AU2005201949A1 - Apparatus and method for heat treatment of tissue - Google Patents

Apparatus and method for heat treatment of tissue Download PDF

Info

Publication number
AU2005201949A1
AU2005201949A1 AU2005201949A AU2005201949A AU2005201949A1 AU 2005201949 A1 AU2005201949 A1 AU 2005201949A1 AU 2005201949 A AU2005201949 A AU 2005201949A AU 2005201949 A AU2005201949 A AU 2005201949A AU 2005201949 A1 AU2005201949 A1 AU 2005201949A1
Authority
AU
Australia
Prior art keywords
applicator
balloon
desired position
locator
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2005201949A
Inventor
Charles Manker
Aaron Perlmutter
Theron N Schaefermeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermatrx Inc
Original Assignee
Thermatrx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU7713401A external-priority patent/AU7713401A/en
Application filed by Thermatrx Inc filed Critical Thermatrx Inc
Priority to AU2005201949A priority Critical patent/AU2005201949A1/en
Publication of AU2005201949A1 publication Critical patent/AU2005201949A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

S&FRef: 622158D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD
PATENT
Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: TherMatrx, Inc., of 3675 Commercial Avenue, Northbrook, Illinois, 60062-1822, United States of America Charles Manker, Aaron Perlmutter, Theron N.
Schaefermeyer Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Apparatus and method for heat treatment of tissue The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c APPARATUS AND METHOD FOR HEAT TREATMENT OF TISSUE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to energy radiation devices for medical hyperthermic treatments and, more particularly, to a combined catheter and energy applicator for treating prostatomegaly such as benign prostatic hypertrophy, prostatitis, and prostate malignancy.
2. State of the Art Hyperthermia or induced high body temperature has been considered beneficial in treating various human diseases including many types of cancer.
More specifically, various types of malignant growths are considered by many researchers to have a relatively narrow hyperthermia treatment temperature range. Below a threshold temperature of about 41.5 degrees Celsius, thermal destruction of these malignancies is generally not possible, and may even stimulate their growth. However, at temperatures above a range of about 43 to degrees Celsius, thermal damage to most normal body tissue cells occurs if exposure lasts for even a relatively short duration.
While some types of superficial cancers are known to respond to direct application of surface heat, deeply located or subsurface malignant growths, owing to limited penetration depth of externally applied energy, tissue blood flow, and heat transfer properties of the body, are more difficult to heat to the desired temperature without damaging overlying and adjacent healthy tissue. A solution to this problem has been the development of radiation heating devices for inducing hyperthermia. This form of treatment is historically known as "diathermia." Radiation heating of subsurface growths from an exterior surface using, for example, electromagnetic (EM) or ultrasound (US) radiation, is ordinarily enabled by the configuration and placement of one or more applicators and by appropriate selection of EM or US radiation frequency, phase and intensity.
Nevertheless, tissue growths inside of, or in close proximity to, heat sensitive tissue or organs, are much more effectively and safely heated by radiation irradiating applicators positioned within the body as close as possible to the growth requiring treatment.
2 The advantages of positioning radiation applicators relatively close to the growth to be heated by radiation include more direct treatment of the enlarged tissues causing the undesirable symptoms. It also permits improved heating control, more localized heating, and consequently less possibility of overheating adjacent healthy- tissue.
Close applicator access to certain types of diseased tissue growth may be provided by surgical procedures for naturally occurring body passages such as the esophagus, larynx, urethra, prostate gland and colon. Surgical procedures may enlarge the passage by cutting away the diseased tissue. Some heating methods use small radiation applicators placed over the tissue or in an incision to provide direct irradiation of the growth.
Special and difficult problems often attend growths found along natural body passages. For example, diseased tissue tends to spread around and along the passage, often in a relatively thin layer. Typically, patient problems may originate from a tissue layer which is less than one centimeter thick, and may extend as far as 6-10 centimeters along the passage. Care must be taken to avoid the use of applicators which may result in nonuniform radiation heating of the elongated growth. To make one end of the applicator hot enough to kill the unwanted elongated growth, it may be necessary to make the temperature at the other end of the applicator so hot that it may kill surrounding healthy tissue.
