVQTRNAFAEQIK
ASRKGWATPIGKGIMFAIKEGR
VTTGVSSIASEDSRVASVLNNAYYLDO!SIYSIEGKDTHYFVKIGSADGDLXfLJGTTIGR2 VTG(VSSIASEDSRKASVLJNAYYLDKI4HYSIEGKDTHYFVIGAADGDLVTLGTTIGR 2 KVLESGVNW'TVSQPTLLVNGRTPWITNIEFYSTLLLSIRYGLTPTLDEEJKYRVLDQAR 2 EVLESGNVTVSQPTLLVGRTRRTNIEFQYSTLLLSIRYGLTPDTLDEEKAVLDQAG 2 QRLGTAWAKEQQKDGREGSBJJWTEGEKQQLLSTGRVQ MGYYhPVEQYPELADSS 2 QRLGTAWAKEQQKARDGRZGSRLWTEGEKQQLLSTCRVQGYEGYVLPVEQYPELADSS 2 SNIQFLRQNEMGKq( 2733 SNIQfl.RQNqENGjc 2764 1790 1819 1850 1879 1910 1939 1970 1999 2030 2059 2090 2119 2150 2179 2210 2239 2270 2299 2330 2359 2390 2419 2450 2479 2510 2539 ~510 2599 ~630 ~659 690 :719 '750 FCTR3F DOES NOT CONTAIN TRESE AMINO ACIDS FCTR3 is related to rat neurestin, a gene implicated in neuronal development (Otaki JM, Firestein S Dev Biol 1999 Aug 1;212(1):165-81) Neurestin shows homology to human gamma-heregulin, a Drosophila receptor-type pair-rule gene product, Odd Oz (Odz) Ten(m), and Ten(a). Neurestin has putative roles in synapse formation and brain morphogenesis. A mouse neurestin homolog, DOC4, has independently been isolated from the NIH-3T3 fibroblasts. DOC4 is also known as tenascin M (TNM), a Drosophila pair-rule gene homolog containing extracellular EGF-like repeats. The significant homology to these molecules and in particular, y-heregulin, have important implications regarding the potential contribution of FCTR3 to disease progression. Heregulin is the ligand for HER-2/ErbB2/NEU, a protooncogene receptor tyrosine kinase implicated in breast and prostate cancer progression that was originally identified in rat neuro/glioblastoma cell lines. Extopic expression of HER- 2/ErbB2/NEU in MDA-MB-435 breast adenocarcinoma cells confers chemoresistance to Taxol-induced apoptosis relative to vector transfected control cells (Yu et al. Overexpression of ErbB2 blocks Taxol-induced apoptosis by up-regulation of p21Cip which inhibits p34Cdc2 kinase. Molec. Cell 2: 581-591, 1998).
FCTR3 related tenascins and cancer biology As mentioned, FCTR3 also has significant homology to DOC4, (AKA tenascin a Drosophila pair-rule gene homolog containing extracellular EGF-like repeats. The tenascins are a growing family of extracellular matrix proteins that play prominent roles in tissue interactions critical to embryogenesis. Overexpression of tenascins has been described in multiple human solid malignancies.
The role of the tenascin family of related proteins is to regulate epithelial-stromal interactions, participate in fibronectin-dependent cell attachment -id interaction. Indeed, tenascin-C (TN) is overexpressed in the stroma of malignant ovarian tumours particularly at the interface between epithelia and stroma leading to suggestions that it may be involved in the process of invasion (Wilson et al (1996) Br J Cancer 74: 999-1004). Tenascin-C is considered a therapeutic target for certain malignant brain tumors (Gladson CL J Neuropathol Exp Neurol 1999 Oct;58(10):1029-40). Stromal or moderate to strong periductal Tenascin-C expression in DCIS (ductal carcinoma in situ) correlates with tumor cell invasion. (Jahkola et al. Eur J Cancer 1998 Oct;34(11):1687-92. Tenascin-C expression at the invasion border of early breast cancer is a useful predictor of local and distant recurrence. Jahkola T, et al. Br J Cancer. 1998 Dec;78(11):1507-13). Tenascin (TN) is an extracellular matrix protein found in areas of cell migration during development and expressed at high levels in migratory glioma cells. Treasurywala S, Berens ME Glia 1998 Oct;24(2):236-43 Migration arrest in glioma cells is dependent on the alphaV integrin subunit. Phillips GR, Krushel LA, Crossin KL J Cell Sci 1998 Apr;111 (Pt 8):1095-104 Domains of tenascin involved in glioma migration. Finally, tenascin expression in hormone-dependent tissues of breast and endometrium indicate that Tenascin expression reflects malignant progression and is down-regulated by antiprogestins during terminal differentiation of rat mammary tumors (Vollmer et al. Cancer Res 1992 Sep 1;52(17):4642-8) Potential role of FCTR3 in oncologic disease progression: Based on the bioactivity described in the medical literature for related molecules, FCTR3 may play a role in one or more aspects of tumor cell biology that alter the interactions of tumor epithelial cells with stromal components. In consideration, FCTR3 may play a role in the following malignant properties: Autocrine/paracrine stimulation of tumor cell proliferation Autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy Local tissue remodeling, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis.
Tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance.
Therapeutic intervention targeting FCTR3 in oncologic and central nervous system indications: Predicted disease indications from expression profiling in 41 normal human tissues and 55 human cancer cell lines (see Example 2) include a subset of human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas. Targeting of FCTR3 by human or humanized monoclonal antibodies designed to disrupt predicted interactions of FCTR3 with its cognate ligand may result in significant antitumor/anti-metastatic activity and the amelioration of associated symptomatology.
Identification of small molecules that specifically/selectively interfere with downstream signaling components engaged by FCTR3/ligandinteractions would also be expected to result in significant anti-tumor/anti-metastatic activity and the amelioration of associated symptomatology. Likewise, modified antisense ribonucleotides or antisense gene expression constructs (plasmids, adenovirus, adeno-associated viruses, "naked" DNA approaches) designed to diminish the expression of FCTR3 transcripts/messenger RNA (mRNA) would be anticipated based on predicted properties of FCTR3 to have anti-tumor impact.
Based on the relatedness to neurestin and heregulins, as well as its high level expression in brain tissue, FCTR3 may also be used for remyelination in order to promote regeneration/repair/remyleination of injured central nervous system cells resulting from ischemia, brain trauma and various neurodegenerative diseases.. This postulate is based on reports indicating that neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis (Cannella et al. Proc. Nat. Acad. Sci. 95: 10100-10105, 1998). The expression of the related molecule neurestin can be induced in external tufted cells during regeneration of olfactory sensory neurons.
FCTR4 FCTR4 is a plasma membrane protein related to NF-Kappa-B P65delta3 protein. The clone is expressed in fetal liver tissues.
The novel FCTR4 nucleic acid of 609 nucleotides (also referred to as 29692275.0.1) is shown in Table 4A. An ORF begins with an ATG initiation codon at nucleotides 99-101 and ends with a TAA codon at nucleotides 522-524. A putative untranslated region upstream from the initiation codon and downstream from the termination codon is underlined in Table 4A, and the start and stop codons are in bold letters.
Table 4A. FCTR4 Nucleotide Sequence (SEQ ID NO:14)
CTGACATACTATATTAGTTGTTTGTTCACTGTCTCCACTCCAGCTAGAATATAAGTTCCATAGGGCAGAGTTTTTGTTCA
CTGCTAT ATTTT TATAAATATGATGCATGACGATGGACTGATAACCCAAGCCAAAGACCTCCATGACCTGCC
ACTGCCCTCCTTTCATTTTATTCTCACCTCTACCAATACTAAATCACCTAGTTATGTAAATACGATATGCACTTTCATGG
CCCCTTGCTTTGTCATATGCTGTTCCCTTTGCCTGGAATATAAACTCTCAAAATACCATCCACATTTTAAAATCTTCTCC
AGAAAGCTTCCTCTGTCCACCCCCACCCTrCCACCCCCATATAGAGTAAGTCAGTCTTTCCTTTGTGCTACATTTGTACC TGTATCTACAGTGGCTCTAATCAAACTG tCTGTGTCTCTCACTTCCTAGATTGTGAACTCTTTGAGGCTGAAGACTACT
TATTCATCTCTTTACCTCCAATGCCTAGGACAGGACCTTCATAAAGCAACTACTCTATAAATGTTGAAACATATGCATGA
CTATTCTGTAACAGGAATGAAATATGGCATTTCAAGAAGTCACTACTC
The FCTR4 protein encoded by SEQ ID NO:14 has 141 amino acid residues and is presented using the one-letter code in Table 4B. The Psort profile for FCTR4 predicts that this sequence has no N-terminal signal peptide and is likely to be localized at the plasma membrane with a certainty of 0.6000. The most likely cleavage site for a peptide is between amino acids 39 and 40, at the dash in the amino acid sequence ACT-CCA, based on the SignalP result. The predicted molecular weight of this protein is 16051.5 Daltons.
Table 4B. Encoded FCTR4 protein sequence (SEQ ID
MNEWTDNPQAKDLHDLPLPSFHFILTSTNTKSPSYVNTICTFMAPCFVICCSLCLEYKLSKYHPHFKIFSRKLPLSTPTL
PPPYRVSQSFLCATFVPVSTVALIKLHCVSHFLDCELFEAEDYLFISLPPMPRTGPS
92 The predicted amino acid sequence was searched in the publicly available GenBank database FCTR4 protein showed 30 identities (22 over 72 amino acids) and 43% homologies (3 lover 72 amino acids) with hypothetical 10 kD protein of Trypanosoma cruzi n (86 aa; ACC:Q99233) shown in Table 4C. The best homologies with a human protein were 54 identities (114 over 343 amino acids) with NF-Kappa-B P65delta3 protein (71 aa fragment; ACC:Q13313) (SEQ ID NO:77).
Table 4C. BLASTP of FCTR4 against protein sequences 0 BLAST X search results are shown below: ptur:SPTREMBLACC:Q99233 HYPOTHETICAL 10 KD PROTEIN 68, 0.60, 1, (SEQ ID NO:73) ptnr:SPTREMBL-ACC:Ql6896 GABA RECEPTOR SUBUNIT AEDr 3 +3,66,0.81, 4 (SEQ ID NO:74) ptnr:SPTREMBL-ACC:076473 GABA RECEPTOR SUBUNIT LEPTI... 66, 0.99, 2 (SEQ ID ptnr:TREMBLNEW-ACC:AAD28317 F13J11.13 PROTEIN Arabid... 62, 0.99, 1 (SEQ ID NO:76) Based upon homology, FCTR4 proteins and each homologous protein or peptide may share at least some activity.
FCTRS is a protein bearing sequence homology to human complement CIR component precursor. The clone is expressed in breast, heart, lung, fetal lung, salivary gland, adrenal gland, spleen, kidney, and fetal kidney.
The novel FCTR5 nucleic acid of 1667 nucleotides (also referred to as 32125243.0.21) is shown in Table 5A. An ORF begins with an ATG initiation codon at nucleotides 34-36 and ends with a TGA codon at nucleotides 1495-1497. A putative untranslated region upstream from the initiation codon and downstream from the termination codon is underlined in Table and the start and stop codons are in bold letters.
Table 5A. FCTR5a Nucleotide Sequence (SEQ ID NO:16) GTTCTCTCGCAGGT CCCAGATCCAGTCCAGATGCCTG
GAGTGGGAATCTGGAGAAGCCCTCA
CTCCAAAGGCTGTCCAGGCGCAATGTGGTGGCTGCTTCTCTGGGGAGTCCTCCAGGCTTGCCCAACCCGGGGCTCCGTCC
TCTTGGCCCAAGAGCTACCCCAGCAGCTGACATCCCCCGGGTACCCAGAGCCGTATGGCAAAGGCCAAGAGAGCAGCACG
GACATCAAGGCTCCAGAGGGCTTTGCTGTGAGGCTCGTCTTCCAGGACTTCGACCTGGAGCCGTCCCAGGACTGTGCAGG
GGACTCTGTCACAATCTCATTCGTCGGTTCGGATCCAAGCCAGTTCTGTGGTCAGCAAGGCTCCCCTCrGG
GCCCC
CTGGTCAGAGGGAGTTTGTATCCTCAGGGAGGAGTTTGCGGCTGACCTTCCGCACACAGCCTTCCTCGGAGAACAAGACT
93
GCCCACCTCCACAAGGGCTTCCTGGCCCTCTACCAACCGTGGTGTGAACTATAGTCAGCCCATCGCGAGGCAGCAG
GGGCTCTAGGCCATCAACGCACCTGGAGACAACCCTGCCAAGGTCCAGAACCACGCCAGGAGCCCTATTATAGCCG
CGGCAGCAGGGGCACTCACCTGTGCAACCCCAGGGACCTGGAAGACAGACAGGATGGGAGG.AGGTTCTTCAGTGTATG
CCGCGGAGCATACCATCCGACAAGCCCGTTCAACAGTGCAT
CCCCTGGCAAGCCTTCACCAGTATCCACGGCCGTGGGGGCGGGGCCCTGCTGGGGACAGATGGATCCTCACTGCTGCCC
ACACCATCTACCCCAAGGACAGTGTTTCTCTCAGGAAGAACCAGAGTGTGAATGTGTTCTTGGGCCACACAGCCATAGT
GAAGTAATGCACACTTCCGGCTGGACCATCGCGAGGCCTAT
TAGCGGGGACATCGCCCTCCTGGAGCTGCAGCACAGCATCCCCCTGGGCCCCACGTCCTCCCGGTTGTCTGCCCGATA
ATGAGACCCTCTACCGCAGCGGCTTGTTGGGCTACGFCAGTGGGTTTGGCATGGAGATGGGCTGGCTAACTACTGAGCTG
AAGTACTCGAGGCTGCCTGTAGCTCCCAGGGAGGCCTGCAACGCCTGGCTCCAAGAGACAGAGACCCGAGGTGTTTTC
TGACAATATGTTCTGTGTTGGGGATGAGACGCAGCACAGTGTCTGCCAGGGGGAGTGGCACTATGTGGTAT
GGAATAGCACCGGGCAGGATTGCTGGAAGTTGGAGTTATCA
ACAGTCCGTTTGCGACAGATATATGAGATACTGGCTACGGC
GACGAATGGCCGCAAAGCTGGGGATACCGGTGGGGGGTCC
TGCAGTGG-CTTGGTGCAACAGTGATGTGAATAGGATTTCCCTTTTTTTTTTTTTTTTTAAA
The FCTRS protein encoded by SEQ ID NO: 16 has 487 amino acid residues, and is presented using the one-letter code in Table 5B. FCTRS was searched against other databases using SignalPep and PSort search protocols. The FCTR5 protein is most likely microbody (Jperoxisomc) (Ccrtainty=0.6406) and seems to have no N-terminal signal sequencc. Thc predicted molecular weight of FCTR5 protein is 53511.9 daltons.
Table 5B1. Encoded FCTR5a protein sequence (SEQ ID NQ:17).
MPG:)RVW( .Y LW RS F FS KGCPGAMWWl LWGVLQACPTRGSVLLAQELPQQLTS PGYPEPYGKGQESSTDIKAPEGFAVRLVrQ DFL SD!CSTI -VSPQCQG LRPQEVSRLLFTPSNTHHGLLQVVY QP ZSGF, AGNAVNCEYQAAATAPTKRDEVQMVGPTIQQTGSA LGN4 FPC;17' I i!ZCGGGALLGDRWILTAAHTIYPKDSVSLRKQSVNVFLGHTAIDEMLKLNHPVHRVVVHPDYRQNESHNF SGD ILLA.1_- LQI- 'G PNVLPVCLPDNETLYRSGLLGYVSGFGMMGWLTTELKYSRLPVAPREACNAWLQKRQRPEVFSDNMF CVG DE7C ?r1 An alternative embodiment, FCTR5b, is a 1691 base sequence shown in Table Table 5C. FCTR5b Nucleotide Sequence (SEQ lID NO:18) TTT 7,,~ZVA)UAAG,.ACTTCCACCGTCCAGCCGAGGACCCCC Cr.ACZCC;CGCAGTCCTCACTCCAGGCCCTCTGTTGCCTGGGGCCTCCACTGTGCTGGTCAGTCCCTGTTAAGCCCCG GCTCAAI7T=G :..TAC TCTGTCGCAAACTACCTGTTGATAACTCCAA r.TATGCCCCAG 3ACCTGCCCGTGGCCACCCAGTGATGGGCATGATTGCCCATACCACATAGAGGCTGCCACTGTCCCCC GAA--TrCTTCTTACCACCGAAATTAAACCTGGCCGCCTTGG CAGGC-GflGCAGSCCTCCCTGGGAGCTACAGGCAGCCTCGAGTACTTCAGC'ICAGTAGTTAGCCAGCCCATCTCCATGCAAC CCC~AGACCAAkCGTCGAAGTTATACGCGCGCGGGAG-TGGCAGG
ATCGG-CGTCGAGCAGCCGTAGTAGGCCTCGCGATGGTCCAGC
CGTGCGGG-TCCGTCGACCTTTGTTTGCAGAAATAATTGTTCT
AGGkAATTCTGGAAGTTGCGATAGTCTTTCCACGCCCCCCCGC
TGAATGGAGTGCGGAGTCCGTGGTTGAACGGGCTTATTGCAGG
GTATGCTCCGCGCTCCGAACTCTCCTCGCGCTCAGCCGGTGAA
GT-AGTGCCCCTGCTGCCGCGGCCTGATAATAGGGCTCCTGGCAGTGGTTCTGGACCTTGGCAGGGTTGTCTCCAGGTGCGTTG
ATG~CGGCCGTGCCCGTGCGCATGTAACAGTTGAAGCAGACCT
TGAGGGATTGTTCAGAGTTTCGAGTACGAATCCCGGAAAATCT
TGCAGGCTCCGGGACTGTACCGACGCTGTCACGCATAATTAAA
TCCCCTGCACAGTCCTGGGACGGCTCCAGGTCGAGTCCTGGAAGACGAGCCTCACAGAGCCCTGGACCTGAGTCC
GTCGTTTGCTTCAiCGTTGTCCGGAGCGTCGGTGTTGGCAAGC
GACCGGTGCACTGGATCCGGACACACCTGGCGAACTTGGGGGT
CTCCAGAGATATTTCCCCCACACTCTGGGTCCAGGCATCTGGAACTGGACATCTGGCCTGCGAGAGACTGCCCAGGTAG
GGAACAAAAGG
The FCTR5b protein encoded by SEQ ID NO: 18 has 487 amino acid residues, and is presented using the one-letter code in Table 5D. FCTR5 was searched against other databases using SignalPep and PSort search protocols. The FCTR5I protein is most likely microbody (peroxisome) (CertaintyzO.6406) and seems to have no N-terminal signal sequence. The predicted molecular weight of FCTR5 protein is 53511.9 daltons.
Table 5D. Encoded FCTR5b protein sequence (SEQ ID NO:19).
MPG PRVWGKYLWRSPHSKGCPGAMWWLLLWGVLQA PTRGSVLLAQQLPQQLT S PGYPEPYGKGQESSTDIKAPEGFAVRIVFQ DFDLEPSQDCAGDSVTIS FVGSDPFCGQQGSPLGRPPGQRE
VSSGRSLRLTFRTQ
Q PI SEASRG SEAINAPGDN PAKVQNHCQEPYYQAAAAGALTTCATPGTWKDRQDGEEVLQCMPVCGRPVTPPIAQNQTT LGS SRAK LGNFPWQAFT SIHGRGGGALL GDRWILTAAHTIYPKDSVSLRKNQS V Y SGDALLELQ IPPGPNVLPVCL PDNETLYRSGLLSG FGMENGWLTTELKYS RL APREACNAWLQKRQRpEVFSDNMF
CVGDETQRHSVCQGDSGSLYVWDNHAHHWVATGIVSWGIGCGEGYDFYTKVLSYVDWIKGVMNGKN
The predicted amino acid sequen- was searched in the publicly available GenBank database FCTR5a protein showed 58 identities (177 over 302 amino acids) and 74 homologies (226 over 302 amino acids) with human complement CIR component precursor (EC 3.4.21.41) (705 aa.; ACC:P00736). Based upon homology, FCTR5 proteins and each homologous protein or peptide may share at least some activity.
In a search of sequence databases, it was found, for example, that the nucleic acid sequence the nucleotides 17-1594 of FCTR5a have 1575 of 1578 bases (99 identical to Homo sapiens complement Clr-like proteinase precursor (GENBANK-ID: XM007061.1) (SEQ ID NO:78) (Table Table SE. BLASTN of FCTR5a against Homo sapiens complement Cir-like proteinase precursor (SEQ ID NO:78) >GI114367671RE FI XM007061.11 HOMO SAPIENS COMPLEMENT CIR-LIKE PROTEINASE PRECURSOR, (L0C51279),
MRNA
LENGTH 3318 SCORE 3104 BITS (1566), EXPECT 0.0 IDENTITIES 1575/1578 (99%) STRAND PLUS PLUS QUERY: 17 CAGATGTCCAGTTCCAGATGrGGACCCAGAGTGTGGGTATCTCTGG GCC 76 11111111111111111111111111 Illi1l 1111111 1M 11111111111111I SBJCT: 1 CAGATGTCCAGTTAGATGCCTGGACC A GAGTGTGGGGTATCTCTAGCC QUERY: 77 CTCACTCCAAAGGCTGTCCAGGCGCAATGTGGTGGCTGCTTCTCTGGGGAGTCCTCCA 136 1111111111 111111111 liiI11111111111111 I 1111 111111111 I111 SBJCT: 61 CTCACTCCAAAGGCTTCCAGGCGCAATGTGGTGGCTGCT 120 QUERY: 137 CTTGCCCAACCCGGGCTCCTCCTCTTGGCCCACTACCCGCGCTGACTCCC 196 1111111111!111111111 III 111111111111 1111111111111 l1lliIII111111 SBJCT: 121 CTTGCCCAACCCGGGGCTCCGTCCTCTTGGCCCAGAGCTACCCCGCAGCTGACATCCC 180 QUERY: 197 CCGGGTACCCAGAGCCGTATGGCAGGCGAGAGCAGCACGGCATCGGCTCCAG 256 111111111liii11 111111111111111111 111111111 liiilii1111111 SBJCT: 181 CCGGGTACCCAGAGCCGTATGGCAAAGGCCAAGAGACAG 240 QUERY: 257 AGGGCTTTGCTGTGAGGCTCGTTTCCAGGACTTCGACCTGGAGCCGTCCCAGGCTGTG 316
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QuERtY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJZ-T:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QU1ERY:
SBJCT:
241 317 301 377 361 437 421 497 481 557 541 617 601 677 661 737 721 797 781 857 841 917 901 977 961 1037 1021 1097 1081 1157 1141 1217 1201 1277 1261 AGGGCTTTGCTGTGAGGCTCGTCTTCCAGGACTTCGACCTGGAGCCGTCCCAGGACTGTG 300 CAGGGGACTCTGTCACAATCTCATTCGTCGGTTCGGATCCAAGCCAGTTCTGTGGTCAGC 376 CAGGGGACTCTGTCACAATCTCATTCGTCGGTTCGGATCCAAGCCAGTTCTGTGGTCAGC 360 AGCTCCCCTCTGGGCAGGCCCCCTGGTCAGAGGGAGTTTGTATCCTCAGGGAGGAGTT 436 AAGGCTCCCCTCTGGGCAGGCCCCCTGGTCAGGGGAGTTTGTATCCTCAGGGAGGAGTT 420 TGCGGCTGACCTTCCGCACACAGCCTTCCTCGGAGACAGACTGCCCACCTCCCGG 496 GCTTCCTGGCCCTCTACCAAACCGTGGCTGTGAACTATAGTCAGCCCATCAGCAGGCCA 556 GCTTCCTGGCCCTCTACCAAACCGTGGCTGTGAACTATAGTCAGCCC-ATCAGCGAGGCCA 540 GCAGGGGCTCTGAGGCCATCAACGCACCTGGAGACAACCCTGCCAAGGTCCAAACCACT 616 GCAGGGGCTCTGAGGCCTCAACGCACCTGGAGAACCCTGCCAGTCAGACCACT 600 GCCAGGAGCCCTArTATCAGGCCGCGGCAGCAGGGGCACTCACCTGTGCAACCCAGGA 676 GCCAGGAGCCCTATTATCAGGCCGCGGCAGCAGGGGCACTCACCTGTGCAACCCCAGGGA 660 CCTGGAAAGACAGACAGGATGGGGAGGAGGTTCTTCAGTGTATGCCTGTCTGCGGACGGC 736 CCTGGAAAGACAGACAGGATGGGGAGGAGGTCTCAGTGTATGCTGTCTGCGGCGGC 720 CAGTCACCCCCATTGCCCAGAATCAGACGACCCTCGGTTCTTCCAGAGCCAGCTGGGCA 796 CAGTCACCCCCATTGCCCAGAATCAGACGACCCTCGGTTCTTCCAGAGCCAAGCTGGGCA 780 ACTTCCCCTGGCAAGCCTTCACCAGTATCCACGGCCGTGGGGGCGGGGCCCTGCTGGGGG 856 ACTTCCCCTGGCAAGCC'rPTCACCAGTATCCACGGCCGTGGGGGCGCGGGCCCTGCTGGGGG 640 ACAGATGGATCCTC-ACTGCTGCCCACACCATCTACCCCAAGGACAGTGTTTCTCAGGA 916 ACAGATGC-ATCCTCACTGCTGCCCACACCGTCTACCCCAAGGACAGTGTTTCTCTCAGGR 500 AGAACCAGAGTGTGAATGTGTTCTTGGGCCACACGCCATAGATAGATGCTAAACTG 976 AGAACCAGAGTGTGAATGTGTTCTTGGGCCACACAGCCATAGATGAGATGCTGAAACTGG 960 GGAACCACCCTGTCCACCGTGTCGTTGTGCACCCCGACTACCGTCAGAATGAGTCCCATA 103 GGAACCACCCTGTCCACCGTGTCGTTGTGCACCCCGATACCGTCAGATGAGTCCCATA 1020 ACTTTAGCOGGGACATCGCCCTCCTGGAGCTGCAGCACAGCATCCCCCTGGGCCCCAACG 1096 ACTTTAGCGGGACTCGCCCTCCTGGAGCTGCAGCACAGCATCCCCCTGGGCCCCAACG 1080 TCTCGTTTTCCTAGGCCCACCGGCTTGGTC 1156 TCCTCCCGGTCTGTCTGCCCGATAATGAACCCTCTACCGCAGCGGCTTGTTGGGCTACG 11 TCAGTGGGTTTGGCATGGAGATGGGCTGGCTAACTACTGAGCTGAAGTACTCGAGGCTGC 1216 TCAGTGGGITTGGCATGGAGATGGGCTGGCTAACTACTGAGCTGAAGTACTCGAGGCTGC 1200 CTGTAGCTCCCAGGGAGGCCTGCAACGCCTGGCTCCAAAAGAGACAGAGACCCGAGGTGT 1276 CTGTAGCTCCCAGGGAGGCCTGCAACGCCTGGCTCCAAAGAGACAGAGACCCGAGGTGT 1260 TTTCTGACAATATGTTTGTGTTGGGGATGAGACGCAAGGCAGTGTCTGCCAGGGG~ 1336 TTTCTGACAATATGTTCTGTGTTGGGGATGAGACGCGGCAAGTGTCTGCCAGGC7 1320 96 QUERY: 1337 ACAGTGGCAGCCTCTATGTGGTATGGGACATCTGCCCATCACTGGGTGGCCACGGGCA 1396 11111111111 1111111 11111111 ii li1111111111111111 11111111 SBJCT: 2321 ACAGTGGCAGCGTCTATGTGGTAT GGGACAATCATGCCCA 1380 QUERY: 1397 TTGTGTCCTGGGGCATAGGGTGTGGCGGGGTATGACTTCTACACCAGGTGCTCAGCT 1456 III 1111111111111 11111111 I I 11 1111111 IIIIII 1 11111111 1111 SBJCT: 1381 TTGTGTCCTGGGGCATAGGGTGTG GC AAGGGTATGACTT 1440 QUERY: 1457 ATGTGGACTGGA TC-A GCAGTGATGAATGGCAAGAATTG 1516 111111111111111 1111111 111111111 111111111111111111 lii ii SBJCT: 1441 ATGTGGACTGGATCAGGGAGTGATGATGGCA2 TTGACCCTG1GGCTTGAACAGG 1500 QUERY: 1517 GACTGACCAGCAWAGTGGAGGCCCCAGGCAACAGAGGGCCTGGAGTGGACTCACT 1576 111111111 I 111111111 111111111 11111111111111111111111 SBJCT: 1501 GACTGACCAGCACAGTGGAGGCCCCAGGCAACGAGGGCTGGAGTGAGGCGTCACACT 1560 QUERY: 2577 GGGGTAGGGGGTGGGGGT 1594 1111111111 1111111 SBJCT: 1561 GGGGTAGGGGTTGGGGGT 1578 Ti this search it was also found that the FCTR5a nucleic acid had homology to three fragments of Homo sapiens complement component 1, r subcomponent. It has 102 of 117 bases identical to 1458-1574, 82 of 94 bases identical to 2052-2145, and 54 of 63 bases identical to 1678-1740 all fragments of Honmo sapiens complement component 1, r subcomponent (GenBank Acc: NM001733.1) (Table Table 5F. BLASTN of FCTR5a against Homno sapiens complement component 1, r subcomponent (SEQ ID NO:79) >GI145024921EFINM_001733.11 HOMO SAPIENS COMPLEMENT COMPONENT 1, R SUBCOMPONENT (CIR), MRNA LENGTH 2386 SCORE 113 BITS EXPECT 3E-22 IDENTITIES 102/117 (87%) STRAND PLUS PLUS QUERY: 783 AGCCAAGCTGGGCAACTTCCCCG GCAAGCCTTCACCAT 842 SBJCT: 1456 AGCCAAGATGGGCAACTTCCCCTGGCAGGTGTTCACCCTCCACGGCGCGGGGGCGG 1517 QUERY: 843 GGCCCTGCTGGGGGACAGATGGATCCTCACTGTGCCCACCATCTACCCCA 899 IIIIIIII III I IIiIIIHIII IIIIIIIIIII I if 11111111 SBJCT: 1518 GGCCCTGCTGGGCGACCGCTGGTCCTCACAGCTGCCCACCCTGTATCCCAGA 1574 SCORE 91.7 BITS EXPECT 1E-15 IDENTITIES 82/94 (87%) STRAND PLUS PLUS QUERY: 2380 CTGGGTGGCCACGGGCATTGTGTCCTGGGGCATAGGGTGTGGCGAAGGGTATGACTTCTA 1439 11111 11 11 1111 HIM SBJCT: 2052 CTGGGTGGCCACGGGCATCGTGTCCTGGGGCATCGGGCAGCAGGCTATGGCTTCTA 2111 QUERY: 1440 CACCAAGGTGCTCAGCTATGTGGATGATCAAG 1473 111 111 1 1111111 SBJCT: 2112 CACCAAAGTGCTCAACTACGTGGACTGGATCAAG 2145 SCORE 54.0 BITS EXPECT 2E-04 IDENTITIES 54/63 STRAND PLUS PLUS QUERY: 1006 CACCCCGACTACCGTCAGAATGAGTCCCATAACTTTAGCGGGGACATCGCCCTCCTGGAG .1065 11111 H I 1 11 11 1 1 1 11 1 11 1 1 SBJCT:. 1678 CACCCGGACTACCGTCAGGATGAGTCCTACAATTTTGAGGGGGACATCGCCCTGCTGGAG 1737 QUERY: 1066 CTG 1068
III
SBJCT: 1738 CTG 1740 The amino acid sequence of the protein of FCTR5a 485 of 487 amino acid residues identical to, and 487 of 487 residues (100%) positive with, the 487 amino acid complement Cir-like proteinase precursor from Hontc sapiens (GenBank-ACC: AAF44349.1) (SEQ ID NO:80) (Table Table 5G. BLASTP of FCTR5a and b against Complement CiR-like proteinase precursor (SEQ ID IGII77060831REFINP_057630.11 COMPLEMENT ClR-LIKE PROTEINASE PRECURSOR, [HOMO
SAPIENS)
G11114367681REF1XP_007061.11 COMPLEMENT CIR-LIKE PROTEINASE PRECURSOR, [HOMO
SAPIENS)
GI17271475IGBIAAF44349.11Ar178985_1 (AF178985) COMPLEMENT CiR-LIKE PROTEINASE PRECURSOR [HOMIO SAPIENS] LENGTH 487 SCORE -972 BITS (2513), EXPECT 0.0 IDENTITIES 485/487 POSITIVES 487/487 (100%)
R
QUERY: 1 MPGPRVWGKYLWRSPHSKGCPGAMWWLLLWGVLQACPTRGSVLLAQELPQQLTSPGYPEP SBJCT: 1 MPG PRVWGKYLWRS PHSFGCPGAMWWLLLWGVLQAC PTRGSVLLAQELPQQLTS PGYPE P QUERY: 61 YGKGQESSTDI:KAPEGFAVRLVFQDFDLEPSQDCAGDSVTIESFVGSDPSQFCGQQGSPLG 120 SBJCT: 61 YGKGQESSTDIKAPEGFAVRLVFQDFDLEPSQDCAGDSVTISFVGSDPSQFCGQQGSPLG 120 QUERY: 121 RPPGQREFVSSGRSLRLTFRTQPSSENKTAqiLHKGFIALYQTVAVNYSQPISEASRGSEA 180 1 1 1 1 1111 111111 111 1111111 1 11I 111111 1111111111 11 1 1I 1111111 SBJCT: 121 RPPGQRE VS SGRS LRLT FRTQPSSENKTAHLHIKGFLALYQTVAVNYSQPI SEASRG SEA 180 QUERY: 181 INAPGDNPAKVQNHCQEPYYQAAAGALTCATPGTWKDRQDGEEVLQONPVCGRPVTPIA 240 SBJCT: 181 INAPGDNPAKVQNHCQEPYYQAAAAGALTCATPGTWKDRQDGEEVLQCNPVCGRPVTPIA 240 QUERY: 241 QNQTTLGSSRAKLGNFPWQAFTSIHGRGGGALLGDRWILTAAHTIYPKDSVSLRK14QSVN 300 SBJCT: 241 QNTLSRKGFTIATIGGGLLIR~'TATY~)VLKQV 300 QUERY: 301 VFLGHTAI DEMLKLGNHPVHRVVVHPDYRQNESfrJ F'SGLJXALLELQHSI PLGPNVLPVCL 360 SBJCT: 301 VFLGHTAIDEMLY- GNHPVHRVVVHPDYRQNES NFSGDIALLELQHSI PLGPNVLPVCL 360 QUERY: 361 PDNETLYRSC-LLGYVSGFGM NGWLTTELKYSP PVA-.EACNAWLQKRQRPEVFSDNMF 420 11111)11111111 IIII IiI I lIIl 111 111111 I111111 SB.JCT: 361 PDNETLYRSGLLGYVSGFGMEMGWLTTELKYSLPVAPFEACNAWLQKRQRPEVFSDNMF 420 QUERY: 421 CVGDETQRHSVCQGDSGSLYVVWDNHAHWVATGIVSWGIGCGEGYDFYTKVLSYVDWIK 480 SBJCT: 421 CVGDETQRHSVCQGDSGSVYVVWDNHAHHWVATGIVSWGIGCGEGYDFYTKVLSYVDWIK 480 QUERY: 481 GVMNGKN 487 SBJCT: 481 GVMNGKN 487 R AT RESIDUE 46, FCTR5B DIFFERS FROM FCTRA IN THAT Q46R. THE REST OF THE HOMOLOGY IS THE SANE.
