AU2007200119A1 - An oven for cooking food - Google Patents

An oven for cooking food Download PDF

Info

Publication number
AU2007200119A1
AU2007200119A1 AU2007200119A AU2007200119A AU2007200119A1 AU 2007200119 A1 AU2007200119 A1 AU 2007200119A1 AU 2007200119 A AU2007200119 A AU 2007200119A AU 2007200119 A AU2007200119 A AU 2007200119A AU 2007200119 A1 AU2007200119 A1 AU 2007200119A1
Authority
AU
Australia
Prior art keywords
enclosure
oven
water
fan
oven according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2007200119A
Inventor
Robert Fernand Bujeau
Michel Georges Foray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Premark FEG LLC
Original Assignee
Premark FEG LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003302713A external-priority patent/AU2003302713B2/en
Application filed by Premark FEG LLC filed Critical Premark FEG LLC
Priority to AU2007200119A priority Critical patent/AU2007200119A1/en
Publication of AU2007200119A1 publication Critical patent/AU2007200119A1/en
Abandoned legal-status Critical Current

Links

Description

AUSTRALIA
Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Premark FEG L.L.C.
Actual Inventor(s): Robert Fernand Bujeau, Michel Georges Foray Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: AN OVEN FOR COOKING FOOD Our Ref: 791475 POFCode: 1431/291215 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1- 1
A
AN OVEN FOR COOKING FOOD The present application is a divisional application from Australian patent application number 2003302713, the entire disclosure of which is incorporated herein by reference.
The present invention relates to ovens for cooking food.
The below discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
The present invention relates generally to an oven including: an enclosure for receiving the food to be heated and for containing a cooking atmosphere, the enclosure comprising two horizontal walls forming respectively a bottom wall and a top wall, interconnected by at least two vertical side walls, the enclosure being closed by at least one door that is likewise vertical, and a heater device for heating the cooking atmosphere.
One aim of the invention is to improve this kind of oven.
According to the present invention, there is provided an oven for cooking food, including: an enclosure for receiving the food to be heated, this enclosure having two horizontal walls, one forming a bottom wall and the other forming a top wall, connected by at least two vertical side walls, this enclosure being closed by at least one door, also vertical and including a window to give the possibility of seeing into the enclosure, and means generating an acoustic signal to indicate the end of a heating 2 process, wherein the oven further includes illuminating means designed to produce, within the enclosure, light characteristic of the end of the heating process when said heating process is finished.
Ovens are known to the applicant which can be used for instance as institutional food service ovens. In institutional food service kitchens, it is often that several ovens are working at almost the same time. Such ovens are often designed in order to indicate, by means of a sound, the completion of a preprogrammed cooking. The sound is an acoustic signal which can be emitted at the end of the heating process as well as at the end at a predetermined time period or when a predetermined temperature or humidity rate is reached, etc.
But, when several prior art ovens are working in a kitchen, it may have difficult to determine from which one the sound originates.
That drawback can be mitigated by the arrangement described above.
Indeed, thanks to these dispositions, an user can be warned of the end of the heating process by an acoustic signal. Consequently, he is free from the task consisting in watching over the cooking process. Nevertheless, when the completion of the cooking process for which he wants to be aware occurs, the acoustic signal can draw attention and the light which is distinctive of the oven in which this end just occurs, provide him visual signal, visible through a window in the oven door, in order to help him in spotting easily this oven.
Recourse may optionally also be had to one or more of the following dispositions: the characteristic light is a coloured light; the intensity of the light varies back and forth when the said heating process is over; the illuminating means are mounted on the door; the door has an insulating space at least partially thermally insulated from the enclosure and in which the illuminating means are mounted in the insulating space; the insulating space includes two glazed panels, an inner panel and an outer panel, the outer panel having a transparent region facing a transparent region of the inner panel, to form the said window, and these two panels being housed in a surround in which the illuminating means are mounted; the back and forth variation in the intensity of the light consists in a flashing; the oven includes slideways for arranging trays superposed heightwise in the oven and in which the illuminating means are spread out heightwise; and the inner panel forms, facing the enclosure, a smooth wall.
An alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving the food to be heated and for containing a cooking atmosphere, the enclosure including two horizontal walls forming respectively a bottom wall and a top wall, interconnected by at least two vertical side walls, the enclosure being closed by at least one door that is likewise vertical, and communicating with the outside via an exhaust opening for exhausting gas inside the enclosure and at a pressure above atmospheric pressure; and a heater device for heating the cooking atmosphere; the oven including: a regulation chamber, filled at least in part with a liquid of volume adapted to vary between a high level and a low level, the regulation chamber communicating with the enclosure via an air inlet; and an admission duct which extends between a high end and a low end, the high end opening out outside the regulation chamber and the enclosure, and the low end being closed by the liquid when the level of the liquid corresponds substantially to its high level.
Ovens are known to the applicant in which pressure inside the enclosure can rise, for example when vapour is produced or when the door is closed or when the heater device is a gas burner (production of combustion gasses or extra pressure on lighting), and this rise in pressure can be of greater or lesser magnitude and can exist for a greater or lesser length of time. For obvious safety reasons, such pressure rises need to be governed, kept down, and even eliminated. In such ovens, this is generally done by means of an opening provided with a mechanical flap.
That type of flap needs regular maintenance since otherwise it runs the risk of no longer operating properly, particularly when it becomes clogged. Its safety function is then no longer performed in a manner that is effective and reliable.
That drawback can be mitigated by the arrangement described above.
Indeed, the oven in the arrangement described above can enable pressure rises in the enclosure to be governed: in a manner that is not mechanical, thus making it possible to overcome constraints associated with the maintenance required by prior art ovens; in a manner which is adjustable since it is possible to stop gas coming from the enclosure or to allow it to pass to a greater or lesser extent by modifying the level of the liquid; and in a manner that is reliable since with a liquid there is no danger of unwanted closure or mechanical blocking, and even if the bottom end of the admission duct dips below the high level of the water, should the pressure rise excessively, then the gas can push back the water, "bubble through", and escape via the admission duct.
Recourse may optionally also be had to one or more of the following dispositions: the oven includes an evacuation chamber filled at least in part with a liquid of volume that is adapted to vary between a high level and a low level, said evacuation chamber communicating with the regulation chamber; the oven includes an evacuation tube extending between the exhaust opening and a high end opening out into the evacuation chamber above the high and low liquid levels; the oven includes a chimney extending between a first end communicating with the outside of the evacuation chamber and a second end coming over the high level of the liquid, said second end allowing gas under positive pressure to escape from the enclosure via the evacuation tube; the oven includes a regulator itself including the regulation chamber and the evacuation chamber, these two chambers constituting volumes that are separated from each other at least in part and that communicate with each other via a narrow passage adapted to allow the liquid to flow between these two chambers; the oven includes, in the evacuation chamber, a first temperature probe for measuring the temperature of the gas coming from the exhaust opening, and in the regulation chamber, a second temperature probe for measuring the temperature of the gas coming into the enclosure via the air inlet; the oven includes, in the evacuation chamber, a first temperature probe for measuring the temperature of the gas coming from the exhaust opening, and a second temperature probe placed below the low level of the liquid in the evacuation chamber; the oven includes calculation means for determining the relative humidity in the oven as a function of the temperatures measured by the first and second probes; the oven includes a fan disposed inside the enclosure to stir the cooking atmosphere heated by the heater device, said fan creating a suction zone inside the enclosure, the air inlet being situated substantially in the suction zone of the fan; the oven includes vapour-producing means suitable for delivering water vapour into the enclosure; the exhaust opening for exhausting gas under positive pressure inside the enclosure is situated beneath the heater device; the exhaust opening opens out substantially in the lowest point of the bottom wall; and the exhaust opening communicates with a siphon adapted to evacuate liquids and condensates from the enclosure while preventing cold air from rising into the enclosure.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving the food to be heated and for containing a cooking atmosphere, this enclosure including two horizontal walls, respectively forming a bottom wall and a top wall, interconnected by at least two vertical side walls, this enclosure being closed by at least one door which is also vertical, and communicating with the outside by means of an evacuation aperture for gases under positive pressure in the enclosure, wherein the oven further includes a first temperature probe to measure the temperature of the gases issuing from the evacuation aperture.
Ovens are known to the applicant that can include means for the production of steam arranged to supply steam in the enclosure. These ovens have the drawback to not allow a reliable control of the humidity in the enclosure. Particularly, these ovens usually do not take into account the humidity produced by the food itself.
The drawback can be mitigated by the arrangement described above.
Indeed, thanks to these dispositions, it is possible to calculate the humidity rate in the enclosure from the temperature measured with the first probe and from prerecorded graphs. The cooking is then adjusted to the humidity rate calculated in this way.