To treat a longer tissue along the urethra or other passage, multiple treatments of short, adjacent lengths of tissue may be necessary with the antenna manually repositioned along the urethra between each treatment.
Attempts to properly position the applicator in proximity to the targeted tissue include the use of balloon catheters, which utilize pressurized fluid to inflate the balloon in the neck of the bladder, thereby positioning and maintaining the applicator at a desired position in proximity to the targeted tissue. A lack of a reliable method to determine the position of the applicator and whether the applicator has moved during the treatment may result in inconsistent treatment results or unwanted heating of healthy tissue.
Consequently, care must be taken to insure that the applicator remains at the desired position in response to deflation of the balloon or other movement of the catheter.
I
It is thus desirable to provide an improved energy radiation device for medical hyperthermic treatment.
It is also desirable to provide an urethral insertable energy applicator for treating benign prostatic hyperplasia or other tissue diseases associated with the urinary tract.
It is also desirable to provide an urethral insertable energy applicator which can be positioned with respect to the prostate and maintained against movement therefrom during treatment.
It is also desirable to provide a system for determining whether the energy applicator has moved or may move during treatment and to signal the operator and/or deactivate a power source in response to such conditions. It is also desirable to provide an urethral insertable energy applicator for treating BPH which includes a system for determining whether conditions exist in which the applicator may move during treatment and signal the operator of such conditions.
It is the object of the present invention to substantially overcome or at least ameliorate one or more of the prior art disadvantages or to achieve at least one of the above desires.
Summary of the Invention The present invention provides an energy radiation applicator apparatus for treatment of targeted tissue in a patient, comprising: an insertion means for inserting the applicator into the patient; an applicator operatively attached to the insertion means and an energy source sufficient for elevating the temperature of targeted tissue; a positioning mechanism operatively attached to the insertion means so that the applicator may be positioned at a desired position in proximity to the targeted tissue to be treated; and a locator for determining whether the applicator remains at the desired position wherein the locator measures the relative movement between the insertion means and patient.
The present invention also provides a method for hyperthermic treatment of target tissue in a patient's body comprising: operatively attaching an applicator to an insertion means and an energy source sufficient to elevate the temperature of the targeted tissue to a preselected temperature; 3 [R:\LIBLL] 16846.doc:FDP inserting the insertion means into the patient's body so the applicator carried by the insertion means is at a desired position in proximity to the targeted tissue to be treated; positioning the applicator at the desired position; determining whether the applicator remains in the desired position; and indicating when the applicator may move from the desired position.
Brief Description of the Drawings A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein: FIG. 1 is a view of one embodiment of an energy radiation device for medical hyperthermic treatment in accordance with the invention; FIG. 2 is an exploded view of an urethral insertable catheter shown in FIG. 1; FIG. 3 is a cross-sectional view of the catheter taken along line 3-3 in FIG. 1; FIG. 4 is an enlarged fragmentary section of the catheter taken along line 4-4 in FIG. 3; FIG. 5 is a schematic view of an embodiment of a temperature sensor and power source control circuit; and FIG. 6 is a schematic view of the catheter positioned inside a bladder and prostate of a patient.
3a [R:\LIBLL] 16846.doc:FDP
I
While the invention will be described and disclosed in connection with certain preferred embodiments and procedures, it is not intended to limit the invention to those specific embodiments. Rather it is intended to cover all such alternative embodiments and modifications as fall within the spirit and scope of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the figures, a radiation applicator system 10 in accordance with the invention is shown. The radiation applicator system may include a catheter 12 insertable into a patient's body through, for example, the urethra or other passage, a radiation applicator generally referenced as 14 for radiating energy into targeted tissue using a radiation heating antenna 15, a positioning mechanism, such as a balloon, for positioning and maintaining the catheter 12 at a desired position, and, in accordance with certain objects of the invention, a locator mechanism generally referenced as 18 for determining whether the heating antenna 15 remains at the desired position. The structure and operation of the radiation applicator system 10 will be described in connection with a urinary catheter for the treatment of BPH, but is, of course, applicable to other medical hyperthermic treatments. Other exemplary radiation applicators and catheters suitable for use with the system 10 in accordance with the invention are described in United States Patent Nos.