The full amino acid sequence of the protein of FCTR5a has 175 of 303 amino acid residues identical to, and 226 of 303 residues positive with the 400-701 amino acid segment, 72 of 157 residues identical and 94 of 157 residues positive with amino acids 1-155, and 36 of 139 residues identical and 58 of 139 residues positive with amino acids 188-312 of the 705 amino acid Complement CIR Component Precursor from Homno sapiens (GenBank-ACC: AAA5185 1.1) (SEQ ID NO:43) (Table 511).
Table 5H. BLASTP of FCTR5a and b against Complement CIR Component Precursor (SEQ ID NO:81) >GIIl15204ISPIP00736IClRHUMAN COMPLEMENT CiR COMPONENT PRECURSOR GI1676141PIRI IC1HURB COMPLEMENT SUBCOMPONENT ClR (EC 3.4.21.41) PRECURSOR HUMAN GII179644jGBIAAA51851.11 (M14058) HUMAN COMPLEMENT CiR IHOMO SAPIENS] LENGTH 705 SCORE 361 BITS (928), EXPECT 8E-99 IDENTITIES 175/303 POSITIVES 226/303 GAPS 9/303 QUERY: 189 SBJCT: 400 QUERY: 241 SBJCT: 460 QUERY: 301 SBJCT: 519 QUERY: 361 SBJC7: 579 QUERY: 421 SBJCT: 639 QUERY: 481 SBJCT: 699
AKVQNHCQEPYYQ--------AAAAGALTCATPGTWKDRQDGEEVLQCMPVCGRPVTPIA
I++I +1 1111+ 1 H1 I 11+ I 11++ +1+1111+11 1+ ARIQYYCHEPYYKMQTRAGSRESEQGVYTCTAQGIWKNEQKGEKI
PRCLPVCCKPVNPVE
QNQTTLGSSRAi(LGNFPWQAFTS
IHGRGGCALLGDRWILTAAHTIYPKDSVSLRKNQSVN
I1 +1 +11+111111 11 IIIIIIIIIIIIIIHIH1+I11i+ I1 QRQRIIGGQKA.KIGNFPWQV rN IHGRGGGALLGDRWILTAAHTLYPKEIEA-QSNASLD VFLGHTAI DEMLKLGNHPVHRVVVHPDYRNESHNFSGDIALLELQHIPL
PNVLPVCL
IM I ++++Illll+ II 11111 +I-I I 11111111++1+ 1111+11+11 VrLGHTNVEELMKLGNHP IRRVSVHPDYRQDESYNEGDIALELENSVTLPNLLPICL
PDNETLYRSGLLGYSGFGMEMGWLTTELKYSRLPVAPRCNAWLQKQRPEVFSDNMF
111+1 1 11+1111111+ 11111 +11 11+ 1 +111 111 P DNDTFYDIGLMGYV S FGMEEKIAHDLR RVRLPVANPPQACENTALRGKNRMDVFSQNMF CVG DETQRHSVCQGDS GS LYVV'DNHAHCZVATGI VSWG IGCGEGYDFYTKVLS YVDWIK I I 111111 I I 1111111111111 11 111111+111111
CAGHPSLKQDACQGDSGGVFAVRDPNTDRWVATGIVSWGIGCSRGYGFYTKVLNYVDWIK
GVM 483 KEM 701 SCORE 122 BITS (306), EXPECT 1E-26 IDENTITIES 72/157 POSITIVES 94/157 GAPS 3/157
R
QUERY: 24 MWWLLLWGVLQACPTRGSVLLQELPQQLTSPGYPEPYGKGQESSTDIKAPEGFAVPVF 83 II I I I I[1+ 1+ III +11 I 1-4I I I 1+ 1+111 SBJCT: 1 MWLLYLLVPALFCRAGGSIPIPQKLFGEVTSPLFPKPYPNNFETTTVITVPTGYRVKLVF QUERY: 84 QDFDLEPSQDCAGDSVI SFVGSDPSQFCGQQGSPLGRPPGQREFVSSGRSLRLTFRTQP 143 1 111111+ 1 1 11 +1111 11111 111++11+1 1 III I SBJCT: 1 QQFDLEPSEGCFYDYVKISADEKSLGRFCGQLGSPLGNPPGKKEFMS QGKMLLTFHTDF 120 QUERY: 144 SS-ENKTAHLHKGFLALYQTVAVNYSQPISEASRGSE 179 1+ II 1 +11111 II 11+ I 1 1 SBJCT: 121 SNEENGTIMFYKGFLAYYQ--AVDLDECASRSKSGEE 155 99 SCORE 36.3 BITS EXPECT =0.93 IDENTITIES =36/139 POSITIVES 58/139 GAPS 17/139 (12%)
R
QUERY: 35 ACPTRGSVLLAQELPQQLTSPGYPEPYGKGQESSTDIKAPEGFAVRLVF-QDFIDLEPSQD 93 ;Z+1 1 1 1 11 1 4+1- I 11++ 1 _n SBJCT: 188 SCQAECSSELYTE.ASGYISSLEYPRSYPPDLRCNYSIRVERGLTLHLKFLEPFDIDDHQQ 247 c~K1 QUERY: 94 CAGDSVTISFVGSDPSQFCGQ QGSPLGRPPGQP.EFVSSGRSLRLTFRTQPSSENKTAH 151 1 1 I I +111+1 111 II I I SBJCT: 248 VHCPYDQLQIYANGIO4IGEFCGKQ--RPP DLDTSSNAVDLLFFTDESGDS--- 295 QUERY: 152 LHXGFLALYQTVAVHYSQP 170 1I 11 SBJCT: 296 RGWKLRYTTEIIKCPOP 312 R AT RESIDUE 46, FCTR5B DIFFERS FROM FCTR5A IN THAT Q46R. THE REST OF THE HOMOLOGY CK1IS THE SAN!E.
Based upon homology, FCTRS proteins and each homologous protein or peptide may (71 share at least some activity.
FCTR6 The novel nucleic acid of 1078 nucleotides FCTR6a (also designated 27455183.0.19) encoding a novel hum~an blood coagulation factor XI-like protein is shown in Table 6A- An ORF was identified beginning with an ATCI initiation codon at nucleotides 243-245 and ending with a TAA codon at nucleotides 1044-1046. A putative untranslated region upstream from the initiation codon and downstream from the termination codon is underlined in Table 6A, and the start and stop codons are in bold letters.
Table 6A FCTR6a Nucleotide Sequence (SEQ ED
TTGATCCGTGCCAAGTGGCTTTTTGTGGGCTCTGTAGAGTGCTICTAAACCCAGCTCGGCCTTTGCTGTATTAACAGAAGCACC
TCATTCATATCCCTGGGGCCCCTGATGGTGCAGTGGTCTGGCTGTGGTCTGCACACCAGCTATTCTGTTTTGTTTTGTTTIGTT
TTTTTCCTACCTTTTTCCAATCCTCACACCTTCTGATCAACAGCCCCAGTAGGGTTTAAAGGTCCTAGAGCTACATGGGATTTA
GGTTTCTGGGCACAGCCAATTCTGCCACTTTTGAGACTTCCCTTCCCCTTCCACTTGCCCTcTCTGGTTCTC'IGCCAcCAGTC
CAGAAGAACTGAGTGTCGTGCTGGGGACCAACGACTTAACTAGCCCATCCATGGAAATAAAGGAGGTCGCCAGCATCATTCTTC
ACAAAGACTTTAAGAGAGCCAACATGGACAATGACATTGCCTTGCTGCTGCTGGCTTCGCCCATC:AAGCTCGATGACCTGAAGG
TGCCCATCTGCCTCCCCAr AGCCCGGCCCTGCCACATGGCGCGAATGCTGGGTGG'CAGGTTGGGGCCAGACCAATGCTGCTG
ACAAAAACCTCTCTAAAAL.,GGATCTGATGAAAGTGCCAATGGTCATCATGGACTGGGAGGAGTGTTCAAAGATGTTTCCAAAAC
TTACCAAAAATATGCTGTGTGCCGGATACAA~GAATGAGAGCTATGATG'CCTGCAAGGGTGACAGTGGGGGGCCTCTGGTCTGCA
CCCCAGAGCCTGGTGAGAAGTGGTACCAGGTGGGCATCATCAGCTGGGGAAAGAGCTGTGGAGATAAGAACACCCCAGGGATAT
ACACCTCGTTGGTGALACTAC-AACCTCTGGATCGAGAAAGTGACCCAGCTAGGAGGCAGGCCCTTCAATGCAGAGAAAAGGAGGA
CTTCTGTCAAACAGAAACCTATGGGCTCCCCAGTCTCGGGAGTCCCAGADGCCAGGCAGCCCCAGATCCTGGCTCCTGCTCTGTC
CCCTGTCCCATGTGTTGTTCAGAGCTATTTTGTACTGTAATAAAATAGAGGCTATTCTTTCAACCGAAA
The FCTR6a protein encoded by SEQ IDl NO:20 has 267 amino acid residues and is presented using the one-letter code in Table 6B. FCTR6a was searched against other databases using SignatPep and PSort search protocols. The FCTR6a protein is most likely mitochondrial matrix space (Certainty-- 0.4372) and seems to have no N-terminal signal sequence. The predicted molecular weight of FCTR6a protein is 29412.8 daltons.
Table 6B. Encoded FCTR6a protein sequence (SEQ ED NO:21).
MGFRE'GTANSATFETSLPLPLAPLWFSATSPEELSLGDLTSPSIEVASI ILHKDFKRANMDlNDIAL AS PIKLD
DLVILTPPTRCVGGTADISKDMVPVMWESMPLKMCGKEYAKDGE
LVCTPEPGEKWYQVGIISGSG
TGYSVYLIKTLGRFAKRSKKMSVGPPSRW
LLCPLSHVLFRAILY
In an alternative embodiment, FCTR6b (alternatively referred to as 27455 183.0.145) has the 1334 residue sequence shown in Table 6C. An ORF was identified beginning with an ATG initiation codon at nucleotides 499-50 1 and ending with a TAA codon at nucleotides 1300-1302. A putative untranslated region upstream from the initiation codon and downstreamn from the termination codon is underlined in Table 6C, and the start and stop codons are in bold letters.
Table 6C FCTR6b Nucleotide Sequence (SEQ ID NO:22)
GATTTTAGAAGGTTAATCAACCCGGGGACAGTTTCATGGCATACCA-AGACCTTTGTGGCACCCGCT
CGGGTTAAACTTGGTGAAGGGTATCGAACTTTCTGCGGCGT
TAATATCGTCGGTCAATCGTGACGTAAAACGTTAATATCTA
CTTTAGTATTACGGCATGTTTGGGTTTGGGTTACCGTGCTT
CTTTAAAAGACCTCTTCTGGCCTAGTCGGTTGTTGCGAACG
TATTCTGTTTTGTTTTGTTTTGI2TTTGTTTTTTCCTACCTTTTTCCAATCCTCACACCTTCTGATCACAGCCCCAGTAG
GGTAAGCTGGTCTGATAGTCGGCCGCATTCATTGGCTCTCC
TTCCTCCTTTGTTTCACGCAAAACGGGCTCGGACAGCTATG
CCTCTGATAGAGCCACTATTCAAAATTAAACACTGCAGCTG
CTGTCGTGTCCCTAGTGTACGAGTCCTTCTCCCCGCGCCGC
CAGCCATCGGGCGTGGCAACATCGTAAAATTTAACGTTAGA
GTCATGCTAGATGAGGGTAAAGTCAACTCAAAAGTTTC(GT
CAGAGGGTTAGCGAGGGCGGGGGCCGTTCCCAACTGGGATG
ACCAGCGTGGGCATCATCAGCTGGGGAAAGAGCTGTGGAGAGAAGAACACCCCAGGGATATACACCTCGTTGGTACTAC
AACCTCTGGATCGAGAAAGTGACCCAGCTAGAGGGAGGCCCTTCTGGAGAAGGAGGACTTCTGTCAACAGAA
ACCTATGGGCTCCCCAGTCTCGGGAGTCCCAGAGCCAGGC-AGCCCCAGATCCTGGCTCCTGCTCTGTCCCCTGTCCCATG
TGTTGTTCAGAGCTATTTTGTACTATAATAATAGAGGCTATTCTTTCAACCGA
The FCTR6b protein encoded by SEQ ED NO:22 has 267 amino acid residues and is presented using the one-letter code in Table 6B. The Psort profile for FCTR4 predicts that this sequence has no N-terminal signal peptide and is likely to be localized at the initochondrial matrix space (Certainty=-0.4372). The predicted molecular weight of this protein is 29498.9 Daltons.
Table 6D. Encoded FCTR6b protein sequence (SEQ ID NO:23).
MGFRFLGTANSATFETSLPLPLAPLWFSATS PEELSVVLGTNDLTS PSMEIKEVASIILHDR1kPNMDNDIALLLLASPITLD
DLVILTPPTRCVGGTADNVTLKPVMWESM~(TNLAYNSDCGSG
LVCTPEPGEKWYQVGI ISWGKSCGEKNTPGIYTSLVNYNLWIEKVTQLEGRPFNAKITSVKQKPMGSPVSGVPEPGSPRSWL
LLCPLSHVLM~ILY
In a search of sequence databases, it was found, for example, that the FCTR6a nucleic acid sequence has 853 of 897 bases (95 identical to bases 551-1447, and 346 of 388 bases identical to bases 127-513 of Macacafascicularis brain cDNA, clone QccE-17034 (GENBANK-ID: JAB 04665 1) (Table 6E).
Table 6E. BLASTN of FCTR6a against Macaca fascicularis brain cDNA, clone QccE- 17034 (SEQ ED NQ:82) >GI19651112IDBJIAB046651.11AB046651 MACACA. FASCICULARIS BRAIN CDNA, CLONE QCCE-17034 LENGTH 1746 SCOPE 1429 BITS (721), EXPECT -0.0 IDENTITIES 853/897 STRAIND -PLUS PLUS QUERY: 434
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT.
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:
SBJCT:
QUERY:-
SBJCT:
QUERY:
SBJCT:
551 494 611 554 671 614 731 674 791 734 851 794 911 854 971 914 1031 974 1091 1034 1151 1094 1211 1154 1271 1214 1331 1274 1391 CCTTTTC.ATCTCAACCTCTGTCACAGCCCATAGGTTAAAGTCCAGA493 CCTTTTTCCAATCCTCACACCTTCTGAGCTACAGCCCCAGTAGGGTTAATGTCCTAGA 610 GCTAr-ATGGGATTTAGGTTTCTGGGCACAGCCAATTCTGCCACTTTTGAGA CTTCCCTTC 553 GCTATATGAGATTTAGGTTTCTAGCAGCCATTCTCCCACTTTGAGGTCCCTTC 670 CCCTTCCACTTGCCCCTCTCTGGTTCTCTGCCACCAGTCGAGACTGAGTGTCGTGC 613 CCCTTTCACTCGCCCCCTCTGGTTCTCTGCCACCAGTCCAGAGACTGATGTCGTGC 730 TGGGGACCAACGACTTAACTAGCCCATCCATGGATAAGGAGGTCGCCAGCATCATTC 673 TGGGGACCAACGACTTAACTAGCTCATCCATGGAATAAAGGAGGTCGCCAGCATCATTC 790 TTAAAATTAAACACTGCAGCTGCTCTCGTGT 733 TTCACAAGACTTTAAAGACCACATGACAATGACATTGCCTJCTGCTGCTGGCCT 850 CGCCCATCAAGCTCGATGACCTGAAGGTGCCCATCTGCCTCCCCACGCAGC'CGGCCCTG 793 CGCCCATCACACTCGATGACCTGAAGGTGCCCATCTGCCTCCCTACGCAGCACGGCCCCG 910 CCACATGGCGCGATGCTGGGTGGCAGGTTGGGGCC CCTGCTGCTGAAACT 853 CCCTGAGAGTGTGAGTGGCAACAGTCGCAAC 970 CTGTGAAAACGGATCTGATGAAGTGCCAAZGGTCATCATGGACTGGGAGGAGTGTTCAA 913 II ll t IIIIIIIII~lIIII III 111111 IIIHI 111111111IIII CTGTGAAACGGATTGATGAAAGCGCCGATGGTCATCATGACTGGGAGAGTTCAA 1030 AGATGTTTCCAAAACTTACCAAAAA7ATGCTGTGTGCCGGATACAAGATGAGAGCTATG 973 AGGCGTTTCCAAAACTCACCA-ATATGCTGTGTGCTGGATACATATGAGGCTATG 1090 ATGCCTGCAGGGTGACAGTGGGGGGCCTCTGGTCTGr-CCCCAGAGCCTGGTGGGT 1033 ACGCCTGCCAGGGTGACAGCGGGGACCTCTGGTCTGACCCCAGCCT1GGTGAGAAGT 1150 GGTACCAGGTGGGCATCATCAGCTGGGGAAAGAGCTGTGGAGAGAAGACACCCCAGGGA 1093 GGTACCAGGTGGGTATCATCAGCTGGGGAAGAGCTGTGGAGAGACACCCCAGGGA 1210 TATACACCTCGTTGGTGAACTACAACCTCTGGATCGAGAAGTGACAGCTAGAGGGCA 1153 1111111111111111111111111111111111111111 HIM11 iii 11111111I TAAACCTGTACAACTTGACAAGTACACAAGC 1270 GGCCCTTCAATGCAGAGAAAAGGAGGACTTCTGTCAAACAGAAACCTIATGGGCTCCCCAG 1213 GGCCCTTCAGTGCGGAGAAAATGAGGACCTCTGTCAAAC.AGAAACCTATGGGCTCCCGAG 1330 TCTCGGGAGTCCCAGAGCCAGGCAGCCCCAGTCCTGGTCCTGC'CTGTCCCCTGTCCC 1273 TCTCGGGGGTCCCAGAGCCAGGCGGCCTCAGATCCTGCTCCTGCTCTIGTCCCCTGTCCC 1390 ATGTGTTGTTCAGAGCTATTTTGTACTGATATAATAGAGGTATTCTTTACC 1330 ATGTGTTGTTCAGAGCTATTTTGTACTGATAATJAATAGAGGCTATTTTTTAACC 1447 102 SCORE 428 BITS (216), EXPECT =E-117 IDENTITI ES 346/388 GAPS 1/388 STRAND PLUS PLUS QUERY: I GATTGAGTACAACCGGAATTTCTGAACAAAC SBJCT: 127 GATTTTAGAAGGTTAATCAA ACCCAAGGACAGTTTCATCATGTCATAACCAGACCC 186 QUERY: 61 TTG3TGGCACCCGCTGTCGTGGGATATCAATATCCTCTGGGGTTCGGP.ATGTGGGCTTAT 120 SBJTCT: 187 TTGTGGCACCTGCTGTCATGGGATACATATCTTGTGGGTTCTGATTGGACTTAT 246 QUERY: 121 TATAGTCGCGTGTATGCGTTGCACTTGCTAT 180 SBJCT: 247 TACTGAAG-CCCTGTCTGCTTGGTCAGTGG-TGGTCTAGACTACTTCTGGTCCTGAGAT 305 QUERY: 181 TC TAAAGTGCTGGTAGACCAGTTGATACA CAGAI'ATAATAATGAATGCCTTATCTAT 240 SBJCT: 306 TCTAAAGTGTTGGTAGACCGGTTGAGATAAAGATATATAATAATGAATGCCTTACCTAT 365 QUERY: 241 CTGAAGGTCAGTTT.. I.TCCGTGCCAAGTGGCTTTTTGTGGGCTGTGTAGAGTGCTCTA 300 SBJCT: 366 CTGAAALACCAGTTTGATCCGTGCAGGGGCTTTTTGTGGGCTCTGTAGAGTGCCCTA 425 QUERY: 301 CCCAGCTCGGCCTTGCTGTATTAGACAGAAGCACCTCATTCTATCCCTGGGGCCCCTG 360 I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H I M 1 1 1 1 1 1 1 1 1 SBJCT: 426 CCCGCTCTGCCTTTGCTGTGTTAGACAGAGCACGCCATCACAT~CTGGGGCCCCCA 485 QUERY: 361 ATGGTGCAGTGGTCTGGCTGTGGTCTGC 388 SBJCT: 486 ATGGTGCCATGGTGTGGTTGTGGTCTGC 513 In a search of sequence databases, it was found, for examnple, that the FCTR6a nucleic acid sequence has 295 of 378 bases (78 identical to bases 4 10-779 of Mus niusculus adult male testis cDNA, RIKEN full-length enriched (GENBANK-ID:AK09660) (Table 6F).
Table 61?. BLASTN of FCTR6a against Mus inusculus adult male testis eDNA, RIKEN full-length enriched (SEQ ID NO:83) >G11128554291IDBJIAK016601.IIAK016601 MUS MUSCULUS ADULT MALE TESTIS CDNA, RIKEN FULL-LENGTH ENRICHED LIBRARY, CLONE: 4933401F05, FULL INSERT SEQUENCE LENGTH 1047 SCORE 97.6 BITS EXPECT 2E-17 IDENTITIES 295/378 GAPS 8/378 STRAN4D -PLUS PLUS QUERY: 697 AAAGAATAATCTGTCGCGCTGCACACCAGCT 756 SBJCT: 4.10 AACATGGACAACGACA.TTGCCTTGTTGCTGCTAGCCAAGCCCTTGACGTTCATGAGCTG 469 QUERY: 757 AAGGTGCCCATCTGCCTCCCCACGCAGCCCGGCCCTGCCACATGGCGGAATGCTGGGTG 816 SEJOT 47 0 ACGGTGCCCATCTGCCTTCCTCTCTGCCCGCCCCTCCAGCTGGCACGAATGCGGGTG 529 QUERY: 817 GCAGGTTGGGGCCAGACCAMGCTGCTGACAAAACTCTGTGAAAACCGGATCTGATGeiA 87 6 SB JOT: 530 GCGAGGCTACATACGCAGATTTTACGTTAGA 589 QUERY: 87 7 GTGCCAATGGTCATCATGGACTGGGAGGAGTGTTCAAGATGTTTCCAAACTTACCAAA. 936 11111 111 11111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SBJCT: 590 GTCCTCTTAAATGAGATCTCGTTTCACTACC 649 QUERY: 937 AATATGCTGTGTGCCGGATACAAGAATGAGAGTATGATGCCTGCAGGTGACAGTGGG 996 11I 11 1 1 1 1 1 1 1 IIIIIIII I 11111I11 1111111 SBJCT: 650 AACATGCTGTGTGCCTCATATGGTAATGAGAGCTACGATGCTITGC CAGTGGG 701 QUERY: 997 GGGCCTCTGGTCTGCACCCCAGAGCCTGGTGAGAAGTGTACCJ4GGTGGGCATCATCAGC 1056 SBJCT: 702 GGCGTGCGACCGTCGCATGTGACGTGCTACG 761 QUERY: 1057 TGGGGAAAGAGCTGTGGA 1074 SBJCT: 762 TGGGGCAAGAGCTGTG-GA 779 The FCTR6a amino acid has 247 of 267 amino acid residues identical to, and 251 of 307 residues positive with, the 267 amino acid hypothetical protein [Macaca fascicularis] (GcnBank: AB04665 1) (SEQ ID) NO: 84) (Table 6G).
