AU2004301676A1 - A sonar antenna - Google Patents

A sonar antenna Download PDF

Info

Publication number
AU2004301676A1
AU2004301676A1 AU2004301676A AU2004301676A AU2004301676A1 AU 2004301676 A1 AU2004301676 A1 AU 2004301676A1 AU 2004301676 A AU2004301676 A AU 2004301676A AU 2004301676 A AU2004301676 A AU 2004301676A AU 2004301676 A1 AU2004301676 A1 AU 2004301676A1
Authority
AU
Australia
Prior art keywords
antenna according
sonar antenna
transducers
sonar
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2004301676A
Inventor
Mark Ian Jeffree
Rory Niland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonartech Atlas Pty Ltd
Original Assignee
Sonartech Atlas Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003904061A external-priority patent/AU2003904061A0/en
Application filed by Sonartech Atlas Pty Ltd filed Critical Sonartech Atlas Pty Ltd
Priority to AU2004301676A priority Critical patent/AU2004301676A1/en
Publication of AU2004301676A1 publication Critical patent/AU2004301676A1/en
Abandoned legal-status Critical Current

Links

Description

WO 2005/013642 PCT/AU2004/001020 "A Sonar Antenna" Technical Field This invention concerns a sonar antenna. This equipment is used for underwater 5 echo sounding and uses hydro acoustic transducers to ensonify the water and receive echoes. Background Art Active sonar antenna systems collect information about the direction of objects 10 or sound sources as well as their range. In order to achieve angular resolution the antenna must have directional properties. A simple antenna comprises a single hydro acoustic transducer which alternates between transmitting and receiving. If the transducer has an acoustic surface that is large compared to the wavelength being transmitted and received, it will possess a directivity of its own. Alternatively a 15 number of individual omnidirectional transducers may be arrayed and operated to obtain the desired directivity. In general a transducer array will transmit maximum intensity in a principal direction of radiation, and will also transmit side lobes of lesser intensity offset from the principal direction of radiation. The overall pattern is known as the 'beam pattern', 20 and the antenna is generally operated using a process called 'beam forming' to achieve a desired pattern. Beam forming can be achieved mechanically or electronically. The transmission pattern can be analysed as the linear combination of spherical wavelets that originate at the locations of the single transducers of the array; they are superimposed following Huygen's principle. The sum of spherical wavelets in front of 25 the antenna forms an interference field. The interference field consists of zones with a higher or lower sound pressure. In the vicinity of the antenna, that is in the near field, the interference pattern changes with respect to angle and range. Far from the antenna, in the far field, spherical waves are formed and the angular distribution of pressure is independent of range. The beam pattern for a receiver is essentially the same as a 30 transmitter. The transducers may be arrayed in different formations, such as planar, circular, cylindrical or spherical arrays. Alternatively, transducers may be arranged for instance on the hull of a ship. Multi beam echo sounders, or swath echo sounders, are useful for hydrographic 35 applications. A single planar transducer array may be mounted under the ship, or two planar transducer arrays may be mounted at right angles to each other, one on either WO 2005/013642 PCT/AU2004/001020 2 side of the ship. These antennas are operated to create fanned beams transverse to the ship. In this arrangement the intensity of the echo falls rapidly with distance, and is compensated by changing the gain of the receiving transducers in a predetermined manner. 5 Summary of the Invention In a first aspect, the invention is a sonar antenna comprising an axially symmetric acoustic surface having the cross-sectional form of a generally U-shaped curve of non constant curvature; wherein the curve is shaped to allow continuous 10 coherent ensonification such that the power in the echo returned from a uniform flat sea floor is substantially constant. The curve may be catenary, hyperbolic or parabolic. In particular it may have the form: 15 y(x) = (cosh(Ax) -1) / A (1) where x is across, y is vertical and A is constant. The U-shape cross-section of the acoustic surface may extend unchangingly in 20 the axial direction. There may be one such acoustic surface for both transmitting and receiving. Optionally, there may be separate such acoustic surfaces for transmission and reception, in which case both will have the same U-shaped cross-section. A transmitting transducer may be arranged with a single transmitting aperture 25 extending over the entire transmitting surface. Optionally, there may be a plurality of transmitting transducers each having the same U-shaped cross-section and stacked together in the axial direction. A plurality of receiving transducers may be strung together and arranged along the U-shaped receiving surface. The transducers may be arranged contiguously along 30 the surface or they may be spaced apart along the surface. Not all of the transducers are necessarily employed. In a second aspect the invention is a vessel equipped with a sonar antenna in accordance with the first aspect, or any embodiments thereof, where the sonar antenna is mounted coaxially along its undersurface.
WO 2005/013642 PCT/AU2004/001020 3 When mounted below a vessel, usually under the centre of the vessel, the antenna will ensonify water on both sides of the axis of the vessel as well as at a downwardly directed nadir. The antenna is useful for multi beam echo sounders. It can ensonify a wide 5 swath, provide continuous coherent illumination of the sea floor and enjoy the advantage that it is not necessary to change the gain of the receiving transducers to compensate for the intensity of the echo falling with distance. This opens the possibility of having multiple pings in the water since otherwise each ping would require a different gain versus time curve. Survey speeds can, as a result, be increased 10 depending on the ability to compute the received data. Also, better range is achieved for given transmitted power since there is more efficient allocation of power. Indicative calculations show power rising from 0 dB at nadir, to 10 dB 700 from nadir. 15 Brief Description of the Drawings An example of the invention will now be described with reference to the accompanying drawings, in which: Fig. 1 is a graph of a U-shaped curve; Fig. 2 is an elevation of a sonar antenna segment; 20 Fig. 3 is an exploded view of a sonar antenna assembly; Fig. 4 is a pictorial view of the sonar antenna of Fig. 3 assembled, together with additional parts; Fig. 5 is a table showing the arrangement of transmitting and receiving transducers in the antenna; 25 Fig. 6 is a table showing the arrangement of pins in a receiving transducer slot; and Fig. 7 is a graph showing the transmitted beam shape. Best Mode of the Invention 30 Referring first to Fig. 1, the cross-sectional form of the acoustic surface 10 of a sonar antenna 1 is given as follows: y(x) = (cosh(Ax) -1) / A (1) 35 Where x is across-track, and y is vertical.
WO 2005/013642 PCT/AU2004/001020 4 This equation defines a catenary curve. The constraint which gives A is the slope at which X,.. is normal to the line joining the array to the edge of the swath. We take the edge of the swath to be at 4 x depth, so: 5 x=x = sinh(Axm) 4 (2) yielding A. The arc-length along the curve is given by: s(x) = sinh(Ax) / A (3) 10 Referring now to Fig. 2 the sonar antenna comprises a series of segments 20 each of which has the cross-sectional form 10. The core of each segment is steel, and the antenna is made from 1-3 composite. Each segment extends in the axial direction and is axially symmetric, so the acoustic surface is in the form of a band extending along the curved surface 10. Three holes 21, 22 and 23 extend through each segment to 15 enable them to be stacked together. A cavity 24 in the interior of the segments house electronics for driving the antenna. Referring now to Fig. 3 the entire antenna 1 comprises a stack of segments 20. Some are blank 25, but eight of the segments 30 carry transmitting transducer strips, one strip of which is indicated at 31. Each of the transmitting transducers extends 20 along the curved surface 10 from one end to the other. There is a protective skin over the outer (acoustic) surfaces of the transducers. One of the segments 40 carries a string of receiving transducer slots, one slot of which is indicated at 41. The receiving transducers extend contiguously along the curved surface from one end to the other. 25 All the segments 25, 30 and 40 are stacked together by mounting them on tie rods 50, 51 and 52 which extend through holes 21, 22 and 23 respectively. End plates 60 are mounted on the ends of the stacks and the whole assembly is secured together with nuts. Electronics are mounted in the cavity 24 and a top plate 70 is secured to the top. 30 An overmold 80 may be moulded onto the lower surface for protection from the wet environment. Referring further to Fig. 4, an upper housing 90 is added, and forward and rear farings 100 and 101 provide hydrodynamic performance. A cable riser indicated generally at 110 allows for connection to the rear or underside of a vessel.
WO 2005/013642 PCT/AU2004/001020 5 Fig. 5 provides more detail of the arrangement of the transducers. Each transmitter segment 30 carries six strips 31 and each strip carries 3 x 192 pins. The pin spacing is 3 mm in the horizontal direction and 3 mm vertically. Each strip can be driven independently to shape the transmission beam from each segment. Reducing the 5 strength of the transmission in each end of the strips, say the last 10%, decreases Fresnel diffraction and so reduces ripples in the angular pattern. The receiver segment 40 comprises ninety-six slots 41. In practice only forty eight of the receiver slots are used. Each slot can carry 4 x 42 pins, however as shown in Fig. 6 only 128 pins are positioned in each slot used. The pins are arranged in 10 groups, from the left hand end 61 is an arrangement of 2 x 10 pins, 62 is 4 x 42 pins, 63 is 4 x 42 pins and 64 is 2 x 10 pins. The forty-eight used slots are selected so that they are not uniformly or regularly spaced since this would damage the angular response of the antenna. The following restraints were placed on the selection: left-right symmetry, a repetition pattern of period twelve and not many large gaps. Otherwise, pattern is as 15 irregular as possible. The U-shape does not significantly alter in apparent length as the source direction is changed. Furthermore, the gradual trend towards a flatter array section near the array ends gradually increases angular resolution towards the edge of the swath where it is required. As a consequence, the angular resolution of the U-shaped array 20 does not increase or decrease significantly away from nadir, allowing a greater survey swath width. A diffraction-truncation algorithm is used to generate the complex weights for the receive array. This is not part of the real time processing but numerous tables are prepared in advance and stored for real time use. To produce the tables, each sensor is 25 driven by the exact time series of the transmitted ping. The far field power pattern is a complicated linear function of the complex weights, and the amplitudes and phases of the weights can be solved for the frequency, pulse length, pulse envelope and sensor distribution. In use the cross-sectional form of the acoustic transmission surfaces allows for a 30 continuous swath of sea floor to be illuminated coherent on either side and under the vessel. The transmission frequency is in the range 100-200KHz, the width to depth ratio of the swath is 8:1, and the propagation loss range is in the range 60-85dB. Fig. 7 is a graph of the beam shape, and it can be seen that there is about 12dB of additional energy to the outer swath, where it is most needed to counter greater absorption and 35 spreading losses.
WO 2005/013642 PCT/AU2004/001020 6 Of the eight different frequency transmissions made, four are made in the forward direction and four in the rearward direction. As the vessel moves through the water, a coverage map is generated and any gaps can be filled in with the rearward transmission. It is also possible to direct more beams at an object of interest detected 5 by a forward beam. By pointing the beams forward and back it is possible to avoid the problems of receiving a direct reflection when looking vertically down at the sea floor. Since there is no necessity to change the gain of the receiving transducers to compensate for the intensity of the echo falling with distance. This allows the eight pings to be transmitted before the first is received. Transmission time is jittered so that 10 overlapping pings do not yield 'railroad tracks' in the survey data from each transmission's dead time. It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific 15 embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (13)

1. A sonar antenna comprising an axially symmetric acoustic surface having the cross-sectional form of a generally U-shaped curve of non constant curvature; wherein 5 the curve is shaped to allow continuous coherent ensonification such that the power in the echo returned from a uniform flat sea floor is substantially constant.
2. A sonar antenna according to claim 1, wherein the curve is catenary, hyperbolic or parabolic. 10
3. A sonar antenna according to claim 2, wherein the curve has the form: y(x)= (cosh(Ax) -1) / A 15 where x is across, y is vertical and A is constant.
4. A sonar antenna according to any preceding claim, wherein the U-shape cross section of the acoustic surface extends unchangingly in the axial direction. 20
5. A sonar antenna according to any preceding claim, wherein there is one acoustic surface for both transmitting and receiving.
6. A sonar antenna according to any one of claims 1 to 4, wherein there are separate acoustic surfaces for transmission and reception, and both have the same U 25 shaped cross-section.
7. A sonar antenna according to any preceding claim, wherein a transmitting transducer is arranged with a single transmitting aperture extending over the entire transmitting surface. 30
8. A sonar antenna according to any one of claims 1 to 6, wherein, there are a plurality of transmitting transducers each having the same U-shaped cross-section and stacked together in the axial direction. WO 2005/013642 PCT/AU2004/001020 8
9. A sonar antenna according to any preceding claim, wherein a plurality of receiving transducers are strung together and arranged along the U-shaped receiving surface. 5
10. A sonar antenna according claim 9, where the transducers are arranged contiguously along the surface.
11. A sonar antenna according claim 9, where the transducers are arranged spaced apart along the surface. 10
12. A sonar antenna according claim 9, wherein not all the transducers are employed.
13. A vessel equipped with a sonar antenna according to any preceding claim 15 mounted coaxially along its undersurface.
AU2004301676A 2003-08-01 2004-07-30 A sonar antenna Abandoned AU2004301676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2004301676A AU2004301676A1 (en) 2003-08-01 2004-07-30 A sonar antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2003904061 2003-08-01
AU2003904061A AU2003904061A0 (en) 2003-08-01 2003-08-01 A sonar antenna
PCT/AU2004/001020 WO2005013642A1 (en) 2003-08-01 2004-07-30 A sonar antenna
AU2004301676A AU2004301676A1 (en) 2003-08-01 2004-07-30 A sonar antenna

Publications (1)

Publication Number Publication Date
AU2004301676A1 true AU2004301676A1 (en) 2005-02-10

Family

ID=35841557

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004301676A Abandoned AU2004301676A1 (en) 2003-08-01 2004-07-30 A sonar antenna

Country Status (1)

Country Link
AU (1) AU2004301676A1 (en)

Similar Documents

Publication Publication Date Title
US20200264304A1 (en) Sonar data compression
USRE45379E1 (en) Frequency division beamforming for sonar arrays
US4493064A (en) Sonar System
CN103650352B (en) Multi-frequency two-dimensional phased array transducer
US5150336A (en) Frequency dispersive transmitting array
US11846705B2 (en) Multimission and multispectral sonar
CN101478922A (en) Ultrasound imaging system and method using multiline acquisition with high frame rate
CA2650525C (en) Method for optimizing the power supply for a towed linear transmit antenna for transmitting in omnidirectional mode
Pinto et al. Real-and synthetic-array signal processing of buried targets
US20070064538A1 (en) Sonar antenna
WO2005057234A1 (en) Sonar apparatus with a curved array and method therefor
AU2004301676A1 (en) A sonar antenna
US20190257930A1 (en) Multi frequency piston transducer
CA2204875C (en) High-gain directional transducer array
US20040052160A1 (en) Naval-hull mounted sonar for naval ship
JP7238516B2 (en) Sonar device and target detection method using the same
CN101149434B (en) Multiple linear array combined acoustic array with super broad cover directivity
Bellettini et al. Effect of multipath on synthetic aperture sonar
Tournois Acoustical Imaging Via Coherent Reception of Spatially Coloured Transmission
GB2300707A (en) Underwater sound transmitter
WO2003079047A2 (en) High resolution radiation imaging
KR20120008299U (en) structure of multiple electron beam side scan sonar
US20240004063A1 (en) Acoustical applications of modulation beamforming technology
US20050157590A1 (en) Surface acoustic antenna for submarines
JPS60158367A (en) Active sonar

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application