Recourse may optionally also be had to one or more of the following 7 dispositions: the oven includes calculating means of calculating the humidity rates on the oven as a function of the temperature measured at the first probe; the oven includes a second temperature probe to measure a reference temperature; the oven, wherein the humidity rates in the oven, is calculated by the calculating means as a function of the temperature measured at the first and second probes; the oven includes a heater for heating the cooking atmosphere; the oven includes a fan, located in the interior of the enclosure, to stir the cooking atmosphere heated by the heater, this fan creating an area of low pressure in the enclosure, and the oven includes an air inlet opening in the enclosure, approximately in said low-pressure area of the fan; thanks to this disposition, it is possible to allow air to enter in the enclosure in order to dry the atmosphere in it, in particular at the end of the cooking process; it is possible, for instance, to make food more crunchy; thanks to this disposition, it is also possible to let air go into the enclosure to cool down more quickly the cooking atmosphere, if it appears necessary in a cooking cycle; this disposition also allows to stir with the fan the cool air entering into the enclosure, as soon as it flows through the air inlet; this is an advantage with regard to ovens in which the cool air enters from the top or the bottom of the enclosure and respectively cool down the top or bottom trays; thanks to this arrangement, it is then possible to reach in the enclosure a temperature more homogeneous; the oven includes a regulation chamber, at least partially filled with a liquid of which the volume is adjusted so as to vary between a high level and a low level, this regulation chamber communicating with the air inlet; the oven includes an admission duct which extends between a high end and a low end, the high end opening outside the regulation chamber and the enclosure, and the low end being covered by the liquid when the level of the liquid corresponds approximately to its high level; the oven includes an evacuation chamber, at least partially filled with a liquid of volume adapted to vary between the high level and the low level, this evacuation chamber communicating with the regulation chamber; the oven includes a regulation box, itself including the regulation chamber and the evacuation chamber, these two chambers constituting volumes which are at least partially separated from one another, communicating between one another by means of a passage of limited size, designed such as to allow the liquid to circulate between these chambers; the oven includes an evacuation tube extending between the evacuation aperture and a high end, opening into the evacuation chamber above the high and low levels of the liquid; the oven includes a chimney extending between a first end communicating with the outside of the evacuation chamber and a second end entering above the high level of the liquid, this second end allowing the gases under overpressure in the enclosure to escape via the evacuation tube; the second temperature probe is located beneath the low level of the liquid in the regulation box; the first temperature probe is located above the high level of the liquid in the evacuation chamber; the oven includes means for the production of steam, arranged to supply steam in the enclosure.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving the food to be heated and containing a cooking atmosphere, this enclosure including two horizontal walls, respectively forming a bottom wall and a top wall connected by at least two vertical side walls, this enclosure being closed by at least one door which is also vertical, and communicating with the outside by means of an evacuation aperture for gases under positive pressure in the enclosure, and a heater device for heating the cooking atmosphere; wherein the evacuation aperture for gases under positive pressure in the enclosure is located beneath the heater device.
Ovens are known to the applicant which can include an evacuation aperture to control the evacuation of gases under positive pressure in the enclosure. These gases are for instance constituted of humidity from the enclosure produced by the cooked food and/or by vapour producing means and/or by the combustion gases, when the heater device is a gas burner.
The above described arrangement can improve the homogeneity of the heat distribution in this kind of oven.
Indeed, with this disposition it is possible to limit, and even to cancel, the flue action from the chimney with which the evacuation aperture communicates, while allowing the gases even under a small positive pressure in the enclosure to escape freely from the enclosure, without using a valve, a vent or any other mechanical device, which can be blocked, or even without siphon. The temperature difference between the top and the bottom of the oven is reduced and the heat distribution in the enclosure is more homogeneous.
Recourse may optionally also be had to one or more of the following dispositions: the evacuation aperture opens at the level of the point which is approximately the lowest point of the bottom wall; the evacuation aperture communicates with a siphon arranged to evacuate liquids and condensates from the enclosure while avoiding cool air upwelling in the enclosure; the oven includes means for the production of steam, designed to provide steam in the enclosure; the oven includes a fan, located in the interior of the enclosure, to stir the cooking atmosphere heated by the heater device, this fan creating an area of low pressure in the enclosure; the oven includes an air inlet in the enclosure, located approximately in said area of low pressure of the fan; the oven includes a regulation chamber, filled at least in part by liquid of which the volume is adjusted so as to vary between a high level and a low level, this regulation chamber communicating with the air inlet; the oven includes an admission duct which extends between a high end and a low end, the high end opening outside the regulation chamber and the enclosure, and the low end being covered by the liquid when the level of the liquid corresponds approximate to its high level; the oven includes an evacuation chamber, filled at least in part by a liquid of which the volume is adjusted so as to vary between the high level and the low level, this evacuation chamber communicating with the regulation chamber; the oven includes the regulation chamber and the evacuation chamber, these two chambers constituting volumes which are at least partially separated from one another, communicating between one another by means of a narrow passage, adapted to allow the liquid to flow between these chambers; the oven includes an evacuation tube extending between the evacuation aperture and a high end, opening into the evacuation chamber above the high level of the liquid; the oven includes a chimney extending between a first end communicating with the outside of the evacuation chamber and a second end coming over the high level of the liquid, this second end allowing the gases under positive pressure in the enclosure to escape via the evacuation tube; the oven includes a first temperature probe to measure the temperature of the gases issuing from the evacuation aperture, and a second temperature probe located beneath the low level of the liquid in the evacuation chamber; the oven includes a first temperature probe to measure the temperature of the gases issuing from the evacuation aperture, and a second temperature probe to measure the temperature of the gases entering the via the enclosure air inlet; the oven includes calculating means of calculating the humidity rates in the oven as a function of the temperatures measured at the first and second probes.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including an enclosure for receiving and heating the food in a moist cooking atmosphere, wherein the oven further includes: 11 a water column, containing a predetermined volume of water and maintained constant between a maximum level and a low outlet through which the water flows in the column, and a diffuser designed to receive the water flowing from the low outlet and to vaporize at least part of this water.
Ovens are known to the applicant which can include means for the production of steam, in which water is poured on a heating element. It is usually wished to have a constant production of steam. The quantity of produced steam is essentially determined by the water flow rate reaching the heating element.
But, flow rate regulators used for this function are not always reliable and need to be adjusted.
That drawback can be mitigated by the arrangement described above.
Indeed, thanks to these dispositions, the water flow rate can be determined at the low outlet of the column by the water height in the column between the maximum level, corresponding for example to an overflow, and the low outlet. This water height can easily be maintained constant, without any particular adjustment. Further, when the pressure in the enclosure increases, for instance because of a steam production larger than its suppression, the water flow rate automatically decreases, without any feed back control means of the electronic type. This arrangement can provide a simple and reliable means for a constant production of steam.
Recourse may optionally also be had to one or more of the following dispositions: the maximum level corresponds to an overflow outlet; the water column is located outside the enclosure and the diffuser is located in the enclosure; the diffuser is an electric heating device; it is the case in particular when, for instance, the water is vaporized by a heating resistor; the diffuser is heated by the heat produced by a gas burner; the diffuser rotates about a rotation axis of a fan designed to stir, inside the enclosure, the steam produced by the diffuser, this fan creating an area of low pressure in the enclosure; the diffuser is a disk rotating about the rotation axis; the oven includes an air inlet in the enclosure, located approximately in the area of low pressure of the fan; the oven includes a regulation chamber, communicating with the air inlet of the enclosure, filled at least in part with water deriving from an overflow of the column, the volume of which is adjusted so as to vary between a high level and a low level; the oven includes an admission duct which extends between a high end and a low end, the high end opening outside the regulation chamber and the enclosure, and the low end being covered by water, when the level of the water corresponds approximately to its high level; the oven includes an evacuation chamber, filled at least in part with water deriving from an overflow of the column, the volume of which is adjusted so as to vary between the high level and the low level, this evacuation chamber communicating with the regulation chamber; the oven includes an evacuation tube extending between the enclosure, with which it communicates, and a high end opening into the evacuation chamber above the high level of the water; the oven includes a chimney extending between a first end communicating with the outside of the evacuation chamber and a second end entering above the high level of the water, this second end allowing the gas under overpressure in the enclosure to escape via the evacuation tube; the oven includes a regulation box, itself including the regulation chamber and the evacuation chamber, these two chambers constituting volumes which are at least partially separated from one another, communicating between one another by means of a narrow passage, designed such as to allow the liquid to circulate between these chambers; the oven includes, between the maximum level of water in the column and the low outlet, a cooling circuit extending to the level of at least a part of the roof, in such a way as to cool the latter at least partially, and to favour the condensation above the food of at least a part of the water vapour contained in the moist atmosphere of the enclosure; and the maximum level and the low outlet feature a difference in height corresponding to a water pressure at the low outlet of between 5 and 30 mbar.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving and heating the food in a moist cooking atmosphere, this enclosure including a top wall arranged above the food which is to be heated, a heater device arranged in the interior of the enclosure, and a fan, likewise arranged inside the enclosure, this fan including at least one rotating blade, rotating about a rotation axis on a circular trajectory in order to stir the cooking atmosphere heated by the heater device, wherein the oven further includes: a diffuser disk, located in the enclosure, rotating on the rotation axis integrally with the fan, and a water supply, conducting water from the outside of the enclosure to the vicinity of the diffuser disk, in such a way that the water falls onto the diffuser disk and is at least in part evaporated thanks to the heat produced by the heater device.
Ovens are known to the applicant which can be provided with a boiler as a steam generator, this boiler being usually situated outside the enclosure. The steam arrives in the enclosure by a hole. The fan distributes the steam in the enclosure.