Table 6G. BLASTP of FCTR6a and b against hypothetical protein [Mvacacafascicularisl (SEQ ID NO:84) >GI19651113IDBJIBABo3569.11 (AB046651) HYPOTHETICAL PROTEIN (MACACA FASCICtILARIS] LENGTH -267 SCORE -467 BITS (1202), EXPECT =E-131 IDENTITIES 247/267 POSITIVES =251/267 (94%) QUERY: 1 MGRLTNAFTLLLPWSTSELVLTDTPMIEAIL SBJCT: 1 MRFRFLSTANS PTF7EASLPLSLAPLWFSATSPEELNVVLGTNDLTS-SSMEIKEVAS IILi QUERY: 61 KDFKRANMDNDIALLLLASPILD PCPTPPTRCVAWQNA SV 120 SBJrCT: 61 KDFKRANMDNDIALLLLASPITLDDLKVPICLPTQHGPATWECWVAGGQTNADKNSV 120 QUERY: 1221 KTDLM/VPVIMDWEECSKMFPKLT ULCAGYKNESYDACKGDSGGPLVCT PEPGEK'WY 180 SBJCT: .121 KTDLMKAPMVIMDWEECSKAFPKLTKNMLCAGY ESYDACQGDSGGPLVCTPEPGEKWY 180 K
E
QUERY: 181 QVGIISWGKSCGDKNTPGIYTSLVNYNLWIEKVTQLGGRPFNAEKRRTSVKQKPMGSPVS 240 111111 II I--I111111lii 111111 11114111~- I 1111111111 11 I SBJCT: 181 QVGIISWGESCGEKNTPGIYTSLVNYNLWIEVTQLEGRPFSAEITSVKQKPMGSRVS 240 QUERY: 241 GVPEPGSPRSWLLT:CPLSHVLFRAILY 267 SBJCT: 241 GVPEPGGLRSWLLLCPLSHVLFRAILY 267 K AND E ARE RESIDUES THAT DIFFER BETWEEN FCTR6A AND B. D193K, AND G217E.
The FCTR6a amino acid has 80 of 201 amino acid residues (3 identical to, and 119 of 201 residues positive with, the 638 amino acid plasma kallikrein B I precursor (GENBANK-ID:NP_000883.1) (SEQ ID NO:85) (Table 6H).
Table 6H1. BLASTP of FCTR6a and b against plasma kallikrein BI precursor (SEQ ID >GII45048771REFINP_000883.11 PLASMA KALLIKREIN BI PRECURSOR; KALLIKREIN, PLASMA; KALLIKREIN B PLASMA; KALLIKREIN 3, PLASMA; FLETCHER FACTOR (HOMO
SAPIENS]
GII125184ISPIPO392 IKAL HUMAN PLASMA KALLIKREIN PRECURSOR (PLASMA PEEKALLIKREIN)
(KININOGENIN)
(FLETCHER FACTOR) GII675911PIRI IoQHUP PLASMA KAILIKREIN (EC 3.4.21.34) PRECURSOR HUMAN G111902631GB1AAA60153.11 (M13143) PLASMA PREKALLIKREIN LHOMO SAPIENS] GI18809782IGB1AA79940.1I (AF232742) PLASMA KALLIKREIN PRECURSOR [HOMO SAPIENS] tLENGTH 636 SCORE 133 BITS (334), EXPECT 3E-30 C 10 IDENTITIES 80/201 POSITIVES 119/201 GAPS 18/201 QUERY: 20 LPLAPLWFSATSPEELSVVLGTNDLT--SPSMEIKEVASIILHYDFKRANMDNDIALLLL 77 III +1 I +1 +1+1 +1 +111 11+1-..4I ++1111+ I SBJCT: 439 LPLQDVW------RIYSGILNLSDITKDTPFSQIKE--- IIIHQNYKVSEGNHDIALIKL 489 Cl QUERY: 76 ASPIKLDDLKVPICLPTQPGPAT-WRECWVAGWGQTNAAD.NSVKTDLMKVPMVIMDWEE 136 o1+ 11111++ +1 III III +1 I II II SBJCT: 490 QAPLNYTEFQKICLPSKGDTSTIYTNCWVTGWGFSK--EKGEIQNILQKVNIPLV'NEE 547
K
QUERY: 137 CSKMFP--KLTKNMLCAGYKNESYDACKGDSGGPLVCTPEPGEIWYQVGIIswGKSCGDK 194 o I 1+1+ 1+11111 1111111111111 I I 111+ I SBJCT: 548 CQKRYQDYKITQRNVCAGYKEGGKDACKGDSGGPLVC--KHNGMWRLVGITSWGEGCAPR 605 QUERY: 195 NVPMYTSLVNYNLWIEKVTQ 215 11+11 I II II SBJCT: 6C6 EQPGVYTKVAEYMDWILEKTQ 626 K IS A RESIDUE THAT DIFFERS BETWEEN FCTREA AND B. D1S3K.
1Tbe FCTR6a amino acid has 73 of 183 amino acid residues identical to, and 110 of 183 residues positive with, the 643 amino acid kallikrein [Sus scrofa] (GENBANK- ID:8AA37147. 1) (SEQ ID NO:86) (Table 61).
Table 61. 1I.ASTP of FCTR6a and b against kallikreiu [Sus scrofa] (SEQ ID NO:86) GZllCI('-:!IK~WBAA71471 (AB022425) KALLIRREIN [SUS SCROFA 643 SCORE :23 BzTS (322), EXPECT 9E-29 IDENrgIE:S 72/183 POSITIVES 110/183 GAPS 12/183 QUERY: 2E? 'LZT DLT SPSMEITVASIILHKDFIKANMDN'DIALLLLASPIKLDDLKVICLPTQ j +I ++11 1 +11111 I 1 IlI1++ SBJCT: 4!S 9 'SFTETPFVKE--- IIIHNYKILESGHDIALLKLET 515 QUERY: 96 PGP-ATWREC-WVAGWGQTNAADKNSVKTDLMKVPMVIMDWEEC5IMFP--KLTKNMLCAG 152 III 1 +1 I II Ji ll 1++1 1+111 SBJCT: 516 DDTNVVYTNCWVTGWGETE--EKGEIQNILOK<VNIPLVSNEECQKSYRDHKIsKQICAG 573 QUERY: 153 YKNESYDACKGDSGGLVCTPEPGEKWYOVGIISWGKSCGDKNTFGIYTSLVNYNLWIEK 212 11 11111+1111111 1+11 111+1 11+11 1 l SBJCT: 574 YKEGGFDACKGESGGPLVC--CYNGIWLVGTTWGEGCARAEQPGVYTKVIEYMDWILE 631 QUERY: 213 VTQ 215 I1 SBJCT: 632 !TQ 634 K IS A RESIDUE THAT DIFFERS BETWEEN FCTR6A AND B. D193K.
The FCTR6a amino acid has 81 of 205 amino acid residues identical to, and 112 of 205 residues positive with, the 625 amino acid Coagulation factor XI [Homo sapiens] (embCAA64368.1) (SEQ ID NO:87) (Table 63).
105 Table 6J. BLASTP of FCTR6a and b against Coagulation factor XI [Homo sapiens] (SEQ ID NO:87) >GI1180352 GBIAAA51985.11 (M20218) COAGULATION FACTOR XI [HOMO SAPIENS] LENGTH 625 SCORE 127 BITS (320), EXPECT 1E-28 IDENTITIES 81/205 POSITIVES 112/205 GAPS 17/205 QUERY: 20 LPLAPLWFSATSPEELSVVLGTNDLTSPSMEIKE------VASIILHKDFKRANMDNDIA 73 I I II+ I I 1111 I 11+1 +1 I I1 SBJCT: 427 LTAAHCFYGVESPKILRVYSGILNQS--- EIKEDTSFFGVQEIIIHDQYKMAESGYDIA 482 QUERY: 74 LLLLASPIKLDDLKVPICLPTQPG-PATWRECWVAGWGQTNAADKNSVKTDLMKVPMVIM 132 II I 11111++ +111 I ll II I I SBJCT: 483 LLKLETTVNYTDSQRPICLPSKGDRNVIYTDCWVTGWGYRKLRDK-IQNTLQKAKIPLV 540 QUERY: 133 DWEECSKMFP--KLTKNMLCAGYKNESYDACKGDSGGPLVCTPEPGEKWYQVGIISWGKS 190 II I I 1+ 1 1+ 1111+ 11111111111 1 I 1+ Ill III+ SBJCT: 541 TNEECQKRYRGHKITHKMICAGYREGGKDACKGDSGGPLSC--KHNEVWHLVGITSWGEG 598
K
QUERY: 191 CGDKNTPGIYTSLVNYNLWIEKVTQ 215 I I +1 I I++l I II SBJCT: 599 CAQRERPGVYTNWEYVDWILEKTQ 623 K IS A RESIDUE THAT DIFFERS BETWEEN FCTR6A AND B. D193K.
The number of new cases of renal cell carcinoma in the United States in 1996 was projected to be 30,600 with an estimated 12,000 deaths. Tumors with a proposed histogenesis from the proximal tubule (clear-cell and chromophilic tumors) amount to 85% of renal cancers, whereas tumors with a proposed histogenesis from the connecting tubule/collecting duct (chromophobic-, oncocytic-, and duct Bellini-type tumors) amount to only 11%.
Adcnocarcinomas may be separated into clear cell and granular cell carcinomas, although the 2 cell types may occur together in some tumors. The distinction between welldifferentiated renal carcinomas and renal adenomas can be difficult. The diagnosis is usually made arbitrarily on the basis of size of the mass, but size alone should not influence the treatment approach, since metastases car .ccur with lesions as small as 0.5 centimeters.
While radical nephrectomy with regional lymphadenectomy, is the accepted, often curative therapy for stage I (ocalized disease) renal cell cancer, very little therapy is available for advance disease that represent about 70% of the patients. Radiotherapy as a postoperative adjuvant has not been effective, and when used preoperatively, may decrease local recurrence but does not appear to improve 5-yr survival. A chemotherapeutic agent capable of significantly altering the course of metastastic renal cell carcinoma has not been identified.
(Renal Cell Cancer (PDQยฎ) Treatment Health Professionals, Cancemet, NCI) There is therefore a need to identify genes that are differentially modulated in renalcell carcinomas. In addition there is a need for methods to assay candidate therapeutic substances for modulating expression of these genes. These substances might be recombinant 106 protein expressed by the identified genes or antibodies that bind to the identified proteins.
There is yet additionally a need for an effective method of identifying target molecules or related components. These and related needs and defects are addressed in the present invention.
Novel kallikrein-like/coagulation factor XI-like Proteins and Nucleic Acids Encoding Same FCTR6 is surprisingly found to be differentially expressed in clear cell Renal cell carcinoma tissues vs the normal adjacent kidney tissues. The present invention discloses a novel protein encoded by a cDNA and/or by genomic DNA and proteins similar to it, namely, new proteins bearing sequence similarity to kallikrein-like, nucleic acids that encode these proteins or fragments thereof, and antibodies that bind immunospecifically to a protein of the invention. It may have use as a therapeutic agent in the treatmentof renal cancer and liver cirrhosis.
The utility of kallikrein family members in protein therapy of Renal cancer The treatment of renal cell carcinoma with recombinant kallikrein could improve disease outcome through several potential mechanisms. The literature suggests that members of this protein family are inhibitory to the process of angiogenesis, a process of vital importance to tumor progression. Renal cell carcinoma is known to be a highly angiogenic cancer. Thus, treatment of renal cell carcinoma with kallikrein may effectively shutdown the active recruitment of a blood supply to a tumor. Members of this protein family are known to play a role in vascular coagulation. Similar to anti-angiogenic therapy, a factor produced by cancer cells that is pro-coagulatory may also act to inhibit cancer growth by effectively "clogging" the tumor vascular supply. In addition, through its proteolytic activity, kallikrein may degrade ECM proteins or growth factors necessary for the progressive growth of cancer cells. Following is a relevant reference underlining the importance of Kallikrein in cancer therapy.
The New Human Kallikrein Gene Family: Implications in Carcinogenesis.
Diamandis EP; Yousef GM; Luo I; Magklara I; Obiezu CV Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.
Trends Endocrinol Metab 2000 Mar;11(2):54-60.
ABSTRACT: The traditional human kallikrein gene family consists of three genes, namely KLK1 [encoding human kallikrein 1 (hKl) or pancreatic/renal kallikrein], KLK2 (encoding hK2, previously known as human glandular kallikrein 1) and KLK3 [encoding hK3 or prostate-specific antigen KLK2 and KLK3 have important applications in prostate cancer diagnostics and, more recently, in breast cancer diagnostics. During the past two to three years, new putative members of the human kallikrein gene family have been identified, including the PRSSL1 gene [encoding normal epithelial cell-specific 1 gene (NES1)], the gene encoding zyme/protease M/neurosin, the gene encoding prostase/KLK-L1, and the genes encoding neuropsin, stratum comeum chymotryptic enzyme and trypsin-like serine protease. Another five putative kallikrein genes, provisionally named KLK-L2, KLK-L3, KLK-L4, KLK-L5 and KLK-L6, have also been identified. Many of the newly identified kallikrein-like genes are regulated by steroid hormones, and a few kallikreins (NES1, protease M, PSA) are known to be downregulated in breast and possibly other cancers.
NES1 appears to be a novel breast cancer tumor suppressor protein and PSA a potent inhibitor of angiogenesis. This brief review summarizes recent developments and possible applications of the newly defined and expanded human kallikrein gene locus.
The utility of kallikrein-like/coagulation factor XI-like family members in protein therapy of liver cirrosis Results related to inflammation shown below in Example A, Table CC3, panel 4, indicate over-expression of 27455183.0.19 in the liver cirrhosis sample, as compared to panel 1 data (Table CC1), where there is little or no expression in normal adult liver. Panel 4 was generated from various human cell lines that were untreated or resting as well as the same cells that were treated with a wide variety of immune modulatory molecules. There are several disease tissues represented as well as organ controls.
Potential Role(s) of FCTR6 in Inflammation: Liver cirrhosis occurs in patients with hepatitis C and also in alcoholics. This protein is 41% related to coagulation fLtor XI and its potential role in liver cirrhosis may be related to cleavage ofkininogen. A reference for this follows: Thromb Haemost 2000 May;83(5):709-14 High molecular weight kininogen is cleaved by FXIa at three sites: Arg409-Arg410, Lys502-Thr503 and Lys325-Lys326. Mauron T, Lammle B, Wuillemin WA Central Hematology Laboratory, University of Bern, Inselspital, Switzerland.
Abstract: We investigated the cleavage of high molecular weight kininogen (HK) by activated coagulation factor XI (FXIa) in vitro. Incubation of HK with FXIa resulted in the generation of cleavage products which were subjected to SDS-Page and analyzed by silverstaining, ligand-blotting and immunoblotting, respectively. Upon incubation with FXIa, bands were generated at 111,100, 88 kDa on nonreduced and at 76, 62 and 51 kDa on reduced gels.
Amino acid sequence analysis of the reaction mixtures revealed three cleavage sites at Arg409-Arg410, at Lys502-Thr503 and at Lys325-Lys326. Analysis of HK-samples incubated with FXIa for 3 min, 10 min and 120 min indicated HK to be cleaved first at Arg409-Arg410, followed by cleavage at Lys502-Thr503 and then at Lys325-Lys326. In conclusion, HK is cleaved by FXIa at three sites. Cleavage of HK by FXIa results in the loss of the surface binding site of HK, which may constitute a mechanism of inactivation of HK and of control of contact system activation.
Impact of Therapeutic Targeting of FCTR6 in Inflammation: Therapeutic targeting of FCTR6 with a monoclonal antibody is anticipated to limit or block the extent of breakdown of kininogen and thereby reduce the degradation of liver that occurs in liver cirrhosis. A pertinent reference is: Thromb Haemost 1999 Nov;82(5):1428-32 Parallel reduction of plasma levels of high and low molecular weight kininogen in patients with cirrhosis.
Cugno M, Scott CF, Salerno F, Lorenzano E, Muller-Esterl W, Agostoni A, Colman RW Department of Internal Medicine, IRCCS Maggiore Hospital, University of Milan, Italy.
massimo.cugno@unimi.it Abstract: Little is known about the regulation of high-molecular-weight-kininogen (HK) and low-molecular-weight-kininogen (LK) or the relationship of each to the degree of liver function impairment in patients with cirrhosis. In this study, we evaluated HK and LK quantitatively by a recently described particle concentration fluorescence immunoassay (PCFIA) and qualitatively by SDS PAGE and immunoblotting analyses in plasma from 33 patients with cirrhosis presenting various degrees of impairment of liver function. Thirty-three healthy subjects served as normal controls. Patients with cirrhosis had significantly lower plasma levels ofHK (median 49 microg/ml [range 22-99 microg/ml]) and LK (58 microg/ml [15-100 microg/ml]) than normal subjects (HK 83 microg/ml [65-115 microg/ml]; LK microg/ml [45-120 microg/ml]) (p<0.0001). The plasma concentrations of HK and LK were directly related to plasma levels of cholinesterase (P<0.0001) and albumin (P<0.0001 and P<0.001) and inversely to the Child-Pugh score (P<0.0001) and to prothrombin time ratio (P<0.0001) (reflecting the clinical and laboratory abnormalities in liver disease). Similar to normal individuals, in patients with cirrhosis, plasma HK and LK levels paralleled one another, suggesting that a coordinate regulation of those proteins persists in liver disease. SDS PAGE and immunoblotting analyses of kininogens in cirrhotic plasma showed a pattern similar to that observed in normal controls for LK (a single band at 66 kDa) with some lower molecular weight forms noted in cirrhotic plasma. A slight increase of cleavage of HK (a major band at 130 kDa and a faint but increased band at 107 kDa) was evident. The increased cleavage of HK was confirmed by the lower cleaved kininogen index (CKI), as compared to normal controls. These data suggest a defect in hepatic synthesis as well as increased destructive cleavage of both kininogens in plasma from patients with cirrhosis. The decrease of important regulatory proteins like kininogens may contribute to the imbalance in coagulation and fibrinolytic systems, which frequently occurs in cirrhotic patients.
In summary, the differential expression ofFCTR6 (Kallikrein family) in renal cell carcinoma is an important finding that could have immense potential in renal carcinogenesis.
In additon, overexpression of the above gene in liver cirrhosis demonstrates its anticipated use as an immunotherapeutic target.
FCTR7 The novel nucleic acid of 1498 nucleotides FCTR7 (also designated. 32592466.0.64) encoding a novel trypsin inhibitor-like protein is shown in Table 7A. An ORF begins with an ATG initiation codon at nucleotides 470-472 and ends with a TAA codon at nucleotides 1369- 1371. Putative untranslated regions, if any, are found upstream from the initiation codon and downstream from the termination codon.
Table 7A. FCTR7 Nucleotide Sequence (SEQ ID NO:24)
AGGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCGCCGAGCCTCGTTCGTGT
CCCCGCCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAAGCAGCTCCCTTCCCACC
CCAACTGCAGGTCTAATTTTGGACGCTTTGCCTGCCATTTCTTCCAGGTTGAGGGAGCCGCAGAGGCGGAGGCTCGCGTATTCC
TGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTCGCGAGCGGGGCTCTCCGTCTGCGGTCCCTTGTGAA
GGCTCTGGGCGGCTGCAGAGGCCGGCCGTCCGGTTTGGCTCACCTCTCCCAGGAAAqCTTCACACTGGAGAGCCAAAAGGAGTGG AAGAGCCTGTCTTGGAGATTTTCCTGGGGAAATCCTGAGGTCATTCAT
TATGAAGTGTACCGCGCGGGAGTGGCTCAGAGTAAC
CACAGTGCTGTTCATGGCTAGAGCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTGGAAAAATACAT
GGATGAGGATGGTGAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCT
TCATAATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGATCTGC
AGAATCCAGGGCTGAAATTGCTTGTGGGAACATGGACCTGCAAGCTTGCTTCCATCAATTGGACAGAATTTGGGAGCACACTGG
GGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTTAGCTACCCATATGAACATGAATGC
110
AACCCATATTGTCCATTCAGGTGTTCTGGCCCTGTATGTACACATTATACACAGGTCGTGTGGGCAACTAGTAACAGAATCGGT
TGTGCCATTAATTTGTGTCATAACATGAACATCTGGGGGCAGATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCA
AAGGGAAACTGGTGGGGCCATGCCCCCCTTACACATGGGCGGCCCTGTTCTG
CCCACCTAGTTTTGGAGGGCTGTAGA
GAAAATCTGTGCTACAAAGAAGGGTCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATAGAACGGCAGCAGTCA
CAAGTCCATGACACCCATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATTAGCTTTGGGAAAAGTAATGAAAAT
ATAATGGTTTTAGAAATCCTGTGTTAAAIkTATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATTGT
INDTCTACGTTTCATATATTATATGGTGCTTTGTATATGCCCTATAAAATGAATCTAAAATTGAAAAAAA
The FCTR7 protein encoded by SEQ ID NO:24 has 300 amino acid residues and is presented using the one-letter code in Table 7B. The FCTR7 gene was found to be expressed on in: brain; germ cell tumors. FCTR7 gene maps to Unigene cluster Hs.182364 which 1S N~ expressed in the following tissues: brain, breast, ear, germ cell, heart, liver, lung, whole embryo, ovary, pancreas, pooled, prostate, stomach, testis, uterus, vascular. Therefore the FCTR7 protein described in this invention is also expressed in the above tissues.
N 15 The SignalP, Psort and/or Hydropathy profile for FCTR7 predict that this seqi nce has a signal peptide and is likely to be localized outside of the cell with a certainty of 0.4228. The SignalP shows a cleavage site between amino acids 20 and 21, at the dash in the sequence amino acid ARA-IP. The predicted molecular weight of FCTR7 is 34739.9 Daltons.
Hydropathy profile shows an amino terminal hydrophobic region. This region could function as a signal peptide and target the invention to be secreted or plasma membrane localized.
Table 7B. Encoded FCTR7 protein sequence (SEQ ID
MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDMQSILDLHNKLRSQVYPTASNME
YMTWDVELERSAESRAESCLWEHGPASLLPSIGQNLGAHWGRYRPPTFHVQSWYDEVKDFSYPYEEECNPYCPFRCSGPVCTHY
TQVVWATSNRIGCAINLCHNMNIWGQIWPKAVYLVCNYSKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRYYPPR
EEETNEIERQQSQVHDTHVRTRSDDSSRNEVISFGKSNENIMVLEILC
This gene maps to Unigene cluster Hs.182364 which has been assigned the following mapping information shown in table 7C. Therefore the chromosomal assignment for this gene is the same as that for Unigene cluster 182364.
Table 7C. Mapping Information.
Chromosome: 8 Gene Map 98: Marker SHGC-32056, Interval D8S279-D8S526 Gene Map 98: Marker SGC32056, Interval D8S526-D8S275 Gene Map 98: Marker sts-G20223 Interval D8S526-D8S275 Gene Map 98: Marker stSG30385 Interval D8S526-D8S275 Whitehead map: EST67946, Chr.8 dbSTS entries: G25853, G29349, G20223 The predicted amino acid sequence was searched in the publicly available GenBank database FCTR7 protein showed Score 743 (261.5 bits), Expect 1.4e-73, P 1.4e-73, 54
III
identities (129 over 237 amino acids) and 43% homologies (167 over 237 amino acids) with human 25 kD trypsin inhibitor protein (258 aa; ACC:043692) (Table 7D).
Table 7D. BLAST X search results are shown below: ptnr:SPTREMBL-ACC:043692 25 KDA TPXPSIN INHIBITOR~ +2 743 8.4e-73 1 (SEQ ID ptnr:SPTREMBL-ACC:044228 HRTT-1 HALOCYNTHIA RORETZI +2 325 2.9e-28 1 (SEQ ID NO:89) ptnr: SWISSPROT-ACC: P4 8060 GLIOMA PATHOGENES IS -RELATED +2 314 5. 3e-27 1 (SEQ ID ptnr: PIR-ID: JC4131 gliona pathogenesis -related protein... +2 309 2. Oe-2 6 1 (SEQ ID NO:91) ptnr:SWISSNEW-ACC:019010 CYS 1EINE-RICH SECRETORY PROTE... +2 258 9.4e-21 1 (SEQ ID NO:92) The nucleotide sequence of FCTR7 has 954 of 957 residues (99 identical to the 1- 957 base segment, and 174 of 175 residues identical to bases 13 17-1953 of the 2664 nucleotide Homo sapiens putative secretory protein precursor, mRNA (GenBank-ACC: AF142573) (SEQ ID NO:93) (Table 7E).
Table 7E. BLASTN of FCTR7 against Putative secretory protein precursor (SEQ ID NO:93) >gil220023l0)gbIAF142573.1IAF142573 Homo sapiens putative secretory protein precursor, mRNA, complete cds Length 2664 Score =1865 bits (941), Expect =0.0 Identities 954/957 Gaps =1/957 Strand Plus Plus Query: 364 gtccggtttggctcacctctcccaggaaacttcacactggaqagccaaaaggagtggaag 423 Sbjct: 1 gtccggtttggctcacctctcccaggaaacttcacactggagagccaaaaggagtggaag Query: 424 agcctgtIcttggagattttcctggggaaatcctgaggtcattcattatgaagtgtaocgc 483 Sbjct: 61 agcctgtcttggagattttcctggggaaatcctgaggtcattcattatgaagtgtaccgc 120 Query: 484 gcgggagtggctcagagtaaccacagtgctgttcatggctagagcaattccagccatggt 543 111 i 1 1 111111 11111i 1111111.111 1 1 11 11111 11 11111 111i 11111 i Sbjct: 121 gcgggaqtggctcaqagtaaccacagtqctqttcatqgctagaqcaattccagccatggt 180 Query: 544 ggt tccc aatgccact ttatt gga gaaa cttttggaaa aat acat ggatgaggat ggt ga 603 Sbjct: 181 ggttcccaatgccactttattggagaaacttttggaaaaatacatggatgaggatggtga 240 Query: 604 gtggt atagccaaacaacgagggaaaagggccatcacagacaatgacatgcagagtat 663 112 Sbjct: 241 Query: 664 Sbjct: 301 Query: 724 Sbjct: 361 Query: 783 Sbjct: 421 Query: 843 Sbjct: 481 Query: 903 Sbjct: 541 Query: 963 1022 Sbjct: 601 Query: 1023 1082 Sbjct: 661 Query: 1083 1142 Sbjct: 721 Query: 1-143 1202 Sbjct: 781 Query: 1203 1262 Sbjct: 841 Query: 1263 Sbjct: 901 gtggtggatagccaaacaacgagggaaaagggccatcacagacaatgacatgcagagtat 300 tttqqaccttcataataaattacgaaqtcaggtgtatccaacaqcctctaatatggagta 723 t ttggacctt cat aat aaatt acga agt caggt gtat cca aca gcct ctaatat ggagt a 360 tatgacatgggatgtagagctggaaagatctgcagaatccagggctgaaa-ttgcttgtg 782 tatgacatgggatgtagagctggaaagatctgcagaatcctgggctgaaagttgcttgtg 420 ggaacatggacctgcaagcttgcttccatcaattggacagaatttgggagcacactgggg 842 ggaacatggacctgcaagcttgcttccatcaattggacagaatttgggagcacactgggg 480 a agat ataggcccccgacgtttcat gtacaat cgt ggt at gat gaagtga aagact tt ag 902 aagatataggcccccgacgtttcatgtacaatcgtggtatgatgaagtgaaagactttag 540 ctacccatatgaacatgaatgcaacccatattgtccattcaggtgttctggccctgtatg 962 ctacccatatgaacatqaatgcaacccatattqtccattcagqtgttctqqccctqtatg 600 tacacattatacacaggtcgtgtgggcaactagtaacagaatcggttgtgccattaattt tacacattatacacaqgtcgtgtqggcaactagtaacagaatcqgttgtgccattaattt 660 gtgtcataacatgaacatctgggggcagatatggcccaaagctgtctacctggtgtgcaa gtgtcataacatgaacatctgggggcagatatggcccaaagctgtctacctggtgtgcaa 720 ttactccccaaaggqaaactggtggggccatgccccttacaaacatgggcggccctgttc t tact ccccaaa gggaaact ggt ggggccat gcccctt acaaacat gggcggccct gtt c 780 tgcttgcccacctaattttggagggggctgtagagaaaat ctgtgctacaaagaagggtc tgcttgcccacctacttttggagggggctgtagagaaaatctgtgctacaaagaagqgtc 840 agacaggtattatccccctcgagaagaggaaacaaatgaaatagaacggcagcagtca ca agacaggtattatccccctcgagaagaggaaacaaatgaaatagaacgacagcagtcaca 900 agtccatgacacccatgtccggacaagatcagatgatagtagcagaaatgaagtcat 1319 agtccatgacacccatgtccggacaagatcagatgatagtagcagaaatgaagtcat 957 Score 339 bits (171), Expect 3e-90 Identities 174/175 (99%) Strand -Plus Plus Query: 1317 cattagctttgggaaaagtaatgaaaatataatggttttagaaatcctgtgttaaatatt 1376 Sbjct: 1779 cattagctttgggaaaagtaatgaaaatataatggttttagaaatcctgtgttaaatatt 1838 Query: 1377 gctatattttcttagcagttatttctacagttaattacatagtcatgattgttctacgtt 1436 1111111111 ii 11111111111111 ii liili II li111111111 1111111 Sbjct: 1839 gctatattttcttagcagttatttctacagttaattacatagtcatgattgttctacgtt 1898 Query: 1437 tcatatattatatggtgctttgtatatgcccctaataaaatgaatctaaacattg 1491 Sbjct: 1899 tcatatattatatggtgctttgtatatgccactaataaaatgaatctaaacattg 1953 The FCTR7 amino acid has 284 of 285 amino acid residues identical to, and 284 of 285 amino acid residues similar to, the 500 amino acid Putative secretory protein precursor [Horno sapiens] (Genfank-Acc No.: AE142573) (SEQ I NO:94) (Table 7F).
