AU2003242494A1 - Process for Producing a Calcium Carboxylate - Google Patents

Process for Producing a Calcium Carboxylate Download PDF

Info

Publication number
AU2003242494A1
AU2003242494A1 AU2003242494A AU2003242494A AU2003242494A1 AU 2003242494 A1 AU2003242494 A1 AU 2003242494A1 AU 2003242494 A AU2003242494 A AU 2003242494A AU 2003242494 A AU2003242494 A AU 2003242494A AU 2003242494 A1 AU2003242494 A1 AU 2003242494A1
Authority
AU
Australia
Prior art keywords
calcium
compound
reaction mixture
water
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2003242494A
Inventor
Thomas W Backes
Patrick N Crowe
Deanna W Hamilton
Mikhail I Khramov
Norman J Peters
Anthony K Uriarte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solutia Inc
Original Assignee
Solutia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solutia Inc filed Critical Solutia Inc
Priority to AU2003242494A priority Critical patent/AU2003242494A1/en
Publication of AU2003242494A1 publication Critical patent/AU2003242494A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

S&F Ref: 646833
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Solutia Inc.
575 Maryville Center Drive St. Louis Missouri 63141 United States of America Anthony K Uriarte Norman J Peters Mikhail I Khramov Thomas W Backes Patrick N Crowe Deanna W Hamilton Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Process for Producing a Calcium Carboxylate The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c Process for Producing a Calcium Carboxylate Background of the Invention This invention relates to a process for producing a calcium carboxylate from a nitrile compound using calcium hydroxide or calcium oxide and water. in one aspect, this invention relates to a process for producing calcium propionate from propionitrile and calcium hydroxide or calcium oxide.
Calcium carboxylates produced according to the process of the invention can be used to produce the corresponding carboxylic acids. Calcium carboxylates also have other uses. For example, calcium acetate is used as a thickening agent, such as in cake batters, puddings, and pie fillings, as buffers in controlling pH of food during various stages of processing as well as in the finished product, as a preservative to prevent microbial growth, and as a calcium supplement in pet products. In addition, calcium propionate is used on a large scale as a preservative in the foodstuffs sector, particularly in baked goods to inhibit moulds and other microorganisms, and as a preservative and nutritional supplement in animal feeds.
Calcium carboxylates are typically prepared by the conventional methods for synthesising carboxylic acid salts, for example by reacting a carbonate, hydroxide, or oxide with a concentrated or dilute carboxylic acid. Calcium propionate is typically produced from propionic acid and calcium hydroxide. US 4 700 000 discloses an improvement to the conventional process for producing calcium propionate from propionic acid. US 4 700 000 discloses that water formed during the reaction of calcium hydroxide with propionic acid is removed as an azeotropic mixture of water and propionic acid. US 4 700 000 discloses that the vaporous mixture of water and propionic acid advantageously used for the preparation of calcium propionate by a process whereby this mixture is passed into an aqueous mixture containing calcium propionate and calcium hydroxide, with or without propionic acid, during which the pH is adjusted to 5-10 by further addition of calcium hydroxide, and the calcium propionate is isolated by crystallisation.
US 3 876 691 discloses the hydrolysis of nitriles with an aqueous solution of barium hydroxide to produce the barium salt of the carboxylic acid corresponding to the nitrile. US 3 876 691, however, discloses that calcium oxide was ineffective as the hydrolysing agent and that barium hydroxide is unique in its ability to hydrolyse nitriles as compared with the other most common alkaline earth metal hydroxide, ie. calcium hydroxide (see Example III of US 3 876 691).
US 5 763 652 discloses the hydrolysis of a nitrile compound with a basic catalyst to form a salt of a carboxylic acid and a base, wherein the basic catalyst is particularly an alkali metal hydroxide (col 3 lines US 5 763 652 also discloses the hydration of a nitrile compound to the corresponding amide in the presence of a manganese oxide catalyst. Optionally, the hydration of the nitrile compound can be conducted in the presence of a combination of the manganese oxide and a metallic simple substance or compound containing Group la elements (eg. Na, K, etc.), Group Ila elements (eg. Mg, Ca, Ba, etc.), Group Ilb elements (eg. Zn), Group IVa elements (eg. Zr, etc.), Group IVb elements (eg. Sn, etc.), and Group Va elements (eg. V, etc.). (See col. 12, lines 26-65). US 5 763 652 further discloses that the amide compound formed by the hydration of the nitrile compound can be hydrolysed by an inorganic base, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkaline earth metal hydroxides, and alkali earth metal carbonates, preferably alkali metal hydroxides and carbonates PALSpecifications/646833sped (see col. 15, lines 47-57, and col. 16, lines US 5 763 652 does not disclose the hydrolysis of a nitrile compound with calcium hydroxide nor the hydration of a nitrile compound with a calcium compound alone.
Therefore, to produce calcium propionate from propionitrile, one of ordinary skill in the art would first convert the propionitrile to the free acid via acid or caustic hydrolysis. The acid hydrolysis would produce large amounts of a byproduct ammonium salt. Typical base hydrolysis with caustic soda, ie. sodium hydroxide, would consume large quantities of sodium hydroxide, or require capital-intensive electrodialysis to recover the sodium hydroxide. The acid would subsequently be reacted with calcium hydroxide or calcium oxide to produce calcium propionate. In the alternative, one of ordinary skill in the art, based on the teaching of US 5 763 652, would hydrate a nitrile compound using a manganese oxide catalyst to produce the corresponding amide and then hydrolyse the amide compound using a base, eg. calcium hydroxide.
A commercially practical process for producing calcium carboxylates directly from nitrile compounds and a calcium compound has now been discovered.
Summary of the Invention According to the invention, a process for producing a calcium carboxylate is provided comprising contacting a nitrile compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water at a temperature of about 90*C to about 2500C at a sufficient pressure and for a sufficient time to produce a reaction mixture comprising calcium carboxylate.
Further according to the invention, ammonia is removed from the reaction mixture and the calcium carboxylate is recovered.
Still further according to the invention, a process for producing a calcium carboxylate is provided comprising contacting a nitrile compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water in a reaction vessel at a temperature of about 900C to about 250"C at a sufficient pressure and for a sufficient time to produce a first reaction mixture comprising calcium carboxylate, the amide corresponding to the nitrile compound, calcium hydroxide, water and ammonia; venting the reaction vessel with or without prior cooling to remove ammonia and produce a second reaction mixture; optionally adding additional water to the second reaction mixture; heating the second reaction mixture to a suitable temperature to remove additional ammonia and, optionally, water from the second reaction mixture and hydrolyse at least a portion of to produce additional calcium carboxylate; and recovering the calcium carboxylate.
Detailed Description of the Invention This invention provides a process for producing calcium carboxylate directly from a nitrile compound rising a calcium compound selected from calcium hydroxide, calcium oxide and mixtures thereof, with the proviso that the hydrolysis of the nitrile compound with the calcium compound can be conducted without the presence of a separate catalyst, such as a manganese oxide catalyst.
A first embodiment of the invention relates to a process for producing a calcium carboxylate comprising contacting a nitrile'compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water at a temperature of about 900C to about 2500C at a sufficient pressure, ie. a pressure sufficient to achieve the desired temperature, and for a sufficient time to produce a reaction mixture comprising calcium carboxylate.
PALSpecifications/646833spe After formation of the reaction mixture comprising calcium carboxylate, the reaction mixture is typically further processed to remove ammonia from the reaction mixture and the calcium carboxylate is recovered.
A second embodiment of the invention relates to a preferred process for producing a calcium carboxylate comprising contacting a nitrile compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water in a reaction vessel at a temperature of about to about 250°C at a sufficient pressure, ie. a pressure sufficient to achieve the desired temperature, and for a sufficient time to produce a first reaction mixture comprising calcium carboxylate, the amide corresponding to the nitrile compound, calcium hydroxide, water and ammonia; optionally cooling the first reaction mixture, venting the reaction vessel to remove ammonia and produce a second reaction mixture; optionally adding additional water to the second reaction mixture; heating the second reaction mixture to a suitable temperature to remove additional ammonia and, optionally, water from the second reaction mixture and hydrolyse at least a portion of the amide to produce additional calcium carboxylate; and recovering the calcium carboxylate.
Nitrile compounds that can be employed according to the invention include nitrile compounds represented by the formula R-CN, wherein R is selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic hydrocarbon group, and wherein R is optionally substituted.
The aliphatic hydrocarbon group includes, but is not limited to, saturated hydrocarbon groups having about 1 to 12 carbon atoms, preferably about 1 to 6 carbon atoms, or unsaturated hydrocarbon groups having about 2 to 12 carbon atoms, preferably about 2 to 6 carbon atoms. Examples of suitable saturated aliphatic hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, tbutyl, pentyl, hexyl, octyl, decyl, and the like. Examples of suitable unsaturated aliphatic hydrocarbon groups includes vinyl, allyl, 1-propenyl, isopropenyl, 2-butenyl, ethynyl, 2-propynyl, and the like.
The alicyclic hydrocarbon group includes, but is not limited to, cycloalkyl and cycloalkene groups having about 3 to 10 carbon atoms. Examples of suitable alicyclic hydrocarbon groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, and cycloalkylene groups corresponding to these cycloalkyl groups.
The aromatic hydrocarbon group includes, but is not limited to, aryl groups having about 6 to 14 carbon atoms, and alkaryl and aralkyl groups having about 7 to 15 carbon atoms. Examples of suitable aromatic hydrocarbon groups include phenyl, naphthyl, benzyl phenethyl, tolyl, xylyl, and the like.
The heterocyclic group includes heterocyclic groups each having at least one atom, as a hetero atom, selected from a nitrogen atom, an oxygen atom, or a sulfur atom, and may be whichever of an aromatic heterocyclic group, a non-aromatic heterocyclic group, or a condensed heterocyclic group.
Examples of suitable heterocyclic groups include furyl, thienyl, pyrrolyl, imidazolyl, pyrrolidinyl, pyridyl, pyrazinyl pyrimidinyl, indolyl, pyridazinyl, piperidino, morpholino, morpholinyl, quinolyl, and the like.
These groups represented by R may optionally be substituted. Examples of suitable substituents include halogen atoms, a hydroxy group, alkyl groups (eg. methyl, ethyl, propyl, isopropyl and other Cisalkyl groups), aryl groups (eg. phenyl, tolyl, xylyl, chlorophenyl, methoxyphenyl, naphthyl and other C6-14 aryl groups), ether groups, alkoxy groups (eg. methoxy, ethoxy and other C1-5 alkoxy groups), aryloxy PALSpecifications/646833speci groups (eg. phenoxy and other C6-14 aryloxy groups), a mercapto group, alkylthio groups (eg. methylthio, ethylthio and other Ci.salkylthio groups), arylthio groups (eg. phenylthio and other C6 14 arylthio groups), a carboxyl group, ester groups (eg. methoxycarbonyl and other Ci-6alkoxy-carbonyl groups); acetoxy and other C2-12acyloxy groups, acyl groups (eg. acetyl, benzoyl and other C2-12acyl groups), amino groups, including mono- or di-substituted amino groups (eg. methylamino, dimethylamino and other mono- or di- C1 .5 alkylamino groups), a nitro group, and the like. The number of such substituents to be substituted on the R group represented may be about 1 to 4.