4,967,765 to Turner et al., 5,220,927 to Astrahan et al., 5,249,585 to Turner et al., and 5,34,435 to Turner et al., which are hereby incorporated by reference.
Referring to FIGS. 1-3, the exemplary catheter 12 may be, for example, a balloon type urinary catheter having a flexible, plastic tubular body 30 and a balloon 31. The catheter has at least one passage. The body 30 of the exemplary catheter, best shown in FIG. 3, may have a drainage passage 34, and a pressurized fluid passage 38 defined by the catheter walls for inflating a balloon 31. The catheter 12 may also have at least one sensor passage 48 for receiving a corresponding temperature sensor 50 capable of measuring the temperature of the tissue surrounding the catheter 12. The catheter 12 has a proximal end 11 closest to a power source 54 and a distal or insertion end 13 farthest from the power source 54. In other embodiments, the catheter may have other passages such as separate drainage and applicator passages.
A bifurcated access fitting 40 located at the proximal end 11 of the tubular body 30 facilitates communication with the passages in the body The access piece 40 has a first opening 42 for connecting the central drainage passage 34 to a waste receiving receptacle (not shown) and a second opening 44 for introducing a pressurized fluid into passage 38 to inflate the balloon 31.
It will be appreciated that the catheter may have a positioning mechanism for positioning the antenna 15 to a desired position relative to the targeted tissue. One approach has been to utilize a catheter having an integral balloon 31, disposed at the distal end 13 of the catheter 12, and in open communication with the outlet of the pressurized fluid passage 38 to facilitate inflation and deflation of the balloon 31. The balloon 31 may be disposed between the stops 62 and 64 formed on the tubular body 30. An injection valve 46 attached to the fitting opening 44 controls the inflation of the balloon 31 and the retention of the balloon filling fluid. An exemplary valve 46 opens when a syringe (not shown) is inserted to supply pressurized fluid, such as air or water, to inflate the balloon 31. The valve 46 closes to retain the pressurized fluid in the balloon 31 when the syringe is removed.
In use, the distal end 13 of the catheter 12 is inserted through the patient's urethral passage and the prostate P, and into the bladder B, as schematically shown in FIG. 6. When the distal end 13 of the catheter 12 is in the bladder, pressurized fluid is introduced through valve 46 and fitting 40 into passage 38 to inflate balloon 31 within the bladder B. With the balloon 31 inflated in the bladder B, the catheter 12 is pulled slightly outwardly so that the balloon 31 seats in the neck N of the bladder B. This positively locates and positions the catheter 12 with respect to the bladder B and prostate P immediately adjacent to the bladder B as shown in FIG. 6. It effectively anchors the antenna 15 and minimizes and, preferably, eliminates any movement of the antenna 15 for the duration of the hyperthermic treatment.
The interior of the balloon 31 may, for example, also have a ribbed configuration to minimize adhesion of the balloon to the shaft.
In accordance with certain objects of the invention, the energy applicator may be placed at a known and predetermined position relative to the distal end 13 of the catheter 12 and the balloon 31. Consequently, when the position of the balloon 31 is fixed in relation to the prostate P, the position of applicator 15 relative to the prostate remains fixed and constant throughout treatment and O the accurate placement of the applicator 14 in the prostate is repeatable from treatment to treatment and from patient to patient. The ability to accurately place the applicator 15 relative to the prostate P without complicated probing, visual imaging, or other positioning procedures, and the stability of the positioning so that the position relative to the prostate P remains constant during treatment, is an important aspect of the invention and important to the practical hyperthermic treatment of the prostate P.
It is also desirable that the position of the catheter 12 remain constant with respect to the bladder B and prostate P during the treatment regardless of any variation in length of the urethral passage during treatment. Movement of '1 the applicator 14 and the. antenna 15 during treatment away from the targeted tissue may cause healthy tissue to be heated. In accordance with certain objects of the invention, the system 10 has a locator mechanism generally designated for determining whether the applicator 14 is properly positioned relative to the targeted tissue. The locator mechanism 60 is connected via signal cable 61 to the control circuit 76. In one embodiment, the locator mechanism monitors the positioning mechanism to determine whether conditions exist that permit movement of the applicator antenna 15. An exemplary locator mechanism 60 may include a pressure monitor, such as a pressure transducer, for monitoring the pressure within the pressurized fluid passage 38 and balloon 31. In response to a pressure decrease, indicating that the balloon 31 has deflated and/or ruptured so that the applicator 15 may move from the predetermined location relative to the targeted tissue, the pressure monitor signals the power source 54 for the applicator 14 to be deactivated before any damage to non-targeted tissue may occur. Alternatively, the pressure transducer may activate a visual or auditory signal to alert the operator of the possibility of movement of the applicator 15 so the operator may deactivate the power source 54. The pressure monitor may be positioned in proximity to or communication with the injection valve 46 of the catheter 12.