Table 7F. BLASTP alignments of FCTR7 against Putative secretory protein precursor, (SEQ ID NO:94) >gi112002321qblAAG43287.1IAF142573 1 (AF142573) putative secretory protein precursor [Homo sapiens] Length 500 Score 581 bits (1499), Expect e-165 Identities 284/285 Positives 284/285 (99%) Query: 1 MKCTAREWLRVTTVLFMARAI PAMVVPNATLLETKLLEKYMDEDGEWWIAKQRGKPAITDN Sbjct: 1 EKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDN Query: 61 DMQSILDLHNKLRSQVYPTASNMEYMTWDVLERSESp.ESCLWEHGPASLLPSIGQNL 120 Sbjct: 61 DMQSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNL 120 Query: 121 GAHWGRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIG 180 iiii1iii1iii1iii1iii1hiijijiliiiiii1iliijijiiiiiiiii1iII1iii Sbj ct: 121 GAHWGRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQJXqATSNRIG 180 Query: 181 CAINLCHNMNIWGQIWPKAVYLVCNYSPKGNWWGAPYKHGRPCSACPPSFGGGCRENLC 240 11111111!111111111 11111111111111 liii 11111111111111 11111 Sbjct: 181 CAINLHNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLC 240 Query: 241 YKEGSDRYYPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVIS 285 1111111 jill1111111 11111111111 11111111 liii1 Sbjct: 241 YKEGSDRYYPPREEETNEIERQQSQVHDT' !RTRSDDSSRNEVIS 285 The FCTR7 amino acid has 137 of 176 amino acid residues identical to, and 151 of 176 amino acid residues similar to, the 188 amino acid Late gestation lung protein I [Ratius norvegicus] (GenBank-Acc No.: AF109674) (SEQ ID NO:95) (Table 7G).
Table 7G. BLASTP alignments of FCTR7 againwt Late gestation lung protein 1, (SEQ ID >gii43246821gbjAAD16986.1j (AF109674) late gestation lung protein 1 [Rattus norvegicus] Length 188 Score 277 bits (709), Expect le-73 Identities 137/176 Positives 151/176 (86%) Query: 6B LHNKLRSQVYPTASNMEYMTWDVELERSSRAESCLWEHGPASLLPSIGQNLGAHWGRY 127 114 HIM~ Ill1ll l1ll111111HI I IIIIIH M 11111 Sbj ot: 2 LHN KLRGQVY PPAS NMEYMTWDEELERSAAAWAQRCLWERG PASLLVS IGQNLAVHWGRY 61 Query: 128 RPPTPHVQSWYDEVKDFSYPYEHECNPYCPFCSGPVCTHYTQVVWATSNRIGCAINLCH 187 1 1 III 11111111 Il 111 1+1 1111 +ii 111111+1111+1+1111++ I 1-44 Sbjct: 62 RS PGFHVQSWYUEVKDYTYPY PHECN PWCPERCSGAMCTRYTQMVWATTNKI GCVHTCR 121 Query: 188 NMIGIPAYVNSKNWHAYHRCAPSGGRNCK 243 Sbjct: 122 SMSVWGDIWENAVYLVCNYSPKGNWIGEAPYKHGRPCSECPSSYGGGCPNNLCYPM 177 The FCTR/" amino acid has 130 of 237 amino acid residues identical to, and 165 of 237 amino acid residues similar to, the 258 amino acid R3H domain-containing preproprotein; 25 kDa trypsin inhibitor [Homno sapiens) (GenBank-Ace No.: D45027) (SEQ ID NO:96) (Table 711).
Table 7H1. BLASTP alignments of FCTR7 against 113H domain-containing preproprotein, 25 kfla trypsin inhibitor (SEQ IOD NO:96) >qi7 7 56761rcf IUP 056970.11 R3H domuain-containing preproprotein; 25 kDa trypbia nhribitor; R311 dom~ain (binds single-stranded nucleic acids) containing (Horio sapiens] giI2q43716jdhj IBAA25066.11 (D45027) 25 kDa trypsin inhibitor [Homo sapiens] Length 258 Sccre 2(5 bits (678), Expect 4e-70 Idcntitics 130/237 Positives 165/237 Gaps 3/237 Query: '2 7T'.
T
F
4 AAIPAMVVPNATLLEKLLEKYMDEDGEWWI1KQRGIKP-AITDNDMQSILDLHNK 71 +11+ I 1 +1 1+ +1 1 1 1 i It f I+ 111 1 11 It Sbjct: FTrILSDSPNFDEAKQDA PA1KYSNMALYN 76 Query: 72 LRSQVIYPTASNMEYLMTWDVELERSAESRAESCLWEHGPASLLPSIGQNLAHWGRYRPPT 131 1+-11111 11 1 111 1 1+1+111+4 I 11 III +11 1ii1 Sbjct: 77 VnSKVIFPPAANMEYMVWDENLAKSAB;-AWAATCIWDHGPSYLLRFLGQNLSVRTGRYPSIL 136 Query: 132 Fi1VJQSWYDEVKDFSYPYEHECN FYCPFRCSGPVCTHYTQVVWATSNRIGCAINLCHNMN: 191 I1+ 111 111+44i II 11 +1 1 11 1 11+11111 1+1111I 1111111l+ I III+ Sbjct: 137 QLVKPWYDEVKDYAFPYPQDCNPRCPMRCFGPMCTHYTQMVWATSNRIGCATHTCQNMNV 196 Query: 192 WGQI W PKVYLVCNYS PKGNWGHAPYKHGRPCSACP PS FGGCRENLCYKEGS DRY 248 11 +1 +-I11111111+11i i I l1114-l 14- 11 1 111 11 +1 1 14- I Sbjct: 197 WGSVWIRRAVYLVCNYAPKGNWIGEAPYKVGVPCSSCPPSYGGSCTCNLCFPGVTSNY 253 Ile FCTR7 amino acid has 109 of 233 amino acid residues identical to, and 146 of 233 amino acid residues similar to, dhe 253 amino acid Novel protein similar to a trypsin inhibitor [Homno sapiens] 25 kDa trypsin inhibitor (EMBLAce No.: ALI 173 82) (SEQ ID) NO:97) (Table 7).
Table 71. BLASTP alignments of FCTR7 against Novel protein similar to a trypsin inhibitor, (SEQ ID NO:97) >g119885193lembiCAC04190-11 (AL117382) dJ881L22.3 (novel protein similar to a trypsin inhibitor) [Homo sapiens] Length 253 Score 225 bits (575), Expect 4e-58 Identities 109/233 Positives 146/233 Gaps 8/233 Query: 10 RVTTVLFMARAI PAMWPNATLLEKLLEYMDEDGEWWIAKQRGKRAITDNDMQSILDLH 69 I I1 II I +1 I 1 II 1 II I1 Sbjct: 19 QAVNAIMFNATPAPAQPESTAIRLL---------SGLEVPRYRRKRHISVRDMNALLDYH Query: 70 NKLRSQVYPTASNMEYMTWDVELERSAESRAESCLWEHGPASLLPSIGQNLGAHWGRYP 129 I 1+ 111 1+11111 11 1 H 1+1 111+ 1 +IHIIH I 1+11 Sbjct: 71 NHIRASVYPPAANMEYMVWDKRLARAAEAWATQCIWAHGPSQLMRYVGQNLSIHSGQYRS 130 Query: 130 PTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLCHN 189 ++II +1 +11I+11+11 11 1+1111+111+111+1 111+ 1 Sbjct: 131 VVDLMKSWSEEKWHYLFPAPRDCNPHCPWRCDGPTCSHYTQMVWASSNRJGCAIHTCSSI 190 Query: 190 NIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYK 242 4+11 +1 111111+ 1111 i +111 +1+1+1111+- 1 I 1+1 Sbjct: 191 SVWGNTWHRAAYLVCNYAIKGN-WIGESPYKMGKPCSSCPPSYQGSCNSNMCFK 243 The FCTR7 amino acid has 129 of 237 amino acid residues identical to, and 167 of 237 amino acid residues similar to, the 258 amino acid 25 kDa Trypsin Inhibitor from Honto sapiens (EMBLAcc No.: 043692) (SEQ ID NO:S8) (Table 7).
Table 7J. BLASTP alignments of FCTR7 against 25 kDa Trypsin Inhibitor, (SEQ ID NO:88) ptnr:SPTREML-ACC:043692 25 IDA TRYPSIN INHIBITOR Home sapiens (Human), 258 aa.
Score 743 (261.5 bits), Expect 1.6e-73, P 1.6e-73 Identities 129/237 Positives 167/237 The FCTR7 amino acid has 79 of 193 amino acid residues identical to, and 110 of 193 amino acid residues similar to, the 266 amino acid Glioma Pathogenesis-Related Protein (RTVP-1 Protein) Homno sapiens (SWISSPROT Acc No.: P48060) (SEQ ID (Table 7K).
Table 7K. BLASTP alignments of FCTR7 against Glioma Pathogenesis-Related Protein, (SEQ ID ptnr: SWISSPROT-ACC:P48060 GLIOMA PATHOGENESIS-RELATED PROTEIN (RTVP-1 PROTEIM) Homo sapiens (Human), 266 aa Score 314 (110.5 bits), Expect 4.7e-28, P 4.7e-28 Identities 79/193 Positives 110/193 (56%) The FCTR7 amino acid has 66 of 186 amino acid residues identical to, and 91 of 186 amino acid residues similar to, the 186 amino acid Neutrophil granules matrix glycoprotein SGP28 precursor from Homo sapiens (SWISSPROT Acc No.: S68691) (SEQ ID NO:98) (Table 7L).
Table 7L. BLASTP alignments of FCTR7 against Neutrophil granules matrix glycoprotein, (SEQ ID NO:98) ptnr:PIR-ID:S68691 neutrophil granules matrix glycoprotein SGP28 precursor human Score 254 (89.4 bits), Expect l.le-21, P 1.le-21 Identities 66/186 Positives 91/186 (48%) A novel developmentally regulated gene with homology to a tumor derived trypsin inhibitor is expressed in lung mesenchyme, as described in Am. J. Physiol. 0:0-0(1999).
cDNA cloning of a novel trypsin inhibitor with similarity to pathogenesis-related proteins, and its frequent expression in human brain cancer cells is disclosed in Biochim. Biophys. Acta 1395:202-208(1998). RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin, as published in Gene 180:125-130(1996). The human glioma pathogenesis-related protein is structurally related to plan pathogenesis-related proteins and its gene is expressed specifically in brain tumors (Gene 159:131-135(1995)). Structure comparison of human glioma pathogenesisrelated protein GliPR and the plant pathogenesis-related protein P 14a indicates a functional link between the human immune system and a plant defense system (Proc. Natl. Acad. Sci.
U.S.A. 95:2262-2266(1998)). GiPR is highly expressed in the human brain tumor, glioblastoma multiform/astrocytome, but neither in normal fetal or adult brain tissue, nor in other nervous system tumors. GliPR belongs to a family that groups mammalian SCP/TPX1; insects AG3/AG5; FUNGI SC7/SC14 and plants PR-1. SGP28, a novel matrix glycoprotein in specific granules of human neutrophils with similarity to a human testis-specific gene product and to a rodent sperm-coating glycoprotein (FEBS Lett. 380, 246-250, 1996). The primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors is 117 described in Biophys. J. 68:2280-2288(1995). As GliPR, Helothermine belongs to a family that groups mammalian SCP/TPXI; insects AG3/AG5; FUNGI SC7/SC14 and plants PR-1.
SBased upon homology, FCTR7 protein and each homologous protein or peptide may 'n share at least some activity.
CN Therapeutic uses: FCTR7 protein has homology to trypsin inhibitors, Q91055 helothermine, tumor derived tyrpsin inhibitors, glioma pathogenesis-related protein, Q9ZOU6 LATE GESTATION LUNG PROTEIN 1, and to the Prosite family which groups mammalian SCP/TPX1;INSECTS AG3/AG5; FUNGI SC7/SC14 AND PLANTS PR-I proteins.
Therefore the FCTR7 protein disclosed in this invention could function like the proteins which it has homology to. These functions include tissue development in vitro and in vivo, and cancer pathogenesis.
Based the tissue expression pattern, the gene is implicated in diseases of tissues in which it is expressed. These diseases include but are not limited to: Glioma, cancer, lung diseases, gestation, male and female reproductive diseases, deafness, neurological disorders, gastric disorders, and pancreatic diseases like diabetes.
These materials are further useful in the generation of antibodies that bind immunospecifically to the novel FCTR7 substances for use in therapeutic or diagnostic methods. These antibodies may be generated according to methods known in the art, using prediction from hydrophobicity charts, as described in the "Anti-FCTRX Antibodies" section below. In one embodiment, a contemplated FCTR7 epitope is from aa 40 to 120. In another embodiment, a FCTR7 epitope is from aa 130 to 170. In additional embodiments, FCTR7 epitopes are from aa 210 to 230, and from aa 240 to 280.
TABLE 8A: Summary Of Nucleic Acids And Proteins Of The Invention
I
ยฃI amet l les Clone; Description of Homolog Nucleic Acid Amino Acid ,Qvn Yn V SEO EDf NO FOTRI 1A, 11B, 58092213.0.36 follistatin-like protein 1 2 FCTR2 2A,2B3 AC012614 1.0.1 2 3; KIAlO61 -like protein 3 4 FCTR3 3A, 3B 10129612.0.118; neurestin-like protein 5 6 3D 10129612.0.405; neurestin-lie protein 7 8 3E 10129612.0.154; neurestin-like protein 9 3F 10129612.0.67; neurestin-lice protein 10129612.0.258; neurestin-like protein 11 3H1, 31 10129612.0.352; neurestin-like protein 12 13 FCTR4 4A, 4B 29692275.0.1; N-Kappa-B P65delta3-like 14 ______protein 5A, 51B 32125243.0.21; human complement CiR 16 17 component precursor -like protein___ 19 FCTR6 6A, 613 27455 183.0.19; novel human blood 2021 ____coagulation factor MI -like -6C, 6D 1 74 5 5 183.0.145; novel human blood 22 23 coagulation factor MI -like protein______ FCTR7 7A, 7B 32592466.0.64; trypsin inhibitor -like protein 24 ECTRi Example 2 Ag8O9 Forward 26 FOTRI Example 2 AgSO09 Probe 27 FCTR1 Example 2 Ag809 Reverse 28 FCTR4 Example 2 Ag2773 Forward 29 FCTR4 Example 2 Ag2773 Probe FCTR4 Example 2 g2773 Reverse 31 Example 2 Ag427 Forward 32 Example 2 Ag427 Probe 33 Example 2 Ag427 Reverse 34 FCTR6 Example 2 Ag 1541 Forward 35 FCTR6 Example 2 Ag1541 Probe 36 ,FCTR6] Exam~ple 2Ag 1541 Reverse 1 3 TABLE 811: Summary of Query Sequences Disclosed Table Database Acc. No. Sequence Name Species SEQ D NO.
IC, K remtrEmbf BAA21725 IGFBP-like protein mouse 38 ID sptrEmbl Q61581 Follistatin-like protein-2 Mouse 39 lE SptrEmbl Q07822 Mac25 protein Human IF, 1K SptrEmbi 088812 Mac25 protein Mouse 41 1G, 1K SptrEmbl Q16270 Prostacyclin-stimulating factor Human 42 lB. 1K PIk B40098 Colorectal cancer suppressor Rat 43 11 TrEmbine AAD9360 PTP sigma (brain) precursor Human 44 w 11 tr~ PE igapecro 2C_ Genurm 0I Q 13332 PT? sigma precursor Human I Human tXDVz0YCV+ 1Kd/AiUO1 cDNA Human Human L I 2D TrEnabine BAA85677 K1AA1263 Human 47 w 2E TrEmnbine BAA83013 KIA.AlO061 protein fragment Human 48 w 2F Embi CAB 70877.1 Hypothetical protein Human 49 1 2G Genflank Q62632 Follistatin-related protein-i precursor Rit_ To0 2ff GenBank Q62536 Follistatin-related protein- I precursor Mouse 51 21 Genflank JG0I187 Follistatin related protein African 52 clawed frog 2J Gen.Banic Q12841 Follistatin related protein-i precursor Human 53 2K Embi CAB42968. 1 Flik protein Chicken 54 2L GenBank T13822 Frazzled gene protein Fruit fly 2M GenBank AAC38849.1 Roundabout I Fruit fly 56 2N Gen]Bank 060469 Down Syndrome Cell Adhesion Human' 57 Precursor SwissProt Q 13449 Limibic system-associated membrane Human 58 precursor 2P SptrEmbl 070246 Putativc neuronal cell adhesion Mouse 59 short form 2Q SptrEmbl 002869 CHiLAMP, Gil1 -isoform precursor Chicken 2R. SwissProt Q628 13 Limbic system-associated membrane R~at 61 precursor 3J GenBank NM_011856.2 Odd Ozlten-m homology 2 Fruit fly 62 3K jEmbi AJ24571 1.1 Teneurin-2 cDNA, short splice variant Chicken 63 3L jGenlBank. AB032953 KIAA 1127 cDNA Human 64 3M, Gen.Bank AB0254 11 Ten-m.2 cDNA Mouse 3U 3N GenBank NM 020088.1 Neurestin alpha cDNA Rat 66 EmnbI GGA278031I Teneurin-2 Chicken 67 3P GenBank NP_035986.2 Odd Oz/ten-m homology 2 Fruit fly 68 3Q Embi CAC09416.1 Teneurin-2 Chicken 69 3R GenBank BAA773 99.1 Ten-ni4 Mo)use 3S GenBank AB032953 KIAAI 127 protein iuman 71 3T Genlank AF086607 Neurestin alpha Rat 72 4C SptrEmbl Q99233 Hypothetical 10 kD protein Trypanos 73 4C SptrEmbl Q16896 GABA receptor subunit 74 ISptrEmbl 076473 GABA receptor subunit 4C ITrEmblne AAD28317 FI3J 11. 13 protein 76 w Text p. ISptrEmbl Q13313 NE-kappa B P65 delta 3 protein Human 77 SE GenBank Xlvi007061.1 Complement ClR-like proteinase Human 78 precursor SF GenBank NM_0017331Complement component 1, R Human 79 cDNA GenBank AAF44349.1 Complement C1R-like proteinase Human precursor GenBank AAA5185.1 Complement C1R component Human 81 precursor 6E GenBank AB046651 Brain cDNA clone Qcc-17034 Macaque 82 6F GenBank AK09660 Adult testis cDNA, RIKEN full length Mouse 83 enriched 6G GenBank AB046651 Hypothetical protein Macaque 84 6H GenBank NP_000838.1 Plasma kallikrein B1 precursor Human 61 GenBank BAA37147.1 Kallikrein Pig 86 6J Embl CAA64368.1 Coagulation factor XI Human 87 7D, 7J SptrEmbl 043692 25 kDa trypsin inhibitor Human 88 7D SptrEmbl 044228 HRTT-1 89 7D, 7K SptrEmbl P418060 Glioma pathogenesis-related protein Human 7D PIR-ID JC4131 Glioma pathogenesis-related protein Human 91 7D SwissProt 019010 Cysteine-rcih secretory protein 92 7E GenBank AF142573 Putatitive secretory protein precursor Human 93 cDNA 7F GcnBank AF142573 Putative secretory protein precursor Human 94 7G GenBank AF109674 Late gestation lung protein 1 Rat 7H GenBank D45027 R3H domain containing preprotein, 25 Human 96 k_ Da trypsin inhibitor 71 Embl AL117382 Novel protein similar to a trypsin Human 97 inhibitor 7L PIR-ID S68691 Neutrophil granules matrix Human 98 glycoprotein SGP28 precursor FCTRX Nucleic Acids and Polypeptides One aspect of the invention pertains to isolated nucleic acid molecules that encode FCTRX polypeptides or biologically-active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify FCTRXencoding nucleic acids FCTRX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of FCTRX nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules cDNA or genomic DNA), RNA molecules mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised doublestranded DNA.
An FCTRX nucleic acid can encode a mature FCTRX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full length Sgene product, encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product _n "mature" form arises, again by way of nonlimiting example, as a result of one or more \0 C 5 naturally occurring processing steps as they may take place within the cell, or host cell, in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue, encoded by the initiation codon of an ORF, or the proteolytic cleavage of a signal peptide or leader Ssequence. Thus a mature form arising from a precursor polypeptide or protein that has 10 residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through SN remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from a step ofpost-translational modification other than a proteolytic cleavage event.
Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.
The term "probes", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides 100 nt, or as many as approximately, 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.
The term "isolated" nucleic acid molecule, as utilized herein, is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
Preferably, an "isolated" nucleic acid is hee of sequences which naturally flank the nucleic acid sequences located at the and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated FCTRX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb ofnucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived brain, heart, liver, spleen, etc.). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.
A nucleic acid molecule of the invention, a nucleic acid molecule having the nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or a complment of this aforementioned nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 22, and 24 as a hybridization probe, FCTRX molecules can be isolated using standard hybridir-tion and cloning techniques as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, New York, NY, 1993.) A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to FCTRX nucleotide sequences can be prepared by standard synthetic techniques, using an automated DNA synthesizer.
As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.
In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or a portion of this nucleotide sequence a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of an FCTRX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, is one that is sufficiently complementary to the nucleotide sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, that it can hydrogen bond with little or no mismatches to the nucleotide sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, thereby forming a stable duplex.
As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van.
der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence.
Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice. Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution. Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. Homologs are nucleic acid sequences or amino acid sequences of a particular gene that are derived from different species.
Dt.ivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of S identical size or when compared to an aligned sequence in which the alignment is done by a ri computer homology program known in the art, or whose encoding nucleic acid is capable of Shybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT S 5 PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, New York, NY, 1993, and below.
A "homologous nucleic acid sequence" or "homologous amino acid sequence," or g variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those Ssequences coding for isoforms ofFCTRX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA.
N Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for an FCTRX polypeptide of species other than humans, including, but not limited to: vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding human FCTRX protein.
Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, as well as a polypeptide possessing FCTRX biological activity. Various biological activities of the FCTRX proteins are described below.
An FCTRX polypeptide is encoded by the open reading frame of an FCTRX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG "start" codon and terminates with one of the three "stop" codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, a stretch ofDNA that would encode a protein of 50 amino acids or more.
The nucleotide sequences determined from the cloning of the human FCTRX genes allows for the generation of probes and primers designed for use in identifying and/or cloning FCTRX homologues in other cell types, e.g. from other tissues, as well as FCTRX homologues from other vertebrates. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region ofnucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24; or an anti-sense strand nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 1 8 20, 22 and 24; or of a naturally occurring mutant of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24.
Probes based on the human FCTRX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which misexpress an FCTRX protein, such as by measuring a level of an FCTRX-encoding nucleic acid in a sample of cells from a subject detecting FCTRX mRNA levels or determining whether a genomic FCTRX gene has been mutated or deleted.
"A polypeptide having a biologically-active portion of an FCTRX polypeptide" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologicallyactive portion of FCTRX" can be prepared by isolating a portion of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, that encodes a polypeptide having an FCTRX biological activity (the biological activities of the FCTRX proteins are described below), expressing the encoded portion of FCTRX protein by recombinant expression in vitro) and assessing the activity of the encoded portion of FCTRX.
FCTRX Nucleic Acid and Polypeptide Variants The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, due to degeneracy of the genetic code and thus encode the same FCTRX proteins as that encoded by the nucleotide sequences shown in SEQ ID NO NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and In addition to the human FCTRX nucleotide sequences shown in SEQ ID NOS:1, 3, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the FCTRX polypeptides may exist within a population the human population). Such 3genetic polymorphism in the FCTRX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding an FCTRX protein, preferably a vertebrate FCTRX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the F'TRX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the FCTRX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the FCTRX polypeptides, are intended to be within the scope of the invention.
SMoreover, nucleic acid molecules encoding FCTRX proteins from other species, and thus that have a nucleotide sequence that differs from the human sequence of SEQ ID NOS:I, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the FCTRX cDNAs of the invention can be isolated based on their homology to the human FCTRX nucleic acids disclosed herein using the human cDNAs, or a portion thereof as a hybridization probe according to standard hybridization techniques under stringent hybndization conditions.
Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 11, 2, 1, 16. I 20, 22, and 24. In another embodiment, the nucleic acid is at least 10, 100, 250, 500, 750, 1000, 1500, or 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least homologous to each other typically remain hybridized to each other.
Homologs nucleic acids encoding FCTRX proteins derived from species other than human) or other related sequences paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.
As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5ยฐC lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30ยฐC for short probes, primers or oligonucleotides 10 nt to 50 nt) and at least about 60 0 C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, N.Y.
(1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65ยฐC, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50 0 C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequences of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature encodes a natural protein).
In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 0 C, followed by one or more washes in 1X SSC, 0.1% SDS at 37 0 C. Other conditions of moderate stringency that may be used are well-known within the art. See, Ausubel, et al. 1993, CURRENT PROTOCOLS IN g MOLECULAR BIOLOGY, John Wiley Sons, NY, and Kriegler, 1990; GENE TRANSFER AND Ci EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.
SIn a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule n comprising the nucleotide sequences of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, C 5 22, and 24, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are (C hybridization in 35% formnmide, 5X SSC, 50 mM Tris-HCI (pH 5 mM EDTA, 0.02% C PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) Sdextran sulfate at 40 0 C, followed by one or more washes in 2X SSC, 25 mM Tris-HCI (pH 5 mM EDTA, and 0.1% SDS at 50 0 C. Other conditions of low stringency that may be N used are well known in the art as employed for cross-species hybridizations). See, e.g., Ausubel, et al. 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY
MANUAL,
Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.
Conservative Mutations In addition to naturally-occurring allelic variants of FCTRX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, thereby leading to changes in the amino acid sequences of the encoded FCTRX proteins, without altering the functional ability of said FCTRX proteins. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequences of the FCTRX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the FCTRX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well-known within the art.
Another aspect of the invention pertains to nucleic acid molecules encoding FCTRX proteins that contain changes in amino acid residues that are not essential for activity. Such FCTRX proteins differ in amino acid sequence from SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 45% homologous to the amino acid sequences of SEQ S ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, S19, 21, 23, and 25; more preferably at least about 70% homologous to SEQ ID NOS:2, 4, 6, 8, I' 13, 15, 17, 19, 21, 23, and 25; still more preferably at least about 80% homologous to SEQ ID C 5 NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25; even more preferably at least about homologous to SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25; and most preferably at Sleast about 95% homologous to SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and An isolated nucleic acid molecule encoding an FCTRX protein homologous to the protein of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, can be created by introducing 10 one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.
Mutations can be introduced into SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis.
Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
Families of amino acid residues having similar side chains have been defined within the art.
These families include amino acids with basic side chains lysine, arginine, histidine), acidic side chains aspartic acid, glutamic acid), uncharged polar side chains glycine. asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains threonine, valine, isoleucine) and aromatic side chains tyrosine, phenylalanine, tryptnphan, histidine). Thus, a predicted non-essential amino acid residue in the FCTRX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an FCTRX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for FCTRX biological activity to identify mutants that retain activity. Following mutageneois of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, 1 wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the "weak" group of conserved residues may be any one Sof the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, (1 5 VLIM, HFY, wherein the letters within each group represent the single letter amino acid code.
In one embodiment, a mutant FCTRX protein can be assayed for the ability to form Sprotein:protein interactions with other FCTRX proteins, other cell-surface proteins, or I biologically-active portions thereof, (ii) complex formation between a mutant FCTRX protein and an FCTRX ligand; or (iii) the ability of a mutant FCTRX protein to bind to an intracellular target protein or biologically-active portion thereof; avidin proteins).
cN In yet another embodiment, a mutant FCTRX protein can be assayed for the ability to regulate a specific biological function regulation of insulin release).
Antisense Nucleic Acids Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire FCTRX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of an FCTRX protein of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25; or antisense nucleic acids complementary to an FCTRX nucleic acid sequence ofSEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, are additionally provided.
In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an FCTRX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the FCTRX protein. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids also referred to as and 3' untranslated regions).
Given the coding strand sequences encoding the FCTRX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of FCTRX mnRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of FCTRX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site ofFCTRX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids phosphorothioate derivatives and acridine substituted nucleotides can be used).
Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1 -methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, acid methylester, uracil-5-oxyacetic acid 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an FCTRX protein to thereby inhibit expression of the protein by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and th n administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol I promoter are preferred.
In yet another embodiment, the antisense nucleic acid molecule of the invention is an a-anomeric nucleic acid molecule. An a-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual P-units, the strands run parallel to each other. See, Gaultier, et al., 1987. Nucl. Acids Res. 6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (see, Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (see, Inoue, et al., 1987. FEBS Lett. 215: 327-330.
Ribozymes and PNA Moieties Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
In one embodiment, an antisense nucleic acid of the invention is a ribozyme.
Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes hammerhead ribozymes as described in Haselhoffand Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave FCTRX mRNA transcripts to thereby inhibit translation of FCTRX mRNA. A ribozyme having specificity for an FCTRX-encoding nucleic acid can be designed based upon the nucleotide sequence of an FCTRX cDNA disclosed herein SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an FCTRX-encoding mRNA. See, U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al. FCTRX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, Bartel et al., (1993) Science 261:1411-1418.
Alternatively, FCTRX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the FCTRX nucleic acid the FCTRX promoter and/or enhancers) to form triple helical structures that prevent transcription of the FCTRX gene in target cells. See, Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.
In various embodiments, the FCTRX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, Hyrup, et al., 1996. Bloorg Med Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis ofPNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.
PNAs of FCTRX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, inducing transcription or translation arrest or inhibiting replication. PNAs of FCTRX can also be used, for example, in the analysis of single base pair mutations in a gene PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, SI nucleases (see, Hyrup, et al., 1996.supra), or as probes or primers for DNA sequence and hybridization (see, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).
In another embodiment, PNAs of FCTRX can be modified, to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use ofliposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of FCTRX can be generated that Cmay combine the advantageous properties of PNA and DNA. Such chimeras allow DNA Srecognition enzymes RNase H and DNA polymerases) to interact with the DNA portion O while the PNA portion would provide high binding affinity and specificity. PNA-DNA N 5 chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (see, Hyrup, etal., 1996. supra).
The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996.
C, supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can Sbe synthesized on a solid support using standard phosphoramidite coupling chemistry, and a 10 modified nucleoside analogs, 4 phosphoramidite, can be used between the PNA nd the 5' end of DNA. See, Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 1119-11124.
In other embodiments, the oligonucleotide may include other appended groups such as peptides for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No.
W088/09810) or the blood-brain barrier (see, PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, Zon, 1988.
Phann. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.
FCTRX Polypeptides A'polypeptide according to the invention includes a polypeptide including the amino acid sequence of FCTRX polypeptides whose sequences are provided in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, while still encoding a protein that maintains its FCTRX activities and physiological functions, or a functional fragment thereof.
135 In general, an FCTRX variant that preserves FCTRX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
One aspect of the invention pertains to isolated FCTRX proteins, and biologicallyactive portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-FCTRX antibodies. In one embodiment, native FCTRX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, FCTRX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, an FCTRX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
An "isolated" or "purified" polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the FCTRX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of FCTRX proteins in which the protein is separated from cellular components of the cells from which it is isolated or rccombinantlyproduced. In one embodiment, the language "substantially free of cellular material" includes preparations of FCTRX proteins having less than about 30% (by dry weight) of non-FCTRX proteins (also referred to herein as a "contaminatinp protein"), more preferably less than about 20% ofnon-FCTRX proteins, still more preferably less than about 10% ofnon-FCTRX proteins, and most preferably less than about 5% ofnon-FCTRX proteins. When the FCTRX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, culture medium represents less than about more preferably less than about 10%, and most preferably less than about 5% of the volume of the FCTRX protein preparation.
The language "substantially free of chemical precursors or other chemicals" includes preparations of FCTRX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of FCTRX proteins having less than about 30% (by dry weight) of chemical precursors or N non-FCTRX chemicals, more preferably less than about 20% chemical precursors or Snon-FCTRX chemicals, still more preferably less than about 10% chemical precursors or Snon-FCTRX chemicals, and most preferably less than about 5% chemical precursors or
C
I 5 non-FCTRX chemicals.
Biologically-active portions of FCTRX proteins include peptides comprising amino rn acid sequences sufficiently homologous to or derived from the amino acid sequences of the FCTRX proteins the amino acid sequence shown in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, N, 19, 21, 23, and 25) that include fewer amino acids than the full-length FCTRX proteins, and 0 10 exhibit at least one activity of an FCTRX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the FCTRX protein. A biologicallyactive portion of an FCTRX protein can be a polypeptide which is, for example, 10, 25, 100 or more amino acid residues in length.
Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native FCTRX protein.
In an embodiment, the FCTRX protein has an amino acid sequence shown in SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25. In other embodiments, the FCTRX protein is substantially homologous to SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, and retains the functional activity of the protein of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the FCTRX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19,.21, 23, and 25, and retains the functional activity of the FCTRX proteins of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and Determining Homology Between Two or More Sequences To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").
The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. JMol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, and 24.
The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of com;arison, determining the number of positions at which the identical nucleic acid base A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.
Chimeric and Fusion Proteins The invention also provides FCTRX chimeric or fusion proteins. As used herein, an FCTRX "chimeric protein" or "fusion protein" comprises an FCTRX polypeptide operativelylinked to a non-FCTRX polypeptide. An "FCTRX polypeptide" refers to a polypeptide having an amino acid sequiice corresponding to an FCTRX protein (SEQ ID NOS:2, 4, 6, 8, 13, 17, 19, 21, 23, and 25), whereas a "non-FCTRX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the FCTRX protein, a protein that is different from the FCTRX protein and that is derived from the same or a different organism. Within an FCTRX fusion protein the FCTRX polypeptide can correspond to all or a portion of an FCTRX protein. In one embodiment, an O FCTRX fusion protein comprises at least one biologically-active portion of an FCTRX C1 protein. In another embodiment, an FCTRX fusion protein comprises at least two biologically-active portions of an FCTRX protein. In yet another embodiment, an FCTRX n fusion protein comprises at least three biologically-active portions of an FCTRX protein.
C1 5 Within the fusion protein, the term "operatively-linked" is intended to indicate that the FCTRX polypeptide and the non-FCTRX polypeptide are fused in-frame with one another.
c The non-FCTRX polypeptide can be fused to the N-terminus or C-terminus of the FCTRX C polypeptide.
C In one embodiment, the fusion protein is a GST-FCTRX fusion protein in which the 0 10 FCTRX sequences are fused to the C-terminus of the GST (glutathione S-transferase) C sequences. Such fusion proteins can facilitate the purification of recombinant FCTRX polypeptides.
In another embodiment, the fusion protein is an FCTRX protein containing a heterologous signal sequence at its N-terminus. In certain host cells mammalian host cells), expression and/or secretion of FCTRX can be increased through use of a heterologous signal sequence.
In yet another embodiment, the fusion protein is an FCTRX-immunoglobulin fusion protein in which the FCTRX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The FCTRX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between an FCTRX ligand and an FCTRX protein on the surface of a cell. to thereby suppress FCTRX-mediated signal transduction in vivo. The FCTRXimmunoglobulin fusion proteins can be used to affect the bioavailability of an FCTRX cognate ligand. Inhibition of the FCTRX ligand/FCTRX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g.
promoting or inhibiting) cell survival. Moreover, the FCTRX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-FCTRX antibodies in a subject, to purify FCTRX ligands, and in screening assays to identify molecules that inhibit the interaction of FCTRX with an FCTRX ligand.
An FCTRX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, 139 alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety a GST polypeptide). An FCTRX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the FCTRX protein.
FCTRXAgonists and Antagonists The invention also pertains to variants of the FCTRX proteins that function as either FCTRX agonists mimetics) or as FCTRX antagonists. Variants of the FCTRX protein can be generated by mutagenesis discrete point mutation or truncation of the FCTRX protein). An agonist of the FCTRX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the FCTRX protein. An antagonist of the FCTRX protein can inhibit one or more of the activities of the naturally occurring form of the FCTRX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the FCTRX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the FCTRX proteins.
Variants of the FCTRX proteins that function as either FCTRX agonists mimetics) or as FCTRX antagonists can be identified by screening combinatorial libraries of mutants truncation mutants) of the FCTRX proteins for FCTRX protein agonist or antagonist activity. In one embodiment, a variegated library of FCTRX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of FCTRX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential FCTRX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins for phage display) containing the set of FCTRX sequences therein. There are a variety of methods which can be used to produce libraries of potential FCTRX variants from a degenerate oligonucleotide sequence. Chemical 0 synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the f^ desired set of potential FCTRX sequences. Methods for synthesizing degenerate C 5 oligonucleotides are well-known within the art. See, Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; SIke, et al., 1983. Nucl. Acids Res. 11: 477.
C Polypeptide Libraries c In addition, libraries of fragments of the FCTRX protein coding sequences can be used 0 10 to generate a variegated population of FCTRX fragments for screening and subsequent selection of variants of an FCTRX protein. In one embodiment, a lib ury of coding sequence fragments can be generated by treating a double stranded PCR fragment of an FCTRX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with Si nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the FCTRX proteins.
Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of FCTRX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify FCTRX variants.
See, Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.
Anti-FCTRX Antibodies The invention encompasses antibodies and antibody fragments, such as Fab or (Fab)2, that bind immunospecifically to any of the FCTRX polypeptides of said invention.
An isolated FCTRX protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind to FCTRX polypeptides using standard techniques for polyclonal and monoclonal antibody preparation. The full-length FCTRX proteins can be used or, alternatively, the invention provides antigenic poptide fragments of FCTRX proteins for use as immunogens. The antigenic FCTRX peptides comprises at least 4 amino acid residues of the amino acid sequence shown in SEQ ID NO NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, and encompasses an epitope of FCTRX such that an antibody raised against the peptide forms a specific immune complex with FCTRX. Preferably, the antigenic peptide comprises at least 6, 8, 10, 15, 20, or 30 amino acid residues. Longer antigenic peptides are sometimes preferable over shorter antigenic peptides, depending on use and according to methods well known to someone skilled in the art.
In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptidc is a region of FCTRX that is located on the surface of the protein a hydrophilic region). As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fuuricr transformation (see, Hopp and Woods, 1981. Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle, 1982. J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety).
As disclosed herein, FCTRX protein sequences of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, or derivatives, fragments, analogs or homologs there. f, may be utilized as immunogens in the generation of antibodies that immunospecifically-bind these protein components. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically-active portions of immunoglobulin molecules, molecules that contain an antigen binding site that specifically-binds (immunoreacts with) an antigen, such as FCTRX.
Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab and F(ah)2 fragments, and an Fab expression library. In a specific embodiment, antibodies to human FCTRX proteins are disclosed. Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies to an FCTRX protein sequence of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, or a derivative, fragment, analog or homolog thereof. Some of these proteins are discussed below.
For the production of polyclonal antibodies, various suitable host animals rabbit, C goat, mouse or other mammal) may be immunized by injection with the native protein, or a Ssynthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic IN preparation can contain, for example, recombinantly-expressed FCTRX protein or a chemically-synthesized FCTRX polypeptide. The preparation can further include an adjuvant.
Various adjuvants used to increase the immunological response include, but are not limited to, Cm Freund's (complete and incomplete), mineral gels aluminum hydroxide), surface active Cr substances lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), human adjuvants such as Bacille Calmette-Guerin and Corynebacterium O 10 parvum, or similar immunostimulatory agents. If desired, the antibody molecules directed c1 against FCTRX can be isolated froir he mammal from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction.
The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of FCTRX. A monoclonal antibody composition thus typically displays a single binding affinity for a particular FCTRX protein with which it immunoreacts. For preparation of monoclonal antibodies directed towards a particular FCTRX protein, or derivatives, fragments, analogs or homologs thereof, any technique that provides for the production of antibody molecules by continuous cell line culture may be utilized. Such techniques include, but are not limited to, the hybridoma technique (see, Kohler Milstein, 1975. Nature 256: 495-497); the trioma technique; the human B-cell hybridoma technique (see, Kozbor, et al., 1983. Inmunol. Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see, Cole, et al., 1985. In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).
Human monoclonal antibodies may be utilized in the practice of the invention and may be produced by using human hybridomas (see, Cote, et al., 1983. Proc Natl Acad Sci USA 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see, e.g., Cole, et al., 1985. In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Each of the above citations is incorporated herein by reference in their entirety.
According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an FCTRX protein (see, U.S. Patent No. 4,946,778).
In addition, methods can be adapted for the construction of Fab expression libraries (see, e.g., Huse, et al., 1989. Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for an FCTRX protein or derivatives, fragments, analogs or homologs thereof. Non-human antibodies can be "humanized" by techniques well known in the art. See, U.S. Patent No. 5,225,539. Antibody fragments that contain the idiotypes to an FCTRX protein may be produced by techniques known in the art including, but not limited to: an F(ab2 fragment produced by pepsin digestion of an antibody molecule; (ii) an Fab fragment generated by reducing the disulfide bridges of an F(ab)2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent; and (iv) Fv fragments.
Additionally, recombinant anti-FCTRX antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in International Application No. PCT/US86/02269; European Patent Application No. 184,187; European Patent Application No. 171,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Patent No. 4,816,567; U.S. Pat. No. 5,225,539; European Patent Application No. 125,023; Better, et al., 1988. Science 240: 1041-1043; Liu, et al., 1987.
Proc. Natl. Acad. Sci. USA 84: 3439-3443; Liu, et al., 1987. J. Immunol. 139: 3521-3526; Sun, et al., 1987. Proc. Natl. Acad. Sci. USA 84: 214-218; Nishimura, et al., 1987. Cancer Res. 47: 999-1005; Wood, et al., 1985. Nature 314 :446-449; Shaw, et al., 1988. J. Natl. Cancer Inst.
80: 1553-1559); Morrison(1985) Science 229:1202-1207; Oi, et al. (1986) BioTechniques 4:214; Jones, et al., 1986. Nature 321: 552-525; Verhoeyan, et al., 1988. Science 239: 1534; and Beidler, et al., 1988. J. inmunol. 141: 4053-4060. Each of the above citations are incorporated herein by reference in their entirety.
In one embodiment, methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art. In a specific embodiment, selection of antibodies that are specific to a particular domain of an FCTRX protein is facilitated by generation of hybridomas that bind to the fragment of an FCTRX protein possessing such a domain. Thus, antibo.ies that are specific for a desired domain within an FCTRX protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
Anti-FCTRX antibodies may be used in methods known within the art relating to the localization and/or quantitation of an FCTRX protein for use in measuring levels of the FCTRX protein within appropriate physiological samples, for use in diagnostic methods, for Suse in imaging the protein, and the like). In a given embodiment, antibodies for FCTRX CI proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antibody Sderived binding domain, are utilized as pharmacologically-active compounds (hereinafter I "Therapeutics").
An anti-FCTRX antibody monoclonal antibody) can be used to isolate an FCTRX polypeptide by standard techniques, such as affinity chromatography or mC immunoprecipitation. An anti-FCTRX antibody can facilitate the purification of natural SFCTRX polypeptide from cells and of recombinantly-produced FCTRX polypeptide expressed C1 in host cells. Moreover, an anti-FCTRX antibody can be used to detect FCTRX protein O 10 in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of C1 expression of the FCTRX protein. Anti-FCTRX antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, P-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125, 131, 3 5 S or 3
H.
FCTRX Recombinant Expression Vectors and Host Cells Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an FCTRX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA S 30 segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein FCTRX proteins, mutant forms of FCTRX proteins, fusion proteins, etc.).
The recombinant expression vectors of the invention can be designed for expression of FCTRX proteins in prokaryotic or eukaryotic cells. For example, FCTRX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, O GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San CN Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
S Expression of proteins in prokaryotes is most often carried out in Escherichia coli with "1 5 vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded Cc therein, usually to the amino terminus of the recombinant protein. Such fusion vectors C typically serve three purposes: to increase expression of recombinant protein; (ii) to C increase the solubility of the recombinant protein; and (iii) to aid in the purification of the O 10 recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and ihe recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 1 d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recoinbinant protein. See, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
In another embodiment, the FCTRX expression vector is a yeast expression vector.
Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSecl (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif).
Alternatively, FCTRX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufnan, et al., 1987. EMBO J 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, cormnonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989.
In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters ofT cell receptors (Winoto and Baltimore, 1989. EMBO J.
8: 729-733) and immunoglobulins (Banerfi, etal., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters the neurofilament promoter; Byre and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379, and the a-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).
The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to FCTRX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, Weintraub, et al., "Antisense RNA as a molecular tool for genetic analysis," Reviews-Trends in Genetics, Vol. 1(1) 1986.
Another aspect of the invention pertains to host c' Us into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
A host cell can be any prokaryotic or eukaryotic cell. For example, FCTRX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring 'Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989), and other laboratory manuals.
For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker resistance to antibiotics) is generally introduced into the r- 0 host cells along with the gene of interest. Various selectable markers include those that confer N, resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a Sselectable marker can be introduced into a host cell on the same vector as that encoding FCTRX or can be introduced on a separate vector. Cells stably transfected with the introduced CN 5 nucleic acid can be identified by drug selection cells that have incorporated the selectable marker gene will survive, while the other cells die).
t A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce express) FCTRX protein. Accordingly, the invention further provides methods for producing FCTRX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding FCTRX protein has been introduced) in a suitable medium such that FCTRX protein is produced. In another embodiment, the method further comprises isolating FCTRX protein from the medium or the host cell.
Transgenic FCTRX Animals The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which FCTRX protein-coding sequences have been introduced.
Such host cells can then be used to create non-human transgenic animals in which exogenous FCTRX sequences have been introduced into their genome or homologous recombinant animals in which endogenous FCTRX sequences have been altered. Such animals are useful for studying the function and/or activity of FCTRX protein and for identifying and/or evaluating modulators of FCTRX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a tranagene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene p--duct in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous FCTRX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, an embryonic cell of the animal, prior to development of the animal.
A transgenic animal of the invention can be created by introducing FCTRX-encoding nucleic acid into the male pronuclei of a fertilized oocyte by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human FCTRX cDNA sequences of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, can be introduced as a transgene into the genome of a non-human animal.
Alternatively, a non-human homologue of the human FCTRX gene, such as a mouse FCTRX gene, can be isolated .ased on hybridization to the human FCTRX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the FCTRX transgene to direct expression ofFC'RX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the FCTRX transgene in its genome and/or expression of FCTRX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgeneencoding FCTRX protein can further be bred to other transgenic animals carrying other trans genes.
To create a homologous recombinant animal, a vector is prepared which contains at least a portion of an FCTRX gene into which a deletion, addition or substitution has been introduced to thereby alter, functionally disrupt, the FCTRX gene. The FCTRX gene can be a human gene the cDNA of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18,20,22, and 24), but more preferably, is a non-human homologue of a human FCTRX gene. For example, a mouse homologue of human FCTRX gene of SEQ ID NOS: 1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, can be used to construct a homologous recombination vector suitable for altering an endogenous FCTRX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous FCTRX gene is functionally disrupted no longer encodes a functional protein; also referred to as a "knock out" vector).
Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous FCTRX gene is mutated or otherwise altered but still encodes functional protein the upstream regulatory region can be altered to thereby alter the expression of the endogenous FCTRX protein). In the homologous recombination vector, the altered portion of the FCTRX gene is flanked at its and 3'-termini by additional nucleic acid of the FCTRX gene to allow for homologous recombination to occur between the exogenous FCTRX gene carried by the vector and an endogenous FCTRX gene in an embryonic stem cell. The additional flanking FCTRX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the and 3'-termini) are included in the vector. See, Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line by electroporation) and cells in which the introduced FCTRX gene has homologously-recombined with the endogenous FCTRX gene are selected.
See, Li, et al., 1992. Cell 69: 915.
The selected cells are then injected into a blastocyst of an animal a mouse) to form aggregation chimeras. See, Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152.
A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.
In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used tu regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
Clones of the non-human transgenic animals described herein can also be produced Saccording to the methods described in Wilmut, etal., 1997. Nature 385: 810-813. In brief, a cell a somatic cell) from the transgenic animal can be isolated and induced to exit the Sgrowth cycle and enter Go phase. The quiescent cell can then be fused, through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to C morula or blastocyte and then transferred to pseudopregnant female foster animal. The N offspring borne of this female foster animal will be a clone of the animal from which the cell C1 the somatic cell) is isolated.
O 10 Pharmaceutical Compositions The FCTRX nucleic acid molecules, FCTRX proteins, and anti-FCTRX antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, intravenous, intradermal, subcutaneous, oral inhalation), transdermal topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL" (BASF, Parsippany, or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimcrosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostcarate and gelatin.
Sterile injectable solutions can be prepared by incorporating the active compound an FCTRX protein or anti-FCTRX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Oral compositions generally include an inert diluent or an edible carrier. They can be 1enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic Sadministration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier IN of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or M adjuvant materials can be included as part of the composition. The tablets, pills, capsules, C troches and the like can contain any of the following ingredients, or compounds of a similar 1 nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient 10 such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a CN lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal cilicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
The compounds can also be prepared in the form of suppositories with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S.
Patent No. 4,522,811.
It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, U.S. Patent No. 5,328,470) or by stereotactic injection (see, Chen, et al., 1994. Proc. Nat!. Acad. Sci. USA 91: 3054-3057).
The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alterniatively, where the complete gene delivery vector can be produced intact from recombinant cells, retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
Screening and Detection Methods The isolated nucleic acid molecules of the invention can be used to express FCTRX protein via a recombinant expression vector in a host cell in gene therapy applications), to detect FCTRX mR.NA in a biological sample) or a genetic lesion in an FCTRX gene, and to modulate FCTR activity, as described further, below. In addition, the FC'.RX proteins can be used to screen drugs or compounds that modulate the FCTRX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of FCTRX protein or production of FCTRX protein forms that have decreased or aberrant activity compared to FCTRX wild-type protein diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic (1 diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-FCTRX antibodies of the invention can be used to Sdetect and isolate FCTRX proteins and modulate FCTRX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.
M The invention further pertains to no vel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.
Screening Assays The invention provides a method (also referred to herein as a "screening assay") for C, identifying modulators, candidate or test ompounds or agents peptides, peptidomimetics, small molecules or other drugs) that bind to FCTRX proteins or have a stimulatory or inhibitory effect on, FCTRX protein expression or FCTRX protein activity.
The invention also includes compounds identified in the screening assays described herein.
In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of an FCTRX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, Lam, 1997. Anticancer Drug Design 12: 145.
A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.
Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. US.A. 90: 6909; Erb, et al., 1994.
Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed Engl. 33: 2059; Carell, etal., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, etal., 1994. J.
Med. Chem. 37: 1233.
Libraries of compounds may be presented in solution Houghten, 1992.
Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991.
J Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.).
In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of FCTRX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to an FCTRX protein determined. The cell, for example, can of mammalian origin or a yeast cell.
Determining the ability of the test compound to bind to the FCTRX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the FCTRX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 251, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting ofradioemission or by scintillation counting.
Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of FCTRX protein, or a biologically-active portion thereof, or. the cell surface with a known compound which binds FCTRX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an FCTRX protein, wherein determining the ability of the test compound to interact with an FCTRX protein comprises determining the ability of the test compound to preferentially bind to FCTRX protein or a biologically-active portion thereof as compared to the known compound.
In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of FCTRX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate stimulate or inhibit) the activity of the FCTRX protein or biologically-active portion thereof Determining the ability of the test compound to modulate the activity of FCTRX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the FCTRX protein to bind to or interact with an FCTRX target molecule. As used herein, a "target molecule" is a molecule with which an FCTRX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses an FCTRX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. An FCTRX target molecule can be a non-FCTRX molecule or an FCTRX protein or polypeptide of the invention. In one embodiment, an FCTRX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal a signal generated by binding of a compound to a membrane-hiund FCTRX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with FCTRX.
Determining the ability of the FCTRX protein to bind to or interact with an FCTRX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the FCTRX protein to bind to or interact with an FCTRX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target intracellular Ca 2 t, diacylglycerol,
IP
3 etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising an FCTRX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.
In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting an FCTRX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the FCTRX protein or biologicallyactive portion thereof. Binding of the test compound to the FCTRX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the FCTRX protein or biologically-active portion thereof with a known compound which binds FCTRX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an FCTRX protein, wherein determining the ability of the test compound to interact with an FCTRX protein comprises determining the ability of the test compound to preferentially bind to FCTRX or biologically-active portion thereof as compared to the known compound.
In still another embodiment, an assay is a cell-free assay comprising contacting FCTRX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate stimulate or inhibit) the activity of the FCTRX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of FCTRX can be accomplished, for example, by determining the ability of the FCTRX protein to bind to an FCTRX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of FCTRX protein can be accomplished by determining the ability of the FCTRX protein further modulate an FCTRX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.
In yet another embodiment, the cell-free assay comprises contacting the FCTRX protein or biologically-active portion thereof with a known compound which binds FCTRX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with an FCTRX protein, wherein determining the ability of the test compound to interact with an FCTRX protein comprises determining the ability of the FCTRX protein to preferentially bind to or modulate the activity of an FCTRX target molecule.
The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of FCTRX protein. In the case of cell-free assays comprising the membrane-bound form of FCTRX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of FCTRX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Tritonยฎ X-100, Triton" X- 114, Thesitยฎ, Isotridecypoly(ethylene glycol ether)n, N-dodecyl--N,N-dimethyl-3-ammonio-l-propane sulfonate, 3-(3-chlamidopropyl) dimethylamminiol-l-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-l-propane sulfonate (CHAPSO).
In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either FCTRX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to FCTRX protein, or interaction of FCTRX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-FCTRX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or FCTRX protein, and the mixture is incubated under conditions conducive to complex formation at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra.
Alternatively, the complexes can be dissociated from the matrix, and the level of FCTRX protein binding or activity determined using standard techniques.
Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the FCTRX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated FCTRX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with FCTRX protein or target molecules, but which do not interfere with binding of the FCTRX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or FCTRX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the FCTRX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the FCTRX protein or target molecule.
In another embodiment, modulators of FCTRX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of FCTRX mRNA or protein in the cell is determined. The level of expression of FCTRX mRNA or protein in the presence of the candidate compound is compared to the level of expression of FCTRX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of FCTRX mRNA or protein expression based upon this comparison. For example, when expression of FCTRX mRNA or protein is greater statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of FCTRX mRNA or protein expression. Alternatively, when expression ofFCTRX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor ofFCTRX mRNA or protein expression.
The level of FCTRX mRNA or protein expression in the cells can be determined by methods described herein for detecting FCTRX mRNA or protein.
In yet another aspect of the invention, the FCTRX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, U.S. Patent No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechiiques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with FCTRX ("FCTRX-binding proteins" or "FCTRX-bp") and modulate FCTRX activity. Such FCTRX-binding proteins are also likely to be involved in the propagation of signals by the FCTRX proteins as, for example, upstream or downstream elements of the FCTRX pathway.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for FCTRX is fused to a gene encoding the DNA binding domain of a known transcription factor GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming an FCTRX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with FCTRX.
The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.
Detection Assays Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.
Chromosome Mapping Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chro- .osome. This process is called chromosome mapping. Accordingly, portions or fragments of the FCTRX sequences, SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or fragments or derivatives thereof, can be used to map the location of the FCTRX genes, respectively, on a chromosome. The mapping of the FCTRX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.
Briefly, FCTRX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the FCTRX sequences. Computer analysis of the FCTRX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes.
Only those hybrids containing the human gene corresponding to the FCTRX sequences will yield an amplified fragment.
Somatic cell hybrids are prepared by fusing somatic cells from different mammals human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the FCTRX sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes.
Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.
The FISH technique can be used with a DNA sequence as short as 500 or 600 bases.
However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOxEs: A MANUA.L OF BASIC TECHNIQUES (Pergamon Press, New York 1988).
Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, in McKusick, MENDELIAN INIERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be idei 1 ified through linkage analysis (co-inheritance of physically adjacent genes), described in, Egeland, et al., 1987.
Nature, 325: 783-787.
Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the FCTRX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of N affected and unaffected individuals generally involves first looking for structural alterations in Sthe chromosomes, such as deletions or translocations that are visible from chromosome O spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.
STissue Typing C, The FCTRX sequences of the invention can also be used to identify individuals from N minute biological samples. In this technique, an individual's genomic DNA is digested with 0 10 one or more restriction enzymes, and probed on a Southern blot to yield unique bands for 7,N identification. The sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymorphisms," described in U.S. Patent No. 5,272,057).
Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the FCTRX sequences described herein can be used to prepare two PCR primers from the and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The FCTRX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).
Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in 0 SEQ ID NOS:, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 2 2 and 24, are used, a more appropriate Ci number of primers for positive individual identification would be 500-2,000.
Predictive Medicine \O The invention also pertains to the field of predictive medicine in which diagnostic CI 5 assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining FCTRX protein and/or nucleic acid expression as well as FCTRX activity, in the context of a biological sample blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant FCTRX ,1 expression or activity. The disorders include Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafiess, glycoprotein la deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy -Groenouw type I, Coreal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with FCTRX protein, nucleic acid expression or activity. For example, mutations in an FCTRX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with FCTRX protein, nucleic acid expression, or biological activity.
Another aspect of the invention provides methods for determining FCTRX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").
Pharmacogenomics allows for the selection of agents drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual the genotype of the individual examined to determine the ability of the individual to respond to a.
Jarticular agent) Yet another aspect of the invention pertains to monitoring the influence of agents drugs, compounds) on the expression or activity of FCTRX in clinical trials.
These and other agents are described in further detail in the following sections.
Diagnostic Assays An exemplary method for detecting the presence or absence of FCTRX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting FCTRX protein or nucleic acid mRNA, genomic DNA) that encodes FCTRX protein such that the presence of FCTRX is detected in the biological sample. An agent for detecting FCTRX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to FCTRX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length FCTRX nucleic acid, such as the nucleic acid of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to FCTRX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
An agent for detecting FCTRX protein is an antibody capable of binding to FCTRX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof Fab or F(ab') 2 can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling ofa DNA probe with biotin such that it can be detected with fluorescently- Slabeled streptavidin. The term "biological sample" is intended to include tissues, cells and t s biological fluids isolated from a subject, as well as tissues, cells and fluids present within a 5 subject. That is, the detection method of the invention can be used to detect FCTRX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in t vitro techniques for detection of FCTRX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of FCTRX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of FCTRX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of FCTRX protein include introducing into a subject a labeled anti-FCTRX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting FCTRX protein, mRNA, or genomic DNA, such that the presence of FCTRX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of FCTRX protein, mRNA or genomic DNA in the control sample with the presence of FCTRX protein, mRNA or genomic DNA in the test sample.
The invention also encompasses kits for detecting the presence of FCTRX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting FCTRX protein or mRNA in a biological sample; means for determining the amount of FCTRX in the sample; and means for comparing the amount of FCTRX in the sample with a stand.rd. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect FCTRX protein or nucleic acid.
Prognostic Assays The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant FCTRX expression or activity. For example, the assays described herein, such as the preceding Sdiagnostic assays or the following assays, can be utilized to identify a subject having or at risk C, of developing a disorder associated with FCTRX protein, nucleic acid expression or activity.
Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant FCTRX expression or activity in which a test sample is obtained from a subject and FCTRX protein or nucleic acid mRNA, genomic M DNA) is detected, wherein the presence of FCTRX protein or nucleic acid is diagnostic for a CN subject having or at risk of developing a disease or disorder associated with aberrant FCTRX
O
C1 expression or activity. As used herein, a "test sample" refers to a biological sample obtained 0 10 from a subject of interest. For example, a test sample can be a biological fluid serum), CN cell sample, or tissue.
Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant FCTRX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder.
Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant FCTRX expression or activity in which a test sample is obtained and FCTRX protein or nucleic acid is detected wherein the presence of FCTRX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant FCTRX expression or activity).
The methods of the invention can also be used to detect genetic lesions in an FCTRX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding an FCTRX-protein, or the misexpression of the FCTRX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: a deletion of one or more nucleotides from an FCTRX gene; (ii) an addition of one or more nucleotides to an FCTRX gene; (iii) a substitution of one or more nucleotides of an FCTRX gene, (iv) a chromosomal rearrangement of an FCTRX gene; an alteration in the level of a messenger RNA transcript of an FCTRX gene, (vi) aberrant modification of an FCTRX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of an FCTRX gene, (viii) a non-wild-type level of an FCTRX protein, (ix) allelic loss of an FCTRX gene, and inappropriate post-translational modification of an FCTRX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in an FCTRX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl.
Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the FCTRX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682).
This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to an FCTRX gene under conditions such that hybridization and amplification of the FCTRX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); QP Replicase (see, Lizardi, et al, 1988. BioTechnology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
In an alternative embodiment, mutations in an FCTRX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared.
Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, U.S. Patent No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
In other embodiments, genetic mutations in FCTRX can be identified by hybridizing a sample and control nucleic acids, DNA or RNA, to high-density arrays containing hundreds or thousands ofoligonucleotides probes. See, Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in FCTRX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes.
This step allows the identification of point mutation- This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the FCTRX gene and detect mutations by comparing the sequence of the sample FCTRX with the corresponding wild-type (control) sequence.
Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, Naeve, et al., 1995.
Biotechniques 19: 448), including sequencing by mass spectrometry (see, PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).
Other methods for detecting mutations in the FCTRX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, Myers, et al., 1985. Science 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type FCTRX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with St nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.
In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in FCTRX cDNAs obtained from samples of cells. For example, the muY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on an FCTRX sequence, a wild-type FCTRX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, U.S. Patent No. 5,459,039.
In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in FCTRX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79.
Single-stranded DNA fragments of sample and control FCTRX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, Keen, et al., 1991.
Trends Genet. 7: In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely N denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, C] 5 Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.
Examples of other techniques for detecting point mutations include, but are not limited to, selective oligoLucleotide hybridization, selective amplification, or selective primer C extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit 0 10 hybridization only if a perfect match is found. See, Saiki, etal., 1986. Nature 324: 163; Ml Saiki, et al., 1989. P- Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target
DNA.
Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
The methods described herein may be performed, for example, by utilizing a pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving an FCTRX gene.
Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which FCTRX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
Pharmacogenomics Agents, or modulators that have a stimulatory or inhibitory effect on FCTRX activity FCTRX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (The disorders include metabolic disorders, Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myclodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy -Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy) In conjunction with such treatment, the pharmacogenomics tht study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered.
Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of FCTRX protein, expression of FCTRX nucleic acid, or mutation content of FCTRX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See Eichelbaum, 1996. Clin. Exp. Phannacol. Physiol., 23: 983-985; Linder, 1997. Clin.
Chem., 43: 254-266. In general, two types ofpharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C 19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
Thus, the activity of FCTRX protein, expression of FCTRX nucleic acid, or mutation content of FCTRX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping~ of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with an FCTRX modulator, such as a modulator identified by one of the exemplary screening assays described herein.
Monitoring of Effects During Clinical Trials Monitoring the influence of agents drugs, compounds) on the expression or activity of FCTRX the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase FCTRX gene expression, protein levels, or upregulate FCTRX activity, can be monitored in clinical traiis of subjects exhibiting decreased FCTRX gene expression, protein levels, or downregulated FCTRX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease FCTRX gene expression, protein levels, or downregulate FCTRX activity, can be monitored in clinical trails of subjects exhibiting increased FCTRX gene expression, protein levels, or upregulated FCTRX activity. In such clinical trials, the expression or activity of FCTRX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.
By way of example, and not of limitation, genes, including FCTR.X, that are modulated in cells by treatment with an agent compound, drug or small molecule) that modulates FCTRX activity identified in a screening assay as described herein) can be identified.
Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of FCTRX and other genes implicated in the disorder. The levels of gene expression a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of FCTRX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
0 In one embodiment, the invention provides a method for monitoring the effectiveness C1 of treatment of a subject with an agent an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of obtaining a pre-administration C 5 sample from a subject prior to administration of the agent; (ii) detecting the level of expression of an FCTRX protein, mRNA, or genomic DNA in the preadministration sample; (iii) c obtaining one or more post-administration samples from the subject; detecting the level of CI expression or activity of the FCTRX protein, mRNA, or genomic DNA in the C1 post-administration samples; comparing the level of expression or activity of the FCTRX 0 10 protein, mRNA, or genomic DNA in the pre-administration sample with the FCTRX protein, CI mRNA, or genomic DNA in the post administration sample or samples; r :d (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of FCTRX to higher levels than de(ectcd, to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of FCTRX to lower levels than detected, to decrease the effectiveness of the agent.
Methods of Treatment The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant FCTRX expression or activity. The disorders include cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of AIbright Hereditary Ostoeodystrophy, and other diseases, disorders and conditions of the like.
These methods of treatment will be discussed more fully, below.
Disease and Disorders Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: an aforementioned peptide, or analogs, Sderivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) t s nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid 5 and nucleic acids that are "dysfunctional" due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to t "knockout" endoggenous function of an aforementioned peptide by homologous recombination (see, Capecchi, 1989. Science 244: 1288-1292); or modulators inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or 10 antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.
Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.
Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs Northern assays, dot blots, in situ hybridization, and the like).
Prophylactic Methods In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant FCTRX expression or activity, by administering to the subject an agent that modulates FCTRX expression or at least one FCTRX activity. Subjects at risk for a disease that is caused or contributed to by aberrant FCTRX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the FCTRX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of FCTRX aberrancy, for example, an FCTRX agonist or FCTRX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.
Therapeutic Methods Another aspect of the invention pertains to methods of modulating FCTRX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of FCTRX protein activity associated with the cell. An agent that modulates FCTRX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of an FCTRX protein, a peptide, i FCTRX peptidomimetic, or other small molecule.
In one embodiment, the agent stimulates one or more FCTRX protein activity. Examples of such stimulatory agents include active FCTRX protein and a nucleic acid molecule encoding FCTRX that has been introduced into the cell. In another embodiment, the agent inhibits one or more FCTRX protein activity. Examples of such inhibitory agents include antisense FCTRX nucleic acid molecules and anti-FCTRX antibodies.- These modulatory methods can be performed in vitro by culturing the cell with the agent) or, alternatively, in vivo by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of an FCTRX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent an agent identified by a screening assay described herein), or combination of agents that modulates up-regulates or down-regulates) FCTRX expression or activity. In another embodiment, the method involves administering an FCTRX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant FCTRX expression or activity.
Stimulation of FCTRX activity is desirable in situations in which FCTRX is abnormally downregulated and/or in which increased FCTRX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease preclampsia).
Determination of the Biological Effect of the Therapeutic In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.
In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects. Prophylactic and Therapeutic Uses of the Compositions of the Invention The FCTRX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders including, but not limited to: Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, manunary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of'amor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy -Groenouw type I, Corneal dystrophy lattice type I, and Reis- Bucklers corneal dystrophy.
As an example, a cDNA encoding the FCTRX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof.
By way of non-limiting example, the compositions of the invention will have efficacy for treatmJnt of patients suffering from: Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid maligna- -ies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glibma/astrocytomas, renal cells carcinoma, breast adcnocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paranechmal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression of T-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and female reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy -Groenouw type I, Corneal dystrophy lattice type I, and Reis-Bucklers corneal dystrophy.
Both the novel nucleic acid encoding the FCTRX protein, and the FCTRX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.
EXAMPLES
The following examples illustrate by way of non-limiting example various aspects of the invention.
The following examples illustrate by way of non-limiting example various aspects of the invention.
Example 1: Method of Identifying the Nucleic Acids The novel nucleic acids of the invention were identified by TblastN using a proprietary sequence file, run against the Genomic Daily Files made available by GenBank. The nucleic acids were further predicted by the proprietary software program GenScanTM, including selection of exons. These were further modified by means of similarities using BLAST searches. The sequences were then manually corrected for apparent inconsistencies, thereby obtaining the sequences encoding the full-length proteins.
Example 2. Quantitative expression analysis of FCTR2 in various cells and tissues The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR; TAQMANยฎ). RTQ PCR was performed on a Perkin-Elmer Biosystems ABI PRISMยฎ 7700 Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing cells and cell lines from normal and cancer sources), Panel 2 (containing samples derived from tissues, in particular from surgical samples, from normal and cancer sources), Panel 3 (containing samples derived from a wide variety of cancer sources) and Panel 4 (containing cells and cell lines from normal cells and cells related to inflammatory conditions).
First, the RNA samples were normalized to constitutively expressed genes such as pactin and GAPDL. RNA (-50 ng total or -1 ng polyA+) was converted to cDNA using the TAQMAN Reverse Transcription Reagents Kit (PE Biosystems, Foster City, CA; Catalog No. N808-0234) and random hexamers according to the manufacturer's protocol. Reactions were performed in 20 ul and incubated for 30 min. at 48 0 C. cDNA (5 ul) was then transferred to a separate plate for the TAQMANยฎ reaction using p-actin and GAPDH TAQMANยฎ Assay Reagents (PE Biosystems; Catalog Nos. 4310881E and 4310884E, respectively) and 0 TAQMANยฎ universal PCR Master Mix (PE Biosystems; Catalog No. 4304447) according to ,1 the manufacturer's protocol. Reactions were performed in 25 ul using the following parameters: 2 min. at 50 0 C; 10 min. at 95 0 C; 15 sec. at 95 0 C/1 min. at 60 0 C (40 cycles).
SResults were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta MC CT. The percent relative expression is then obtained by taking the reciprocal of this RNA C1 difference and multiplying by 100. The average CT values obtained for B-actin and GAPDH C were used to normalize RNA samples. The RNA sample generating the highest CT value 0 10 required no further diluting, while all other samples were diluted relative to this sample 71 according to their P-actin /GAPDH average CT values.
Normalized RNA (5 ul) was converted to cDNA and analyzed via TAQMANยฎ using One Step RT-PCR Master Mix Reagents (PE Biosystems; Catalog No. 4309169) and genespecific primers according to the manufacturer's instructions. Probes and primers were designed for each assay according to Perkin Elmer Biosystem's Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration 250 nM, primer melting temperature range 58*-60 C, primer optimal Tm 590 C, maximum primer difference 2* C, probe does not have 5' G, probe Tm must be 10* C greater than primer Tm, amplicon size 75 bp to 100 bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, TX, USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5' and 3' ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900 nM each, and probe, 200nM.
PCR conditions: Normalized RNA from each tissue and each cell line was spotted in each well of a 96 well PCR plate (Perkin Elmer Biosystems). PCR cocktails including two probes (a probe specific for the target clone and another gene-specific probe multiplexed with the target probe) were set up using IX TaqManTM PCR Master Mix for the PE Biosystems 7700, with 5 mM MgC12, dNTPs (dA, G, C, U at 1:1:1:2 ratios), 0.25 U/ml AmpliTaq Gold T M (PE Biosystems), and 0.4 U/tl RNase inhibitor, and 0.25 U/pl reverse transcriptase. Reverse transcription was performed at 48* C for 30 minutes followed by amplification/PCR cycles as follows: 950 C 10 min, then 40 cycles of 95* C for 15 seconds, 60* C for 1 minute.
In the results for Panel 1, the following abbreviations are used: ca. carcinoma, established from metastasis, met metastasis, s cell var= small cell variant, non-s non-sm =non-small, squam squamous, pl. eff p effusion pleural effusion, glio glioma, astro astrocytoma, and neuro neuroblastoma.
Panel 2 The plates for Panel 2 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have "matched margins" obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted "NAT" in the results below. The tumor tissue and the "matched margins" are evaluated by two independent pathologists (the surgical pathologists and again by a pathologists at NDRI or CHTN). This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue, in Table RR).
In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissue were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, CA), Research Genetics, and Invitrogen.
RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a 184 guide (2:1 to 2.5:1 28s: 18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.
Panel 4 Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4r) or cDNA (Panel 4d) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene,La Jolla, CA) and thymus and kilney (Clontech) were employed.
Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, CA). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia,
PA).
Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, MD) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations ofcytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5 ng/ml, TNF alpha at approximately 5-10 ng/ml, IFN gamma at approximately 20-50 ng/ml, EL-4 at approximately 5-10 ng/ml, IL-9 at approximately 5-10 ng/ml, IL-13 at approximately 5-10 ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.
Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100 tM non essential amino acids (Gibco/Life Technologies, Rockville, MD), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10 5 M (Gibco), and 10 mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20 ng/ml PMA and 1-2 pg/ml ionomycin, IL-12 at 5-10 ng/ml, IFN gamma at 20-50 ng/ml and IL-18 at 185 0 5-10 ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in CN DMEM 5% FCS (Hyclone), 100 pM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), and 10 mM Hepes (Gibco) with f PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5 pg/ml. Samples S 5 were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using SFicoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2x10 cells/ml in DMEM 5% FCS (Hyclone), 100 tM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol (5.5 x 10- M) (Gibco), and 10 mM Hepes 0 10 (Gibco). The MLR was cultured and samples taken at various time points ranging from 1- 7 ,1 days for RNA preparation.
Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions.
Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, UT), 100 pM non essential amino acids (Gibco), 1 niM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), and 10 mM Hepes (Gibco), 50 ng/ml GMCSF and 5 ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture ofmonocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100 pM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), 10 mM Hepes (Gibco) and AB Human Serum or MCSF at approximately 50 ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100 ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10 pg/ml for 6 and 12-14 hours.
CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CDS, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and +ve selection. Then beads were used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 [iM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- M (Gibco), and 10 mM Hepes (Gibco) 186 and plated at 106 cells/ml onto Falcon 6 well tissue culture plates that had been coated CI overnight with 0.5 g/ml anti-CD28 (Pharmingen) and 3 ug/ml anti-CD3 (OKT3, ATCC) in SPBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare 0 chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in SDMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), 1 mM sodium g^ pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2.
S"1 The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 1 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS lyclone), 100 uM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), and 10 mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.
To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 10 6 cells/ml in DMEM 5% FCS (Hyclone), 100 PtM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10 5 M (Gibco), and 10 mM Hepes (Gibco). To activate the cells, we used PWM at 5 ftg/ml or anti-CD40 (Pharmingen) at approximately 10 pg/ml and IL-4 at 5-10 ng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.
To prepare the primary and secondary Thl/Th2 and Trl cells, six-well Falcon plates were coated overnight with 10 pg/ml anti-CD28 (Pharmingen) and 2 tg/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, 6 German Town, MD) were cultured at 10 -10 cells/ml in DMEM 5% FCS (Hyclone), 100 pM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x M (Gibco), 10 mM Hepes (Gibco) and IL-2 (4 ng/ml). IL-12 (5 ng/ml) and anti-IL4 (1 Lg/ml) were used to direct to Thl, while IL-4 (5 ng/ml) and anti-IFN gamma (1 gg/ml) were used to direct to Th2 and IL-10 at 5 ng/ml was used to direct to Trl. After 4-5 days, the activated Thl, Th2 and Trl lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100 lM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10- 5 M (Gibco), 10 mM Hepes (Gibco) and IL-2 (1 S ng/ml). Following this, the activated Thl, Th2 and Trl lymphocytes were re-stimulated for days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti- (1 pg/ml) to prevent apoptosis. After 4-5 days, the Thl, Th2 and Trl lymphocytes t n were washed and then expanded again with IL-2 for 4-7 days. Activated Thi and Th2 C 5 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Thl, Th2 and Trl after 6 and 24 hours following the second and t third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.
10 The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1 mM dbcAMP at 5 xl0 cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to xl 0 cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100 pM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10 5 M (Gibco), 10 mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at ng/ml and ionomycin at 1 pg/ml for 6 and 14 hours. Keratinocyte line CCD 106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 pM non essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), mercaptoethanol 5.5 x 10 5 M (Gibco), and 10 mM Hepes (Gibco).
CCD1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1 ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5 ng/ml IL-4, 5 ng/ml IL-9, 5 ng/ml IL-13 and 25 ng/ml IFN gamma.
For these cell lines and blood cells, RNA was prepared by lysing approximately 7 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume ofbromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and pla-ed in a 15 ml Falcon Tube. An equal volume of isopropanol was added and left at -20 degrees C overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300 p1 of RNAse-free water and 35 pl buffer (Promega) 5 pl DTT, 7 l RNAsin and 8 pl DNAse were added. The tube was incubated at 37 degrees C for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re- 188 precipitated with 1/10 volume of 3 M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at -80 degrees C.
The above detailed procedures were carried out to obtain the taqman profiles of the clones in question.
Given below are the Primers and the Taqman results for the following clones: 58092213.0.36 Probe Name: Ag8O9 (Table 9 and Table 29692275.0.1 Probe Name: Ag2773 (Table I1I and Table 12) 32125243.0.21 Probe Name: Ag427 (Table 13 and Table 14) 0 27 4 55183.0.19 -Probe Name: Ag1 541 (Table 15 and Table 16, 17, 18) Table 8: Primer Design for Probe Ag8O9 (FCTR1) Primer Sequences TM Length Start Pos SEQIID
NO
Fom'arcd 5-ATGTGATCT=GGCTGTGAAGT.3' 58.7 22 1337 24 ,Prob FANI-5CTACCCCATGGCCTCCATCGAGT3-TAMRA 69.4 23 1365 Reverse 1 59919 393 2 TABLE 9: TAQMAN RESULTS FOR FCTR1 Panel Panel TissueNam. Panel I Tissue Name 2D Tissue Name 4D Liver Normal Colon 93768_Secondary Thi antiadenocarcinoma 79.6 GENPAK 061003 6.8 CD28/antl-CD3 83219 CC Well to Mod Duff 93769_Secondary rh2 anti- Heart (ftal) 43.8 (0D03866) 6.1 CD28/anti-CD3 83220 CC NAT 93770_Secondary Trn anti- Pancreas 2.1 (0D03866) 2.5 CD28/anti-CD3 83221 CC Gr.2 Pancreatic ca. rectosigmoid 93573 Secondary Thi resting day CAPAN 2 4.7 I(0D03868) 0.9 4-6 in IL-2 83222 CC NAT 93572_Secondary Th2 resting day Adrenal gland 2.3 (0D03868) 1.2 4-6 in IL-2 83235 CC Mod 93571_Secondary Trl resting day Thyroid 6.5 Diff (0D03920) 3.8 4-6 in 1L-2 1.7 83236 CC NAT 93568_rimary Thi anti- Salivary gland 12.3 (0D03920) 1.3 CD28/anti-C03 0.4 83237 CC Gr.2 ascend colon 93569..primary Th2_anti- Pituitary gland 8.7 (01303921) 6.9 CD28lanti-C03 83238 CC NAT 93570_.primary Trl-anti-CD28/antl- B1rain (fetal) 0.0 321) 14.0 ICD3 12.0 rain (woe 30 821 CC from 12. J93565 primary Thl resting dy 4-6 15.4 Partial in IL-2 Hepatectomy Brain 83242 Liver NAT 93566_.primary Th2 resting dy 4-6 (amygdala) 2.4 (0004309) 0.6 In IL-2 3.1 87472 Colon mets Brain to lung (0D04451- 93567_~primary Trl restilng dy 4-6 (cerebellum) 0.0 101 4.4 lin IL-2 0.0 Brain 87473 Lung NAT 93351_CD45RA CD4 (hippocampus) 13.0 (0D04451-02) 1.2 lymphocyte _anti-CD28/anti-CD3 11.2 Normal Prostate Clontech A+ 93352_CD45RO 004 Brain (thalamus) 3.0 6546-1 10.2 lyrnphocyte__anti-CD28/anti-CD3 1.2 84140 Prostate Cancer 93251 008 Lymphocytes anti- Cerebral Cortex 2.3 (0D0441 0) 41.8 CD28/anti-CD3 0.9 84141 Prostate 93353_chronic 008 Lymphocytes Spinal cord 2.6 NAT (0004410) 25.7 2ry resting dy 4-6 In IL-2 0.0 CNS ca. 87073 Prostate (glo/astro) U87- Cancer 93574 chronic CD8 Lymphocytes MG 12.1 (0004720-01) 11.0 2ry activated CD3/CD28 0.6 CNS ca. 87074 Prostate (glio/astro) U- NAT (0D04720- 118-MG 100.0 02) 10.0 93354 CD4 none 1.1 CINS ca. (astro) Normal Lung 93252_Secondary SW1783 6.5 GENPAK 060O1O 7.9 ThlITh2Trl anti-CD95CH11 0.0 83239 Lung Met CNS ca.* (neuro; to Muscle met SK-N-AS 52.1 (0004286) 6.5 193103 LAK cells resting CNS ca. (astro) 83240 Muscle SF-539 12.6 NAT (0004286) 2.6 93788 LAK cells IL-2 0.0 84136 Lung CINS ca. (astro) Malignant Cancer 11.9 0(D03126) 14.8 93787 LAK cells IL-2+IL-12 0.7 CNS ca. 84137 Lung NAT (glio)SNB-19 0.0 (0D03126) 3.2 93789 LAK cells IL-2+IFN gamma 1.1 84871 Lung CNS ca. Cancer (glio)U251 0.9 (0004404) 2.1 93790 LAK cells IL-2+ IL-18 0.3 CNS ca. (g110) 84872 Lung NAT 93104_LAK cellsPMAionomycin SF-295 12.6 (0D04404) 1.9 and IL-18 0.0 84875 Lung Cancer Heart 13.9 (0004565) 0.3 93578 NK Cells IL-2 resting 1.3 85950 Lung Cancer 93109-Mixed Lymphocyte Skeletal muscle 3.2 (0004237-01) 1.3 1Reaction Two Way MLR 85970 Lung NAT 9311 0_Mixed Lymphocyte Bone marrow 3.6 (0004237-02) 2.6 Reaction Two Way MLR 83255 Ocular Mel Met to Liver 9311 1 -Mixed Lymphocyte Thymus 4.2 (0004310) 0.1 Reaction Two Way MLR 2.7 83256 Liver NAT 93112_Mononuclear Cells Spleen 61.6 (0004310) 0.6 j(PBMCs)_resting 0.0 84139 Melanoma Mets to Lung 9311 3..Mononuclear Cells Lymph node 3.3 (0004321) 2.5 (PBMCs)_PWM 1.3 84138 Lung NAT 931114_Mononuclear Cells Colorectal 11.9 (0004321) 2.6 (PBMCs)LPHAL Normal Kidney Stomach 28.3 GENPAK 061008 5.6 193249 _Ramos (B cell)_none 1.2 83786 Kidney Smal intstin 4.5 Ca, Nuclear grade Colon a 83787 Kidney SW480 46.7 NAT (0004338) Colon -ca' 83788 Kid-neyCa (SW480 Nuclear grade 1/2 met)SW620 19.0 (OD04339) 83789 Kidney Colon ca. HT29 5.3 NATJ2 (00339) 83790 Kidney Ca, Colon ca., HCT- Clear cell type 116 5.0 (0D04340) Colon ca. CaCo- 83791 Kidney 2 49.3 NAT (0004340) 83219 CC Well 83792 Kidn-ey Ca, to Mod Duff .Nuclear grade 3 (0D03866) 3.0 (0D04348) Colon ca. HCC- 83793 Kidney 2998 27.7 NAT (0004348) Gastric ca.' 8 7474 K~idney (liver met) N~l- Cancer N87 10.5 (0004622-01) 87475 Kidney NAT (0004622- Bladder 3.7 03) 85973 Kidney Cancer Trachea 23.5 (01304450-01) 85974 Kidney NAT (0004450- Kidney 1.8 03)2 Kidney Cancer Kidney (fetal) 1.9 Clontech 8120607 7 Kidney NAT Renal ca. 786-0 7.0 Clontech 8120608 1 Kidney Cancer Renal ca. A498 6.8 Clontech 8120613 2 Renal ca.RXF Kidney NAT 393 4.7 Clontech 8120614 4 Kidney Cancer Renal ca.ACHN 9.8 Clontech 9010320 2 Kidney NAT Renal ca.UO-31 1.3 Clontech 9010321 3 Normal Uterus Renal ca.TK-1 0 0.6 GENPAK 061018 3 Uterus Cancer Liver 0.8 GENPAK 064011 1 Normal -Thyroid Clontech A+ Liver (fetal) 1.1 6570-1 -3 Liver ca.
(hepatoblast) Thyroid Cancer HepG2 54.0 GENPAKO64010 1.
Thyroid TCancer
INVITROGEN
Lun 3.9 A302152 0.
Thyroid NAT
INVITROGEN
Lung (fetal) 9.0 A302153 2.