Examples of suitable aliphatic nitriles include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, capronitrile and other saturated mononitriles; malonitrile, succinonitrile, glutaronitrile, adiponitrile, a-aminopropionitrile, a-aminomethylthiobutyronitrile, a-aminobutyronitrile, aminoacetonitrile; lactonitrile, hydroxyacetonitrile, a-hydroxyisobutyronitrile (acetocyanohydrin), a-hydroxyy-methylthiohutyronitrile (4-methylthio-2-hydroxybutyronitrile); cyanoacetic acid; amino-3 -propionitrile, and unsaturated nitriles (eg. acrylonitrile, methacrylonitrile, allyl cyanide, crotononitrile), and the like.
Examples of suitable alicyclic nitriles include cyclopentanecarbonitrile, cyclohexanecarbonitrile, and the like.
Examples of suitable aromatic nitriles include benzonitrile, m- and p-chlorobenzonitrile, mand p-fluorobenzonitrile, m- and p-nitrobenzonitrile, p-aminobenzonitiile, 4-cyanophenol, m- and ptolunitrile, 2,4-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile, anisonitrile, (anaphthonitrile, 0-naphthonitrile, phthalonitrile, isophthalonitrile, terephthalonitrile, benzyl cyanide, cinnamoyl nitrile, phenylacetonitrile, mandelonitrile, phydroxyphenylacetonitrile, phydroxyphenylpropionitrile, p-methoxyphenylacetonitrile and the like.
Examples of suitable heterocyclic nitriles include nitrile compounds each having a heterocyclic group containing 5- or 6-membered ring and having at least one atom selected from a nitrogen atom, an oxygen atom or a sulfur atom as a hetero atom, such as 2-thiophenecarbonitrile, 2-furonitrile, 2cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, cyanopyrazine, 5-cyanoindole, cyanopiperidine, cyanopiperazine, and the like.
More particularly, the nitrile compound in which the aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group or heterocyclic group represented by R has a substituent, includes amino-nitrile compounds, cyanohydrin compounds and the like. Examples of the aminonitrile compounds include aminoacetonitrile, a-aminopropionitrile, a-aminobutyronitrile, 3-amino-propionitrile, and the like. Examples of the cyanohydrin compounds include a-cyanohydrin compounds, P-cyanohydrin compounds, y-cyanohydrin compounds and the like. Such cyanohydrin compound may contain, for instance, about 2 to 18, preferably about 3 to 12, and more preferably about 3 to 8 carbon atoms.
The suitable -x-cyanohydrin compounds can be represented by the formula
SCEN
R'o R2 OH wherein R' and R 2 independently represent a hydrogen atom or a hydrocarbon group which may have a substituent, and R 1 and R 2 may form a ring together with the adjacent carbon atom, with a proviso that R' and R 2 are not concurrently hydrogen atoms.
PALSpecifications/646833speci Examples of the hydrocarbon group represented by R 1
R
2 and the substituent which the hydrocarbon group may have include the aliphatic hydrocarbon groups, alicyclic hydrocarbon group, aromatic hydrocarbon group, and the substituents which these groups may have, as described above for the group R.
Examples of the ring which is formed with R 1 and R 2 together with the adjacent carbon atom include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
Examples of suitable a-cyanohydrin compound include hydroxyacetonitrile, lactonitrile, acetone cyanohydrin, 2-hydroxybutanenitrile, 2-hydroxy-4-methyl-thiobutanenitrile, 2-hydroxy-2-methylbutanenitrile, 2-hydroxy-3-methylbutanenitrile, 2-hydroxy-3-butenenitrile, 2-hydroxypentanenitrile, 2hydroxyhexanenitrile, 2-hydroxyoctanenitrile and other aliphatic a-cyanohydrins; 2-hydroxycyclohexaneacetonitrile, cyclopentanone cyanohydrin, cyclohexanone cyanohydrin, mandelonitrile, 2hydroxy-3-phenylbutanenitrile, and the like.
Examples of suitable p-cyanohydrin compounds include 3-hydroxy-propanenitrile, 3hydroxybutanenitrile, 3-hydroxyhexanenitrile, 2-hydroxy-cyclohexanecarbonitrile or 3-hydroxy-3phenylpropanenitrile.
Examples of suitable y-cyanohydrin compounds includes 4-hydroxy-butanenitrile, 4hydroxyhexanenitrile, 3-hydroxyhexanecarbonitrile, 4-hydroxy-4-phenylbutanenitrile, and the like.
The nitrile compound is preferably a compound where the salt of the corresponding carboxylic acid is water soluble. The currently preferred nitrile is propionitrile, which can he obtained as a byproduct of the adiponitrile manufacturing process, with the preferred calcium carboxylate being calcium propionate.
The nitrile compounds described above can be prepared by any conventional process known to those of skill in the art. For example, an aliphatic nitrile may be prepared by reacting an alkyl halide with sodium cyanide or other alkali metal cyanide. The aromatic nitriles can be produced by, for instance, a process comprising diazotising an amine and allowing the resultant product to react with copper (I) cyanide, or other routes. Benzonitrile, for example, can be produced by reacting benzoic acid with urea in the presence of a metallic catalyst. The a-cyanohydrin compounds among such nitrile compounds may be prepared by, for example, a process which comprises allowing cyanide to react with an aldehyde or a ketone, a process which comprises allowing an adduct derived from an aldehyde or ketone and sodium hydrogen sulfite to react with an alkali cyanide such as potassium cyanide, or others. The p-cyanohydrin compound can be prepared by allowing an epoxide to react with hydrogen cyanide, for example.
Calcium compounds that can be employed according to the process of the invention are selected from calcium hydroxide, calcium oxide, or mixtures thereof.
When calcium oxide is used, the conditions of the process will result in at least part of the calcium oxide being hydrated to calcium hydroxide.
The amount of calcium compound employed in the process of the invention can conveniently be expressed as a molar ratio of calcium compound to nitrile compound charged to the reaction vessel.
Broadly, the molar ratio of calcium compound to nitrile compound is about 0.5:1 to about 0.75:1. It is preferred to use a stoichiometric excess of calcium compound compared to the nitrile compound, ie. a molar ratio greater than 0.5:1 will result in an excess of the calcium compound. For example, a molar ratio of 0.75:1 corresponds to a molar excess of 50%. The molar I ratio of calcium compound to nitrile PALSpecifications/646833spec compound is preferably greater than 0.5:1 to about 0.6:1 (an excess of calcium compound up to about a molar excess), and most preferably about 0.505:1 to about 0.55:1 (a molar excess of about 1% to The amount of water employed in the process of the invention is that amount necessary to conduct the process, eg. water needed for the hydrolysis plus water to function as the reaction solvent/diluent. The amount of water employed in the process of the invention can conveniently be expressed as a molar ratio of water to nitrile compound charged to the reaction vessel. The molar ratio of water to nitrile compound is about 5:1 to about 30:1, preferably about 8:1 to about 18:1, and more preferably about 12:1 to about 15:1.
In cases where the nitrile compound is not sufficiently soluble in water, a cosolvent can be used to increase the solubility of the nitrile compound and improve process operation. Suitable cosolvents include water-soluble organic solvents such as acetone and other ketones; methanol, ethanol and other alcohols; and ethylene glycol, glycerol and other polyols, dimethyl ether, tetrahydrofuran, dioxane and other ethers.
Polyols can also aid the reaction by increasing the solubility of calcium hydroxide. The process of the invention can gene rally be conducted at a reaction temperature of about 90 0 C to about 250 0 C, preferably about 1200C to about 250 0 C, and more preferably about 1600C to about 2200C. The process of the invention can be conducted at any suitable pressure depending on the desired reaction temperature and the method used for removal of ammonia from the reaction mixture. It is currently preferred to conduct the reaction at a pressure at or above the autogenic pressure based on the reaction temperature in order to maintain most of the water and the nitrile compound in the liquid phase. Such pressure will be readily apparent to one of ordinary skill in the art without undue experimentation. For example, when propionitrile is used as the nitrile compound and the reaction temperature is 1700C, the autogenic pressure is about 110-120psia (about 758.4-827.4kPa). If ammonia is to be removed during the reaction, such as continuously during the formation of the calcium carboxylate, the pressure is preferably at or above the autogenic pressure but a pressure below the autogenic pressure may be used. If a pressure below the autogenic pressure is used, it is preferred to recover and recycle any nitrile compound removed with the ammonia for optimum operation of the process of the invention. The reaction time will be the time suitable to obtain the desired conversion of the nitrile compound into calcium carboxylate Generally the reaction time will vary depending on process parameters including the reaction temperature and the nitrile used.
The process of the invention can be conducted as a batch, semi-batch, or continuous process depending on the scale of the process and capital investment required.
After completion of the initial reaction whereby the reaction mixture comprising the calcium carboxylate is obtained, the process further comprises recovering and producing a calcium carboxylate product suitable for commercial use. As part of the recovery process, it will be necessary to remove ammonia if sufficient ammonia has not been removed during the reaction, ie. production of the first reaction mixture.
Ammonia removal can be conducted by any conventional method known to those of ordinary skill in the art. One option for ammonia removal is to vent the reaction vessel vapour space following completion of the formation of the first reaction mixture. Depending on the temperature and pressure of the first reaction, this venting procedure would typically be expected to remove the majority, ie. 55-95%, of the free ammonia. A second option is to cool the first reaction mixture to a temperature below the atmospheric PALSpecifications/646833spei boiling point, typically less than 70°C, prior to venting the headspace of the reaction vessel. This option is preferred if the configuration of the equipment used for the first reaction is not suitable for ammonia removal. After the venting process is completed, the remaining ammonia can be removed by heating the second reaction mixture at the pressure after the venting step, ie. preferably at or near atmospheric pressure, to distil the ammonia overhead. The temperature that the second reaction mixture is heated to will be any suitable temperature effective to remove the desired amount of ammonia and will be readily apparent to those of ordinary skill in the art. Typically, the temperature is about 70 0 C to about 105 0 C. If a straight takeover distillation is used, ie. no rectification of the distillate, it may be necessary to boil a significant amount of water overhead to remove the ammonia to very low levels. If water is to be removed overhead, it is currently preferred to add 3 water to the reaction mixture after the vent step and prior to the distillation. If a cosolvent is used and the boiling point of the cosolvent is such that the cosolvent is also removed during the distillation, it may be necessary to add an amount of cosolvent back to the reaction mixture as well. If this distillation to remove ammonia is conducted in the presence of excess calcium compound. hydrolysis of any residual amide corresponding to the nitrile compound is promoted. The time cycle for this distillation can be set depending on the distillation conditions and the desired level of amide and residual ammonia in the calcium carboxylate product, and will be readily apparent to those of ordinary skill in the art.
After completion of the ammonia removal, it may be necessary to adjust the concentration of the calcium carboxylate product depending on the amount of water (and potentially cosolvent) that has been removed during the distillation to remove ammonia. Concentration adjustment may be needed to ensure that all of the calcium carboxylate is in solution, particularly if the insoluble, excess calcium compound is to be subsequently removed by filtration. In addition, this is the currently preferred point of the process to adjust the concentration if the final product is to be a solution. After the ammonia removal and concentration adjustment has occurred, the product mixture is neutralised and, optionally, filtered/separated. The neutralisation (pH adjustment) and filtration/separation steps can be conducted by any conventional technique known to those of ordinary skill in the art. The specific neutralisation and filtration/separation steps utilised will depend on the quality of the starting materials used, impurity levels in the final product, and the desired product quality. Three possible options are described below.
The first option is currently preferred if the highest calcium carboxylate product quality is desired. In this option, the reaction mass is filtered/separated using conventional equipment and techniques after the ammonia removal and concentration adjustment steps to remove excess insoluble calcium compound, as well as any other impurities that may be adsorbed onto the particle surfaces, as well as any other insoluble materials such as insoluble magnesium salts present in the calcium compound used, polymers formed during the reaction, etc. Following the filtration/separation step, the pH is adjusted with carboxylic acid corresponding to the calcium carboxylate to neutralise soluble calcium compound (forming additional calcium carboxylate) and reach the desired pH for the product.
The second option is currently preferred if it is desired to retain the raw material value of the excess calcium compound. In this option, neutralisation with carboxylic acid corresponding to the calcium carboxylate to neutralise excess calcium compound present is performed. However, with this option any PALSpecificatons/646833speci adsorbed impurities may redissolve in the product. Filtration/separation of the neutralised product is then conducted to remove remaining insolubles.
The third option is feasible if a solid final product is to be produced and the product quality standards are less stringent. In this option, no filtration/separation step is conducted. The product resulting from the ammonia removal and concentration adjustment steps is neutralised with carboxylic acid corresponding to the calcium carboxylate to neutralise excess calcium compound present.
Options one and two are the currently preferred options.
Once any filtration/separation and neutralisation operations are conducted, the filtered and neutralised calcium carboxylate product is subjected to final product processing that is dependent on the form of the final product desired, ie. a solution product or a solid product.
For a solution product, the filtered and neutralised calcium carboxylate product optionally has the concentration adjusted by adding water or calcium carboxylate, and a final filtration using a polishing filter or equivalent separation device may be conducted prior to product storage or packaging.
For a solid product, the filtered and neutralised calcium carboxylate product is recovered and dried.
Recovery and drying can be done utilising any conventional process known to one of ordinary skill in the art. One option is to dry the solution directly to a powder using a spray dryer or by spraying onto dry particles in a fluid bed dryer. A second option is to crystallise the calcium carboxylate product by water evaporation, collection on a filter or centrifuge, and final drying in any conventional solids dryer used to dry wet solids. The first option is currently preferred unless the second option is required by product quality specifications since the second option would require recycle or disposal of a mother liquor stream.
Example 1 Propionitrile (22g; 0.4mol, supplied by Aldrich Chemical, 97% min). calcium hydroxide (23.2g, 0.31mol, supplied by Fisher Scientific, certified grade), and deionized water (81.7g, 4.54mol) were charged to a 350mL, 316 stainless steel autoclave. The autoclave was closed, agitation was initiated, and the unit was pressurised to 106psig (730.8kPa) with helium. A helium flow of 30 std cm 3 /min through the head space was established. The contents of the autoclave were heated with an electric mantle to 161°C over a period of 0.5h. The autoclave temperature was then controlled at 160-161 C while the autoclave pressure was maintained at 127-142psig (979kPa). After 1h at 161°C ammonia was detected in the gas leaving the autoclave with moist pH paper. The heat was turned off after 6.8h at which time ammonia was still detectable in the gas leaving the autoclave. The autoclave was cooled overnight and opened the next morning. The autoclave contained a white slurry with a very strong ammonia odour. A sample of the reaction mixture was taken, diluted 1:17.3 with deionized water and analysed using a Thermo Separation HPLC equipped with a 250x4.60mm Hypersil 5pn C18-BDS column. The mobile phase consisted of methanol with the balance being 0.2% phosphoric acid in water. A flow rate of 1mL/min for 12 minutes was used. The calcium propionate and propionamide were quantified with a UV detector operating at 215A and propionitrile was quantified with a refractive index detector. The undiluted reactor product was found to contain 24.2% calcium propionate, 114ppm propionamide, and no detectable propionitrile.
Example 2 Propionitrile (413g, 7.5mol, supplied by Solutia Inc., refined: 99.6% min) was charged into a one gallon 316 stainless steel autoclave through a funnel. Calcium hydroxide (305.7g, 4.13mol, supplied by PALSpecifications/646833speci Mississippi Lime, CODEX Hydrated Lime), and one-half of the total deionized water charge (total water 1835g, 101.9mol) were mixed to produce a slurry which was charged to the autoclave through the same funnel. The remaining water was used to rinse the calcium hydroxide slurry container and was charged to the autoclave through the funnel. The autoclave was closed and pressurised with nitrogen to 50-60psig (344.7-41 3.7kPa), the pressure relieved, and this step repeated two additional times to purge air from the system. The pressure control valve was set to 150psig (1034.2kPa), and a nitrogen flow (200 std cm 3 /min) through the reactor vapour space was started. The autoclave agitator was started and the contents were heated to 170°C with a mixture of steam and water under pressure in an internal coil. Once the temperature inside the autoclave reached 170°C the reaction was allowed to proceed for 12.33h after which time the steam was turned off. After the temperature of the autoclave contents dropped to 60°C, the pressure was slowly vented to atmospheric pressure. The product slurry was then drained into a onegallon bottle (2380.4g). The slurry was analysed by the HPLC method described in Example 1 and was found to contain 31.0% calcium propionate (a quantitative yield within the accuracy of the analysis), 431ppm propionamide, and no detectable propionitrile.
The product was filtered to remove the insoluble calcium hydroxide to give a filtrate weighing 2211g. The bulk of the ammonia was removed on a rotary evaporator under the vacuum provided by a water aspirator and a bath temperature of 60°C. Approximately 400g of deionized water was added to the product during the stripping of the ammonia to keep the calcium propionate in solution. To remove the last traces of ammonia and hydrolyse most of the residual propionamide an additional 300g of deionized water and 1.0g of calcium hydroxide was added. Approximately 300g of water and ammonia was removed by atmospheric distillation with a final base temperature of 103"C. Water was added to dissolve all of the calcium propionate. This solution was filtered to obtain 2466g of solution containing 29.3% calcium propionate (a quantitative yield within the accuracy of the analysis), 112ppm of propionamide, and no detectable ammonia. This material was combined with similar material from two additional hydrolysis reactions. The pH of the combined solution was adjusted to 8.1 with propionic acid (supplied by Aldrich, 99% min). Approximately 20% of the water was removed by atmospheric distillation. This produced a slurry from which the bulk of the water was removed on a rotary evaporator. The wet solid was dried in a vacuum oven at 60°C and 125mm of Hg for 24h to produce a dry white solid. This material assayed as 90.6% calcium propionate, 9.1% water and 200ppm propionamide.
Example 3 Propionitrile (311.5g. 5.66mol, supplied by Solutia Inc., refined: 99.6% min) was charged into a one gallon 316 stainless steel autoclave through a funnel. Calcium hydroxide (229.3g, 3.09mol, supplied by Mississippi Lime, CODEX Hydrated Lime), and deionized water (1007.2g, 55.9mol) were mixed to produce a slurry and charged to the autoclave through the same funnel. A second portion of deionized water (345.1g, 19.2mol) was used to rinse the calcium hydroxide slurry container and was charged to the autoclave through the funnel. The autoclave was pressurised with nitrogen to 45-55psig (310.3-379.2kPa), and the pressure relieved to under 25psig (172.4kPa). This cycle was repeated two additional times to purge most of the air from the system. The pressure control valve was set to 260psig (1792.6kPa), and a nitrogen flow (100 std cm 3 /min) through the reactor vapour space was started. The autoclave agitator was started and the contents were heated to 200°C with a mixture of steam and water under pressure in an PALSpecifications/646833speci internal coil. After the autoclave contents had been at 200*C for 1h, the nitrogen flow was increased to 200cm 3 /min to improve the control of the autoclave pressure. After the autoclave contents had been at 200°C for a total of 2h, the steam was turned off and the reactor pressure was released through a vapour line heated to over 200°C over a period of 40 minutes. The water and ammonia that flashed from the autoclave was trapped by passing it into a scrubber containing 4862.6g of ice water. This scrubber solution weighed 5414.9g after all of the autoclave pressure had been released. After the autoclave contents had cooled to less than 60°C they were drained and weighed (925.1g). Deionized water (237.2g) was added to dissolve all of the calcium propionate. This diluted product was analysed by the HPLC method described in Example 1 and found to contain 28.0% calcium propionate (326g, 1.75mol, 62% yield), 119ppm of propionamide and no detectable propionitrile. The scrubber solution was found to contain 0.34% calcium propionate and 1 58% ammonia. From the amount of calcium propionate in the scrubber, it was concluded that approximately 66.4g of the product was carried into the scrubber by entrainment and that 400g of water and 85.5g of ammonia were flashed from the autoclave. This represents 90% of the ammonia that would be expected from complete hydrolysis of the propionitrile charged to the autoclave. No attempt was made to quantify the amount of calcium propionate remaining in the reactor after the product was drained.
Example 4 A slurry of calcium hydroxide (23.4g, 0.316mol, supplied by Mississippi Lime, CODEX Hydrated Lime) in deionized water (148g, 8.2mol) was charge to a 300mL Hastelloy autoclave which was equipped with a water cooled reflux condenser. The autoclave was pressurised with nitrogen to 235psig (1620.3kPa), and the pressure relieved to 10psig (68.9kPa). This cycle was repeated two additional times to purge most of the air from the system. The autoclave was then pressurised to 235psig (1620.3kPa) and a steady flow of 50 std cm 3 /min of nitrogen was established across the top of the reflux condenser. After the autoclave contents were heated to 200°C, propionitrile (43.3mL, 33.8g, 0.615mol, supplied by Solutia Inc., refined: 99.6% min) was injected over a period of 2h with a high-pressure syringe pump. The gas leaving the unit was passed through a water scrubber to trap any propionitrile, ammonia, and water escaping the autoclave. Samples of the reactor contents were pulled after the addition of propionitrile was complete, and then 1 and 2h later. The water in the gas scrubber was also drained, weighed, and replaced with fresh deionized water when each sample was pulled. The reactor contents were analysed and scrubber samples for propionitrile, propionamide, and calcium propionate by the HPLC method described in Example 1. No calcium propionate or propionamide was found in the scrubber samples indicating that entrainment of the liquid contents of the autoclave into the gas did not occur. The ammonia in the scrubber samples was also determined by titration with 0.1N HCI. From this data, the following time profile of the weight percent of propionitrile, propionamide and calcium propionate as well as the amoles of propionitrile and ammonia leaving the autoclave in the gas were calculated. These results are tabulated below: Time(h) Propionitrile Propionamide Calcium Propionate Propionitrile (mol) Ammonia (mol) 2 1.06% 0.350o 26.1% 0.0001 0.0012 3 0.00% 0.13% 26.900 0.0000 0.0148 4 0.00% 0.0800 27.35% 0.0000 0.0116 PALSpecifications/646833speci

Claims (37)

1. A process for producing a calcium carboxylate comprising contacting a nitrile compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water at a temperature of about 90*C to about 250°C at a sufficient pressure and for a sufficient time to produce a reaction mixture comprising calcium carboxylate.
2. The process of claim 1, wherein said nitrile compound is represented by the formula R-CN wherein R is selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic hydrocarbon group, and wherein R is optionally substituted.
3. The process of claim 2, wherein said R is an aliphatic hydrocarbon group.
4. The process of claim 3, wherein said nitrile is propionitrile. The process of claim 1, wherein the molar ratio of calcium compound to nitrile compound is about 0.5:1 to about 0.75:1.
6. The process of claim 5, wherein the molar ratio of calcium compound to nitrile compound is greater than 0.5:1 to about 0.6:1.
7. The process of claim I wherein the molar ratio of water to nitrile compound is about 5:1 to about 30:1.
8. The process of claim 7 wherein the molar ratio of water to nitrile compound is about 12:1 to about 15:1.
9. The process of claim 1, further comprising removing ammonia from said reaction mixture.
10. The process of claim 9, further comprising recovering said calcium carboxylate.
11. The process of claim 1, wherein said temperature is about 160*C to about 220"C.
12. The process of claim 1, further comprising removing ammonia from said reaction mixture. and subsequently recovering the calcium carboxylate.
13. A process for producing a calcium carboxylate comprising: contacting a nitrile compound, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof and water in a reaction vessel at a temperature of about 90°C to about 250 0 C at a sufficient pressure and for a sufficient time to produce a first reaction mixture comprising calcium carboxylate, the amide corresponding to said nitrile compound, water and ammonia; optionally cooling the first reaction mixture; venting the reaction vessel to remove ammonia and produce a second reaction mixture; optionally adding additional water to the second reaction mixture; heating said second reaction mixture to a suitable temperature to remove additional ammonia and, optionally, water from the second reaction mixture and hydrolyse at least a portion of said amide to produce additional calcium carboxylate; and recovering the calcium carboxylate.
14. The process of claim 13, wherein said nitrile compound is represented by the formula R-CN wherein R is selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic hydrocarbon group, and wherein R is optionally substituted. The process of claim 14, wherein said R is an aliphatic hydrocarbon group.
16. The process of claim 15. wherein said nitrile is propionitrile. PALSpecifications/646833speci 12
17. The process of claim 13, wherein the molar ratio of calcium compound to nitrile compound is about 0.5:1 to about 0.75:1.
18. The process of claim 17, wherein the molar ratio of calcium compound to nitrile compound is greater than 0.5:1 to about 0.6:1.
19. The process of claim 13, wherein the molar ratio of water to nitrile compound added in step is about 5:1 to about 30:1. The process of claim 19, wherein the molar ratio of water to nitrile compound added in step is about 12:1 to about 15:1.
21. The process of claim 13, wherein the temperature is about 160 0 C to about 220 0 C.
22. The process of claim 13, wherein said calcium carboxylate is recovered by adjusting the concentration of the product of step (ii) filtering to remove insoluble, unreacted calcium compound, (iii) adding carboxylic acid corresponding to the nitrile compound to neutralise any soluble calcium compound and produce a neutralised product, and (iv) optionally filtering the neutralised product to remove insolubles and produce a neutralised solution product.
23. The process of claim 22, further comprising drying the neutralised solution product to produce solid calcium carboxylate.
24. The process of claim 13, wherein said calcium carboxylate is recovered by adjusting the concentration of the product of step (ii) adding carboxylic acid corresponding to the nitrile compound to neutralise remaining calcium compound and produce a neutralised product, and (iii) optionally filtering the neutralised product to 1$ remove insolubles and produce a neutralised solution product. The process of claim 24, further comprising drying the neutralised solution product to produce solid calcium carboxylate.
26. The process of claim 13, wherein said first reaction mixture is cooled prior to said venting in step
27. A for producing a calcium carboxylate, said process being substantially as hereinbefore described with reference to any one of the examples.
28. A calcium carboxylate produced by the process of any one of claims 1 to 27.
29. A process for producing a calcium propionate comprising contacting propionitrile, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water at a temperature of about 90 0 C to about 250 0 C at a sufficient pressure to achieve the desired temperature and for a sufficient time to produce a reaction mixture comprising calcium propionate; wherein the molar ratio of calcium compound to propionitrile is about 0.5:1 to about 0.75:1, and the molar ratio of water to propionitrile is about 5:1 to about 30:1. The process of claim 29, wherein the molar ratio of calcium compound to propionitrile is greater than 0.5:1 to about 0.6:1.
31. The process of claim 29, wherein the molar ratio of water to nitrile compound is about 12:1 to about 15:1.
32. The process of claim 29, wherein the temperature is about 160°C to about 220 0 C.
33. The process of claim 29, further comprising removing ammonia from said reaction mixture.
34. The process of claim 33, further comprising recovering said calcium propionate. PALSpecifications/646833speci The process of claim 29, further comprising removing ammonia from said reaction mixture, and subsequently recovering the calcium propionate.
36. A process for producing a calcium propionate comprising contacting a propionitrile, a calcium compound selected from calcium hydroxide, calcium oxide or mixtures thereof, and water in a reaction vessel at a temperature of about 90 0 C to about 250*C at a sufficient pressure and for a sufficient time to produce a first reaction mixture comprising calcium propionate, the propionamide, water and ammonia; optionally cooling the first reaction mixture; venting the reaction vessel to remove ammonia and produce a second reaction mixture; 1o optionally adding additional water to the second reaction mixture; heating said second reaction mixture to a suitable temperature to remove additional ammonia and, optionally, water from the second reaction mixture and hydrolyse at least a portion of said amide to produce additional calcium propionate; and recovering the calcium propionate wherein the molar ratio of calcium compound to propionitrile is about 0.5:1 to 25 about 0.75:1, and the molar ratio of water to propionitrile is about 5:1 to about 30:1.
37. The process of claim 36, wherein said calcium propionate is recovered by adjusting the concentration of the product of step (ii) filtering to remove insoluble, unreacted calcium compound, (iii) adding a propionic acid to neutralise any soluble calcium compound and produce a neutralised product, and (iv) optionally filtering the neutralised product to remove insolubles and produce a neutralised solution product.
38. The process of claim 37, further comprising drying the neutralised solution product to produce solid calcium propionate.
39. The process of claim 36, wherein said calcium propionate is recovered by adjusting the concentration of the product of step (ii) adding propionic acid to neutralise remaining calcium compound and produce a neutralised product, and (iii) optionally filtering the neutralised product to remove insolubles and produce a neutralised solution product. The process of claim 39, further comprising drying the neutralised solution product to produce solid calcium propionate.
41. The process of claim 36, wherein said temperature is about 160°C to about 220*C.
42. The process of claim 36, wherein said first reaction mixture is cooled prior to said venting in step
43. A process for producing a calcium propionate, said process being substantially as hereinbefore described with reference to any one of the examples.
44. A calcium propionate produced by the process of any one of claims 29 to 43. Dated 27 August 2003 SOLUTIA INC. Patent Attorneys for the ApplicantlNominated Person SPRUSON&FERGUSON PALSpecifications/646833sped
AU2003242494A 2003-08-28 2003-08-28 Process for Producing a Calcium Carboxylate Abandoned AU2003242494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242494A AU2003242494A1 (en) 2003-08-28 2003-08-28 Process for Producing a Calcium Carboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2003242494A AU2003242494A1 (en) 2003-08-28 2003-08-28 Process for Producing a Calcium Carboxylate

Publications (1)

Publication Number Publication Date
AU2003242494A1 true AU2003242494A1 (en) 2005-03-17

Family

ID=34397589

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003242494A Abandoned AU2003242494A1 (en) 2003-08-28 2003-08-28 Process for Producing a Calcium Carboxylate

Country Status (1)

Country Link
AU (1) AU2003242494A1 (en)

Similar Documents

Publication Publication Date Title
TWI471291B (en) Process for preparing a carboxamide from a carbonyl compound and hydrogen cyanide
CN101186584B (en) Process for preparing carboxamides by hydrolysis of carboxylic acid nitriles in the presence of a catalyst comprising manganese dioxide
EP1173402A1 (en) Process for production of organic acids and esters thereof
US20120010435A1 (en) Method for isolating di-trimethylol propane
EP2614152A2 (en) Catalytic dehydration of lactic acid and lactic acid esters
US12071401B2 (en) Direct conversion of esters to carboxylates
US6673964B1 (en) Process for producing a calcium carboxylate
JP2956504B2 (en) Method for producing sucrose fatty acid ester
AU2003242494A1 (en) Process for Producing a Calcium Carboxylate
EP1510513A1 (en) Process for producing a calcium carboxylate
US20230373896A1 (en) Purification of ferulic acid
TW201509898A (en) Process for dehydrating alpha-substituted carboxylic acids
MXPA03007852A (en) Process for producing a calcium carboxylate.
KR20050031577A (en) Process for producing a calcium carboxylate
US20090209783A1 (en) Process for the production of hydroxyalkyl (meth)acrylates
CN105037060A (en) Clean synthesis process of alpha-amino acid compounds
EP1958930A2 (en) A process for the production of hydroxyalkyl (meth)acrylates
JP3617064B2 (en) Method for producing sucrose fatty acid ester
JPH0112740B2 (en)
JPS63190862A (en) Recovery of n-vinylformamide
CZ20032331A3 (en) Process for producing a calcium carboxylate
RU2165407C2 (en) Method of preparing free alpha-hydroxy acids from ammonium slats thereof (variants)
KR20150031477A (en) Process for preparing diacid compounds
RU2003127037A (en) METHOD FOR PRODUCING CALCIUM CARBOXYLATE
JPH11292824A (en) Production of alpha-hydroxycarboxylate

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period