The locator mechanism 60 may also be a pressure switch which is actuated in the presence of predefined pressure levels. The exemplary pressure switch may have activated and deactivated positions which activate or deactivate, respectively, the power source 54 for applicator 14. Back pressure within the desired pressure range in the pressure passage 38 and balloon 31 positions the switch to the activated position, thereby activating the power source 54. However, in response to a decrease in the pressure, indicating deflation of the balloon 31 and the potential for movement of the applicator the switch moves to the deactivated position and signals for deactivation of the power source.
Another embodiment of the locator mechanism may include an optical sensor (not shown) operatively attached to the opening 42 of the drainage passage 34 and the control circuit 74 which measures, for example, dye levels in the balloon 31 and the passage 34. Optically sensitive dye may be placed in the balloon. Dye leakage from the balloon would cause increased dye levels within the drainage passage 34 so that the sensor, upon measuring the increased dye levels, may deactivate the power source or send another appropriate signal to the operator. Yet another locator mechanism may include a monitor, for example, that measures relative movement of the catheter within the urethra.
The monitor may be attached to the patient, for example, so that movement of the patient does not erroneously indicate movement of the catheter within the urethra. In response to movement of the catheter and ultimately the antenna within the urethra that exceeds predetermined limits, the locator mechanism deactivates the power source. Various additional modifications of the locator mechanism specifically illustrated and described herein will be apparent to those skilled in the art, particularly in light of the teachings of this invention.
The invention should not be construed as limited to the specific form shown and described herein.
The system 10 requires at least one radiation applicator 14 having a radiating antenna 15 for conducting heat energy, such as electromagnetic (EM) radiation, ultrasound (US) radiation or other heat sources, to heat the targeted tissue to a desired temperature, typically about 41.5 to about 80 degrees Celsius. The antenna 15 may include a microwave helical coil, a metallic surface or other suitable configuration adapted to radiate the targeted tissue with energy. As best shown in FIG. 4, the antenna 15 has a distal end 17 farthest from the power source 54 and a proximal end 16 closest to the power source. The antenna 15 may be positioned adjacent a stop 62 inboard of the catheter balloon 31.
The antenna 15 may be connected to an energy or power source 54 by a transmission line, such as coaxial cable 56, dimensioned to fit within the catheter passage 34. While any suitable transmission line may be used, the
I
tt 8 exemplary cable 56 shown in FIG. 3 has an inner conductor 56a, an insulator 56b, an outer metal braided cover 56c and a cover 56d such as a silicon tube, to protect the cable from urine. In the exemplary embodiment shown in FIG. 4, the cable 56 may pass through at least the proximal end 16 and along the center axis of the antenna coil 15. The distal and proximal ends 17, 16 of the antenna o 15 may be connected for example, by soldering wires 68 and 69 to the inner conductor 56a and the outer conductor 56c, respectively.
The antenna coil 15 may also contain one or more of the following physical features: open or closed connection to the tip of the coil and center coaxial ~conductor; open or closed connection to the base of the coil and the outer coaxial conductor; conductor breaks or gaps within the coil winding; multiple coils stacked longitudinally and connected to individual coaxial cables to allow modification of the heat pattern length using either coherent or non-coherent phase energy into each coil; straight but flexible coil conductors or electrodes along the antenna to serve as EM emitters; a coil with progressively increasing conductor width or diameter towards or away from the tip of the applicator; an antenna or electrode with center conductor diameter exposed beyond the outer conductor at the tip region; an antenna or electrode which has the center conductor exposed beyond the outer conductor and having an increased metal surface area per unit length closer to the tip region to increase the heating toward the tip region; a coil with different turns ratio per unit length; diameter variations of the center conductor within the coil length; and modification of the dielectric material or thickness around the center conductor or coil antenna; a temperature sensor within the antenna region so as to sense the temperature of the surrounding tissue being heated. While variations f, j, and k are illustrated together in FIG. 4, any of the variations may be used alone or in other combinations to provide desired characteristics of the applicator 14. The various dimensions shown in the figures is greatly exaggerated so as to be visible.