0.6 3.7 0.8 3.1 1.5 5.1 14.5 2.5 93250_Ramos (B cellfLonomycin 933498B lymnphocytes PWM 93350 -B lymphoytes CD40L and IL-4 92665_EOL-1 (Eosinophil) dbcAMP differentiated 93248_EOL -1 (Eosinophil)_dbcAMP/PMpjonomyc in 93356 Dendritic Cells none 93355_Dendritic CellsLPS 100 ngfml 93775 Dendrltic Cells ant-CD4O 2.3 4.3 1.4 7.2 0.7 1.7 I 937 Monocytes resting 10.5- .0 93776 MonocytesLPS 50 ngml 10.0 .0 .5 .0 .5 .2 .5 .2 .6 .7 .2 6 6 191 93581_Macrophages resting 1.3 93582 -Macrophages LPS 100 ng/ml 1.8 93098_HUVEC (Endothelial)_none 2.3 93099_HUVEC (Endothelial) starved 93100 HUVEC Endothelial) IL-lb 1.2 93779_-HUVEC (Endothelial)_IFN gamm a 1.4 93102_HUVEC (Endothelial)_TNF alpha IFN gamma 0.8 93101_HUVEC (-ndothelial)
TNF
alpha +11-4 1.1 93781 HUVEC (Endothelial)IL-1l 93583 .Lung Microvascular Endoth~ellal Cells none 0.8 93584-Lung Microvascular Endothelial Cells TNFa (4 ng/ml) and ILI b (1 ng/ml) 92662_Microvascular Dermnal endothelium none 1.1 92663_Microsvasular Dermnal endotheliumTNFa (4 ng/ml) and ILI b(1 ng/ml) 93773_Bronchial epithelium TNpa (4 ng/ml) and 11-1b (I ng/ml) 0.0 Lung ca. (small Normal Breast 93347_Small Airway cell) LX-1 34.4 GEN PAK 061019 3.4 Eplthelium none 0.4 84877 Breast 93348_Small Airway Lung ca. (small Cancer Epithelum_ TNFa (4 ng/ml) and cell) NCI-H69 3.0 (0004566) 0.9 ILI b (1 nglml) 85975 Breast Lung ca. (s.cell Cancer 92668 Coronery Artery var.) SHP-T7 13.0 i(0004590-011) 67.8 ISMO resting 5.8 85976 Breast 92669 Coronery Artery Lung ca. (large Cancer Mets SMC-TNFa (4 ng/ml) and ILI b (11 cell)NCI-H460 6.8 (0004590-03) 51.1 ng/ml) 2.3 87070 Breast Cancer Lung ca. (non- Metastasis sm. cell) A549 3.4 I(0004655-05) 12.7 193107_astrocytes resting 2.7 Lung ca. (non- GENPAK Breast 93108 astrocytt-s TNFa (4 nglmi) s.cell) NCI-H1-23 34.4 Cancer 064006 8.9 and Iib (1 ng',il)- 0.0 Lung ca (non- Breast Cancer s.cell) HOP-62 10.5 Clontech 9100266 6.2 92666 KU-81 2 (Basophil)_resting 6.8 Lung ca. (non- Breast NAT 92667_KU-81 2 s.d) NCI-H-1522 47.6 lClontech 9100265 3.3 l(Basophll)_PMAionoycin 8.4 Lung ca. Breast Cancer (squam.) SW INVITROGEN 93579_-CCDIIO06 900 4.7 A209073 3.4 (Keratinocytes)_none 1.6 Lung ca. Breast NAT (squam.) NCI- INVITROGEN 93580_CCDI 106 H596 0.7 A2090734 8.7 (Keratinocytes)_TNFa and IFNg 1.4 Normal Liver Mammnary gland 9.9 GENPAK 061009 1.1 93791 Liver Cirrhosis 4.2 Breast ca.' (pl. Liver Cancer effusion) fMCF-7 5.6 GENPAK 064003 0.6 93792_Lupus Kidney 1.9 Liver Cancer Breast ca.' Research (plef)i MDA-MB- Genetics RNA 231 121.3 1025 0.6 93577 NCI-H292 39.5 LEiver Cancer Research Breast ca.' (p1. Genetics RNA effusion) T47D 66.0 1026 1.4 93358 NCI-H-1292 IL-4 39.0 Paired Liver Cancer Tissue Research Breast ca. BT- Genetics RNA 549 7.6 16004-T 1.3 193360 NCI-H1-292 IL-9 65.5 Paired Liver Tissue Research Breast ca.MDA- Genetics RNA N 18.7 6004-N 1.3 93359 NCI-H292 IL-13 37.1 Paired Liver Cancer Tissue Research Genetics RNA Ovary 12.1 16005-T 1.1 193357_NCI-H11292 _IFN gamma 31.9 Paired Liver Tissue Research Ovarian Genetics RNA ca.OVCAR-3 3.5 6005-N 0.3 93777 HPAEC Ovarian Normal Bladder 93778_HPAECIL-1 beta/TNA ca.OVCAR-4 4.0 GENPAK 061001 5.9 alpha 1.2 Ovarian ca. Bladder Cancer 93254_Normal Human Lung 9.1 lResearch 1.7 Fibrolast none 42.3
;Z
IND
Genetics RNA 1023 Bladder Cancer 93253_Normal Human Lung Ovarian ca. INVITROGEN FibroblastTNFa (4 ng/ml) and IL- OVCAR-8 12.7 A302173 1.9 lb (1 nglml) 17.8 87071 Bladder Ovarian Cancer 93257-Normal Human Lung ca.IGROV-l 9.8 (0D04718-01) 2.0 Fibroblast IL-4 100.0 Ovarian ca.* 87072 Bladder (ascites) SK-OV- Normal Adjacent 93256 Normal Human Lung 3 0.4 (0D0471 8-03) 3.3 Fibroblast IL-9 72.7 Normal Ovary 93255 Normal Human Lung Uterus 6.9 Res. Gen. 2.2 Fibroblaest IL-1 3 60.7 Ovarian Cancer 93258 Normal Human Lung Plancenta 4.6 1GENPAK 064008 29.1 Fibroblast IFN gamma 81.8 87492 Ovary Cancer 93106_Dermal Fibroblasts Prostate 15.7 (0D04768-07) 100.0 CCO70 resting 76.8 Prostate ca.* 87493 Ovary NAT 93361_Dermal Fibroblast's (bone met)PC-3 35.9 (0004768-08) 2.2 CCDIO670 TNF alpha 4 ngml 30.2 Normal Stomach 93105_Dermal Fibroblasts Testis 14.6 GENPAK 061017 13.1 CCDIO70 IL-I1 beta I ng/ml 38.2 Melanoma NAT Stomach 93772 dermal fibroblastIFN Hs688(A).T 13.5 Clontech 9060359 8.8 gamma 34.2 Melanoma* Gastric Cancer (met) Clontech Hs688(B).T 71.2 9060395 2.5 93771 dermal fibroblast IL-4 80.7 Melanoma NAT Stomach UACC-62 1.7 IClontech 9060394 9.7 93259 IBD Colitis 1 0.0 Gastric Cancer Clontech Melanoma M14 9.5 9060397 15.9 93260 IBD Colitis 2 0.3 Melanoma LOX NAT Stomach 1IVI 2.4 Clontech 9060396 12.9 93261 IBD Crohns 1.4 Melanoma* Gastric Cancer 3.4 IGENPAK 064005 12.1 735010 Colon normal 35.6 Adipose 5.9. 735019 Lung none 11.0 S_____64028-1 Thymus none 5.8 64030-1_Kidney none 9.7 Taqmnan results shown in Table 9 demonstrates that cFCTRI is hiighly expressed by tumor cell. lines and also overexpressed in tumor tissues, specifically breast and ovarian tumor comparcd to Normal Adjacent Tissues (NAT). There are reports that follistatin can act as a modulator of tumor growth and its expression also correlate with polycystic ovary syndrome, a benign form of ovarian tiumor.
Table 10: Primer Design for Probe Ag2773 (IFCTR4) Primer [Sequences IMLength Start Pos SEQ III
NO
Forwardj 5-CGrCTrTGTCATAT~CTGTTh3 59.3 22 243 29 Probe FAM-5'-CCCTfrfG~CTGGAATATAAACrCTCA3'TAMRA -64626 265 130- RPeverse l5AGAGGAAGCrITrCTGGAGAAGA-31 158.9122 1313 131:] TABLE 11: TAQMAN RESULTS FOR CLONE FCTR4 Panel Panel Panel Tissue Name ID Tissue Name 2D Tissue Name 4D Liver Normal Colon 93768 -Secondary Th lantl-CD28/antladenocarclnoma 18.3 GENPAK 061003 41.2 C03 12.7 83219 CC Well to Mod Duff 93769 Secondary Th2_antl-CD28fantl- Heart (fetal) 4.3 (0D03866) 5.2 ICD3 14.2 83220 CC NAT 93770_Secondary Trl-ani-CD28/antl- Pancreas 3.1 (0003866) 2.5 ICD3 -14.7 1 83221 CC Gr.2 Pancreatic rectosigmoid 93573 Secondary Thi-resting day 4-6 ca.CAPAN 2 20.0 0D36) 0.7 in lL-2- 4.7 83222 CC NAT 93572 -Secondary Th2_resting day 4-6 Adrenal gland 7.4 I(0003868) 1.4 in IL-2 83235 CC Mod 93571_Secondary Trl resting day 4-6 Thyroid 6.8 Duff (0D03920) 14.0 lin IL-2 83236 CC NAT 93568_.primary Tml-anti-CD28/anti- Salivar gland 2.5 (0003920) 13.9 CD3 22.4 83237 CC Gr.2 ascend colon 93569_.pnimary Th2_anti-CD2B/anti- Pituitary gland 5.7 (0003921) 16.2 003 16.3 83238 CC NAT 9357q..primary Trl_anti-C028/anti- Brain (fetal) 14.4 (0003921) 5.2 lC03 21.8 83241 CC from Partial Hepatectomy 93565_.primary Tl 1resting dy 4-6 in Brain (whole) 19.6 (0004309) 13.9 IL-2 30.2 Brain 83242 Liver NAT 93566_rimary Th2_resting dy 4-6 in (arnygdala) 3.7 (0D04309) 12.7 IL-2 14.4 87472 Colon mets Brain to lung (0004451- 93567..primary Trn resting dy 4-6 In IL- (cerebellum) 2.1 101) 3.4 2 7.4 Brain 87473 Lung NAT 93351_CD45RA CD4 lymphocyte anti- (hippocampus) 22.7 (0004451-02) 1.5 lCD28/antl-CD3 7.6 Normal Prostate Clontech A+ 93352_CD45R0 CD4 lymphocyte anti- Brain (thalamus) 7.4 6546-1 1.0 CD28Ianti-CD3 11.1 84140 Prostate Cancer 93251_0DB Lymphocytes anti- Cerebral Cortex 47.3 (0004410) 3.1 0028kE Li-CD3 9.6 84141 Prostate 93353_chronic COB Lymphocytes Spinal cord 8.3- NAT (0004410) 10.6 2ry resting dy 4-6 in IL-2 9.7 CNS ca. 87073 Prostate (gllofastro)U87- Cancer 93574_chronic COB Lymphocytes MG 19.9 i(0004720-01) 9.7 12ry activated 003/0028 6.2 CNS; ca. 87074 Prostate (glio/astro) U- NAT (0004720- 11I8-MG 57.0 02) 8.3 93354 OL'4 none 6.4 CNS ca. (astro) Normal Lung 93252_Secondary ThlfTh2/Trl-anti- SW1 783 10.0 GEN PAKO061010 36.6 CD95C HII 9.3 83239 Lung Met CNS; ca.* (neuro; to Muscle met )SK-N-AS 44.8 (0004286) 11.7 93103 LAK cells resting 11.0 CNS ca. (astro) 83240 Muscle SF-539 37.4 NAT (0004286) 3.4 93788 LAK cells IL-2 10.4 84136 Lung ONS ca. (astro) Malignant Cancer 62.0 1(0003126) 15.1 193787 LAK cells IL-2+IL-12 7.4 I I SNB-19 24.8 84137 Lung NAT (0D031 26) 93789 LAK cells IL-2i-IFN gamma I CNS ca. (glia) U251 140.3 84871 Lung Cancer (0004404) 11.6 93790 LAI( cells I -24 IL- A OGNS Ca. (glo) 84872 Lung NAT 93104- LK cells SF-295 100.0 (0004404) 6.3 lL-1 8 A _P /inmc ad4.8 84875 Lung Cancer Heart 0.0 (0004565) 3.2 93578 NK Cells IL-2 resting 6.2 85950 Lung Cancer 93109 Mixed Lymphocyte Skeletal muscle 0.0 (0D04237-Oi) 15.8 Reacti-on Two Way MLR 12.3 85970 Lung NAT 93110 Mixed Lymphocyte Bone marrow 33.7 i(0D04237-02) 10.5 ReactionTwo Way MLR 8.7 83255 Ocular Mel Met to Liver 931 11 -Mixed Lymphocyte Thymus 12.4 (0004310) -5.9 Reaction Two Way MLR 83256 Liver NAT 9311 2 Mononuclear Cells Spleen 21.3 (000431 0) 3.6 (PBMCs)_resting 84139 Melanoma Mets to Lung 93113_Mononuclear Cells Lymph node 13.4 (0004321) 10.6 (PBMCs)PWM 21.2 84138 Lung NAT 93114_Mononuclear Cells Colorectal 38.2 0OD04321) 10.6 (PBMCs)_PHA-L 8.9 Normal Kidney Stomach 9-.9 GENPAK 061008 26.2 93249 Ramos (B cell) none 100.0 83786 Kidney Ca, Nuclear grade Small intestine 17.9 2 (D04338) 22.2 93250 Ramos (B cell) ionomycin 28.7 83787 Kidney Colon ca.SW480 27.7 NAT (0D04338) 11.7 93349 B lymphocytes _PWM 20.0 Colon ca.* 83788 Kidney Ca (SW480 Nuclear grade 1/2 met)SW620 30.8 (0004339) 45.1 93350 B lymphoytesCD40L and IL-4 7.8 83789 Kidney 92665 -EOL-1 (Eosinophildc-AMP Colon ca.HT29 8.1 NAT (0004339) 14.8 differentiated 83790 Kidne-y -Ca, Colon ca.HCT- Clear cell type 93248_EOL-1 116 35.4_ (0004340) 26.6 (Eosinophil)_dbcAMP/PMAionomycin 3.8 Colon ca. CaCo- 83791 Kidney 2 37.6 NAT (D04340) 10.4 93356 Dendritic Cells none 6.8 83219 CC Well 83792 Kidney Ca, to Mod Diff Nuclear grade 3 (0003866) 17.8 (0004348) 2.4 93355 Dendritic Cells LIDS 100 ng/ml 3.3 Colon ca.HCC- 83793 Kidney 2998 19.91 NAT (D04348) 18.8 193775 Dendritic Cells anti-CD4O 6.3 Gastric ca.* 87474 Kidney (liver met) NCI- Cancer N87 73.2 (0004622-01) 5.6 93774...Monocytes resting 10.6 87475 Kidney NAT (0004622- Bladder 43.2 03) 0.5 93776_MonocytesLPS 50 ng/ml 85973 Kidney Cancer Trachea 10.3 j(0004450-01) 21.2 93581_Macr-ophages resting 17.6 1r 7 11.1.1 9.2 8514 K~iny NAT (0004450- 03) Kidney Kidney (feta)__ 93582 Macronhnage I PSI inn -1~m dnJeIy Iarlcer Clontech 8120607 93098 HUVEC (Endothllafl nne Renal ci.8- 1 I.
Kidney NAT Clontech 8120608 Kidney Cancer Clontech 8120613 0.9 Renal ca. A498 Renal ca.RXF 393 0.0 Kidney NAT Clontech 8120614 93099 HUVEC (Endothelial)_starved 93100 HUVEC (Endothelial)_IL-lb 93779 -HUVEC (Endothelial)_IFN gamma 931 02-HU-VEC -(Endothelial)_TNF 17.9 7.8 Renal ca.ACHN 121.6 10.9 1 Kidney Cancer Clontech 90103201- t4 IMCII2 ,1 Kidney NAT 93101-HUVEC (Endothellal)_TNF Renal ca.UO-31 28.7 Clontech 9010321 5.0 alpha IL4 5.6 Normal Uterus Renal ca.TK-10 7.0 GENPAK 061018 5.3 93781 HUVEC (Endothelial)_IL-Il1 4.9 Uterus Cancer 95LngMicrovScular Endthlal Liver 14.2 GENPAJ( 064011 9.0 Cells none 4.9 Normal Thyroid 93584 Lung Microvascular Endothelial Clontech A+ CellsTN Fa (4 ng/ml) and I L b (1 Liver (fetal) 14.5 6570-1 3.4 nglml) 4.9 Liver ca.
(hepatobiast) Thyroid Cancer 92662_Microvascular Dermal HepG2 59.9 G ENPAJ( 064010 1.8 endothelium none 8.6 Thyroid Cancer 9 2663 Microsvasular Dermal INVITROGEN endothellumTNFa (4 nglml) and ILib Lung 17.8 A302152 3.6 (1 ng/ml) Thyroid NAT INVITROGEN 93773_Bronchial epitheliumTNFa (4 Lung (fetal) 9.6 -A302153 -4.9 ng/ml) and ILIIb (11 ng/ml) 0.9 Lung ca. (small Nrmal Breast cell) LX-l_ 70.2 GENPAK 061019 8.5 93-347_Small Airway Epithelium none 1.3 84877 Breast Lung ca. (small Cancer 93348_Small Airway Epithelium_-TNFa cell) NCI-H69 29.9 (0004566) -1.5 (4 ng/ml) and ILib (I ng/ml) 13.2 85975 Breast Lung ca. (s.cell Cancer var.) SHP-77 3.9 (01304590-01) 23.8 92668 Coroner Artery SMC resting 3.4 85976 Breast Lung ca. (large Cancer Mets 92669 Coronery Artery SMO TNFa (4 cell)NCI-H460 2.0 (0D04590-03) 24.5 ng/ml) and ILlb (I ng/ml) 87070 Breast_ Cancer Lung ca. (non- Metastasis sm. cell) A549 28.5 (0004655-05) 129 93107 astrocytes resting 4.7 Lung ca. (non- C-.NPAK Breast 93108 astrocytes TNFa (4 ng/ml) and s.cell) NCI-H23 36.1 ,ancer 064006 11.8 ILIb (1 ng/ml) 1.9 Lung ca (non- Breast Cancer s.cell) HOP-62 29.9 Clontech 9100266 3.2 92666 KU-812 (Basophil)resting 5.8 Lung ca. (non- Breast NAT 92667_KU-812 s.cl) NCIH522 17.2 Clontech 9 100265 1.8 (Basophll)_PMAionoycin 12.0 Lung ca. Breast Cancer (squam.) SW INVITROGEN 900 63.7 lA2f9073 11.0 93579 CCD1 106 (Keratinocytes)none 4.9 Lung ca. Bfreast NAT (squamn.) NCI- INVITROGEN 93580_CCD1106 H596 10.0 A2090734 7.1 I(Keratinocytes) TNFa and IFNg 0.3 Normal Liver Mammary gland 4.6 1 GEN PAK 061009 18.8 93791 Liver Cirrhosis 1.8 Prmne4 ^n fI I effusion) MCF-7 Breast ca.' (pl.ef) MDA-MB- 231 0.0 38.7 GENPAK 064003 Liver Cancer Research Genetics RNA 1025 4.9 j93792...Lupus dney 11.6 93577 NCI-H292 11 *1 Breast ca.* (pl.
effusion) T47D Breast ca. BT- 549 Breast ca. MDA-
N
Ovary Ovarian ca.OVCAR-3 Ovarian ca.OVCAR-4 Ovarian Ovarian ca.OVCAR..8 Ovarian ca.iGROV-1 Ovaran ca.* (ascites) SK-OV- 3 Uterus 0.0 4.6 19.0 1.7 4.8 0.0 39.0 36.6 65.5 1.6 Liver Cancer Research Genetics RNA 1026 Paired Liver Cancer Tissue Research Genetics RNA 6004-T Paired Liver Tissue Research Genetics RNA 6004-N Paired Liver Cancer Tissue Research Genetics RNA -6005-T Paired Liver Tissue Research Genetics RNA 6005-N Normal Bladder GENPAK 061001 Bladder Can cer Research Genetics RNA 1023 Bladder Cancer IN VITROG EN A302173 87071 Bladder Cancer (0D04718-01) 6 87072 Bladde-r Normal Adjacent '0D 04718-03) 4 Normal Ovary Res. Gen. 0 Ovarian Cancer GENPAK 064008 6 87492 -Ovary Cancer (0004768-07) 1 87493 Ovary NAT (0004768-08) 3 Normal Stom5ach GENPAKO061017 8 NAT Stomach 0.8 93358 NCI-H292 IL-4 12.2 3.0 7.3 93360 NCI-H292 IL-9 7.6 93359 NCI-H292_IL-13 6.1 0.2 193357_NCI-H292 IFN gamma 1.
19.8 1.1 '.3 .8 00.0 93777 HPAEC: 93778 HPAEC IL-I beta/TNA alpha 93254_-Normal Human Lung Fibroblast none 93253_Normal Human Lung FibrobiastTNFa (4 ng/ml) and IL-lb (1 ng/ml) 93257_Normal Human Lung Fibroblast IL-4 93256_Normal Human Lung Fibroblast iL-9 925Normal Huma n Lung Fibroblast IL-13 9ยง3258_Normal HumanLung Fibroblast IFN gamma 93106_Dermal Fibroblasts; COD I 70 resting 93361_Dermal Fibroblasts CCD170 TF alpha 4 ng/ml 931 05 Dermal Fibrob lasts CCD1070 IL-I beta I ng/mi 6.8 5.4 2.1 1.9 3.6 3.3 2.3 2.9 5.6 17.4 3.8 Plancenta 8.9 Prostate 0.0 Prostate ca.* (bone met)PC-3 9.2 Testis 29.5 Melanoma Hs688 A .T 14.3 Melanoma* (met) Hs688(B3).r 22.9 Melanoma UACC-62 -9.7 Melanoma M14 12.7 Melano~ma LOX IMMi 4.5 Melanoma, 21.8 Ciontech 9060359 0.7 Gastric Cancer- Clontech 9060395 3.9 NAT Stomach I Clontech 9060394 5.3 Gastrc -Cancer Clontech 9060397 13.2 NAT Stomach Clontech 9060396 1.1 Gastric Cancer 2J-3.0-- 197 93772 dermal fibroblast lNgamma 2.6 93771 dermal fibroblast L-4 93259 IBD Colitis 1 3.4 193260 IBD Coliis 2 0.4 93261_IBD Crohns 0.3 735010, Colon normal 3.3 (met) SK-MEL-5 GENPAK 064005 Adipose 6.7 735019 Lung-none3.
64028-1_Thymus none7.
64030-1 Kidney none 21.8 IND Table 12 shows the taqman results of clone FCTR4 indicating overexpression in ovarian cancer as compared to Normal Adjacent Tissue (NAT). In addition, increased expression is demonstrated by ovarian tumor cell line suggesting that antibodies could be used to treat ovarian tumors.
Table 13: Primer Design for Probe Ag427 Primer Sequences Length Start Po SEQ ED CI
NO
Forward 5'-GAGCI'ACAGGCAGCCTCGAGT-3' 21 443 32 Probe TET-5'-TGGCCCAGCTGiACCCTGCTCA-3'-TMRAp 21 33 Reverse 20 449 34 5'-GGCrACGTrcAGTGGGITG3.3' Table 14: Taqman results for Tissue Name Panel I TissueName.Pnl4 Endothelial Pae 4D~ 07 978ScnayThniC2/niC3 1.
Endothelial cells (rae)10.7 93768 Secondary Thi anti-CD28anti-CD3 15.9 Pancreas 16.2 193770 Secondary TO _anfl-CD28/antl-CD3 21.9 93573_Secondary Thl -resting day 4-6 in I L- Pancreatic ca.CAPAN 2 10.5 29 12.3 93572 Secondary Th2 resting day 4-6 in IL- Adipose 45.1 2 16.2 Adrenal gland 61.6 93571 Secondary Tnrjesting day 4-6 in IL-2 16.2 Thyroid 13.1 93568_primary ThIlant-CD28/ant-CD3 13.9 Salavary gland 33.7 93569_rimary Th2 anti-CD28/anti-CD3 14.6 Pituitary gland 15.8 93570_primary Tr1lant-CD28antl-CD3 26.2 Brain (fetal) 7.2 93565_primary ThI resting dy 4-6 in IL-2 -56.3 Brain (whole) 6.3 93566_primary Th2 resting dy 4-6 In IL-2 27.7 Brain (amygdala) 8.4 93567_primary Tl _resting dy 4-6 in I L-2 31.6 93351_CD45RA CD4 lymphocyte anti- Brain (cerebellum) 6.8 CD28Ianti-CD 12.1 93352_CD45RO CD4 lymphocyte anti- Brain (hippocampus) 7.9 CD28/anti-CD 17.1 93251_CD8 Lymphocytes anti-CD28/anti- Brain (substantia nigra) 9.5 CD3 9.1 93353.chronlc CD8 Lymphocytes 2ry resting Brain (thalamus) 7.9 dy 4-6 in IL-2 13.4 93574_chronIc CD8 Lymphocytes Brain (hypothalamus) 23.0 2ry ctivated CD3/CD28 9.2 Spinal cord 9.5 93354 CD4 none 17.6 CNS ca. (glio/astro)U87-
MG-
CNS ca. (gllofastro)U- 118-MG CNS ca. (astro)SW1 783 93252_Secondary ThlITh frl 12.6 CI 11.6 93103 LAK cellsjresting 4.3 93788 LAK cells IL-2 CNS ca.* (neuro: met )SK-
N-AS
CNS ca. (astro) SF-539 CNS ca. (astro) SNB-75 CNS ca. (glio)SNB-1-9 CNS ca. (glio)U251 CNS ca. (glio)SF-295 Heart Skeletal muscle Bone marrow Thymus Spleen Lymph nodle Colon (ascending) Stomach Small intestine -T 1 10.4 11.6 4-.4 3 1.6 17.3 20.9 14.3 11.7 20.9 23.8 24.2 17-.2 11.1 93787 LAK cells IL-2+IL-12 93789-LAK cells IL--2+IFN gamma 93790_LAK cells IL-2+ IL-lB8 93104 LAK cells PM-ionomnycin and IL-lB8 93578-NK Cells IL-2 resting 9310 OMixed Lymphocyte ReactionTw-o Way MLR 931 0~MiedLymphocyte -Reaction_ Two WayMIVLR 9311 1..Mixed Lymphocyte RfeactionTwo Way MLR 9311 2 Mononuclear Cells (PBMONs) esting 913Mononuclear Cells (PB3MCs'- WM 931 14_Mononuclear Cells (PB3MCs)-PHA-L 93249 Ramos (B cell) _none 93250 Raimos (B cell)_onomycin 93349 B lymphocytes PWM 93350 B lymphoytesCD40L nd -IL-4 20.2 57.0 18.8 14.2 20.9 14.8 12-.9 17.4 43.5 19.3 12.6 8.7 2f8.-5 26.2 0.3 1.2 25.7 13.0 26.4 11.4 40.3 20.5 23.3 6.9 21.5 t IColon ca.SW480 Colon ca.* (SW480 met)SW620 Colon ca.HT29 Colon ca.HCT-1 16 12.2 8.6 16.2 92665_EOL-1 (Eosinophil)-dbcMP differentiated 93248 EOL-11 (EosinophldbcAMPlPMAionomycin 93356 Dendritic Cells none 93355_Dendritic Cells LPS 100 ngmln- 93775 Dendritic els anti-CD4O 93774...Monocytes resting 934776, Monocytes LPS 50 ng/ml 8.1 Colon ca.CaCo-2 22.1 Colon ca.HCT-1 5 118.6 1 Colon ca.HCC-2998_ 21.9 I NCI-N87 Bladder Trachea Kidney Kidney (fetal) Renal ca.786-0 Renal ca.A498 Renal ca.RXF 393 Renal ca.ACHN 42.9 J93581 Macrophages resting 14.7 95.3 J93582-Macrophages -LPS 100 ngml 164.6 11012 93098 HU'JEC (Endothelial) fnne
V
125.7 1 93099 HUVEC (Endothlial) starved 13.9 16.5 16.5 7.4 11.9 93100 HUVEC (Endothlial) L-lb 93779 HUVEC (Endothe ial)FN gamma 93102_HUVEC (Endothelial)_ThF alpha IFN gamma 93J101_HUVE=C (Endlothelial) TN alpha EL4 9 378 EC (Endotelial)L-1 1 13.
11.8 6.7 10.4 6.8 1 Renal ca.JO-31 115.8 93583_Lung Microvascular Endothelial Cells none 1 [Renal ca.TK-1 0 Liver (fetal) Liver ca. (hepato-blast) HepG2 128.7 100.0 81.8 28.3 93584Lung Microvascular Endothelial Cells TNFa (4 ng/ml) and ILi b (1 na/ml) 92662_Microvascular Derma endotheliumn none 92663 Mlcrosvasular Dermal .endotheliumTNFa (4 ng/ml) and IL~b (1 ng/ml) 9373Bronchial epitheliumTNFa (4 ng/ml) and Ll-b (1 ng/ml) ~8.6 p22.1 18.7 in 7 l9334~ilTFnIWIjIIm~nD 35.4 93347 Small Airway Epithelium none Lug fta)93 348_Small Airway Epithelium -TNFa (4 Lung 10ta).9 ng/ml) and ILI b (1 nq/ml) Lung ca. (small cell) LX-1 24.3 92668 Coronery Artery SMOI resting 27.9 Lung ca. (small cell) Ndl- 92669_Coronery Artery SMVC -TNFa (4 ng/mI) H69 41.5 and ILb (I ng/ml) 25.4 Lung ca. (s.cell var.) SHP- 77 4.6 93107 astrocytes resting 7.4 Lung ca. (large cell)NCI- 93108 astrocytesTNFa (4 ng/ml) and 11L1b H460 46.3 (1 ngfml) 10.7 Lun ca (on-s.cell) A549 45.4 92666 KU-812 (Basophil)_resting 3.2 Lung ca. (non-s .cell) NCI- H23 54.3 192667 KU-812 (Basophil)_PMAlonoycin 6.7 Lung ca (non-s.ceil) HOP- 62 50.7 93579 CCDI10O6 (Keratinocytes)_none 12.2 Lung ca. (non-s.cl) Nd- 93580_OCDI 106 (Keratinocytes)_TNFa and H522 38.4 OFNg 100.0 Lung ca. (squam.) SW 900 30.8 9379 1 -Liver Cirrhosis 27.6 Lung ca. (squam.) NCI- H596 15.5 93792 Lupus Kidney 32.3 Mammary gland 65.5 93577 NCI-H292 77.4 Breast ca.* (pl. effusion) MCF-7 4.4 93358 NCI-H292 IL-4 70.2 Breast ca.* (pl.ef) MDA- MB-231 3.5 93360 NCI-H1292_IL-9 54.3 Breast ca.* (pl.
effusion)T47D 8.7 93359 NCI-H1292 IL-13 47.0 Breast ca. BT-549 5.7 93357 NCI-H292 IFN gamma 52.9 Breast ca.MDA-N 16.6 93777 HPAEC 23.8 Ovary 20.5 93778 HPAEC IL-i betaTNA alpha 21.5 Ovarian ca. OVCAR-3 21.6 93254 Normal Human Lung Fibroblast none 49.3 93253_Normal Human Lung FibroblastTNFa Ovarian ca.OVCAR-4 8.3 (4 ng/ml) and IL-Ilb (1 ng/ml) 40.3 Ovarian ca.OVCAR-5 26.1 193257 Normal Human Lung FibroblastIL-4 48.3 Ovarian ca.OVCAR-8 48.0 193256 Normal Human Lung Fibroblast IL-9 29.3 Ovarian ca.IGROV-1 9.3 93255_-Normal Human Lung FibroblastIL-1 3 73.7 Ovarian ca.* (ascites)SK- 93258_Normal Human Lung FibroblastIFN OV-3 8.8 gamma 66.9 Uterus 13.4 93106 Dermal Fibroblasts CCD1 070 resting 20.2 93361_Dermal Fibroblasts CCD1 070_TNF Plancenta 9.4 'alpha 4 ng/ml 35.1 93105_Dermal Fibroblasts CCD1070_IL-i Prostate 21.3 beta 1 nglml Prostate ca.* (bone met)PC-3 17.7 93772 dermnal fibroblast IFN gamma 21.8 Testis 11.7 93771 dermal fibroblast IL-4 21.2 Melanoma Hs688(A).T 9,0 93259 IBO Colitis 1" 8.8 Melanoma* (met) Hs688(B).T 12.9 93260 IBD Colitis 2 Melanoma UACC-62 12.4 93261 IBD Crohns 1.3 Melanoma M14 9.5 7 35010 Colon normal Melanoma LOX IMVI 8.1 735019_Lung none 140.3 Melanoma* (met) SK- 8.8 64028-1_Thymus none 33.5 Melanoma SK-MEL-28 8.0 64030-1 Kidney none 21.0 Taqman results in Table 14 show high expression of clone FCTR5 in bladder, liver and adrenal gland suggesting a possible role in the treatment of diseases involving these tissues.