This kind of oven is quite expensive. That drawback can be mitigated by the arrangement described above. Indeed, this disposition is simple and does not require an additional boiler.
Recourse may optionally also be had to one or more of the following dispositions: the diffuser disk is located in the central space located inside the circular trajectory; the heater is arranged opposite the diffuser disk and heats it, in order to Cevaporate at least a part of the water which is falling onto it; C the heater is a gas burner; the water supply includes a water column, containing a predetermined volume of water which is maintained constant between a maximum level and a low outlet through which the water flows onto the diffuser disk; and the diffuser disk rotates at a speed of rotation adjusted such that the water falling onto it is at least in part projected onto the roof.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving the food to be heated, this enclosure including two horizontal walls, respectively forming a bottom wall and a top wall, connected by at least two vertical side walls, this enclosure being closed by at least one door which is also vertical, and a fan arranged in the interior of the enclosure including at least one rotating blade, rotating about a rotation axis on a circular trajectory, wherein the oven further includes: a feed system for detergent, conducting the detergent from outside the enclosure to the vicinity of the fan in such a way that some detergent falls onto the fan and is projected by the latter onto each of the vertical side walls, the top wall, the bottom wall and the door of the enclosure.
Ovens are known to the applicant which can include a feed system for detergent mounted on one of the vertical or horizontal walls of the enclosure.
Usually, this feed system is provided on the top wall. But, this type of disposition does not allow projecting the detergent on all the wall surface of the enclosure.
That drawback can be mitigated by the arrangement described above.
Indeed, thanks to this disposition of the invention, it is possible to project detergent on all the wall surface of the enclosure because the fan atomizes the detergent and the atomized detergent is drawn by the air flow everywhere in the enclosure.
Recourse may optionally also be had to one or more of the following dispositions: the oven includes a diffuser rotating with the fan about the rotation axis, the feed system for the detergent conducting detergent to the diffuser, in such a way that the diffuser, rotating, projects detergent in the direction of the walls of the enclosure; the diffuser is a disk of which the axis of circular symmetry coincides with the rotation axis of the fan; the feed system for the detergent conducts detergent into a diffuser consisting of a cylinder having a cylindrical wall with a cylindrical axis of symmetry coinciding with the rotation axis of the fan, this wall being pierced by orifices designed to allow detergent to pass radially to the outside of the cylinder, to the walls of the enclosure; the feed system for the detergent includes a receptacle designed for receiving detergent in such a way that some detergent is diluted with a liquid supplied above the receptacle and liquid in which the detergent is diluted flows downstream of the receptacle in the feed system for the detergent.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving and heating the food in a moist cooking atmosphere, this enclosure including a top wall arranged above the food to be 16 heated, and means to generate steam in the interior of the enclosure, wherein the oven further includes means of cooling the top wall.
Ovens are known to the applicant which can include a boiler for production of steam, this boiler being usually placed outside of the enclosure.
The steam arises in the enclosure through a hole. The oven draws the steam in the enclosure. But it is frequently observed that even in that case, food such sauces or creams, for instance, shows at the end of the cooking a dried surface or a skin the appearance of which is not suitable.
That drawback can be mitigated by the arrangement described above.
Indeed, thanks to this disposition, the steam produced by the means to generate steam condenses on the top wall and droplets fall in the dishes or greases lying under the top wall.
This disposition can allow enough to humidify the surface of the food in order to mitigate the above mentioned drawbacks.
Recourse may optionally also be had to one or more of the following dispositions: the means of cooling consist of a circuit in which a liquid circulates, this circuit being in thermal contact with the top wall; the liquid is water, which flows, downstream of the circuit, through a low outlet onto a diffuser intended to produce vapour in the enclosure; a water column located upstream of the circuit and containing a predetermined volume of water maintained constant between the low outlet and a maximum level; a water column located downstream of the circuit and containing a predetermined volume of water maintained constant between the low outlet and a maximum level.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including: an enclosure for receiving and heating the food in a cooking atmosphere, this enclosure including two horizontal walls forming, respectively, a bottom wall and a top wall that are connected by at least two lateral vertical walls and this enclosure being closed by at least one door; a fan, arranged inside the enclosure on one of the walls of this enclosure, this fan including at least one blade rotating about a rotation axis on a circular trajectory in order to stir the cooking atmosphere; and an air inlet opening out substantially behind the fan, on the wall of the enclosure on which the fan is mounted, wherein each blade is connected to the rotation axis in a suitable manner so that the air from the air inlet penetrates directly inside the circular trajectory of each blade before being expelled into the remainder of the volume of the enclosure.
Ovens are known to the applicant, for example as disclosed in EP-A-733 862 European Patent document, which can include an enclosure, a fan arranged inside the enclosure and an air inlet opening out substantially behind the fan. But, in these ovens, the temperature distribution in the enclosure is not optimised.
That drawback can be mitigated by the arrangement described above.
Indeed, thanks to its dispositions, the air from the outside of the enclosure come in the enclosure, from, behind the fan, to be directly and immediately stirred by the fan. A more homogeneous temperature distribution can be obtained in the enclosure.
Recourse may optionally also be had to one or more of defined dispositions: the blades are connected to the rotation axis by a disk that includes at least one hole, located on a circular trajectory, the radius of which is substantially equal to the distance separating, on the wall of the enclosure on which the fan is mounted, the rotation axis and the air inlet; the openings corresponding respectively to the air inlet and to each hole 18 are substantially circular and have identical diameters; the holes have a diameter substantially equal to 30 mm; the blades include planar rectangular lamellae extending in a plane substantially perpendicular to the disk and passing through the rotation axis, and each lamella is connected to the disk by a first edge and by a second edge opposite said first edge to a circular ring centred on the rotation axis and extending in a plane parallel to the disk; and the disk includes six holes regularly distributed angularly about the rotation axis.
Another alternative arrangement considered by the Applicant includes an oven for cooking food, including an enclosure for receiving and heating food, containing a cooking atmosphere and this oven including: a fan to stir the cooking atmosphere, an electric motor for driving the fan in rotation alternatively clockwise and anti-clockwise, this motor incorporating a main winding, and first switching means adapted for reversing the direction of rotation of the electric motor, wherein the main winding is supplied by a source of electrical alternating current with a determined period, and the motor further includes second switching means adapted to disconnect the main winding from the source of alternating current, during a braking phase, in the course of at least part of at least one of the two alternations of each period of the electrical alternating current.
EP A 1 107 650 discloses an example of an oven, in which the electric motor is supplied with D.C. current and the first switching means make it possible to reverse the direction of current into the motor. By reversing the direction of current feeding the motor, the direction of rotation of the turbine is reversed. With a view of distributing the heat in the best possible way in the ovens for cooking food, it is rather frequently a common practice to reverse the direction of rotation of the fan (every other or fourth minute or so). While the direction is being reversed, the heating process must be interrupted in order to 19 prevent the heat from building up at the top of the enclosure. The fact of reversing this rotation will slow down the cooking process and it will be desirable to change the direction of rotation of the fan as quickly as possible.
However, in this type of oven, the reversal of the direction of rotation is thwarted by the inertia of the fan and the low torque of the motors mounted in these ovens. For lack of a braking system, it takes the whole unit, i.e including the motor and the fan, a long time to stop and start again in the opposite direction. Although motors equipped with electromagnetic brakes are already available on the market, they are costly and require a high level of maintenance owing to the wear of the brake shoes.
That drawback can be mitigated by an arrangement of an oven wherein: the main winding is supplied with a source of electrical alternating current having a determined period, and it further includes second switching means adapted to disconnect the main winding from the alternating current source, during a braking phase, in the course of at least part of at least one of the two alternations of each period of the electrical alternating current.
Thanks to these measures, the main winding is supplied with a rectified current that will slow down the motor. The motor can then be stopped more quickly prior to the rotation reversal thereof.
Recourse may optionally be had to one or more of the following dispositions: the second switching means are adapted to disconnect the main winding from the source of alternating current, during the braking phase, in the course of the positive alternations or of the negative alternations of the electrical alternating current; the second switching means are adapted to disconnect the main winding from the source of alternating current, during the braking phase, in the course of the negative alternations and part of the positive alternations of the electrical alternating current or in the course of the positive alternations and part of the negative alternations of the electrical alternating current; in this way, the power required for the motor braking can thus be graduated; the second switching means are adapted to connect the main winding to the source of alternating current, during a driving phase, in the course of the positive alternations and at least part of the negative alternations of the electrical alternating current or in the course of the negative alternations and at least part of the positive alternations of the electrical alternating current; the speed of the motor can thus possibly be graduated during its renewed start-up in the reversed direction; the motor incorporates a secondary winding and the first switching means are adapted to reverse the direction of the current respectively in the main and secondary windings before the braking phase; thus, a higher braking efficiency and therefore a shorter braking time are attained; and the second switching means are adapted to disconnect the main winding from the source of alternating current, during a rest time immediately following the braking phase; this measure makes it possible to prevent the motor from restarting, after a stoppage, into the same direction of rotation as before the braking phase.