In the exemplary embodiment shown in the figures, a dielectric sheet having a tubular or other suitable configuration may be attached over the antenna coil 15 so as to avoid direct contact between the antenna and tissue and to create a desired external, electric tissue heating field along the length of the antenna 15. The thickness and configuration of the sheath 70 may be varied as necessary to obtain a desired heating field. While any suitable material may be used, silicone rubber has been found to be acceptable. While direct contact between the metal portions of the applicator 14 and the targeted tissue should normally be avoided, contact may be allowable if sufficient protection is provided to prevent undesirable muscle stimulation, cramping and the like.
Any energy source 54 capable of delivering the energy levels to the antenna 15 through the coaxial cable 56 necessary to heat the targeted tissue to the desired temperature levels may be used. An exemplary power source applicator illustrated in the figures may comprise an oscillator capable of supplying about 70 watts electrical power at a frequency of about 300 to 2450 MHz for microwave-type antennas, or about 100 kHz to 300 MHz for electrode-type or ultrasound-type antennas.
A control and display panel 72 may be used to select and control the treatment time and/or the desired temperature in the targeted tissue. The controller circuit 74 controls the operation of the system 10, including the amount of power supplied by the energy source 54 to the applicator 14 necessary to control and maintain a desired temperature in the targeted tissue being treated. Control signals are sent from the controller circuit 74 to the energy source 54 by control cable 86 so as to maintain the power supplied to the applicators sufficient to generate a tissue temperature between about 41.5 degree Celsius and about 80 degree Celsius. The system controller circuit 74 is connected to the control and display panel 72 for two way communication via cable 150. The control and display panel 72 includes energy on/off switches 78 and 80, a temperature control 82 for selecting the desired operating temperature, and a timer 84 for selecting the treatment time. These control functions can also be provided by other equivalent forms of displays such as switches, buttons, microprocessors, computer terminals and the like.
1U In an exemplary embodiment, a separable insulated temperature sensor measures the temperature of the tissue surrounding the catheter 12, as shown generally in FIG. 1 and by electrical schematic in FIG. 5. The temperature sensor 50 may be placed into the region of the targeted tissue during treatment, preferably by being inserted into a temperature sensor passage 48 of the catheter 12. The passage 48 may be attached to the exterior of the catheter 12, such as by gluing. As with the other passages in the catheter 12, the sensor passage 48 may alternately be a tube embedded in the catheter or may be formed integrally with the catheter. While a single sensor passage 48 and corresponding temperature sensor 50 are illustrated, it will be readily appreciated by those skilled in this art that more than one sensor passage and associated temperature sensor may be utilized if desired.
The exemplary control circuit 74 shown in FIG. 5 may be connected to a temperature sensor 50, by a four lead cable 56. Any suitable temperature sensor may be used but a conventional precalibrated thermistor has been found to be acceptable. The thermistor 50 may be connected to a constant current source 90 and an amplifier 92 for amplifying the thermistor output to a working level. A high gain comparator 94, which has input terminals connected to the amplifier 92 and to a temperature setting potentiometer 96 of the temperature controller 82 (FIG. compares the amplified thermistor output with a desired temperature reference voltage. The high gain comparator 94 has its output connected to the junction of a timer 84 and an electrically controlled pole of a double pole switch 98.
Consequently, when the temperature sensor 50 indicates that the targeted tissue is below the desired temperature, the comparator 94 outputs control signals to activate the switch 98 and, thereby, deliver power to the antenna so as to heat the targeted tissue. When the temperature sensor 50 indicates the targeted tissue is at or above the desired temperature, the comparator 94 outputs control signals to deactivate the switch 98 and, thereby, deactivate the power source 54 so that the antenna 15 does not further heat the targeted tissue.