Table 15: Primer Design for Probe Ag1541 (FCTR6) TABLE 16: TAQMAN RESULTS FOR FCTR6 (PANEL ID) ITissue-Name Panel I D Liver adenocarcinoma 0.0 0.0 Heart (fetal) 0.0 10.0 Pancreas 0.0 10.0 Pancreatic ca CAPAN 2 0.0 0.0 Adrenal gland 0.0 0.0 ThY-roid- 0.0 0.0 Salivary gland 06.0- 00 Pituitary gland 0.0 0.0 Brain (fetal) 0.5 0-.-4 Brain (whole) -1.1 1.7 Bfrain (amryqdala) 0.0 1.8 Brain (cretbeuum) .0.6 1.9 Brain (hiupocarnpus) 3.3 3.4 Brain (thalamus) 1.0 1.2 Cerebral Cortex 1l.6 -2-.6 Sp"Ia cord 2.5 0.4 CNS Ca. (l'/asro)U7-MG 0.0 0.0 CNS ca. (lioastro)U-1 18-MG 0.0 0.0 CNS ca. (asro)SW 1783 0.0 0.0 CNS ca.' (neuro; mnet )SK-N-AS 0.0 0.0 CNS ca. (astro)SF-539 0.0 0.0 CNS ca. (astro) SNB-75 0.7 0.0 CNS ca. (glio)SNB-1 0.0 0.0 ONS ca. (glio)U251 0.0 0.0 CNS ca. (glio)SF-295 0.0 0.8 Heart 0.0 0.0 Skeletal muscle 0.0 0.0 Bone marrow 0.0 0.0 Thms0.0 0.0 S p e n0.0 0.0 Smal ntsfne1.9 0.0 -0.0 Colon ca. SW480 0.0 0.0 Colon ca. (SW480 ret)SW620 0.0 0.0 Colon Ca. HT29 0.0 0.0 Colon ca. HCT-1 16 0.6 0.4 201 Colon ca.CaCo-2 1.5 0.0 83219 C Well to Mod 01ff (0003866) -0.0 0.0 Colon ca.HCC-299_8 0.0 0.0 Gastric ca.* (liver met) NCI-N87 1.2 0.0 Bladder 0.0 0.0 Trachea 0.0 0.4 Kidney 0.8 1.2 Kidney l 0.5g 0.7 Renal ca.786- 0.0 0.0 Renal ca.A498 0.01 0.0 Renal ca.RXF 393 0.0 10.0 Renal ca.ACHN 0.0 0.0 Renal ca. UO-31 0.0-O 0.0 Renal ca.TK-10 0.0 0.0 Liver 0.0 0.0 Liver (fetal) 0.2 0.0 Liver ca. (hepatoblast) HepG2 10.0 0.0 Lung 0.0 0.0 Lung (fetal) 0.0 0.0 Lung ca. (small cellI) LX-1 1.7 2.3 Lung ca. (small cell)NCI.-H69 0.0 0.0 Lung ca. (s.cell var.) SHP-77 1.3 Lung ca. (large ce[l)NCI-H460 0.0 0.0 Lung ca. (non-sm. cell) A549 0.0 0.0 Lung ca. (non-s.cel_) NCl-H23 1.2 0.4 Lung ca non-s-celf) HOP-62 -0.0 0.0 Lung ca. (non-s.d) NCI-H522 0.0 0.0 Lung ca.(qa4 )S 0 0.0 0..7 Lung ca. 0.0 1.3 Mammary 0.0 Brest a. efuion MC-70.0 0.0 5.8 Breast___ca.*___(p_.__effusion)___T47D_ 1.2 0.3 0.5 0.0 Breast ca, MDA-N 0.0 0.0 Ovary 0.0 0.0 Ovarian ca. OVCAR-3 0.0 0.0 Ovarian ca.OVCAR-4 0- 0.0 Ovarian ca.OVCAR-5 3j 0.7 Ovarian ca.OVCAR-8 0.0 0.0 Ovarian ca. IGROV-1 0.0 Ovarian ca.* (ascites) SK-OV-3 0.0 0.0 Uterus 0.0 0.0 Plancenta 0.0 0.0 Prostate 0.0 0.7 Prostate ca.* (bone met)PC-3 0.0 0.0 Testis 100.0 100.0 Melanoma Hs688(A).T 0.0 0.0 Melanomna* (met) Hs688(B).T -0.0 0.0 Melanoma UACC-62 0.0 0.0 Melanoma M14 0.0 10.0 Melanoma LOX IMVI 0.0 0.0 Melanoma* (met)SK-MEL-5 0.0 0.0 Adipose 0.5 0.0_ Table 17: Taqman Results for FCTR6 (Panel 2D) 202 Panel 2D TissueName Run I Run 2 Normal Colon GENPAK 061003 5.4 2.4 83219 CC Well to Mod D'ff (0D03866) 7.3 0.0 83220 CC NAT (003866) 5.8 83221 CC Gr.2 rectosgmoid (0003868) 3.4 0.0 83222 CC NAT 0003868) 0.0 00 83235 CC Mod Diff (0003920 11.0 1.4 83236 CC NAT (OD03920 0.0 0.0 83237 CC Gr.2 ascend colon (0039,21) 6.2 83238 CC NAT 0003921 10.2 0.0 83241 CC from Partial He atectoy 0004309) 3.6 0.0 83242 Liver NAT 04309 0.0 2.4 87472 Colon mets to lung (0004451-01) 7.2 4.4 87473 Lung NAT (OD04451-020.0 0.0 Normal Prostate Clontech A+ 6546-i 4.8 2.9 84140 Prostate Cancer (0004410) 3.5 0.0 84V 1;1 Prostate NAT O 0)3.4 0.0 873i73 Prostate Cancer (0004720-0) 9.0 87074 Prostate NAT (000472002 0.0 0.0 Normal Lung GENPAK 061010 17.7 83239 Lung Met to Muscle (004286) 0.0 2.3 83240 Muscle NAT 0004286 0.0 0.0 84136 Lung Malignant Cancer (OD03126) 6.5 5.7 841371Lun NAT 0003126 0.0 0.0 84871 Lung Cancer (OD04404 0.0 0.0 84872 Lung NAT (OD04444044) 0.0 0.0 84875 Lung ancer (ODD0.0 0.0 85950 Lung Cancer (0004237-01) 0.0 0.0 56 0 )0.0 0.
85970 Lung NAT (OD04237-02) 0.0 0.0 83255 Ocular Mel Meto Le(04310) 4.3 0.0 Can r 0 0 0.0 0.0 84139 Melanomets to Lgr (00431) 0.0 0.0 84138 Lung NAT (OD04321) 0.0 0.0 Normal idne GENPAK 061008 28.1 39.2 83786 Kidney Ca, Nuclear grade 2 (0004338) 0.0 83787 I AT (004338) 22.7 31.6 83788 Kidney Ca Nucear grade 1/2 (0004339 0.0 3.1 83789 Kid NAT (00D04339 97.3 100.0 83790 Kidney Ca, Clear cell e 0004340 0.0 0.0 83791 Kidney N UAT (004340) 100.0 34.4 83792 Kidne Ca, Nudcear rade3 0004348 2.0 4.9 83793 Kidne NAT (004348 30.2 19.9 87474 Kidney Cancer (0004622-01) 0.0 2.4 87475 Kidne NAT (0004622-03 8.4 7.2 85973 Kidne Cancer 0004450-01) 0.0 0.0 85974 Kidney NAT OD04450-03 47.3 12.9 K ancerClonteciT120607 0.0 0.0 KideyNAT~TT~-I~0.0 0.0 Kid Cancer Clontech 8120613 0.0 0.0 Kidney NAT C ont 8 1206120.6 22.9 Kidney Cancer Clontech 9010320 0.0 0.0 yNAT ontech 9010321 3.4 26.4 Normal erus GENPA 203 0.0 Uterus Cancer ULNPAK 064011 T4-i 1.9 0.0 Normal ThriJClontech A+ 6570-1 0.0 0.0 Tyro ;ancer GENPAK 064010 -6.0-0.0 Cace NV 'RGN A32152 000.
203 Th Mroid NAT INVITROGEN A302153 0.0 0.0 Normal Breast GEN PAK 0 61019 52 84877 Breast Cancer (000456-6) -o T B5975 Breast Cancer (0004590-01) 0.0 0.0 85976 Breast Cancer Mets 0004590-03) 0.0 -0.0 87070 Breast Cancer Metastasis (0004655-05) 0 0.0 GENPAK Breast Cancer 064006 0.0o Breast Cancer Clontech 9100266 6.2 0.0 Breast NAT Clontecti 9100265 0.00.
Breast Cancer INVITROGEN A209073 1.5 Breast NAT INVITROGEN A2090734 -24.3 26.2 Normal Liver GENPAK 061009 10O. 5 2.7 Liver Cancer GENPAK 06400 5.9 1.7 Liver Cancer Research Genetics RNA 1025 21.6 11.0 Liver Cancer Research Genetics RNA 1026 0.0 -0.0 Paired Liver Cancer Tissue Research Genetics RNA 6004-T 3.3 13.5 Paired Liver Tissue Research Genetics RNA 6004-N 3 -2 1.4 Paired Liver Cancer Tissue Research Genet-ics RNA 6005-T 0.0 0.0 2aired Liver Tissue Research Genetics RNA 6005-N 0.0 0.0 N~rmal Bladder GENPAK 061001 KN 030.0 0.0 Bladder Cancer Research Genetics RN-026.-0 0.0 Bladder Cancer INVITROGEN A302173 4.6 2.3- 87071 Bladder Cancer OD0 471 8-01) 17.9 11.4 87072 Bladder Normal Adjacent (D0471 8-03) -To- Normal Ovar Res. Gen. 0.0 0.0 Ovarian Cancer GENPAK 064008 1.7 4.8
B
7 92 Cviyncer (04768-07) 0.0 2.
87493 Ovary NAT (D04768-08) 0.00.
NormalIStomach GENPAK 061017 3.3 2.9 NAT Stomach Clontech 9060f359 0-6.0 0.0 Gastric Cancer Clontech 9060395 0.0O 0.0 NAT Stomani Clontech 9060394 0.0 10.0 Gastric Cancer Clontech 9060397 0.0 0.0 NAT Stomach Clontech 9060396 0.0 0.0 Gastric Cncer ENPAK 064005 -6.3 3.8 Table 18: Taqman Results for clone 274551 83.0.19 (Panel 4D) Panel 4D Tissue-Name Runi1 Run 2 93768 Secondary Than-D28/ant-CD3 0.0 0.0 93769 Secondary Th2 an-CD28/anti-CD3 0.0 0.0 93770 Secondary Tranl-CD28anl-CD3 13.5 17.1 93573 Secondary Thi esting day 4-6 In 1L- 0.0 0.0 93572 secondary Th2 esting day 4-6 in IL-20.00 93571 Seconuary Tr..resting day 4-6 in IL-20.00 93S68_primary Thi anti-CD28/anti-rcD3 .000 9 3569_primary IThZanti-CD28anti-CD30.00 93570jrmr !ri TOani-CD28/anb-Co3______ 9 3565jrimary Thl resing dy 4-6 in IL-2 0.0 93566_primar Th2 resting dy 4-6 in IL2 0.0 93567_rimary Trl rsting dy 4-6 in IL-2 0.0 93351 CD45RA CD lymphocyte 'anti-C2-8anj..CD3 0.0 93352 D 45RO CD4 ymphocyte anti-CD2 8/antl-CD30.00 93251 CD8 poye ianl-[,)D?8/anl-CD30.00 93353 chronic CD8 Lymphocytes 2 ry resting dy 4-6 In IL-2 0.
204 93574 chronic CID8 Lvmphocytes 2 yactivated CD3tCD28 93354 CDU4 none_ 93252 Seond Thl/Th2fTrl ant-C9 C iI 93103 LAK cells restinq 93788 LAK cells lL-2 93787_LAI( cells lL-2+IL-12 93789 LAK cells IL-2+IFN gamma 93790 LAK cells IL-2+ ILl 93104 LAK cells PMA/ionom cmn and IL-l'i 93578NK Cels i-2-resting 93109_1Mixed Lymphocyte Reaction Two Way MLR 931101, Mixed Lymphocyte Reaction Two Way M LR 93111 _Mixed Lymphoc te Reaction Two WayMIVLR 93112Mononucd r lltsjiI I s) resing 93113 Mononuclear Cells (PBMCs' PWM 93114 Mononcear Cells PBMs %_PHA-L 93249 Ramos (B cell) none 93250 Ramos (8 cell) ionomycmn 93349 B lymphocyes PWM 933508 slyMphoytes CD40L and IL-4 92665 EOL-1 (Eosinophil) dbcAMP differentiated 93248 EOL-1 (Eosno *hIQdbcAMP/PIMAonomYcln 93356 Dendritic Cells-non-e 93355_Dendritlc Cel P 0 gml 93775-Dendritic Cells anti-C040 93774_Monocytes resting 93776 Monocytes LIPS 50 nfmil 93581 Macrophages resting 93562 Macrol hag6es LPS 100 ng/ml 93098 HUV1EC, Endtheli none 93099_HUVEC Endothelial) strvd 93100 UVEC n Entielial) IL-lb4 93779 HUVEC (Endothelial) IFN gamma 93102 HUVEC1 (ndothelial TNF alpha +IFN gamma 93101_UE (Endothelial TNF alpha IL4 9378 1 HUVEC Endothal IL-Il 93583 -Lung Microvascular Endothelial Cells non 93584_Lung Microvascular Endothelial Cells TNFa (4 ng/ml) and 1L~b (I ng/ml) 0 92662 Dermal endothelium none 0 92663_Mi,,1crosvasular Dema:edohlumTNFa (4 ngfml) and ILib (1 ngml) 0 93773_Bonhal e' tiithelium )Na4n/Iand ILb (1
C
93347 Small Airwa Epithelium none 0 93348 Small Airwa Epithelium TNFa (4 ng/ml) and ILib (1 ng/ml)- 0 92668 Coroney Arter SMIC resting0 92669 Corone Artery SMC TNFa (4 ng/ml and ILl b (I ng/mI) 0 93107 astrocytes resting 0 93108astrc es N~a 4 ng/ ml and lLifb 1 n/l 92666 1,1U-812 B-asophil) resting0 92667 KU-8l 2j (Baso phll)ps IMllionoGi0 93579 11C11 1 1Keratinocytes)-none 0 93580 CCDI106 Keratinocytes TFa and IFNg 0 93791 Liver Cirrhosis 93792 LupuslKidney 0 93577 NC-H29 0.
93358 NCI-H292 IL-4 0.
93360 NC;I-H292 IL-9
IC
93359 N14CI-H292 IL-13 0.
205 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 06.0 0.0 0.0 0.0 0.0 0.0 31.0 0.0 0.0 0.0 0.0 32.5 0.0 0.0 0.0 0. 0 0.0 11.3 0.0 0.0 3.0 To-C 1.0 0 4.0 0 4.0 i.00 0 .0 0~ .0 0~ .00 760 4 760 0 .0 0.
.0 0.
00.0 91 .0 0.
.0 0.
0 0.
0.6 0.
0 6 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.2 0.0 687P 0.0 0.0- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.6 ).0 P.0 i.0 '.0
F.O-
.0 .0 .0 .0 .0 .0 .03 .0 .0 0 03 0 93357 NCI-H292 IFN gamma 0.0 24.8 93777 HPAEC 0.0 0.0 93778 HPAEC IL-1 beta/TNA alpha 0.0 0.0 93254 Normal Human Lung Fibroblast none 0.0 0.0 93253_Normal Human Lung FibroblastTNFa (4 ng/ml) and IL-1 b (1 ng/ml) 0.0 0.0 93257 Normal Human Lung Fibroblast IL-4 0.0 0.0 93256 Normal Human Lung Fibroblast IL-9 0.0 0.0 93255 Normal Human Lung Fibroblast IL-13 0.0 0.0 93258_Normal Human Lung Fibroblast_lFN gamma 0.0 0.0 93106 Dermal FIbroblasts CCD1070_resting 0.0 0.0 93361 Dermal Fibroblasts CCD1070_TNF alpha 4 ng/ml 0.0 43.E 93105_Dermal Fibroblasts CCD1070 IL-1 beta 1 ng/ml 0.0 0.0 93772_dermal fibroblast IFN gamma 42.0 27.7 93771 dermal fibroblast_lL-4 10.7 90.1 93259 IBD Colitis 1" 0.0 0.0 93260 IBD Colitis 2 13.8 0.0 93261 IBD Crohns 0.0 46.7 735010 Colon normal 15.6 0.0 735019 Lung_none 12.9 16.8 64028-1Thymus none 69.3 100.
64030-1 Kidney_none 0.0 0.0 Taqman results in Table 18 demonstrate that clone FCTR6 is differentially expressed in clear cell Renal cell carcinoma tissues versus the normal adjacent kidney tissues and thus could have a potential role in the treatment of renal cell carcinoma.
EQUIVALENTS
Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limitir; 2 with respect to the scope of the appended claims which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims.

Claims (39)

1. An isolated polypeptide comprising an amino acid sequence selected from the IND group consisting of: a mature form of an amino acid sequence selected from the group consisting of SEQ IiD NOS:2, 4, 6,8, 13, 15, 17, 19, 21, 23, and a variant of a mature form of an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13,' 15, 17, 19, 21, 23, and 25, wherein one or more amino acid residues in said variant differs from the amino acid sequence of said mature form, provided that said variant differs in no more than 15% of the amino acid residues from the amino acid sequence of said mature form; an amino acid sequence selected from the group consisting of SEQ ED) NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25; and a variant of an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, wherein one or more amino acid residues in said variant differs from the amino acid sequence of said mature form, provided that said variant differs in no more than 15% of amino acid residues from said amino acid sequence. 2 The polypeptide of claim 1, wherein said polypeptide comprises the amino acid sequence of a naturally-occurring allelic variant of an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and
3. The polypeptide of claim 2, wherein said allelic variant. comprises an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ED) NOS: 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, and 24.
4. The polypeptide of claim 1, wherein the amino acid sequence of said variant comprises a conservative amino acid substitution. 207 An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: a mature form of an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and a variant of a mature form of an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, wherein one or more amino acid residues in said variant differs from the amino acid sequence of said mature form, provided that said variant differs in no more than 15% of the amino acid residues from the amino acid sequence of said mature form; an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and a variant of an amino acid sequence selected from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, wherein one or more amino acid residues in said variant differs from the amino acid sequence of said mature form, provided that said variant differs in no more than 15% of amino acid residues from said amino acid sequence; a nucleic acid fragment encoding at least a portion of a polypeptide comprising an amino acid sequence chosen from the group consisting of SEQ ID NOS:2, 4, 6, 8, 13, 17, 19, 21, 23, and 25, or a variant of said polypeptide, wherein one or more amino acid residues in said variant differs from the amino acid sequence of said mature form, provided that said variant differs in no more than 15% of amino acid residues from said amino acid sequence; and a nucleic acid molecule comprising the complement of or
6. The nucleic acid molecule of claim 5, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally-occurring allelic nucleic acid variant.
7. The nucleic acid molecule of claim 5, wherein the nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of a natL'ally-occurring polypeptide variant.
8. The nucleic acid molecule of claim 5, wherein the nucleic acid molecule differs by a single nuclcotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24.
9. The nucleic acid molecule of claim 5, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: a nucleotide sequence selected from the group consisting of SEQ ID NOS:1, 3, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24; a nucleotide sequence differing by one or more nucleotides from a nucleotide sequence selected fror' the group consisting of SEQ ID NOS:I, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, provided that no more than 20% of the nucleotides differ from said nucleotide sequence; a nucleic acid fragment of(a); and a nucleic .cid fragment of The nucleic acid molecule of claim 5, wherein said nucleic acid molecule hybridizes under stringent conditions to a nucleotide sequence chosen from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, and 24, or a complement of said nucleotide sequence.
11. The nucleic acid molecule of claim 5, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: a first nucleotide sequence comprising a coding sequence differing by one or more nucleotide sequences from a coding sequence encoding said amino acid sequence, provided that no more than 20% of the nucleotides in the coding sequence in said first nucleotide sequence differ from said coding sequence; an isolated second polynucleotide that is a complement of the first polynucleotide; and a nucleic acid fragment of(a) or
12. A vector comprising the nucleic acid molecule of claim 11.
13. The vector of claim 12, further comprising a promoter operably-linked to said nucleic acid molecule.
14. A cell comprising the vector of claim 12. An antibody that binds immunospecifically to the polypeptide of claim 1.
16. The antibody of claim 15, wherein said antibody is a monoclonal antibody.
17. The antibody of claim 15, wherein the antibody is a humanized antibody.
18. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: providing the sample; contacting the sample with an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to said polypeptide, thereby determining the presence or amount ofpolypeptide in said sample.
19. A method for determining the presence or amount of the nucleic acid molecule of claim 5 in a sample, the method comprising: providing the sample; contacting the sample with a probe that binds to said nucleic acid molecule; and determining the presence or amount of the probe bound to said nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in said sample. The method of claim 19 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
21. The method of claim 20 wherein the cell or tissue type is cancerous.
22. A method of identifying an agent that binds to a polypeptide of claim 1, the method comprising: contacting said polypeptide with said agent; and determining whether said age.t binds to said polypeptide.
23. The method of claim 22 wherein the agent is a cellular receptor or a downstream effector. 210
24. A method for identifying an agent that modulates the expression or activity of the polypeptide of claim 1, the method comprising: providing a cell expressing said polypeptide; O contacting the cell with said agent, and determining whether the agent modulates expression or activity of said polypeptide, whereby an alteration in expression or activity of said peptide indicates said agent modulates expression or activity of said polypeptide. A method for modulating the activity of the polypeptide of claim 1, the method N comprising contacting a cell sample expressing the polypeptide of said claim with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.
26. A method of treating or preventing a FCTRX-associated disorder, said method comprising administering to a subject in which such treatment or prevention is desired the polypeptide of claim 1 in an amount sufficient to treat or prevent said FCTRX-associated disorder in said subject.
27. The method of claim 26 wherein the disorder is a neurodegenerative disorder.
28. The method of claim 26 wherein the disorder is related to cell signal processing and metabolic pathway modulation.
29. The method of claim 26, wherein said subject is a human. A method of treating or preventing a FCTRX-associated disorder, said method comprising administering to a subject in which such treatment or prevention is desired the nucleic acid of claim 5 in an amount sufficient to treat or prevent said FCTRX-associated disorder in said subject.
31. The method of claim 30 wherein the disorder is a neurodegenerative disorder.
32. The method of claim 30 wherein the disorder is related to cell signal processing and metabolic pathway modulation.
33. The method of claim 30, wherein said subject is a human.
34. A method of treating or preventing a FCTRX-associated disorder, said method comprising administering to a subject in which such treatment or prevention is desired the antibody of claim 15 in an amount sufficient to treat or prevent said FCTRX-associated disorder in said subject The method of claim 34 wherein the disorder is selected from the group consisting of Also within the scope of the invention is the use of a Therapeutic in the manufacture of a medicament for treating or preventing disorders or syndromes including, Colorectal cancer, adenomatous polyposis coli, myelogenous leukemia, congenital ceonatal alloimmune thrombocytopenia, multiple human solid malignancies, malignant ovarian tumours particularly at the interface between epithelia and stroma, malignant brain tumors, mammary tumors, human gliomas, astrocytomas, mixed glioma/astrocytomas, renal cells carcinoma, breast adenocarcinoma, ovarian cancer, melanomas, renal cell carcinoma, clear cell and granular cell carcinomas, autocrine/paracrine stimulation of tumor cell proliferation, autocrine/paracrine stimulation of tumor cell survival and tumor cell resistance to cytotoxic therapy, paraneclhal and basement membrane invasion and motility of tumor cells thereby contributing to metastasis, tumor-mediated immunosuppression ofT-cell mediated immune effector cells and pathways resulting in tumor escape from immune surveilance, neurological disorders, neurodegenerative disorders, nerve trauma, familial myelodysplastic syndrome, Charcot-Marie-Tooth neuropathy, demyelinating Gardner syndrome, familial myelodysplastic syndrome; mental health conditions, immunological disorders, allergy and infection, asthma, bronchial asthma, Avellino type eosinophilia, lung diseases, reproductive disorders, male infertility, female reproductive system disorders, male and male reproductive diseases, hemangioma, deafness, glycoprotein Ia deficiency, desmoid disease, turcot syndrome, liver cirrhosis, hepatitis C, gastric disorders, pancreatic diseases like diabetes, Schistosoma mansoni infection, Spinocerebellar ataxia, Plasmodium falciparum parasitemia, Corneal dystrophy Groenouw type I, Comeal dystrophy lattice type I, and Reis-Bucklers comeal dystrophy.
36. The method of claim 34 wherein the disorder is related to cell signal processing and metabolic pathway modulation.
37. The method of claim 34, wherein the subject is a human.
38. A pharmaceutical composition comprising the polypeptide of claim 1 and a pharmaceutically-acceptable carrier.
39. A pharmaceutical composition comprising the nucleic acid molecule of claim and a pharmaceutically-acceptable carrier. A pharmaceutical composition comprising the antibody of claim 15 and a pharmaceutically-acceptable carrier.
41. A kit comprising in one or more containers, the pharmaceutical composition of claim 38.
42. A kit comprising in one or more containers, the pharmaceutical composition of claim 39.
43. A kit comprising in one or more containers, the pharmaceutical composition of claim
44. A method for determining the presence of or predisposition to a disease associated with altered levels of the polypeptide of claim 1 in a first mammalian subject, the method comprising: measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of said polypeptide in the sample of step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, said disease; wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to said disease. The method of claim 44 wherein the predisposition is to cancers.
46. A method for determining the presence of or predisposition to a disease associated with altered levels of the nucleic acid molecule of claim 5 in a first mammalian subject, the method comprising: measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of said nucleic acid in the sample of step to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
47. The method of claim 46 wherein the predisposition is to cancers.
48. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising an amino acid sequence of at least one of SEQ ID NOS:2, 4, 6, 8, 13, 15, 17, 19, 21, 23, and 25, or a biologically active fragment thereof.
49. A method of treating a pathological state in a mammal, the method comprising administering to the mammal the antibody of claim 15 in an amount sufficient to alleviate the pathological state. DATED: 26 June 2007 4 214
AU2007202935A 2000-03-03 2007-06-26 Proteins Named FCTRX and Nucleic Acids Encoding Same Abandoned AU2007202935A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US60186718 2000-03-03
US60186592 2000-03-03
US60187294 2000-03-06
US60187293 2000-03-06
US60190400 2000-03-17
US60196018 2000-04-07
US60259548 2001-01-03
AU2001247294 2001-03-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001247294 Division 2000-03-03 2001-03-05

Publications (1)

Publication Number Publication Date
AU2007202935A1 true AU2007202935A1 (en) 2007-07-19

Family

ID=38317734

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007202935A Abandoned AU2007202935A1 (en) 2000-03-03 2007-06-26 Proteins Named FCTRX and Nucleic Acids Encoding Same

Country Status (1)

Country Link
AU (1) AU2007202935A1 (en)

Similar Documents

Publication Publication Date Title
WO2002006339A2 (en) Proteins and nucleic acids encoding same
WO2003003984A2 (en) Novel proteins and nucleic acids encoding same
CA2394730A1 (en) Novex polypeptides, nucleic acids encoding same and their diagnostic and therapeutic use
US20030087816A1 (en) Novel proteins and nucleic acids encoding same
US20030204052A1 (en) Novel proteins and nucleic acids encoding same and antibodies directed against these proteins
US20020192748A1 (en) Novel polynucleotides and polypeptides encoded thereby
EP1326971A2 (en) Proteins and nucleic acids encoding same
US20020068279A1 (en) Novel Proteins and nucleic acids encoding the same
WO2001074851A2 (en) Novel proteins and nucleic acids encoding same
US20030139358A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
WO2001059113A2 (en) G-protein coupled receptor proteins and nucleic acids encoding same
US20030082174A1 (en) Novel proteins and nucleic acids encoding same
US20030212255A1 (en) Novel proteins and nucleic acids encoding same
US20030216545A1 (en) Novel proteins and nucleic acids encoding same
AU2007202935A1 (en) Proteins Named FCTRX and Nucleic Acids Encoding Same
US20030082757A1 (en) Novel proteins and nucleic acids encoding same
US20030207394A1 (en) Novel proteins and nucleic acids encoding same
US20030068618A1 (en) Novel proteins and nucleic acids encoding same
US20030211985A1 (en) Novel proteins and nucleic acids encoding same
US20030216304A1 (en) Novel proteins and nucleic acids encoding same
US20020123612A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
US20030165858A1 (en) Novel GPCR-like proteins and nucleic acids encoding same
WO2001088135A2 (en) G-protein coupled receptor proteins and nucleic acids encoding same
US20030166845A1 (en) Novel proteins and nucleic acids encoding same
US20030211485A1 (en) Novel proteins and nucleic acids encoding same

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period