Another alternative arrangement considered by the Applicant includes a process for controlling the cooking of food in an oven, wherein: the cooking atmosphere inside the oven is stirred by means of a fan driven by an electric motor with a main winding, with the help of first switching means, the direction of rotation of the electrical motor is reversed in order to drive the fan in rotation alternatively both in the clockwise and in the anti-clockwise direction, the main winding is supplied with a source of alternating current having a pre-defined period, and during a braking phase, the main winding is disconnected from the source of alternating current, in the course of part of at least one of the two 21 alternations of each period of the electrical alternating current.
Recourse may optionally be had to one or more of the following dispositions: during the braking phase, the main winding is disconnected from the source of alternating current, in the course of the positive alternations or of the negative alternations of the electrical alternating current; N during the braking phase, the main winding is disconnected to the source 0 of alternating current, in the course of the negative alternations and part of the N 10 positive alternations of the electrical alternating current or in the course of the positive alternations and part of the negative alternations of the electrical alternating current; during a driving phase, the main winding is connected to the source of alternating current, in the course of the positive alternations and at least part of the negative alternations of the electrical alternating current or in the course of the negative alternations and at least part of the positive alternations of the electrical alternating current; the motor incorporates a secondary winding and the direction of the current is reversed respectively in the main winding and in a secondary winding prior to the braking phase; during a rest phase immediately following the braking phase, the main winding is disconnected from the source of alternating current.
The invention will also be better understood from the accompanying drawings, in which: -Figure 1 is a diagrammatic perspective view of a first embodiment of the oven of the invention; -Figure 2 is a diagram of the Figure 1 oven in which, specifically, the enclosure of the oven is shown in section on a vertical plane perpendicular to its back wall, intercepting the back wall and the heater device substantially in the middle; -Figure 3 is a perspective view of the fan of the oven shown in Figures 1 and 2; -Figure 4 is a section of the fan shown in Figure 3; -Figure 5 is a perspective view of the circuit for cooling the top wall of the oven shown in Figures 1 and 2 Figure 6 is a diagram analogous to Figure 2 showing a variant of the regulator of the oven shown in Figure 2 Figure 7 is a diagram analogous to Figure 5 showing in perspective a variant of the cooling circuit for the top wall of the oven shown in Figures 2 and Figure 8 is a diagrammatic view analogous to Figure 2 showing a second arrangement of an oven; Figure 9 is a diagrammatic view analogous to those of Figures 2 and 8, showing a third arrangement of an oven; Figure 10 is a diagrammatic view similar to those of Figures 2, 8, and 9, showing a fourth arrangement of an oven; Figure 11 is a diagrammatic view, analogous to Figure 2, a part of a variant of the oven of the preceding Figures, showing a receptacle for receiving a detergent product; Figure 12 is a diagrammatic view, shown from the front, of the detergent receptacle of Figure 11; Figure 13 is a schematic view in perspective of a variant of an oven; Figure 14 is a schematic view partially in section of the oven door shown in figure 13; Figure 15 illustrates, in a view alike Figure 14, an alternative of the oven shown in figures 13 and 14; Figure 16 shows schematically in section, in a vertical plane normal to the bottom wall and intersecting this bottom wall substantially in the middle, an arrangement of an oven; Figure 17 shows schematically an electrical power circuit of the motors driving the oven fans as shown on figure 16; Figure 18 shows schematically a period of the current intended for feeding the primary circuits of the motors driving the oven fans shown on figure 16, and Figure 19 shows a cycle of operation of the first and second switching means suited for controlling the supply of the motors driving the oven fans as shown on figure 16.
In the various figures, elements that are identical or similar are designated by the same references.
In the illustration shown in Figure 1, a first arrangement of the oven 1 comprises an enclosure 2 (or muffle) contained in a casing 3. The casing 3 carries means 4 for regulating the temperature in the enclosure 2, and has a door 5 allowing food that is to be heated and/or cooked to be inserted into the enclosure 2.
The enclosure 2 is substantially in the form of a rectangular parallelepiped having a front face 6 that is opened or closed by the door 5, a back wall 7 opposite from the front face 6, two vertical side walls 8 between the front face 6 and the back wall 7, together with a bottom 9 and a top 10 forming two horizontal walls. All of these walls are made of sheet metal.
24 As shown in Figure 2, the enclosure 2 also includes a heater device 11, a fan 12, a protective grid 13, and slideways 14.
The heater device 11 is placed inside the enclosure 2 facing the fan 12.
In this arrangement, it is constituted by a burner for burning gas. It is fed with gas for burning via a duct 15. The burner 11 is lit by an electrode 16 powered electronically by a wire 17 penetrating into the burner 11 via the duct 15. The burner 11 also has a flame monitor device 16a, e.g. operating by ionization, connected to a monitoring unit (not shown) by a wire 17a. The wires 17 and 17a leave the duct 15 via cable glands.
The gas for burning is advantageously a mixture of air and gas. This mixture is mixed by a mixer 18. Air is fed via a blower 19. Thus, the air/gas mixture reaches the burner 11 at a pressure slightly above atmospheric. The supply of gas for burning is governed by electronic means (not shown). In the event of the burner 11 being stopped, for example when a reference temperature is reached, a small positive pressure is maintained by the blower 19 so as to prevent any vapour rising into the mixer 18.
The fan 12 is mounted substantially in the center of the back wall 7. It is constituted by a disk 20 centered on an axis of rotation 21.
As shown Figure 3, at the periphery of this disk 20, the fan 12 has a plurality of blades 22 that are uniformly distributed angularly around the axis of rotation 21. By way of example, these blades 22 are constituted by plane rectangular plates each extending in a plane substantially perpendicular to the disk 20 and containing the axis of the rotation 21. This symmetry about the axis of rotation 21 enables the blades to be rotated clockwise or counterclockwise in equivalent manner.
Each blade 22 is bound, on one hand, to the disk 20 by a first edge and, on the other hand, to a crown 71 by a second edge 72. The crown 71 is circular in shape, with an external diameter approximately equal to the one of the disk 20, and is centred on the axis of rotation 21. The crown 71 extends in a plane parallel to the disk As also shown in Figure 4, the disk 20 is bored with holes 73. These holes 73 form approximately circular openings, regularly angularly distributed around the axis of rotation 21. According to a first arrangement of the fan 12, it has a 350 mm diameter; it comprises twelve blades 22 and six holes of approximately 30 mm diameter distributed on a circle of 220 mm diameter. This diameter corresponds approximately to the distance, on the back wall 7, between the centre of the axis of rotation 21 and the air inlet 44. The blades 22 have, for instance, a dimension of 30 mm in the direction parallel to the. edges and 72 and a dimension of 80 mm in the direction perpendicular to the edges and 72. The holes 73 are approximately on the bisector of the angular sector delimited by two successive blades 22. As an example, for an air inlet of 40 mm diameter, the holes 73 have a diameter approximately of 30 mm.
According to another arrangement, the fan 12 differs from the one above mentioned, by the fact that the disk 20 has a 270 mm diameter.
The fan 12 is rotated about the axis of rotation 21 by a motor 24, e. g. an electric motor. The direction of rotation of the fan 12 is advantageously reversed periodically. The fan 12 serves to distribute heat throughout the enclosure 2.
When they are rotating, the blades 22 follow a circular path centred on the axis of rotation 21 and defining a central space 23.
The burner 11 is placed facing the central space 23. A portion of the burner 11 optionally penetrates into the central space 23.
The protective grid 13 extends in a vertical plane facing the disk 20, in front of the burner 11 and the fan 12 as seen from the cooking space 25 for receiving the food to be heated and situated between said burner 11 and the door 5. The protective grid 13 is optional.
The slideways 14, comprising ten pairs, extend substantially horizontally on the side walls 8. Each side wall 8 carries one of the slideways 14 in each pair. These slideways 14 serve to hold trays 26 on which the food for heating and/or cooking is disposed. Advantageously, the bottoms of the trays 26 have perforations 27.
The enclosure 2 communicates with the outside via an exhaust opening 28. This exhaust opening 28 serves to allow the cooking atmosphere contained in the enclosure 2 to escape whenever said atmosphere is at a pressure that is higher than the pressure outside the enclosure 2. This exhaust opening 28 is situated below the heater device 11. More precisely, the exhaust opening 28 opens out substantially in the low point of the bottom wall 9. In the arrangement described herein, the bottom wall 9 comprises faces sloping downwards towards a point situated substantially in the middle thereof.
Condensation occurring inside the enclosure 2 flows along the sloping faces towards the exhaust opening 28, and is taken therefrom to outside the enclosure 2. For this purpose, the exhaust opening 28 communicates with a siphon 29. When the siphon 29 is full, i.e. in its normal condition of use, the liquid contained in the bottom of the siphon 29 prevents cold air from rising into the exhaust opening 28, and thus into the enclosure 2, thereby contributing to obtaining a temperature inside the enclosure 2 that is stable and uniform by avoiding introducing cold air through the exhaust opening 28.
Condensation may come from food that is being cooked in the enclosure 2 and/or from vapour-producing means 30 suitable for delivering water vapour into the enclosure 2.
In a different arrangement (not shown), the exhaust opening 28 may open out through one of the side walls 8 apd/or through the back wall 7 of the enclosure 2. Under such circumstances, condensation is removed by other means. In yet another arrangement, the exhaust opening 28 is situated at the junction between the bottom wall 9 and one of the side walls 8 or the back wall 7.
In another arrangement described herein, the oven 1 has a regulator 31.
The regulator 31 comprises an evacuation chamber 32 and a regulation chamber 33. The evacuation chamber 32 and the regulation chamber 33 communicate with each other via a narrow passage 51.
The regulator 31 is situated inside the casing 3 behind the back wall 7 with which it communicates via an air inlet 44.
The regulator 31 is partially filled with water by means of a water feed 34.
The water level in the regulator 31 is controlled by a first overflow 35 which flows into the siphon 29. Thus, even when condensation is not sufficient to prevent air rising through the siphon 29, the siphon can be filled directly by the water feed 34 via the first overflow The water level in the regulator 31 can also be controlled by an emptying valve 36. This emptying valve 36 controls the rate at which water flows in an emptying duct 37 connecting the bottom of the regulator 31 to the siphon 29.
The volume of water in the regulator 31, and thus in the evacuation chamber 32 varies between a high level corresponding to the height of the first overflow 35, and a low level corresponding to the height of the junction between the emptying duct 37 and the regulator 31.
An evacuation tube 38 extends between the evacuation opening 28 and a high end 39 opening out into the evacuation chamber 32 above the high and low levels of water in the evacuation chamber 32. This evacuation tube 38 opens out between the evacuation opening 28 and the siphon 29.
The evacuation chamber 32 also communicates with a chimney 40. This chimney 40 extends between a first end 41 situated outside the evacuation chamber 32 and a second end 42 situated above the high water level. When the pressure inside the enclosure 2 increases, the gas contained in the enclosure 2 escapes through the evacuation opening 28 and then via the evacuation duct 38 and the chimney In this arrangement, the regulation chamber 33 is adjacent to the evacuation chamber 32. The regulation chamber 33 and the evacuation chamber 32 are separated by a partition 43. The partition 43 does not separate the evacuation chamber 32 and the regulation chamber 33 in a completely sealed manner. This partition 43 serves to restrict, without completely preventing, exchanges of gas and water between the two enclosures 32 and 33 which take place via the narrow passage 51.
The regulation chamber 33 communicates with the enclosure 2 via the air inlet 44 opening out into the enclosure 2 substantially in a suction zone established by rotation of the fan 12. The regulation chamber 33 also communicates with the outside via an admission duct 45 which enables air to penetrate into the regulation chamber 33, providing the water level is situated beneath the admission duct However, in the event of the pressure in the enclosure 2 rising, even if the exhaust opening 28 or the evacuation tube 38 is blocked, the burnt gas can escape via the admission duct 45 regardless of the water level being anywhere 28 between its high level and its low level in the regulation chamber 33. If the admission duct 45 dips below the level of water in the regulation chamber 33, then the burnt gas can "bubble through" and escape. The regulation chamber 33 thus serves not only to govern humidity by allowing cold and drier air to enter via the admission duct 45, by varying the water level, but it also serves to govern pressure inside the enclosure 2, and it does this without any mechanical system for opening or closing ducts. The regulator 31 thus serves to perform functions that are analogous to those of mechanical systems, such as flaps, but it presents the advantage of not being capable of becoming clogged and blocked, thereby giving the oven a greater degree of safety.
A first temperature probe 46 is placed in the evacuation chamber 32 in order to measure the temperature of the gas coming from the exhaust opening 28 and conveyed by the evacuation tube 38. A second temperature probe 47 is placed in the regulation chamber 33 in order to measure the temperature of the gas coming into the enclosure 2 via the air inlet 44. The first probe 46 measures a temperature representative of the temperature of the enclosure 2, given that cold air from outside the enclosure 2 is prevented from rising by the siphon 29.
The second probe 47 measures a temperature that is representative of the temperature of the air arriving via the admission duct The first and second temperature probes 46 and 47 are connected to calculation means 48 for determining the relative humidity inside the enclosure 2. The relative humidity inside the enclosure 2 is calculated by the calculation means 48 in conventional manner, for instance from the difference of temperature between the first 46 and second 47 probes and on the basis of prior calibration.
In the present arrangement, the oven also has vapour-producing means for supplying steam (water vapour) to the enclosure 2. In the present arrangement, these vapour-producing means 30 comprise a water column 49 and a diffuser The water column 49 comprises a supply of water 52 and a tube 53.
The supply 52 is located outside the enclosure 2. It has a high outlet 54 acting as an overflow and corresponding to the highest level of water in the 29 column 2. The tube 53 allows water to flow from the supply 52 to the diffuser Water runs out of the tube 53 into the diffuser 50 via a low outlet The diffuser 50 is constituted by a disk that rotates together with the rotary shaft 21 of the fan 12. This diffuser disk 50 is situated in the central space 23 facing the burner 11. The diameter of the diffuser disk 50 is substantially equal to the diameter of the burner 11. The burner 11 thus heats the disk Water running from the column 49 to the vicinity of the disk 50 falls onto it. The disk 50 as heated by the burner then causes a portion of this water to vaporize. Another portion of the water is projected by the disk 50 and is vaporized in the flames of the burner 11. Another portion of the water which is neither vaporized on coming into contact with the disk 50 nor in the flames of the burner 11 is projected onto the walls 7, 8, 9 and 10, and in particular onto the top wall 10. The water projected onto the top wall 10 can drip onto the top tray and then via the perforations 27 from tray 26 to tray 26 towards the bottom wall 9 where the water is recovered via the exhaust opening 28. This prevents the formation of a dried and/or burnt skin on the food placed in the trays 26.
The proportion of water projected onto the top wall 10 can be controlled by varying the speed of rotation of the diffuser disk The pressure difference in the water column 49 between the maximum level and the low outlet 55 lies in the range 5 millibars (mbar) and 30 mbar. So long as the level of water in the column 49 is kept constant, this pressure difference likewise remains constant, except when the pressure increases inside the enclosure 2. So long as the pressure inside the enclosure 2 remains substantially equal to the pressure outside the enclosure 2, i.e. atmospheric pressure, then the rate at which water flows through the low outlet 55 is substantially constant. However, if vapour is produced inside the enclosure 2, then the pressure inside the enclosure 2 increases above the pressure outside the enclosure 2. The pressure difference between the maximum level and the low outlet 55 then decreases, and consequently the rate at which water flows out though the low outlet 55 also decreases. The water column 49 thus provides automatic regulation of the rate at which vapour is produced inside the enclosure 2.
The high outlet 54 communicates with the water feed 34. Water flowing via the high outlet 54 comes into the regulator 31.
As shown in Figure 5, the tube 53 has a portion between the water supply 52 and the low outlet 55 that forms a cooling circuit 56. This cooling circuit 56 forms a sinuous coil which extends outside the enclosure 2 over a portion of the top wall 10, in contact therewith. By way of example, the coil fits closely to grooves formed in the sheet metal constituting the top wall 10 during stamping thereof.
Thus, the top wall 10 is cooled which assists at least a fraction of the water vapour contained in the atmosphere inside the enclosure 2 to condense.
The water that condenses on the top wall 10 can drip onto the top tray. Since the bottoms of the trays 26 have perforations 27, the water then drips from tray to tray towards the bottom wall 9, where the water is collected in the exhaust opening 28. This serves to prevent a dried-out and/or burnt skin forming on the food placed in the trays 26.
Outside periods during which the oven 1 is in use for cooking food, the water column 49 may be used to convey detergent to the vicinity of the fan 12.
When detergent flows out through the low outlet 55, it falls onto the diffuser disk which, by turning with the fan 12 about the axis of rotation 21, projects the detergent to the blades 22 of the fan 12 which in turn project detergent towards the walls 7, 8, 9, and 10 of the enclosure 2 and towards the door 5. Almost the entire surface of the walls 7, 8, 9 and 10 of the enclosure 2 together with the door 5 is thus covered in detergent. It is possible to optimize the distribution of detergent over the walls 7, 8, 9 and 10, and over the door 5 by causing the speed of rotation of the disk 50 and the fan 12 to vary.
In a variant shown in Figure 6, the first probe 46 is placed in the evacuation chamber 32 in the manner described above, but the second probe 47 is also placed in the evacuation chamber, in the water beneath the low level.
Thus, the first probe 46 measures a temperature representative of the temperature inside the enclosure 2 as explained above, while the second probe 47 measures a temperature which is substantially stable and which can be used as a reference temperature for determining the relative humidity in the enclosure 2.
In another variant shown in Figure 7, the cooling circuit 56 is placed upstream from the supply of water 52.
A second arrangement of the oven 1 is shown in Figure 8. In this arrangement, the oven 1 is analogous to that described above as the first arrangement. It differs by the fact that the heater device 11 is constituted by an electric resistance heater instead of a gas burner. This electric resistance heater 11 is situated substantially in the same place as the gas burner described for the preceding arrangement. The electric resistance heater 11 may be situated at least in part in the central space 23. It performs generally the same functions as the gas burner. In particular, it heats the diffuser disk In a variant, water from the volume 49 flows directly onto the electric resistance heater. (In this case the oven 1 needs not necessarily to have a diffuser disk 50.) The steam which is then produced is sucked away and distributed within the enclosure by the fan 12.
A third arrangement of the oven 1 is shown in Figure 9. In this arrangement, the oven 1 is analogous to that described as the second arrangement. It differs by the fact that the diffuser disk 50 is replaced by a diffuser cylinder 57, and the heater device 11 is constituted by an electric resistance heater placed as a ring or a crown around the fan 12.
The diffuser cylinder 57 has a cylindrical wall 58 that is circularly symmetrical about the axis of rotation 21. This wall 58 is made of metal and is pierced by holes 59. One of the two ends of the diffuser cylinder 57 is closed by a disk-shaped partition 60 extending perpendicularly to the axis of rotation 21.
The partition 60 is secured to a shaft co-axial with the axis of rotation 21. It is centred on the axis of rotation 21. The diffuser cylinder 57 thus rotates together with the fan 12. The other end of the diffuser cylinder 57 is open. The low outlet of the water column 49 is situated inside the diffuser cylinder 57. Thus, water flowing from the column 49 is in part sprayed by the rotating cylindrical wall 58.
The sprayed water escapes via the holes 59 in the cylindrical wall 58 and also through the open end of the cylinder 57, after which it is projected towards the blades 22 of the fan 12 and towards the walls 5,7, 8,9, and 10 of the enclosure 2. Water reaching the top wall 10 drips onto the trays 26, thus serving to prevent food that is being cooked and/or heated in the oven 1 from drying out.
Similarly, when the oven 1 is not in use for cooking food, the water column 49 may be used to convey detergent to the vicinity of the fan. Thus, the 32 diffuser cylinder 57 performs generally the same functions as the diffuser disk described with reference to the preceding arrangements.
The fourth arrangement of the oven 1 is shown in Figure 10. In this arrangement, the oven 1 is analogous to that described as the second arrangement. It differs therefrom by the fact that the heater device 11 is placed as a ring around the fan 12, as in the third arrangement, and additional heater means 61 are placed substantially facing the diffuser disk 50 in order to heat it.
These additional heater means 61 are constituted by an electrical resistance heater, for example.
The oven can be the subject of numerous variations without going beyond the ambit of the invention.
Thus, in a variant that is not shown, the enclosure 2 has a front face and a rear face, each of which can be opened or closed by a door. Under such circumstances, a fan 12 is mounted, for example, on at least one of the side walls 8, and a heater device 11 is placed facing each fan 12.
In another variant, shown in Figures 11 and 12, the oven comprises a receptacle 65 for a detergent product. More precisely, the receptacle 65 is inserted in the feed system for detergent 49, above the burner 11, the fan 12 and the protective grid 13. Water is supply to the receptacle 65 via the water column 49. The detergent product is diluted in the water and then flows at least in part, draw stream of the receptacle 65, from the receptacle to the low outlet The detergent product can be liquid as well as solid. For this latter case, the detergent product is, for instance, a tablet or a pellet of compressed powder.
As shown in Figure 12, the receptacle 65 is, for instance, with a substantially parallelepipedic shape open on a face. This receptacle comprises a cavity 66 in which a pellet 67 can be inserted. This cavity 66 is adapted to let water flow around the pellet 67 and to allow collecting the detergent product diluted in the water so that it drains toward the low outlet Of course, the receptacle 65 can be used in combination with any of the other features described above as well as independently of those.
In other variants, a plurality of fans 12 and a plurality of burners 11 are disposed on the same wall.
33 In another variant, shown in Figures 13 to 15, the oven differs from the previous arrangements and variants by the fact that it comprises means for signaling the end of a heating process.
As shown on Figure 13, the oven 1 comprises an enclosure 2 contained in a casing 3. This casing 3 carries regulating means 74. The regulating means 74 comprise means for regulating the temperature, and possibly the degree of moisture in enclosure 2, as well as means generating an acoustic signal to indicate the end of a heating process. The regulating means 74 also control illuminating means 80, 81.
The enclosure 2 is closed by a door 5 intended for inserting the food to be heated and/or cooked in said enclosure 2.
The oven 2 can be an electrical or gas-fired oven, with in both cases, heating means as above described.
The enclosure 2 comprises supports, such as slideways 14 (see figure 14) for trays 26 receiving the food to be heated and/or cooked in the oven 1.
As shown on figure 14, door 5 is a double-walled door. It comprises two glazed panels 75, 76, an inner panel 75 and an outer panel 76.
The inner panel 75 closes the front face 6. It is at least partially transparent. The region of the inner panel 75 facing the front side 6 is thoroughly even and smooth.
The outer panel 16 makes up the front face of the oven 1. It is possibly convex around a vertical axis.
The inner 75 and outer 76 panels are maintained together encased in a frame 77. The frame 77 extends over part of the periphery of the inner 75 and outer 76 panels and maintains them spaced apart to define an insulating space 78. The insulating space 78 at least partially thermally insulates the enclosure 2 from the surroundings in which the oven 1 is located. A seal 79 provides for the tightness between the side walls 8a, 8b and the inner panel The door 5 is mounted rotatively, on one 8a of the side walls 8a, 8b, around a vertical axis by means of hinges The illuminating means 80, 81 are mounted in the insulating space 78.
The illuminating means 80, 81 are for example made up of two vertical rows of lamps. These lamps are distributed heightwise for example in such a way that 34 each lamp is located so as to correspond to a space of the enclosure 2 limited by two consecutive trays 26 or between one of these trays 26 and the bottom 9 or the top According to an alternative shown on figure 15, the illuminating means 80 are mounted in the frame 77.
The illuminating means 80 can also be mounted on one side only of the oven 1.
According to other alternatives, a lamp can illuminate several levels. For example, in an oven 1 with ten trays 26, three lamps distributed across the height can prove sufficient.
The illuminating means 80, 81 are supplied in power by a wiring 82 running within frame 77 and crossing one 8a of the side walls 8a, 8b.
The outer panel 76 comprises a transparent region 83 facing a transparent region of the inner panel 75 to form a window making it possible to see into the inside of the enclosure 2. The outer panel 76 comprises an opaque area 84; this opaque area 84 can mask the illuminating means 80,81 when they are mounted in the insulating space 78. However, even when the illuminating means 80, 81 are mounted in the frame 77, the outer panel 76 can comprise an opaque area 84. This opaque area 84 is for example made up of two coating strips 85 that are screen printed on one of the faces of the outer panel 76. A handle 86 is provided on the door 5 to open it.
At the end of a predetermined heating process, the control means 74 trigger the flashing of the illuminating means 80, 81.
In another variant, shown in Figures 16 to 19, the oven differs from the previous arrangements and variants by the fact that it comprises means for braking and/or driving and/or reversing the rotation of the fan 12.
According to this variant, shown on figure 16, the oven 1 comprises an enclosure 2 (or muffle), closed by a door 5 intended for the introduction of food to be heated and/or cooked in enclosure 2.
Enclosure 2 has a substantially parallelepiped shape with a back wall 7, opposed to door 5, two vertical side walls, a bottom wall 9 and a top wall The side walls are adapted to receive twenty trays 26 on which food to be heated and/or cooked can be accommodated.
On its back wall 7, the oven 1 incorporates two heating devices 11, respectively circular around horizontal axes X and X' that are normal to the back wall 7. The heating devices 11 incorporate, in the arrangement presented herewith, electrical resistors.
Two fans 12 are mounted to be rotating each respectively around the axes X and Each fan 12 consists of a disk 20 centered on one of the axes X and On the periphery of the disk 20, each fan 12 comprises a plurality of blades 22 regularly and angularly distributed around one of the axes X and X'.
These blades 22 are for example made up of plane rectangular strips or lamellae extending in a plane that is substantially perpendicular to the disk and going through the axes X and This symmetry in relation to one axis X or X' enables the blades 22 to rotate clockwise and anti-clockwise in an equivalent manner.
Each blade 22 is connected on the one hand, with the disk 20 by a first edge 70 and, on the other hand, with a crown 71 by a second edge 72. The crown 71 is circular, with an outside diameter that is substantially equal to the one of disk 20. It is centred on the corresponding axis X or It extends in a plane parallel to disk The disk 20 has a diameter that is substantially smaller than the one of the circle on which each heating 8 extends.
Each fan 12 is driven by a motor M or M' through a shaft 87 extending according to axis X or X'.
Each motor M or is for example a one-phased motor with four poles with a power of 250 Watts.
As shown on Figure 17, each motor M or M' comprises a main winding 78 and a secondary winding 89.
The motors M and M' are supplied with alternating current from a current source 90 via a supply circuit 91.
Condensers 92 make it possible to shift the phase of the secondary windings 89 in relation to the one-phased motors M and For 250-watt motors, their value amount for example to ten microfarads or so. Resistors 93 unload the condensers 92 after the power supply of the motors M and M' has been cut off for the purpose of a maintenance operation if need be. These resistors 93 reach for example 470 kilo-ohms.
36 Each motor M or M' is controlled by first K1, second K2 and third K3 switching means. The first switching means K1 consist for example of an electromechanical relay. They make it possible to reverse the direction of current in the main winding 88 in relation to the direction of current in the secondary winding 89.
The second switching means K2 consist for example of an electronic relay power relay interposed in the supply circuit 91 of the motors M and M'.
This relay is of the so-called asynchronous type.
The third switching means K3 consist for example of a relay. This relay serves as interface for the supply circuit 91 of motor M and M' with the control electronics (not shown). This relay controls the first switching means K1 of each motor M or M'.
The second K2 and third K3 switching means are mounted for example on a relay card 94.
The second switching means K2 are actuated by control electronics from the voltage zero (point Z on Figure 19 which shows the positive P and negative N alternations of the sine wave current injected into the supply circuit 91 of the motors M and The voltage zero Z is detected by the control electronics.
The control electronics actuate the second switching means K2, from the voltage zero Z, to connect the motors M and M' with the current source 90 only during the positive alternations P and even only part of these alternations P (hatched areas on figure 18) with a view of graduating the power required for exerting a braking action on the motors M and In this manner, the current used for feeding the motors M and M' during the braking phases (referred to as F on figure 19) is a rectified current. Thanks to this arrangement, the use of a rectifying bridge can thus be spared.
Reciprocally, in order to feed the motors M. and during the driving phases E of the motors M and the second switching means K2 can be actuated by the control electronics, still from the voltage zero Z, in order to connect the motors M and M' to the current source 90 during all of the positive alternations P and at least part of the negative alternations N, this with a view of graduating the speed of the motors M and M'.
In order to achieve a better braking efficiency, prior to injecting the rectified current with the help of the second switching means K2, the direction of 37 r rotation of the motors M and M' can be reversed. This inversion is carried out by
O
Sreversing the direction of current in the main winding 88 in relation to the secondary winding 89 of the motors M and M' via the first switching means K1.
In order to prevent the motors M and M' from starting up again following a braking action, without having changed the direction of rotation, the second switching means K2 are reset during a resting phase R, for example for 2 _seconds, at the end of the braking phases F and before the driving phases E during which the motors M and M' are started up again at the desired speed.
Figure 19 shows a cycle of operation of the first K1 and second K2 C 10 switching means.
The first switching means K1 can assume two configurations symbolized by the states 0 and 1 on the upper curve of figure 19. State 0 corresponds to the clockwise direction and state 1 to the anti-clockwise direction.
On the lower curve of figure 19, state 0 represents the state in which the second switching means K2 disconnect the motors M and M' from the current source 90 and state 1, the state in which the second switching means K2 connect the motors M and M' to the current source 90 during the whole of each period T of the cycle of alternating current feeding these motors M and An intermediate state between states 0 and 1 corresponds to the braking phases F.
As indicated above, this state is reached by connecting motors M and M' to the current source 90 only during part of the positive alternations P via the second switching means K2. This state can assume any value between 0 and 1 in such a way to graduate the power supplied to the motors M and M' during the braking phases F.
It proves of course equivalent to consider the positive alternations or the negative alternations reciprocally. Thus, when it is written for example that the second switching means K2 disconnect the motors M and M' from the current source 90 during part of the positive alternations P, it might as well been written that the second switching means K2 disconnect the motors from the current source 90 during part of the negative alternations N and so forth.
Of course, any feature of one of the variants or arrangements can be combined with one or several others without going beyond the scope of the invention.
38 Throughout the description and claims of the specification the word "comprise" and variations of the word, such a "comprising" and "comprises" is not intended to exclude other additives, components, integers or steps.

Claims (9)

1. An oven for cooking food, including: an enclosure for receiving the food to be heated, this enclosure having two horizontal walls, one forming a bottom wall and the other forming a top wall, connected by at least two vertical side walls, this enclosure being closed by at least one door, also vertical and including a window to give the possibility of seeing into the enclosure, and means generating an acoustic signal to indicate the end of a heating process, wherein the oven includes illuminating means designed to produce, within the enclosure, light characteristic of the end of the heating process when said heating process is finished.
2. The oven according to claim 1, wherein the characteristic light is a coloured light.
3. The oven according to claim 1 or 2, wherein the intensity of the light varies back and forth when the said heating process is over.
4. The oven according to any one of claims 1 to 3, wherein the illuminating means are mounted on the door.
The oven according to claim 4, wherein the door has an insulating space at least partially thermally insulated from the enclosure and wherein the illuminating means are mounted in the insulating space.
6. The oven according to claim 5, wherein the insulating space includes two glazed panels, an inner panel and an outer panel, the outer panel having a transparent region facing a transparent region of the inner panel, to form the said window, and these two panels being housed in a frame in which the illuminating means are mounted.
7. The oven according to claim 3, or any one of claims 4 to 6 when P:\UserBebnda BEK747021frv 2 spea dc CL r dependent on claim 3, wherein the back and forth variation in the intensity of the light consists of flashing.
8. The oven according to any one of claims 1 to 7, including slideways for arranging trays superposed heightwise in the oven and in which the illuminating means are spread out heightwise.
9. The oven according to claim 6, or claim 7 or 8 when dependent on claim 6, wherein the inner panel forms, facing the cavity, a smooth wall. An oven according to any one of the embodiments substantially as herein described and illustrated. P:\UseABeUndaBEH\747021\Div 2 sped doc
AU2007200119A 2002-12-23 2007-01-11 An oven for cooking food Abandoned AU2007200119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007200119A AU2007200119A1 (en) 2002-12-23 2007-01-11 An oven for cooking food

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
FR02/16580 2002-12-23
FR02/16583 2002-12-23
FR02/16586 2002-12-23
FR02/16590 2002-12-23
FR02/16589 2002-12-23
FR02/16585 2002-12-23
FR02/16588 2002-12-23
FR02/16584 2002-12-23
FR03/01295 2003-02-04
FR03/01437 2003-02-06
AU2003302713A AU2003302713B2 (en) 2002-12-23 2003-12-23 An oven for cooking food
AU2007200119A AU2007200119A1 (en) 2002-12-23 2007-01-11 An oven for cooking food

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2003302713A Division AU2003302713B2 (en) 2002-12-23 2003-12-23 An oven for cooking food

Publications (1)

Publication Number Publication Date
AU2007200119A1 true AU2007200119A1 (en) 2007-02-01

Family

ID=37734182

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2007200118A Abandoned AU2007200118A1 (en) 2002-12-23 2007-01-11 An oven for cooking food
AU2007200117A Abandoned AU2007200117A1 (en) 2002-12-23 2007-01-11 An oven for cooking food
AU2007200119A Abandoned AU2007200119A1 (en) 2002-12-23 2007-01-11 An oven for cooking food

Family Applications Before (2)

Application Number Title Priority Date Filing Date
AU2007200118A Abandoned AU2007200118A1 (en) 2002-12-23 2007-01-11 An oven for cooking food
AU2007200117A Abandoned AU2007200117A1 (en) 2002-12-23 2007-01-11 An oven for cooking food

Country Status (1)

Country Link
AU (3) AU2007200118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154435A2 (en) 2008-08-06 2010-02-17 Rational AG Cooking device and method for monitoring a cooking process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1029519B1 (en) * 2021-06-23 2023-01-30 Miele & Cie Method for operating a cooking appliance and cooking appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154435A2 (en) 2008-08-06 2010-02-17 Rational AG Cooking device and method for monitoring a cooking process
EP2154435A3 (en) * 2008-08-06 2010-12-08 Rational AG Cooking device and method for monitoring a cooking process

Also Published As

Publication number Publication date
AU2007200118A1 (en) 2007-02-01
AU2007200117A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US7875834B2 (en) Oven for cooking food
US4071739A (en) Convertible radiant convection oven
US6038786A (en) Hand dryer
CN101011220B (en) An oven for cooking food
GB2419183A (en) Gas range
JP6245243B2 (en) Ventilation system
JP2007514418A (en) Coffee roaster with device for increasing air flow in roasting chamber
AU2007200119A1 (en) An oven for cooking food
JP2856699B2 (en) Cooker
JP2004173797A (en) Food-heating and warming container
JP2003227612A (en) Steam oven
JP7203510B2 (en) Air environment conditioning device and air environment conditioning system
US3291114A (en) Charcoal barbecue unit
JP2017032235A (en) Heating machine
JP2006283584A (en) Air blower and heating cooker
JP2006029695A (en) Steam cooking device
JP4473043B2 (en) Steam cooker
JPS595778Y2 (en) forced convection cooker
JPS632804Y2 (en)
JPS6363206B2 (en)
JPS60175928A (en) Cooker
JP2005351510A (en) Steam cooker
JP2007017076A (en) Heating cooker
KR20030018408A (en) A hygro-sensor assembling structure of air guide for microwave-oven
JPH09229366A (en) Hot air circulation type gas oven, and hot air circulation method for hot air circulation type gas oven

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application