The timer 84 also controls the switch 98 and the power source 54.
Power is transmitted to the antenna 15 when the timer 84 is activated and terminated when the timer 84 is deactivated. In one embodiment, the timer 84 may be activated in response to the initial receipt of power from the comparator 0 94 for a pre-selected treatment time. At the end of the treatment period, the timer 84 deactivates the switch 98 and, thereby, the power source.
In accordance with certain objects of the invention, the switch 98 may also be controlled by the locator mechanism 60 which deactivates the switch (or provides other appropriate signals to the operator) in response to conditions, such as deflation of the balloon, which indicate the possibility of movement of the applicator 14. In one exemplary embodiment, the locator mechanism monitors the back pressure of the balloon 31 and/or pressurized fluid passage 38. While the back pressure remains within a predetermined range, the switch remains activated and power is supplied to the applicator 14. However, the Slocator mechanism deactivates the switch 98 in response to pressure decreases in the balloon 31 or fluid passage which may indicate movement of the applicator 14.
The switch 98, of course, may also be manually controlled by the control switches 78 and 80. When the switch 98 is activated as shown in FIG. 5, a control signal is output on lead 100 to activate the power source 54.
Conversely, when the switch 80 is deactivated, the power source 54 is deactivated.
While an exemplary embodiment of the microwave control circuit 74, the control and display panel 72, and the temperature sensor circuit 74 has been illustrated and described herein, it will be readily apparent to those skilled in this art that a variety of modifications could be made to this overall control system if desired. For example, the timer 46, comparator 42, temperature setting potentiometer 44, control switch 48, or other portions of the control circuit can be microprocessor controlled or otherwise automated if desired. It will be appreciated that additional temperature sensors inserted through corresponding tube, leads and control circuits (not shown) may be added as additional temperature monitors.
In use, the catheter 12 is inserted through the patient's urethral passage, the prostate P, and into the bladder B, as schematically shown in FIG. 6. It is thus important that the catheter 12 be flexible enough to be easily inserted through the urethral passage. When the distal end 13 of the catheter 12 is in the bladder, pressurized fluid is introduced through valve 46 and fitting 44 into passage 38 to inflate balloon 31 within the bladder. With the balloon 31 inflated in the bladder B, the catheter 12 is pulled slightly outwardly so that the balloon 31 seats in the neck N of the bladder B. This positively locates and positions the catheter 12, as well as the antenna 15, with respect to the bladder and prostate immediately adjacent to the bladder as shown in FIG. 6. In this position of the catheter 12 and the antenna 15 remains constant with respect to the bladder and prostate regardless of any variation in length of the urethral passage during treatment. While catheter 12 is positioned in the bladder B, drainage passage 34 permits urine drainage tube from the bladder, out the drainage opening 42 to a liquid waste receptacle (not shown).
In the exemplary embodiment, the applicator 14 creates an external, electromagnetic heating field which extends for a desired length along the antenna 15 to create a heating portion of the applicator 14. In some embodiments, this heating field may be approximately uniform along the length of the antenna In operation, with the apparatus properly positioned as described above, the timer 84 and the temperature 82 are selected as desired, and the generator 54 is activated by switch 98. The applicator 14 radiates heat into the targeted tissue of the prostate gland extending along the antenna 15 of the applicator 14 until the desired temperature is reached and/or the treatment time expires.
When the desired tissue temperature is reached, the comparator 94 outputs control signals to the power source 54 to control the power output to the applicator 14 to maintain the temperature substantially constant for the selected treatment time period. At the end of the treatment time, the power source 54 is automatically turned off by timer 84. However, the power 54 can be turned off at any time using the "off" switch 80. As described above, the applicator 14 deactivates the power source or sends another appropriate signal to the operator should conditions exist that permit movement of the antenna 15 from the desired location Thus, it will be seen that a novel and improved energy radiation device for medical hyperthermic treatments has been provided which attains the aforementioned objects. Various additional modifications of the embodiments specifically illustrated and described herein will be apparent to those skilled in the art, particularly in light of the teachings of this invention. The invention should not be construed as limited to the specific form shown and described, but instead is set forth in the following claims.

Claims (21)

1. An energy radiation applicator apparatus for treatment of targeted tissue in a patient, comprising: an insertion means for inserting the applicator into the patient; an applicator operatively attached to the insertion means and an energy source sufficient for elevating the temperature of targeted tissue; a positioning mechanism operatively attached to the insertion means so that the applicator may be positioned at a desired position in proximity to the targeted tissue to be treated; and a locator for determining whether the applicator remains at the desired position wherein the locator measures the relative movement between the insertion means and patient.
2. The energy radiation applicator apparatus of claim 1, wherein: said insertion means is a catheter; and said apparatus further comprises a temperature sensor operatively attached to the catheter and in operative association with the applicator for measuring the temperature of the targeted tissue.
3. An energy radiation applicator apparatus according to claim 1 wherein the locator monitors the condition of the positioning mechanism and is operatively attached to the energy source so as to deactivate the energy source when the condition of the positioning mechanism permits movement of the applicator from the desired position.
4. An energy radiation applicator apparatus according to claim 1 wherein the locator monitors the condition of the positioning mechanism and is operatively attached to a signal device and the signal device generates a signal when the condition of the positioning mechanism permits movement of the applicator from the desired position. An energy radiation applicator apparatus according to claim 2 wherein the positioning mechanism comprises an inflatable balloon operatively attached to the catheter so at least a portion of the balloon may extend into the patient's bladder, and the catheter comprises a passage communicating with the balloon and a source of pressurized fluid so the balloon can be inflated and position the catheter when the applicator is at the desired position.
6. An energy radiation applicator apparatus according to claim 5 wherein the locator comprises a pressure monitor operatively attached to the balloon for measuring the pressure in the balloon. 13 [R:\LIBLL] I 6846.doc:FDP
7. An energy radiation applicator apparatus according to claim 6 wherein NI the pressure monitor is operatively attached to the energy source and deactivates the energy source when the balloon pressure decreases below a predetermined pressure that permits movement of the applicator from the desired position relative to the targeted tissue.
8. An energy radiation applicator apparatus according to claim 6 wherein the pressure monitor is operatively attached to a signal device, and wherein the signal device generates a signal when the balloon pressures decreases below a predetermined Spressure that permits movement of the applicator from the desired position relative to the V 10 targeted tissue.
9. An energy radiation applicator apparatus according to claim 1 wherein the locator measures the relative movement between the insertion means and the patient to determine whether the applicator has moved from the desired position, and wherein the locator is operatively attached to the energy source for deactivating the energy source when the applicator moves from the desired position. An energy radiation applicator apparatus according to claim 1 wherein the locator measures the relative movement between the insertion means and the patient to determine whether the applicator has moved from the desired position, and wherein the locator is operatively attached to a signal device which generates a signal when the applicator moves from the desired position.
11. An energy radiation applicator apparatus according to claim 5 further comprising a material located substantially inside the balloon during proper operation of the apparatus, and wherein the locator is operatively attached to the energy source and optically measures the presence of the material outside the balloon indicating that the balloon has at least partially deflated permitting movement of the catheter, and wherein the locator deactivates the energy source when the locator measures the presence of the material outside the balloon.
12. An energy radiation applicator apparatus according to claim 5 further comprising a material located substantially inside the balloon during the proper operation of the apparatus, wherein the locator is operatively attached to a signal device and optically measures the presence of the material outside the balloon indicating that the balloon has at least partially deflated permitting movement of the catheter, the locator activates the signal device when the locator measures the presence of the material outside the balloon. 14 [R:\LIBLL] I 6846.doc:FDP
13. A method for hyperthermic treatment of target tissue in a patient's body comprising: operatively attaching an applicator to an insertion means and an energy source sufficient to elevate the temperature of the targeted tissue to a preselected temperature; inserting the insertion means into the patient's body so the applicator carried by the insertion means is at a desired position in proximity to the targeted tissue to be treated; positioning the applicator at the desired position; determining whether the applicator remains in the desired position; and indicating when the applicator may move from the desired position.
14. A method according to claim 13 comprising indicating when the applicator may move from the desired position by deactivating the energy source. A method according to claim 13 comprising inserting an inflatable balloon operatively attached to the insertion means for positioning and maintaining the applicator in the desired position into the patient's urethra so at least a portion of the balloon may extend into the patient's bladder, and positioning the insertion means when the applicator is at the desired position by inflating the balloon through a pressurized fluid passage communicating with the balloon and a source of pressurized fluid.
16. A method according to claim 15 comprising determining whether the applicator remains at the desired position by measuring the balloon pressure and determining when the balloon pressure decreases below a predetermined pressure that permits the applicator to move from the desired position relative to the targeted tissue.
17. A method according to claim 16 comprising indicating when the applicator may move from the desired position by deactivating the energy source when the balloon pressures decreases below a predetermined pressure that permits the applicator to move from the desired position relative to the targeted tissue.
18. A method according to claim 16 comprising indicating when the applicator may move from the desired position by generating a signal when the balloon pressures decreases below a predetermined pressure that permits the applicator to move from the desired position relative to the targeted tissue.
19. A method according to claim 13 comprising determining whether the applicator remains in the desired position by measuring relative movement between the insertion means and the patient. [R:\LIBLL] 1 6846.doc:FDP I A method according to claim 19 comprising indicating when the ,I applicator may move from the desired position by deactivating the energy source when the relative movement exceeds a predetermined amount.
21. A method according to claim 19 comprising indicating when the applicator may move from the desired position by generating a signal when the relative movement exceeds a predetermined amount.
22. A method according to claim 16 comprising determining whether the applicator remains in the desired position by placing a material substantially inside the balloon and optically sensing the presence of a material outside the balloon indicating that the balloon has at least partially deflated so as to permit movement of the applicator.
23. A method according to claim 22 comprising indicating when the applicator may move from the desired position by deactivating the power source when the material escapes from the balloon.
24. A method according to claim 16 comprising indicating when the applicator may move from the desired position by generating a signal when the material escapes from the balloon. An energy radiation applicator apparatus substantially as hereinbefore described with reference to the accompanying drawings.
26. A method for hyperthermic treatment of target tissue in a patient's body, the method substantially as hereinbefore described with reference to the accompanying drawings. Dated 9 May, 2005 TherMatrx, Inc. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON 16 [R:\LIBLL] I 6846.doc:FDP
AU2005201949A 2000-08-04 2005-05-09 Apparatus and method for heat treatment of tissue Abandoned AU2005201949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005201949A AU2005201949A1 (en) 2000-08-04 2005-05-09 Apparatus and method for heat treatment of tissue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/632,523 2000-08-04
AU7713401A AU7713401A (en) 2000-08-04 2001-07-24 Apparatus and method for heat treatment of tissue
AU2005201949A AU2005201949A1 (en) 2000-08-04 2005-05-09 Apparatus and method for heat treatment of tissue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001277134A Division AU2001277134C1 (en) 2000-08-04 2001-07-24 Apparatus and method for heat treatment of tissue

Publications (1)

Publication Number Publication Date
AU2005201949A1 true AU2005201949A1 (en) 2005-05-26

Family

ID=34596371

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005201949A Abandoned AU2005201949A1 (en) 2000-08-04 2005-05-09 Apparatus and method for heat treatment of tissue

Country Status (1)

Country Link
AU (1) AU2005201949A1 (en)

Similar Documents

Publication Publication Date Title
US5220927A (en) Urethral inserted applicator for prostate hyperthermia
US4967765A (en) Urethral inserted applicator for prostate hyperthermia
US5344435A (en) Urethral inserted applicator prostate hyperthermia
US5249585A (en) Urethral inserted applicator for prostate hyperthermia
EP0552934B1 (en) Transurethral ablation catheter
WO1993008876A1 (en) Urethral inserted applicator for prostate hyperthermia
KR100190933B1 (en) Thermal therapeutic apparatus for the surgical treatment of tissues, in particular the prostate, by thermal effect
JP2795540B2 (en) Rectal probe
EP0703756B1 (en) Transurethral radio frequency ablation apparatus
US8880195B2 (en) Transurethral systems and methods for ablation treatment of prostate tissue
AU2001277134C1 (en) Apparatus and method for heat treatment of tissue
EP1447113B1 (en) Catheters for treating prostate disease
CA2335296C (en) Method for forming a biological stent
CA1338021C (en) Method for destroying cells in tumors and the like
US5191883A (en) Device for heating tissue in a patient's body
KR20020016614A (en) Method and device for combined heat treatment of body tissue
AU2001277134A1 (en) Apparatus and method for heat treatment of tissue
JPH07506740A (en) Dipole microwave antenna for asymmetric thermotherapy
CA2408627A1 (en) System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors
WO1991013650A1 (en) Method and apparatus for the surgical treatment of tissues by thermal effect and in particular the prostate, using a urethral microwave-emitting probe means
JP3904241B2 (en) Tumor hyperthermia catheter
WO1992007621A1 (en) Urethral inserted applicator for prostate hyperthermia
WO1995010253A1 (en) Piercing thermal therapy catheter
AU2005201949A1 (en) Apparatus and method for heat treatment of tissue
JPH0464368A (en) Electromagnetic radiation applicator device

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted