AU2002337974A1 - Optimal polymer mixtures for gastric retentive tablets - Google Patents

Optimal polymer mixtures for gastric retentive tablets

Info

Publication number
AU2002337974A1
AU2002337974A1 AU2002337974A AU2002337974A AU2002337974A1 AU 2002337974 A1 AU2002337974 A1 AU 2002337974A1 AU 2002337974 A AU2002337974 A AU 2002337974A AU 2002337974 A AU2002337974 A AU 2002337974A AU 2002337974 A1 AU2002337974 A1 AU 2002337974A1
Authority
AU
Australia
Prior art keywords
dosage form
drug
weight
controlled
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002337974A
Other versions
AU2002337974B2 (en
Inventor
Bret Berner
Mei Chau
Gloria Gusler
Aimee Padua
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assertio Therapeutics Inc
Original Assignee
Depomed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/029,134 external-priority patent/US6723340B2/en
Application filed by Depomed Inc filed Critical Depomed Inc
Publication of AU2002337974A1 publication Critical patent/AU2002337974A1/en
Application granted granted Critical
Publication of AU2002337974B2 publication Critical patent/AU2002337974B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

OPTIMAL POLYMER MIXTURES FOR GASTRIC RETENTIVE TABLETS
BACKGROUND OF THE INVENTION
1. Field of the Invention [01] This invention arises in the technology of pharmaceutical dosage forms, and relates in particular to formulations for drugs that benefit from a prolonged time of controlled release in the stomach and upper gastrointestinal (GI) tract, and from an enhanced opportunity for absorption in the stomach and upper GI tract rather than the lower portions of the GI tract.
2. Description of the Prior Art
[02] Many drugs have their greatest therapeutic effect when released in the stomach, particularly when the release is prolonged in a continuous, controlled mamier. Drugs delivered in this manner have fewer side effects and produce their therapeutic effect without the need for repeated or frequent dosing. Localization of the drug delivery in the stomach is an advantage for the treatment of local disorders of the stomach such as esophageal reflux disease, for the eradication of ulcer-causing bacteria in the gastric mucosa, and for the treatment of disorders that require sustained antacid action. Sustained release in the stomach is also useful for therapeutic agents that the stomach does not readily absorb, since sustained release prolongs the contact time of the agent in the stomach or in the upper part of the small intestine, which is where absorption occurs and contact time is limited. [03] In the normal digestive process, the passage of matter through the stomach is delayed by a physiological condition that is variously referred to as the digestive mode, the postprandial mode, or the "fed mode." Between fed modes, the stomach is in the interdigestive or "fasting" mode. The difference between the two modes lies in the pattern of gastroduodenal motor activity.
[04] In the fasting mode, the stomach exhibits a cyclic activity called the interdigestive migrating motor complex (IMMC). This activity occurs in four phases:
Phase I, which lasts 45 to 60 minutes, is the most quiescent, with the stomach experiencing few or no contractions. Phase II is characterized by sweeping contractions occurring in a irregular intermittent pattern and gradually increasing in magnitude. Phase III consists of intense bursts of peristaltic waves in both the stomach and the small bowel. This lasts for 5 to 15 minutes. Phase IN is a transition period of decreasing activity which lasts until the next cycle begins. [05] The total cycle time for all four phases is approximately 90 minutes. The greatest activity occurs in Phase III whose powerful peristaltic waves sweep the swallowed saliva, gastric secretions, food particles, and particulate debris, out of the stomach and into the small intestine and colon. Phase III thus serves as an intestinal housekeeper, preparing the upper tract for the next meal and preventing bacterial overgrowth.
[06] The fed mode is initiated by nutritive materials entering the stomach upon the ingestion of food. Initiation is accompanied by a rapid and profound change in the motor pattern of the upper gastrointestinal (GI) tract, over a period of 30 seconds to one minute. The change is observed almost simultaneously at all sites along the GI tract and occurs before the stomach contents have reached the distal small intestine. Once the fed mode is established, the stomach generates 3-4 continuous and regular contractions per minute, similar to those of the fasting mode but with about half the amplitude. The pylorus is partially open, causing a sieving effect in which liquids and small particles flow continuously from the stomach into the intestine while indigestible particles greater in size than the pyloric opening are retropelled and retained in the stomach. This sieving effect thus causes the stomach to retain particles exceeding about 1 cm in size for approximately 4 to 6 hours.
[07] The particle size required for gastric retention during the fasting mode is substantially larger than the particle size required for gastric retention in the fed mode. Particles large enough to be retained in the fasting mode are too large for practical administration in most patients. Particles of a smaller particle size can be retained in the stomach if they are administered to a patient who is in the fed mode, and this offers a means of prolonging the amount of time that the particles spend in the stomach.
[08] The prior art of dosage forms for gastric retention also teaches that the residence time of drug formulation particles in the stomach can be prolonged by using particles that are small enough to be swallowed comfortably but swell to a larger size upon contact with the gastric fluid in the stomach. With a great enough degree of swelling, particles of this type achieve gastric retention regardless of whether the subject is in the fed mode or the fasting mode. One means of achieving a swellable particle is to disperse the drug in a solid matrix formed of a substance that absorbs the gastric fluid and swells as a result of the absorbed fluid. Disclosures of this type of particle are found in United States Patent No. 5,007,790 ("Sustained-Release Oral Drug Dosage Form;" Shell, inventor; April 16, 1991), United States Patent No. 5,582,837 ("Alkyl-Substituted Cellulose-Based Sustained-Release Oral Drug Dosage Forms;" Shell, inventor: December 10, 1996): United States Patent No. 5,972,389 ("Gastric-Retentive Oral Drug Dosage Forms for the Controlled Release of Sparingly Soluble Drugs and Insoluble Matter;" Shell et al., inventors; October 26, 1999); and International (PCT) Patent Application WO 98/55107 ("Gastric-Retentive Oral Drug Dosage Forms for Controlled Release of Highly Soluble Drags;" Shell et al., inventors; publication date December 10, 1998).
[09] Polymer matrices have also been used to achieve controlled release of the drug over a prolonged period of time. Such sustained or controlled release is achieved either by limiting the rate by which the surrounding gastric fluid can diffuse through the matrix and reach the drug, dissolve the drug and diffuse out again with the dissolved drug, or by using a matrix that slowly erodes, continuously exposing fresh drug to the surrounding fluid. Disclosures of polymer matrices that function by either of these two methods are found in United States Patent No. 6,210,710, ("Sustained release polymer blend for pharmaceutical applications," Skinner, inventor, April 3, 2001); United States Patent No. 6,217,903, ("Sustained release polymer blend for pharmaceutical applications," Skinner, inventor, April 17, 2001); International (PCT) Patent Application WO 97/18814 (Pharmaceutical
Formulations," MacRae et al., inventors, publication date May 29, 1997); United States Patent No. 5,451,409, ("Sustained release matrix system using hydroxyethyl cellulose and hydroxypropyl cellulose polymer blends," Rencher et al., inventors, September 19, 1995); United States Patent No. 5,945,125, ("Controlled release tablet," Kim, inventor, August 31, 1999); International (PCT) Patent Application WO 96/26718 ("Controlled Release Tablet," Kim, inventor: publication date September 6, 1996); United States Patent No. 4,915,952, ("Composition comprising drug, HPC, HPMC, and PEO," Ayer et al., inventors, April 10, 1990); United States Patent No. 5,328,942, ("Seed film compositions," Akhtar et al, inventors, July 12, 1994); United States Patent No. 5,783,212, ("Controlled release drug delivery system," Fassihi et al., inventors, July 21, 1998); United States Patent No. 6,120,803, ("Prolonged release active agent dosage form for gastric retention," Wong et al., inventors, September 19, 2000); United States Patent No. 6,090,411, ("Monolithic tablet for controlled drug release," Pillay et al, inventors, July 18, 2000). [10] The goals of gastric retention and controlled release are not always compatible. Poly(ethylene oxide) is a matrix material that possesses both swelling and controlled release properties, but at the amounts needed for high drug dosage, and particularly the amounts needed for sufficient swelling to achieve gastric retention, the use of poly(ethylene oxide) raises regulatory concerns, since the United States Food and Drug Administration lists poly(ethylene oxide) as a substance with undefined toxicology considerations when used at sufficiently high doses on a long-term basis. Other matrix materials swell but also offer the benefit of a more even and generally faster erosion in the gastric environment so that the dosage forms can clear the GI tract more predictably after a few hours of drag release. One such material is hydroxypropyl methylcellulose, which swells but not to the same degree as poly(ethylene oxide). Hydroxypropyl methylcellulose is not considered a toxicology risk at any level by the FDA. A disadvantage of matrices that erode more readily however is that they cause a high initial burst of drug release and a lower degree of control over the drug release rate over the initial course of the drug release.
SUMMARY OF THE INVENTION
[11] It has now been discovered that the use of poly(ethylene oxide) and hydroxypropyl methylcellulose in combination as a matrix for a swellable, sustained-release tablet provides unexpectedly beneficial performance, avoiding or substantially reducing the problems enumerated above and offering improved control and reliability while retaining both the ability to swell for gastric retention and to control drug release. The swelling behavior of poly(ethylene oxide) is retained but balanced against the erosion behavior of hydroxypropyl methylcellulose which modulates the extent and progress of swelling. In certain preferred embodiments of the invention, despite the relatively low level of poly(ethylene oxide), the tablet increases to about 120% of its original weight within the first 30 minutes of contact with gastric fluid and continues to increase in size, reaching at least about 90% of its maximum weight or size within 8 hours and remaining in a swollen state for sufficient time to provide gastric retention. The competing yet complementary actions of swelling and erosion also provide the tablet with greater mechanical integrity so that it disintegrates more slowly and more evenly than tablets with poly(ethylene oxide) as the sole or primary matrix material. By offering a more reproducible erosion rate, the combined- polymer matrix tablet provides greater reproducibility in the drug release rate and transit time through the GI tract while still retaining the swelling behavior that results in gastric retention. A particular benefit of the combined-polymer matrices of this invention is that they provide a tablet with the swelling behavior of poly(ethylene oxide) while maintaining the level of poly(ethylene oxide) below any levels that encounter regulatory obstacles that have been established in view of certain recognized or perceived toxicological effects of poly(ethylene oxide).
[12] The combined-polymer matrices of the present invention offer benefits to drugs ranging from highly soluble drugs whose delivery from the matrix occurs primarily by diffusion out of the matrix after being dissolved by the gastric fluid, to sparingly soluble drugs whose delivery from the matrix occurs primarily by erosion of the matrix. For the highly soluble drags, the poly(ethylene oxide) component of the matrix limits the initial release of the drug and imparts gastric retention through swelling, while the hydroxypropyl methylcellulose component lowers the amount of polyethylene oxide required while still allowing the swelling to occur. For the sparingly soluble drugs, the hydroxypropylmethyl cellulose component prevents premature release of the drugs by retarding the erosion rate of the poly(ethylene oxide) while the poly(ethylene oxide) provides superior gastric retention. For both high and low solubility drugs, therefore, and for drugs of intermediate solubilities as well, the two polymers function in a complementary manner, benefiting in terms of gastric retention and sustained drug release.
[13] These and other features, advantages, applications and embodiments of the invention are described in more detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
[14] FIG. 1 is a plot showing the cumulative release of ciprofloxacin hydrochloride from tablets (as a percent of the total amount originally present in each tablet) in a gastric environment over time, comparing a polymer matrix consisting of a combination of PEO and HPMC to polymer matrices consisting of PEO and HPMC alone.
[15] FIG. 2 is a plot showing the swelling profile of ciprofloxacin hydrochloride tablets on a mass basis in a gastric environment over time, offering the same comparison as the preceding figures.
[16] FIG. 3 is a plot showing the cumulative release of gabapentin from tablets (as a percent of the total amount originally present in each tablet) in a gastric environment over time, offering the same comparison as the preceding figures. [17] FIG.4 is a plot showing the cumulative release of metformin hydrochloride from tablets (as a percent of the total amount originally present in each tablet) in a gastric environment over time, offering the same comparison as the preceding figures.
[18] FIG. 5 is a plot showing the swelling profile of metformin hydrochloride tablets on a mass basis in a gastric environment over time, offering the same comparison as the preceding figures.
[19] FIG. 6 is a plot of pharmacokinetic data showing the in vivo gastric retention performance of two gabapentin formulations prepared in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
AND PREFERRED EMBODIMENTS
[20] Poly(ethylene oxide), also referred to herein as "polyethylene oxide" and "PEO," is a linear polymer of unsubstituted ethylene oxide. Poly(ethylene oxide) polymers having viscosity-average molecular weights of about 100,000 daltons and higher can be used. Examples of poly(ethylene oxide)s that are commercially available are: POLYOX® NF, grade WSR Coagulant, molecular weight 5 million POLYOX® grade WSR 301, molecular weight 4 million POLYOX® grade WSR 303, molecular weight 7 million POLYOX® grade WSRN-60K, molecular weight 2 million These particular polymers are products of Dow Chemical Company, Midland, Michigan, USA. Other examples exist and can likewise be used.
[21] Celluloses are linear polymers of anhydroglucose, and hydroxypropyl methylcellulose, also referred to herein as "HPMC," is an anhydroglucose in which some of the hydroxyl groups are substituted with methyl groups to form methyl ether moieties, and others are substituted with hydroxypropyl groups or with methoxypropyl groups to form hydroxypropyl ether or methoxypropyl ether moieties. Examples of hydroxypropyl methylcelluloses that are commercially available are METHOCEL E (USP type 2910), METHOCEL F (USP type 2906), METHOCEL J (USP type 1828), METHOCEL K (USP type 2208), and METHOCEL 310 Series, products of The Dow Chemical Company, Midland, Michigan, USA, the different products varying slightly in the degree of methoxyl and hydroxypropyl substitution. The average degree of methoxyl substitution in these products ranges from about 1.3 to about 1.9 (of the three positions on each unit of the cellulose polymer that are available for substitution) while the average degree of hydroxypropyl substitution per unit expressed in molar terms ranges from about 0.13 to about 0.82.
[22] The choice of a particular molecular weight range for either the poly(ethylene oxide) or the hydroxypropyl methylcellulose can vary with the solubility of the drag contained in the tablet. Drugs of relatively high solubility will tend to be released more quickly by diffusion through the matrix than by erosion of the matrix, and this can be controlled by using polymers of relatively high molecular weights since the higher molecular weight will lessen the rate of outward diffusion of the drug. Drugs of lower solubilities will require a greater reliance on erosion of the matrix for release and will thus benefit from polymers of lower molecular weights which tend to erode more quickly. Thus for drags of high solubility, preferred poly(ethylene oxide)s are those whose molecular weights, expressed as viscosity average molecular weights, range from about 2,000,000 to about 10,000,000, and most preferably from about 4,000,000 to about 7,000,000. The size of a hydroxypropyl methylcellulose polymer is expressed not as molecular weight but instead in terms of its viscosity as a 2% solution by weight in water. For drugs of high solubility, the preferred hydroxypropyl methylcellulose polymers are those whose viscosity is within the range of about 4,000 to about 200,000, more preferably from about 50,000 centipoise to about 200,000 centipoise, and most preferably from about 80,000 centipoise to about 120,000 centipoise. [23] Accordingly, for drags of low solubility, preferred poly(ethylene oxide)s are those whose viscosity average molecular weights range from about 100,000 to about 5,000,000, and most preferably from about 500,000 to about 2,500,000, while preferred hydroxypropyl methylcellulose polymers are those whose viscosity is within the range of about 1,000 centipoise to about 100,000 centipoise, and most preferably from about 4,000 centipoise to about 30,000 centipoise. [24] It will be noted that some of the ranges cited above for high solubility drugs overlap or are contiguous (share a limit) with the some of the ranges for low solubility drugs. While "high solubility" and "low solubility" are terms whose meaning will be understood by those skilled in the art of pharmaceutical drugs, the terms are relative by nature, and the overlapping portions refer to drags that are intermediate in solubility, i.e., "high solubility" drags that are close to the "low solubility" range and vice versa.
[25] The relative amounts of PEO and HPMC may vary within the scope of the invention and are not critical. In most cases, best results will be obtained with a PEO:HPMC weight ratio within the range of from about 1:3 to about 3:1, and preferably within the range of from about 1 :2 to about 2:1. As for the total amount of polymer relative to the entire tablet, this may vary as well and will depend on the desired drug loading. In most cases, the polymer combination will constitute from about 15% to about 90% by weight of the dosage form, preferably from about 30% to about 65%, and most preferably from about 40% to about 50%. As noted above, the PEO content of the matrix can be maintained below the maximum dose established by the FDA (270 mg per tablet), and still achieve the beneficial effects of this invention. Accordingly, the PEO content of the tablet as a whole is preferably less than 270 mg, and more preferably less than 250 mg.
[26] Drugs of relatively high solubility are generally considered to be those whose solubility in water at 37°C is greater than one part by weight of the drug in twenty parts by weight of water. An alternative and preferred definition is those drags whose solubility in water at 37°C is greater than one part by weight of the drug in ten parts by weight of water, and a further alternative and even more preferred definition is those drugs whose solubility in water at 37°C is greater than one part by weight of the drag in three parts by weight of water. Examples of drugs of high solubility are metformin hydrochloride, gabapentin, losartan potassium, vancomycin hydrochloride, captopril, erythromycin lactobionate, ranitidine hydrochloride, sertraline hydrochloride, ticlopidine hydrochloride, tramadol, fluoxetine hydrochloride, bupropion, lisinopril, iron salts, sodium valproate, valproic acid, and esters of ampicillin. Drugs of relatively low solubility are generally considered to be those whose solubility in water at 37°C is from about 0.005% to about 5% by weight, and preferably those whose solubility in water at 37°C is from about 0.01% to about 5% by weight. Examples of drugs of low solubility are cefaclor, ciprofloxacin (and its hydrochloride salt), saguinavir, ritonavir, nelfinavir, clarithromycin, azithromycin, ceftazidine, cyclosporin, digoxin, paclitaxel, and ketoconazole. Other drugs that can be dispersed in the combined-polymer matrix of this invention to achieve the beneficial effects discussed herein will be apparent to those skilled in the art.
[27] Tablets in accordance with this invention can be prepared by common tabletting methods that involve mixing, comminution, and fabrication steps commonly practiced by and well known to those skilled in the art of manufacturing drug formulations. Examples of such techniques are: (1) Direct compression using appropriate punches and dies, typically fitted to a suitable rotary tabletting press;
(2) Injection or compression molding; (3) Granulation by fluid bed, by low or high shear granulation, or by roller compaction, followed by compression; and
(4) Extrusion of a paste into a mold or to an extrudate to be cut into lengths. [28] When tablets are made by direct compression, the addition of lubricants may be helpful and is sometimes important to promote powder flow and to prevent breaking of the tablet when the pressure is relieved. Examples of typical lubricants are magnesium stearate (in a concentration of from 0.25% to 3% by weight, preferably about 1% or less by weight, in the powder mix), stearic acid (0.5% to 3% by weight), and hydrogenated vegetable oil (preferably hydrogenated and refined triglycerides of stearic and palmitic acids at about 1% to 5% by weight, most preferably about 2% by weight). Additional excipients may be added as granulating aids (low molecular weight HPMC at 2-5% by weight, for example), binders (microcrystalline cellulose, for example), and additives to enhance powder flowability, tablet hardness, and tablet friability and to reduce adherence to the die wall. Other fillers and binders include, but are not limited to, lactose (anhydrous or monohydrate), maltodextrins, sugars, starches, and other common pharmaceutical excipients. These additional excipients may constitute from 1% to 50% by weight, and in some cases more, of the tablet.
[29] The dosage forms of the present invention find utility when administered to subjects who are in either the fed mode or the fasting mode. Administration during the fed mode is preferred, since the narrowing of the pyloric opening that occurs in the fed mode serves as a further means of promoting gastric retention by retaining a broader size range of the dosage forms.
[30] The fed mode is normally induced by food ingestion, but can also be induced pharmacologically by the administration of pharmacological agents that have an effect that is the same or similar to that of a meal. These fed-mode inducing agents may be administered separately or they may be included in the dosage form as an ingredient dispersed in the dosage form or in an outer immediate release coating. Examples of pharmacological fed-mode inducing agents are disclosed in co-pending United States Patent Application Serial No. 09/432,881, filed November 2, 1999, entitled "Pharmacological Inducement of the Fed Mode for Enhanced Drag Administration to the Stomach," inventors Markey, Shell, and Berner, the contents of which are incorporated herein by reference.
[31] In certain embodiments of this invention, the tablet is in two (or more) layers, a first layer serving primarily to provide the swelling the results in gastric retention while a second layer serves primarily as a reservoir for the drug. The combined-polymer matrix of the present invention may be used in either or both of the two layers.
[32] In certain further embodiments of this invention, the dosage form may contain additional drug in a quickly dissolving coating on the outer surface of the tablet. This may be the same drug as the drug in the matrix or a different drug. The coating is referred to as a "loading dose" and its purpose is to provide immediate release into the patient's bloodstream upon ingestion of the dosage form without first requiring the drug to diffuse through the polymer matrix. An optimal loading dose is one that is high enough to quickly raise the blood concentration of the drug but not high enough to produce the transient overdosing that is characteristic of highly soluble drugs that are not administered in controlled-release formulations.
[33] A film coating may also be included on the outer surface of the dosage form for reasons other than a loading dose. The coating may thus serve an aesthetic function or a protective function, or it may make the dosage form easier to swallow or mask the taste of the drag.
[34] The following examples are offered for purposes of illustration and are not intended to limit the invention.
EXAMPLE 1
[35] This example illustrates the preparation of tablets of ciprofloxacin hydrochloride monohydrate in accordance with the invention, and compares the combination of PEO and hydroxypropyl methyl cellulose (HPMC) with PEO alone and HPMC alone in terms of the release profile of the drag and the swelling behavior, both over time and both in simulated gastric fluid (0.1 N HC1).
[36] Tablets were formulated by dry blending a granulation of ciprofloxacin hydrochloride and poly(vinyl pyrrolidone) and the remaining excipients listed below, followed by pressing on a Carver "Auto C" tablet press (Fred Carver, Inc., Indiana). Specifications for the ingredients were as follows: ciprofloxacin hydrochloride monohydrate (the "Active Ingredient") poly(vinyl pyrrolidone) ("PVP," grade K29-32, manufactured by ISP) polyethylene oxide) ("PEO," grade PolyOx Coagulant, NF FP grade, manufactured by Union Carbide, a wholly owned subsidiary of Dow Chemical Company) hydroxypropylmethylcellulose ("K100M," grade Methocel K100M, having a viscosity of 100,000 cps as a 2% aqueous solution, premium, that meets the specification for type USP 2208 HPMC, manufactured by Dow Chemical Company) micro-crystalline cellulose ("MCC," type Avicel PH 101, manufactured by FMC
Corporation) magnesium stearate ("M. St.") The tablets were 1000 mg in size, and the pressing procedure involved a 0.7086" x 0.3937" Mod Oval die (Natoli Engineering), using 4000 lbs force, zero second dwell time (the setting on the Carver press), and 100% pump speed.
[37] . Three lots of tablets were prepared, with the following compositions, all in weight percents (Lot B representing the combination of the present invention):
TABLE 1.1: Ciprofloxacin Tablet Composition Lot %Active %PVP %PEO %MCC %K100M %M. St.
A 58.2 4.38 32.42 5.01 0 0
B 57.6 4.34 19.99 4.95 12.11 0.99
C 57.6 4.34 0 4.95 32.10 0.99
Cumulative dissolution profiles were obtained in USP apparatus I (40 mesh baskets), 100 rpm, in 0.1 N HCl, by taking 5-mL samples without media replacement, at 15 minutes, 30 minutes, and 1, 2, 4, 6, and 8 hours. The profiles, based on the theoretical percent active added to the formulation, are shown in Table 1.2 and plotted in FIG. 1, in which the diamonds represent Lot A, the squares represent Lot B, and the triangles represent Lot C. TABLE 1.2: Ciprofloxacin Cumulative Dissolution Profiles
Cumulative % Active Released
Lot 0.25 h 0.5 h l h 2 h 4 h 6 h 8 h
A 1.40 2.25 3.96 7.41 14.89 19.33 24.33
B 1.43 2.28 3.56 6.56 13.30 17.23 21.74
C 1.44 2.16 3.59 6.14 11.30 13.71 15.85
[38] The dissolution profiles for this partially erosional tablet demonstrate that the combination of PEO and HPMC has a dissolution profile that is intermediate between those of PEO alone and HPMC alone and shows greater control over the drug release than the PEO alone.
[39] The swelling profiles, expressed as a percent mass increase, were determined using the same conditions as those used in obtaining the dissolution profiles. The results are shown in FIG. 2 (mass swelling). The diamonds in the figure represent Lot A, the squares represent Lot B, and the triangles represent Lot C, as in FIG. 1. FIG. 2 demonstrates that the combination of HPMC and PEO shows higher swelling than HPMC alone, and thus the combination of polymers retains the good swelling characteristics of PEO.
EXAMPLE 2 [40] This example illustrates the preparation of tablets of gabapentin in accordance with the invention, and compares the combination of PEO and HPMC with PEO alone and HPMC alone in terms of the release profile of the drag over time in simulated gastric fluid (0.1 N HCl).
[41] The procedures used were the same as those described in Example 1 , except that gabapentin was substituted for ciprofloxacin, and no additional excipients or binders were used.
[42] Three lots of tablets were prepared, with the compositions shown in Table 2.1, all in weight percents (Lot E representing the combination of the present invention):
TABLE 2.1: Gabapentin Tablet Composition
Lot %Active %PEO %K100M %M. St.
D 60.0 39.0 0.0 1.0
E 60.0 24.3 14.7 1.0
F 60.0 0.00 39.0 1.0
[43] Cumulative dissolution profiles for this diffusional tablet were obtained in the same manner as those of Example 1, except that samples were taken only at 1, 4, and 8 hours, and the dissolution medium was deionized water. The profiles, based on the theoretical percent active added to the formulation, are shown in Table 2.2 and plotted in FIG. 3, in which the diamonds represent Lot D, the squares represent Lot E, and the triangles represent Lot F. TABLE 2.2: Gabapentin Cumulative Dissolution Profiles Cumulative % Active Released
Lot l h 4 h 8 h
D 15.4 39.4 61.7
E 14.8 37.4 57.8
F 18.6 43.3 64.7
[44] The dissolution profiles demonstrate that the combination of PEO and HPMC has a dissolution profile that is surprisingly less rapid than those of PEO alone and HPMC alone.
EXAMPLE 3
[45] This example illustrates the preparation of tablets of metformin hydrochloride in accordance with the invention, and compares the combination of PEO and HPMC with PEO alone and HPMC alone in terms of the release profile of the drag over time in simulated gastric fluid (0.1 N HCl). [46] The procedures used were the same as those described in Examples 1 and 2, except that a grade of hydroxypropyl methyl cellulose identified as Methocel E5 premium, manufactured by Dow Chemical Company, was used in place of the PNP and the lactose monohydrate.
[47] Three lots of tablets were prepared, with the compositions shown in Table 3.1 , all in weight percents (Lot I representing the combination of the present invention). (Lots 2 and 3 were prepared on a Manesty Betapress rather than a Carver Auto C press.)
TABLE 3.1: Metformin Tablet Composition Lot %Active %E5 %PEO %MCC %K100M %M. St.
G 49.67 3.04 0.00 0.00 46.33 0.76
H 50.00 1.70 42.55 5.00 0.00 0.75
I 49.97 1.70 26.50 4.99 16.08 0.75
[48] Cumulative dissolution profiles were obtained in the same manner as those of Examples 1 and 2, except that samples were taken only at 2, 4, 6, and 8 hours. The profiles, based on the theoretical percent active added to the formulation, are shown in Table 3.2 and plotted in FIG. 4, in which the diamonds represent Lot G, the squares represent Lot H, and the triangles represent Lot I.
TABLE 3.2: Metformin Cumulative Dissolution Profiles Cumulative % Active Released
Lot 2 h 4 h 6 h 8 h
G 51.0 70.8 84.6 95.1
H 41.4 61.2 74.9 85.6
I 47.8 68.1 81.0 88.6
[49] The dissolution profiles demonstrate that the combination of PEO and HPMC has a dissolution profile that allows extension of the drag delivery profile beyond the 90% release in 6 hours seen for HPMC alone.
[50] The swelling profiles, expressed as a percent mass increase, were determined using the same conditions as those used in obtaining the dissolution profiles. The results are shown in FIG. 5, in which the diamonds represent Lot I, the squares represent Lot G, and the triangles represent Lot H. Note that this is not the same notation used in the figures of the preceding examples. FIG. 5 demonstrates that PEO/HPMC has a swelling profile intermediate between that of the pure PEO and the pure HPMC.
EXAMPLE 4
[51] This example illustrates the in vivo gastric retention of gabapentin in two formulations in accordance with the present invention, and compares this with
NEURONTIN®, an immediate-release form of gabapentin available from Parke-Davis,
Morris Plains, New Jersey, USA.
[52] The tests were performed on beagle dogs, five each of which were administered an oral dose of either NEURONTIN® or one of two gabapentin dosage forms, all cases involving a tablet containing 300 mg of gabapentin. Table 4.1 lists the components of the two gabapentin dosage forms, GR-A and GR-B, both in accordance with the invention.
Different grades of HPMC were used, Methocel K15M and Methocel K4M, the former having a viscosity of 15,000 cps as a 2% aqueous solution and the latter a viscosity of
4,000 cps as a 2% aqueous solution. TABLE 4.1 : Gabapentin Formulations Used for In Nivo Studies
GR-A GR-B
Component Weight % mg per Tablet Weight % mg per Tablet
Gabapentin 46.15 300 46.13 300
PEO Coagulant, ΝF 22.61 147 0.0 0.0 FP (low EO)
PEO 301, ΝF FP 0.0 0.0 22.63 147 (low EO)
Methocel K15M, 22.62 147 0.0 0.0 premium (USP)
Methocel K4M, 0.0 0.0 22.61 147 premium (USP)
Avicel PH-101, NF 7.61 49.5 7.63 49.5
Magnesium Stearate, 1.01 6.5 1.00 6.5 NF
Total 100.00 650 100.00 650
[53] Dosing was performed immediately after a meal in a non-randomized order on three separate occasions. The plasma of each dog was then sampled for the first 24 hours following the dose. The results, based on averages of five dogs for each dosage form, are shown in Table 4.2, where "IR" denotes the immediate-release NEURONTIN® tablet, "AUC" denotes area under the curve, "Cmax" denotes the maximum concentration detected in the plasma, and "tmax" denotes the time at which the maximum concentration occurred.
TABLE 4.2: Pharmacokinetic Data
(relative to the IR):
Pharmacokinetic
Parameter IR GR-A GR-B GR-A GR-B
AUC Mean 148485 174691 166940 118.2% 1 1 1.8%
(ng/mL-h)
Std Dev 18449 20496 35320 N/A N/A
'-'max Mean 32039 20844 18937 66.9% 60.1 %
(ng/mL)
Std Dev 5782 4066 2822 N/A N/A tmax (h) Mean 0.9 4.2 3.4 N/A N/A
Std Dev 0.2 1.5 0.5 N/A N/A
[54] The full data from which these figures are taken are shown in FIG. 6, where the diamonds denote the NEURONTIN® data, the squares the GR-A data, and the triangles the GR-B data.
[55] The foregoing is offered primarily for purposes of illustration. It will be readily apparent to those skilled in the art that further drugs can be included, and that the shapes, components, additives, proportions, methods of formulation, and other parameters described herein can be modified further or substituted in various ways without departing from the spirit and scope of the invention.

Claims (10)

WHAT IS CLAIMED IS:
1. A controlled-release oral drug dosage form for releasing a drag into at least a portion of a region defined by the stomach and the upper gastrointestinal tract, said dosage form comprising a solid monolithic matrix with said drag dispersed therein, said matrix comprising a combination of poly(ethylene oxide) and hydroxypropyl methylcellulose at a weight ratio that causes said matrix to swell upon contact with gastric fluid to a size large enough to provide gastric retention.
2. A controlled-release oral drug dosage form in accordance with claim 1 in which said matrix swells by at least about 20%o of its original size within 30 minutes upon immersion in gastric fluid and to reach at least about 90% of its maximum size within 8 hours.
3. A controlled-release oral drag dosage form in accordance with claim 1 in which said drug has a solubility in water that exceeds one part of said drug per ten parts of water, by weight, said poly(ethylene oxide) has a viscosity average molecular weight of from about 2,000,000 to about 10,000,000 daltons, and said hydroxypropyl methylcellulose has a viscosity of from about 4,000 centipoise to about 200,000 centipoise, measured as a 2% solution in water.
4. A controlled-release oral drug dosage form in accordance with claim 3 in which said drug has a solubility in water that exceeds one part of said drug per three parts of water, by weight.
5. A controlled-release oral drug dosage form in accordance with claim 1 in which said drug has a solubility in water that is less than one part of said drug per ten parts of water, by weight, said poly(ethylene oxide) has a viscosity average molecular weight of from about 100,000 to about 5,000,000 daltons, and said hydroxypropyl methylcellulose has a viscosity of from about 1,000 centipoise to about 100,000 centipoise, measured as a 2% solution in water.
6. A controlled-release oral drug dosage form in accordance with claim Error! Reference source not found, in which said drug has a solubility in water ranging from about 0.05% to about 10% by weight.
7. A controlled-release oral drug dosage form in accordance with claim 1 in which the weight ratio of said poly(ethylene oxide) to hydroxypropyl methylcellulose is within the range of from about 1 :3 to about 3:1.
8. A controlled-release oral drug dosage form in accordance with claim 1 in which the weight ratio of said poly(ethylene oxide) and hydroxypropyl methylcellulose in combination constitute from about 15% to about 90% by weight of said dosage form.
9. A controlled-release oral drug dosage form in accordance with claim 1 in which said poly(ethylene oxide) and hydroxypropyl methylcellulose in combination constitute from about 40% to about 50% by weight of said dosage form.
10. A controlled-release oral drag dosage form in accordance with claim 1 in which said drag is a member selected from the group consisting of metformin hydrochloride, losartan potassium, ciprofloxacin, sodium valproate, valproic acid, and gabapentin.
AU2002337974A 2001-10-25 2002-10-22 Optimal polymer mixtures for gastric retentive tablets Expired AU2002337974B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/029,134 US6723340B2 (en) 2001-10-25 2001-10-25 Optimal polymer mixtures for gastric retentive tablets
US10/029,134 2001-10-25
PCT/US2002/033968 WO2003035177A2 (en) 2001-10-25 2002-10-22 Optimal polymer mixtures for gastric retentive tablets

Publications (2)

Publication Number Publication Date
AU2002337974A1 true AU2002337974A1 (en) 2003-07-03
AU2002337974B2 AU2002337974B2 (en) 2006-06-01

Family

ID=21847419

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002337974A Expired AU2002337974B2 (en) 2001-10-25 2002-10-22 Optimal polymer mixtures for gastric retentive tablets

Country Status (9)

Country Link
US (1) US6723340B2 (en)
EP (2) EP2260832A3 (en)
JP (2) JP5133495B2 (en)
AT (1) ATE536863T1 (en)
AU (1) AU2002337974B2 (en)
CA (1) CA2409999C (en)
MX (1) MXPA04003793A (en)
TW (1) TWI325326B (en)
WO (1) WO2003035177A2 (en)

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081697A1 (en) * 1998-11-12 2004-04-29 Smithkline Beecham P.L.C. Pharmaceutical composition for modified release of an insulin sensitiser and another antidiabetic agent
US20030153607A1 (en) * 1998-11-12 2003-08-14 Smithkline Beecham P.L.C. Novel composition and use
US20040102486A1 (en) * 1998-11-12 2004-05-27 Smithkline Beecham Corporation Novel method of treatment
US6544555B2 (en) 2000-02-24 2003-04-08 Advancis Pharmaceutical Corp. Antibiotic product, use and formulation thereof
US20020068078A1 (en) 2000-10-13 2002-06-06 Rudnic Edward M. Antifungal product, use and formulation thereof
US20020197314A1 (en) * 2001-02-23 2002-12-26 Rudnic Edward M. Anti-fungal composition
IL159300A0 (en) * 2001-06-11 2004-06-01 Xenoport Inc Prodrugs of gaba analogs, compositions and uses thereof
US7232924B2 (en) * 2001-06-11 2007-06-19 Xenoport, Inc. Methods for synthesis of acyloxyalkyl derivatives of GABA analogs
US8048917B2 (en) * 2005-04-06 2011-11-01 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
US7186855B2 (en) * 2001-06-11 2007-03-06 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
US20060159743A1 (en) * 2001-10-25 2006-07-20 Depomed, Inc. Methods of treating non-nociceptive pain states with gastric retentive gabapentin
US7612112B2 (en) * 2001-10-25 2009-11-03 Depomed, Inc. Methods of treatment using a gastric retained gabapentin dosage
US20030152622A1 (en) * 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
US20070184104A1 (en) * 2001-10-25 2007-08-09 Depomed, Inc. Gastric retentive gabapentin dosage forms and methods for using same
TWI312285B (en) 2001-10-25 2009-07-21 Depomed Inc Methods of treatment using a gastric retained gabapentin dosage
US20030091630A1 (en) * 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US8128957B1 (en) 2002-02-21 2012-03-06 Valeant International (Barbados) Srl Modified release compositions of at least one form of tramadol
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
EP1515701B1 (en) 2002-06-17 2014-09-17 Inventia Healthcare Private Limited Process for the manufacture of multilayer tablet compositions comprising thiazolidinedione and biguanide
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
US8404717B2 (en) * 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes using lenalidomide
US11116782B2 (en) 2002-10-15 2021-09-14 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
US8404716B2 (en) * 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
PL378367A1 (en) 2003-01-13 2006-04-03 Dynogen Pharmaceuticals, Inc. Method of treating functional bowel disorders
CA2533358C (en) 2003-07-21 2014-03-11 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
CA2533178C (en) 2003-07-21 2014-03-11 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
US8313775B2 (en) 2003-07-21 2012-11-20 Shionogi Inc. Antibiotic product, use and formulation thereof
DE102004032051A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
US8075872B2 (en) * 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE10336400A1 (en) 2003-08-06 2005-03-24 Grünenthal GmbH Anti-abuse dosage form
DE102005005446A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Break-resistant dosage forms with sustained release
DE102004020220A1 (en) * 2004-04-22 2005-11-10 Grünenthal GmbH Process for the preparation of a secured against misuse, solid dosage form
KR20120104199A (en) * 2003-08-06 2012-09-20 그뤼넨탈 게엠베하 Dosage form that is safeguarded from abuse
DE10361596A1 (en) * 2003-12-24 2005-09-29 Grünenthal GmbH Process for producing an anti-abuse dosage form
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
ES2336913T3 (en) * 2003-08-08 2010-04-19 Biovail Laboratories International Srl COMPRESSED OF MODIFIED RELEASE OF BUPROPION HYDROCHLORIDE.
CA2535177A1 (en) 2003-08-11 2005-02-24 Advancis Pharmaceutical Corporation Robust pellet
US8062672B2 (en) 2003-08-12 2011-11-22 Shionogi Inc. Antibiotic product, use and formulation thereof
AU2004270170B2 (en) 2003-08-29 2011-01-27 Shionogi, Inc. Antibiotic product, use and formulation thereof
US8460710B2 (en) 2003-09-15 2013-06-11 Shionogi, Inc. Antibiotic product, use and formulation thereof
AU2004285533A1 (en) * 2003-10-31 2005-05-12 Alza Corporation Compositions and dosage forms for enhanced absorption
DE102004032049A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
DE102004032103A1 (en) * 2004-07-01 2006-01-19 Grünenthal GmbH Anti-abuse, oral dosage form
US8715727B2 (en) 2004-07-02 2014-05-06 Shionogi Inc. Tablet for pulsed delivery
US8252321B2 (en) 2004-09-13 2012-08-28 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like
JP5254616B2 (en) 2004-09-13 2013-08-07 クロノ セラピューティクス、インコーポレイテッド Biosynchronous transdermal drug delivery
CN102429882B (en) * 2004-11-04 2015-03-25 什诺波特有限公司 Gabapentin prodrug sustained release oral dosage forms
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
WO2006077492A1 (en) * 2005-01-24 2006-07-27 Ranbaxy Laboratories Limited Sustained release oral dosage forms of gabapentin
DE102005005449A1 (en) 2005-02-04 2006-08-10 Grünenthal GmbH Process for producing an anti-abuse dosage form
WO2007074406A2 (en) 2005-07-11 2007-07-05 Pharmena North America Inc. Formulations for treatment of lipoprotein abnormalities comprising a statin a statin and a methylnicotinamide derivative
EP1959923A4 (en) * 2005-08-30 2012-05-02 Piramal Life Sciences Ltd Extended release pharmaceutical composition of metformin and a process for producing it
US20070092565A1 (en) * 2005-10-25 2007-04-26 Pharmascience Inc. Gastric retention drug delivery system
NL2000281C2 (en) 2005-11-02 2007-08-07 Pfizer Prod Inc Solid pharmaceutical compositions containing pregabalin.
US8357394B2 (en) 2005-12-08 2013-01-22 Shionogi Inc. Compositions and methods for improved efficacy of penicillin-type antibiotics
US8778924B2 (en) 2006-12-04 2014-07-15 Shionogi Inc. Modified release amoxicillin products
JP2009522294A (en) * 2005-12-29 2009-06-11 デポメッド, インコーポレイテッド Gastric retention type gabapentin dosage form and method of use thereof
US20090176882A1 (en) 2008-12-09 2009-07-09 Depomed, Inc. Gastric retentive gabapentin dosage forms and methods for using same
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
EA015687B1 (en) 2006-05-04 2011-10-31 Бёрингер Ингельхайм Интернациональ Гмбх Polymorphs
PE20080251A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int USES OF DPP IV INHIBITORS
US8299052B2 (en) 2006-05-05 2012-10-30 Shionogi Inc. Pharmaceutical compositions and methods for improved bacterial eradication
SA07280459B1 (en) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic
ES2739542T3 (en) 2006-12-22 2020-01-31 Ironwood Pharmaceuticals Inc Compositions comprising bile acid sequestrants to treat esophageal disorders
WO2008089151A2 (en) * 2007-01-12 2008-07-24 Monosol Rx, Llc High dose film compositions and methods of preparation
DE102007011485A1 (en) 2007-03-07 2008-09-11 Grünenthal GmbH Dosage form with more difficult abuse
WO2009017716A2 (en) * 2007-07-27 2009-02-05 Depomed, Inc. Pulsatile gastric retentive dosage forms
CA2707980C (en) 2007-12-17 2015-05-12 Labopharm Inc. Misuse preventative, controlled release formulation
MX2010008138A (en) * 2008-01-25 2010-08-10 Gruenenthal Gmbh Pharmaceutical dosage form.
EP2249643A4 (en) * 2008-02-05 2013-10-09 Merck Sharp & Dohme Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-iv inhibitor
US8329750B2 (en) * 2008-02-11 2012-12-11 Depomed, Inc. Methods for treating vasomotor symptoms using GABA analogs in a gastric retentive dosage form
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
AU2009223061B2 (en) * 2008-03-11 2014-10-09 Depomed Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
AR071175A1 (en) 2008-04-03 2010-06-02 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION THAT INCLUDES AN INHIBITOR OF DIPEPTIDIL-PEPTIDASA-4 (DPP4) AND A COMPARING PHARMACO
RU2508092C2 (en) 2008-05-09 2014-02-27 Грюненталь Гмбх Method for preparing solid dosage form, particularly tablet for pharmaceutical application and method for preparing solid dosage form precursor, particularly tablet
SI2299984T1 (en) 2008-05-15 2019-04-30 Celgene Corporation Oral formulations of cytidine analogs and methods of use thereof
KR20190016601A (en) 2008-08-06 2019-02-18 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
BRPI0917444A2 (en) 2008-08-15 2015-12-01 Depomed Inc gastric retention pharmaceutical compositions for the treatment and prevention of snc diseases
EP2346351B1 (en) 2008-09-22 2019-07-03 Rubicon Research Private Limited Compositions exhibiting delayed transit through the gastrointestinal tract
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
EP2376065A2 (en) * 2008-11-14 2011-10-19 Portola Pharmaceuticals, Inc. Solid composition for controlled release of ionizable active agents with poor aqueous solubility at low ph and methods of use thereof
US8486449B2 (en) 2008-12-16 2013-07-16 Paladin Labs Inc. Misuse preventative, controlled release formulation
UY32441A (en) 2009-02-13 2010-09-30 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITION, TREATMENT METHODS AND ITS USES
US9744142B2 (en) 2009-05-05 2017-08-29 Board Of Regents, The University Of Texas Systems Formulations of volatile anesthetics and methods of use for reducing inflammation
JP5442116B2 (en) * 2009-06-25 2014-03-12 ジン ヤン ファーム カンパニー リミテッド Pharmaceutical composition containing losartan carboxylic acid and method for producing the same
JP5594484B2 (en) 2009-07-06 2014-09-24 杏林製薬株式会社 Tablet with hollow structure
WO2011009604A1 (en) 2009-07-22 2011-01-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
AR077493A1 (en) 2009-07-22 2011-08-31 Gruenenthal Gmbh HOT EXTRUDED PHARMACEUTICAL COMPOSITION WITH CONTROLLED LIBERATION. PREPARATION PROCEDURE
US20110052700A1 (en) * 2009-08-31 2011-03-03 Depomed, Inc. Gastric retentive pharmaceutical compositions for immediate and extended release of levosulpiride
CN102596252A (en) * 2009-08-31 2012-07-18 蒂宝制药公司 Gastric retentive pharmaceutical compositions for immediate and extended release of acetaminophen
US20110104273A1 (en) * 2009-11-05 2011-05-05 Depomed, Inc. Gastric retentive pharmaceutical compositions for immediate and extended release of phenylephrine
EA034869B1 (en) 2009-11-27 2020-03-31 Бёрингер Ингельхайм Интернациональ Гмбх Treatment of genotyped diabetic patients with dpp-4 inhibitors such as linagliptin
EP2509635A4 (en) * 2009-12-08 2013-09-18 Depomed Inc Gastric retentive pharmaceutical compositions for extended release of polypeptides
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
CN102821757B (en) * 2010-02-03 2016-01-20 格吕伦塔尔有限公司 By extrusion mechanism for powdery medicine compositions
EP2538926A2 (en) * 2010-02-24 2013-01-02 Pfizer Inc. Veterinary compositions
EP2544666A2 (en) 2010-03-09 2013-01-16 Council of Scientific and Industrial Research Gastroretentive, extended release composition of therapeutic agent
EP2566469B1 (en) 2010-05-05 2022-12-21 Boehringer Ingelheim International GmbH Combination therapy
EP2575798B1 (en) 2010-06-01 2017-08-09 Rubicon Research Private Limited Gastroretentive dosage forms of gaba analogs
US8241680B2 (en) 2010-06-30 2012-08-14 Rock Creek Pharmaceuticals, Inc. Nutraceutical product containing anatabine and yerba maté
WO2012021629A2 (en) 2010-08-11 2012-02-16 Philadelphia Health & Education Corporation Novel d3 dopamine receptor agonists to treat dyskinesia in parkinson's disease
US20130156720A1 (en) 2010-08-27 2013-06-20 Ironwood Pharmaceuticals, Inc. Compositions and methods for treating or preventing metabolic syndrome and related diseases and disorders
AR082862A1 (en) 2010-09-02 2013-01-16 Gruenenthal Gmbh ALTERATION RESISTANT DOSAGE FORM INCLUDING AN ANIONIC POLYMER
WO2012028319A1 (en) 2010-09-02 2012-03-08 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
MX346203B (en) 2010-09-28 2017-03-09 Depomed Inc Gastric retentive dosage forms for extended release of acamprosate into the upper gastrointestinal tract.
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
JP6076913B2 (en) 2010-12-07 2017-02-08 ドレクセル ユニバーシティ Methods for inhibiting metastasis from cancer
US9532977B2 (en) 2010-12-16 2017-01-03 Celgene Corporation Controlled release oral dosage forms of poorly soluble drugs and uses thereof
ES2753198T5 (en) 2010-12-16 2023-05-31 Amgen Europe Gmbh Oral pharmaceutical forms of controlled release of poorly soluble drugs and their uses
MX2010014153A (en) * 2010-12-17 2012-06-18 Senosiain S A De C V Lab Controlled-release pharmaceutical tablet for oral administration.
ME02874B (en) 2010-12-22 2018-04-20 Purdue Pharma Lp Encased tamper resistant controlled release dosage forms
AU2011346758C1 (en) 2010-12-23 2015-09-03 Purdue Pharma L.P. Tamper resistant solid oral dosage forms
AR085689A1 (en) 2011-03-07 2013-10-23 Boehringer Ingelheim Int PHARMACEUTICAL COMPOSITIONS OF METFORMIN, LINAGLIPTINE AND AN SGLT-2 INHIBITOR
US8476221B2 (en) 2011-03-18 2013-07-02 Halimed Pharmaceuticals, Inc. Methods and compositions for the treatment of metabolic disorders
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US9050335B1 (en) 2011-05-17 2015-06-09 Mallinckrodt Llc Pharmaceutical compositions for extended release of oxycodone and acetaminophen resulting in a quick onset and prolonged period of analgesia
US20130017259A1 (en) 2011-07-06 2013-01-17 The Parkinson's Institute Compositions and Methods for Treatment of Symptoms in Parkinson's Disease Patients
CN103702664B (en) * 2011-07-26 2016-10-19 柳韩洋行 By the slow releasing tablet containing Pregabalin of biphase controlled release system
NO2736497T3 (en) 2011-07-29 2018-01-20
KR20140053159A (en) 2011-07-29 2014-05-07 그뤼넨탈 게엠베하 Tamper-resistant tablet providing immediate drug release
AU2012302257A1 (en) 2011-08-29 2014-03-13 Rcp Development, Inc. Products for anti-inflammation support
WO2013051036A1 (en) 2011-10-03 2013-04-11 Council Of Scientific & Industrial Research Use of pharmaceutical composition for gastroretentive sustained and pulsatile drug delivery system
CA2853949A1 (en) 2011-11-01 2013-05-10 Celgene Corporation Methods for treating cancers using oral formulations of cytidine analogs
US20130143867A1 (en) 2011-12-02 2013-06-06 Sychroneuron Inc. Acamprosate formulations, methods of using the same, and combinations comprising the same
BR112014015197A2 (en) 2011-12-21 2017-06-13 Novira Therapeutics Inc hepatitis b antiviral agents
WO2013127831A1 (en) 2012-02-28 2013-09-06 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
WO2013142482A1 (en) 2012-03-20 2013-09-26 Particle Dynamics International, Llc Gelling agent-based dosage form
PT2838512T (en) 2012-04-18 2018-11-09 Gruenenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
JP6224084B2 (en) 2012-05-14 2017-11-01 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Xanthine derivatives as DPP-4 inhibitors for the treatment of glomerular epithelial cell related disorders and / or nephrotic syndrome
JP6397407B2 (en) 2012-07-19 2018-09-26 ドレクセル ユニバーシティ Sigma receptor ligands for modulating cellular protein homeostasis
EP3158995B1 (en) 2012-08-09 2018-05-23 Dynamis Therapeutics, Inc. Meglumine for reducing high triglyceride levels
EP2698144A1 (en) 2012-08-12 2014-02-19 Ali Raif Ilaç Sanayi ve Ticaret Anonim Sirketi Prolonged release gabapentin tablet formulation whose ability to stay in the stomach is improved
DK2941233T3 (en) 2013-01-07 2020-10-19 Univ Pennsylvania Compositions and methods for treating cutaneous T-cell lymphoma
JP6716255B2 (en) * 2013-01-15 2020-07-01 アイロンウッド ファーマシューティカルズ,インコーポレーテッドIronwood Pharmaceuticals, Inc. Gastroretentive sustained release oral dosage form of bile acid scavenger
BR112015017451B1 (en) 2013-02-05 2023-01-10 Purdue Pharma L.P. TAMPER-RESISTANT PHARMACEUTICAL FORMULATIONS
US10751287B2 (en) 2013-03-15 2020-08-25 Purdue Pharma L.P. Tamper resistant pharmaceutical formulations
AR096439A1 (en) 2013-05-29 2015-12-30 Gruenenthal Gmbh DOSAGE METHOD RESISTING TO INDEED USE CONTAINING ONE OR MORE PARTICLES
BR112015026549A2 (en) 2013-05-29 2017-07-25 Gruenenthal Gmbh tamper-proof dosage form containing one or more particles
JP2016520653A (en) 2013-06-05 2016-07-14 シンクロニューロン インコーポレイテッド Acamprosate formulation, method of using the same, and combination containing the same
EP3017054B1 (en) 2013-07-02 2019-11-13 EcoPlanet Environmental LLC Volatile organic compound formulations having antimicrobial activity
GB201311888D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compounds
GB201311891D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compound
KR20160031526A (en) 2013-07-12 2016-03-22 그뤼넨탈 게엠베하 Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
WO2015047763A1 (en) * 2013-09-25 2015-04-02 Dow Global Technologies Llc Composition comprising an organic liquid diluent and a specific hydroxyalkyl methylcellulose
CN105934241B (en) 2013-11-26 2020-06-05 格吕伦塔尔有限公司 Preparation of powdered pharmaceutical composition by cryogenic grinding
JP6932506B2 (en) 2013-11-26 2021-09-08 イエール ユニバーシティ Cell permeation composition and method using it
EP3079692A4 (en) 2013-12-09 2017-10-18 Thomas Jefferson University Novel methods of treating a neurodegenerative disease in a mammal in need thereof
US10172794B2 (en) 2013-12-13 2019-01-08 Biogen Ma Inc. Controlled release dosage form for once daily administration of dimethyl fumarate
US9982010B2 (en) 2014-04-07 2018-05-29 Women & Infants Hospital Of Rhode Island 7-dehydrocholesterol derivatives and methods using same
EP2929878A1 (en) * 2014-04-09 2015-10-14 Arven Ilac Sanayi ve Ticaret A.S. Extended release formulations of gabapentin
EP3142646A1 (en) 2014-05-12 2017-03-22 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
EA201692388A1 (en) 2014-05-26 2017-05-31 Грюненталь Гмбх DOSAGE FORM AS PARTICLE MULTIPLE, PROTECTED AGAINST CALLED DOSE RESET BY ETHANOL
JP6570043B2 (en) 2014-06-02 2019-09-04 クレシオ・バイオサイエンシズ・リミテッド Inflatable gastroretentive dosage form
US20150359810A1 (en) 2014-06-17 2015-12-17 Celgene Corporation Methods for treating epstein-barr virus (ebv) associated cancers using oral formulations of 5-azacytidine
US10624917B2 (en) 2014-08-20 2020-04-21 Yale University Compositions and methods useful for treating or preventing liver diseases or disorders, and promoting weight loss
HRP20230265T1 (en) 2014-08-22 2023-04-14 Celgene Corporation Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
KR101642193B1 (en) * 2014-10-13 2016-07-25 씨제이헬스케어 주식회사 An extended release pharmaceutical formulation of metformin and a preparation method thereof
US9617230B2 (en) 2014-12-22 2017-04-11 Farmington Pharma Development Creatine prodrugs, compositions and methods of use thereof
US10213586B2 (en) 2015-01-28 2019-02-26 Chrono Therapeutics Inc. Drug delivery methods and systems
JP2018511127A (en) 2015-03-12 2018-04-19 クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. Craving input and support system
EP3285745A1 (en) 2015-04-24 2018-02-28 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
WO2016182968A1 (en) 2015-05-08 2016-11-17 Brown University Novel syringolin analogues and methods of making and using same
CA3176123A1 (en) 2015-05-19 2016-11-24 Yale University Compositions for treating pathological calcification conditions, and methods using same
US10829440B2 (en) 2015-06-12 2020-11-10 Brown University Antibacterial compounds and methods of making and using same
CN107920997A (en) 2015-06-17 2018-04-17 比奥根Ma公司 Dimethyl fumarate particle and its pharmaceutical composition
WO2017003822A1 (en) 2015-06-30 2017-01-05 Galleon Pharmaceuticals, Inc. Novel breathing control modulating compounds, and methods of making and using same
AU2016319203A1 (en) 2015-09-10 2018-02-22 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
EP3362070B1 (en) 2015-10-15 2021-01-27 Celgene Corporation Combination of a mutant isocitrate dehydrogenase 2 inhibitor with azacitidine and its use for treating acute myelogenous leukemia
JP2018534288A (en) 2015-10-15 2018-11-22 アジオス ファーマシューティカルズ, インコーポレイテッド Combination therapy for the treatment of malignant tumors
AU2016338557B2 (en) 2015-10-15 2022-05-26 Celgene Corporation Combination therapy for treating malignancies
US11135213B2 (en) 2015-10-28 2021-10-05 Yale University Quinoline amides and methods of using same
EP3373916A1 (en) 2015-11-11 2018-09-19 Celgene Corporation Controlled release oral dosage forms of poorly soluble drugs and uses thereof
CA3005142A1 (en) 2015-11-20 2017-05-26 Yale University Compositions for treating ectopic calcification disorders, and methods using same
KR20180088460A (en) 2015-12-04 2018-08-03 아지오스 파마슈티컬스 아이엔씨. Treatment of malignant tumors
KR20180114202A (en) 2016-02-26 2018-10-17 아지오스 파마슈티컬스 아이엔씨. IDH1 inhibitor for the treatment of hematologic malignancies and solid tumors
KR102414503B1 (en) 2016-03-17 2022-06-29 티오제네시스 테라퓨틱스, 인크. Compositions for Controlled Release of Cysteamine and Systemic Treatment of Cysteamine Sensitive Disorders
US9687475B1 (en) 2016-03-24 2017-06-27 Ezra Pharma Llc Extended release pharmaceutical formulations with controlled impurity levels
US9675585B1 (en) 2016-03-24 2017-06-13 Ezra Pharma Extended release pharmaceutical formulations
US10143687B2 (en) 2016-04-11 2018-12-04 Neurocea, LLC Compositions and methods for treatment related to fall and fall frequency in neurodegenerative diseases
US10292977B2 (en) 2016-04-11 2019-05-21 Neurocea, LLC Compositions and methods for treatment related to fall and fall frequency in neurodegenerative diseases
EP3448369A4 (en) 2016-04-29 2020-01-01 The Regents of The University of Colorado, A Body Corporate Compounds and compositions useful for treating metabolic syndrome, and methods using same
WO2017211979A1 (en) 2016-06-10 2017-12-14 Boehringer Ingelheim International Gmbh Combinations of linagliptin and metformin
WO2018002673A1 (en) 2016-07-01 2018-01-04 N4 Pharma Uk Limited Novel formulations of angiotensin ii receptor antagonists
WO2018026764A1 (en) 2016-08-01 2018-02-08 University Of Rochester Nanoparticles for controlled release of anti-biofilm agents and methods of use
US20180042930A1 (en) 2016-08-03 2018-02-15 Celgene Corporation Methods of treatment of malignancies
JP2019532915A (en) 2016-08-05 2019-11-14 イエール ユニバーシティ Compositions and methods for preventing stroke in pediatric sickle cell anemia patients
CN106344535B (en) * 2016-08-29 2019-09-20 济南康和医药科技有限公司 A kind of fluvastatin sodium controlled porosity osmotic pump tablets and preparation method thereof
CA3035205A1 (en) 2016-09-01 2018-03-08 Mebias Discovery Llc Substituted ureas and methods of making and using same
US10821103B2 (en) 2016-11-07 2020-11-03 Arbutus Biopharma Corporation Substituted pyridinone-containing trycyclic compounds, and methods using same
JP7071748B2 (en) 2016-12-02 2022-05-19 クレキシオ バイオサイエンシーズ エルティーディー. Gastric retention system
JP2020503950A (en) 2017-01-06 2020-02-06 クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. Device and method for transdermal drug delivery
WO2018136766A1 (en) 2017-01-19 2018-07-26 Temple University-Of The Commonwealth System Of Higher Education Novel bridged bicycloalkyl-substituted aminothizoles and their methods of use
WO2018172852A1 (en) 2017-03-21 2018-09-27 Arbutus Biopharma Corporation Substituted dihydroindene-4-carboxamides and analogs thereof, and methods using same
WO2018195084A1 (en) 2017-04-17 2018-10-25 Yale University Compounds, compositions and methods of treating or preventing acute lung injury
WO2018204787A1 (en) 2017-05-05 2018-11-08 Memorial Sloan Kettering Cancer Center Methods of treatment of myeloproliferative neoplasm
US10987311B2 (en) 2017-06-16 2021-04-27 Kashiv Specialty Pharmaceuticals, Llc Extended release compositions comprising pyridostigmine
CN110996922A (en) 2017-06-16 2020-04-10 卡希夫生物科学有限责任公司 Gastric retentive dosage forms for sustained drug delivery
US10588863B2 (en) 2017-06-16 2020-03-17 Kashiv Biosciences, Llc Extended release compositions comprising pyridostigmine
CA3069948C (en) 2017-07-17 2022-05-17 Eli Lilly And Company A solid oral fixed dose composition comprising metformin, valsartan and atorvastatin
WO2019018158A1 (en) 2017-07-17 2019-01-24 Eli Lilly And Company Pharmaceutical compositions
AU2018306726B2 (en) 2017-07-28 2023-08-03 Yale University Anticancer drugs and methods of making and using same
CA3074017A1 (en) 2017-09-08 2019-03-14 The Regents Of The University Of Colorado, A Body Corporate Compounds, compositions and methods for treating or preventing her-driven drug-resistant cancers
US11612576B2 (en) 2017-09-20 2023-03-28 Thiogenesis Therapeutics, Inc. Methods for the treatment of cysteamine sensitive disorders
WO2019104316A1 (en) 2017-11-27 2019-05-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds, compositions, and methods for treating and/or preventing periodontal disease
CN111417620B (en) 2017-12-01 2023-08-25 奥特吉尼克斯制药公司 Creatine prodrugs, compositions thereof, and methods of use
JP7296084B2 (en) 2017-12-04 2023-06-22 クレキシオ バイオサイエンシーズ エルティーディー. Long-acting gastric retention system
WO2019125184A1 (en) 2017-12-19 2019-06-27 Auckland Uniservices Limited Use of biomarker in cancer therapy
EP3743060A4 (en) 2018-01-24 2021-11-03 The Rockefeller University Antibacterial compounds, compositions thereof, and methods using same
AU2019211458A1 (en) 2018-01-29 2020-08-06 Duke University Compositions and methods of enhancing 5-hydroxytryptophan bioavailability
CN108514560B (en) * 2018-05-17 2020-07-03 广州帝奇医药技术有限公司 Lenalidomide stomach retention sustained-release tablet and preparation method thereof
CA3101738A1 (en) 2018-05-29 2019-12-05 Cersci Therapeutics, Inc. Compounds for pain treatment, compositions comprising same, and methods of using same
WO2019232077A1 (en) 2018-05-29 2019-12-05 Chrono Therapeutics Inc. Drug delivery methods and systems
EP4056172A1 (en) 2018-06-18 2022-09-14 Amneal Complex Products Research LLC Extended release compositions comprising pyridostigmine
AU2018445164A1 (en) 2018-10-11 2021-04-22 Sanifit Therapeutics S.A. Inositol phosphates for the treatment of ectopic calcification
US20220017490A1 (en) 2018-11-02 2022-01-20 Celgene Corporation Co-crystals of 2-methyl-1 -[(4-[6-(trifluoromethyl)pyridin-2-yl]-6-{[2-(trifluoromethyl) pyridin-4-yl]amino}-1,3,5-triazin-2-yl)amino]propan-2-ol, compositions and methods of use thereof
US20210403452A1 (en) 2018-11-02 2021-12-30 Celgene Corporation Solid forms of 2-methyl-1-[(4-[6-(trifluoromethyl) pyridin-2-yl]-6-{[2-(trifluoromethyl)pyridin-4-yl]amino}-1,3,5-triazin-2-yl) amino]propan-2-ol
US20220017489A1 (en) * 2018-11-02 2022-01-20 Celgene Corporation Solid dispersions for treatment of cancer
TWI827760B (en) 2018-12-12 2024-01-01 加拿大商愛彼特生物製藥公司 Substituted arylmethylureas and heteroarylmethylureas, analogues thereof, and methods using same
US20210395218A1 (en) 2018-12-17 2021-12-23 Philip Morris Products S.A. 3-(1,2,3,6-tetrahydropyridin-2-yl) pyridine glutarate or a pharmaceutically acceptable solvate thereof
AU2020213713A1 (en) 2019-01-30 2021-07-22 Sanifit Therapeutics, S.A. Inositol phosphate compounds for use in increasing tissular perfusion
WO2020159565A1 (en) 2019-02-01 2020-08-06 Cersci Therapeutics, Inc. Methods of treating post-surgical pain with a thiazoline anti-hyperalgesic agent
US20200246317A1 (en) 2019-02-01 2020-08-06 Cersci Therapeutics, Inc. Methods of treating diabetic neuropathy with a thiazoline anti-hyperalgesic agent
US11471507B2 (en) 2019-05-09 2022-10-18 The Feinstein Institutes For Medical Research HMGB1 antagonist
US11555010B2 (en) 2019-07-25 2023-01-17 Brown University Diamide antimicrobial agents
EP3818983A1 (en) 2019-11-11 2021-05-12 Sanifit Therapeutics S.A. Inositol phosphate compounds for use in treating, inhibiting the progression, or preventing cardiovascular calcification
WO2021127456A1 (en) 2019-12-19 2021-06-24 Rain Therapeutics Inc. Methods of inhibiting epidermal growth factor receptor proteins
KR20230042263A (en) 2020-06-09 2023-03-28 이노자임 파마, 인코포레이티드 Soluble ENPP1 or ENPP3 Proteins and Uses Thereof
CN112999182B (en) * 2020-08-19 2023-04-07 重庆康刻尔制药股份有限公司 Metformin hydrochloride dual sustained and controlled release composition and preparation method and application thereof
JP2023553202A (en) 2020-12-08 2023-12-20 ルミナント バイオテク コーポレーション リミテッド Improvements in devices and methods for delivering substances to animals
EP4015494A1 (en) 2020-12-15 2022-06-22 Sanifit Therapeutics S.A. Processes for the preparation of soluble salts of inositol phosphates
EP4036097A1 (en) 2021-01-29 2022-08-03 Sanifit Therapeutics S.A. Ip4-4,6 substituted derivative compounds
CA3226223A1 (en) 2021-07-30 2023-02-02 Jacob Pade Ramsoe Jacobsen 5-hydroxytryptophan gastroretentive dosage forms
US11779567B2 (en) 2021-10-14 2023-10-10 Evecxia Therapeutics, Inc. Method for optimizing 5-hydroxytryptamine function in the brain for therapeutic purposes
WO2024023360A1 (en) 2022-07-29 2024-02-01 Sanifit Therapeutics, S.A. Ip5 substituted compounds
WO2024023359A1 (en) 2022-07-29 2024-02-01 Sanifit Therapeutics, S.A. Ip4-4,6 substituted derivative compounds for use in the treatment, inhibition of progression, and prevention of ectopic calcification
WO2024052895A1 (en) 2022-09-06 2024-03-14 Hadasit Medical Research Services And Development Ltd Combinations comprising psychedelics for the treatment of schizophrenia and other neuropsychiatric and neurologic disorders

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA722664B (en) 1971-05-18 1973-01-31 Smith Kline French Lab Lyered bolus for animal husbandry providing for immediate and sustained release of medicament
CA1146866A (en) * 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Process for the production of sustained release pharmaceutical composition of solid medical material
US4915952A (en) 1987-02-27 1990-04-10 Alza Corporation Composition comprising drug, HPC, HPMC and PEO
US5007790A (en) 1989-04-11 1991-04-16 Depomed Systems, Inc. Sustained-release oral drug dosage form
US6361795B1 (en) 1989-09-05 2002-03-26 Alza Corporation Method for lowering blood glucose
US5273758A (en) 1991-03-18 1993-12-28 Sandoz Ltd. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms
WO1993002148A1 (en) 1991-07-19 1993-02-04 Uniroyal Chemical Company, Inc. Seed film compositions
US5582837A (en) 1992-03-25 1996-12-10 Depomed, Inc. Alkyl-substituted cellulose-based sustained-release oral drug dosage forms
US5451409A (en) 1993-11-22 1995-09-19 Rencher; William F. Sustained release matrix system using hydroxyethyl cellulose and hydroxypropyl cellulose polymer blends
US5945125A (en) 1995-02-28 1999-08-31 Temple University Controlled release tablet
MY113429A (en) 1995-02-28 2002-02-28 Univ Temple Controlled release tablet containing swellable polyethylene oxide
GB9523752D0 (en) 1995-11-21 1996-01-24 Pfizer Ltd Pharmaceutical formulations
US5783212A (en) 1996-02-02 1998-07-21 Temple University--of the Commonwealth System of Higher Education Controlled release drug delivery system
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
US6210710B1 (en) 1997-04-28 2001-04-03 Hercules Incorporated Sustained release polymer blend for pharmaceutical applications
ES2248908T7 (en) 1997-06-06 2014-11-24 Depomed, Inc. Dosage forms of drugs orally and gastric retention for continued release of highly soluble drugs
WO1999007342A1 (en) 1997-08-11 1999-02-18 Alza Corporation Prolonged release active agent dosage form adapted for gastric retention
US6090411A (en) 1998-03-09 2000-07-18 Temple University Monolithic tablet for controlled drug release
JP2002532551A (en) * 1998-12-22 2002-10-02 ノボ ノルディスク アクティーゼルスカブ New formulation

Similar Documents

Publication Publication Date Title
CA2409999C (en) Optical polymer mixtures for gastric retentive tablets
AU2002337974A1 (en) Optimal polymer mixtures for gastric retentive tablets
US6635280B2 (en) Extending the duration of drug release within the stomach during the fed mode
US6340475B2 (en) Extending the duration of drug release within the stomach during the fed mode
EP1294363B1 (en) Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US9597338B2 (en) Shell-and-core dosage form approaching zero-order drug release
AU2001239893A1 (en) Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms