AU2002244174A1 - Wet-felted and thermally bonded porous structures - Google Patents

Wet-felted and thermally bonded porous structures

Info

Publication number
AU2002244174A1
AU2002244174A1 AU2002244174A AU2002244174A AU2002244174A1 AU 2002244174 A1 AU2002244174 A1 AU 2002244174A1 AU 2002244174 A AU2002244174 A AU 2002244174A AU 2002244174 A AU2002244174 A AU 2002244174A AU 2002244174 A1 AU2002244174 A1 AU 2002244174A1
Authority
AU
Australia
Prior art keywords
formed media
media
slurry
porous structure
structure produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002244174A
Other versions
AU2002244174B2 (en
Inventor
Wei-Chih Chen
Katherine L. K. Faye
Mark Schimmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/793,174 external-priority patent/US6712939B2/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of AU2002244174A1 publication Critical patent/AU2002244174A1/en
Application granted granted Critical
Publication of AU2002244174B2 publication Critical patent/AU2002244174B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY Request for Assignment Assignors: CUNO INCORPORATED
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

WET-FELTED AND THERMALLY BONDED POROUS STRUCTURES
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for manufacturing wet-felted and thermally bonded porous structures which can be used as filters. The invention also relates to the fibrous felted porous structure formed by the process. 2. Background of the Related Art
Felted porous structures such as filters are typically manufactured by "accretion." In an accretion process, a homogeneous bath or slurry of the material to be accreted is mixed and a vacuum forming process is used to create a formed media from the materials in the slurry. In one vacuum forming method often used, a perforated mandrel is immersed in the bath or slurry, and a vacuum is pulled on the mandrel causing a layer of material to accrete on the outer surface of the mandrel to create a formed media. The mandrel is withdrawn from the bath or slurry and the formed media is dried. Depending on the intended use, the formed media may be densified or may be cut to a desired shape. In some prior applications of the accretion method, a slurry is mixed in water with a combination of a fibers and a thermoplastic or thermosetting binding material. Other materials may be added to the slurry to impart desired filtering characteristics into the formed media. Accretion of the material in the slurry may be performed using a vacuum mandrel to create a formed porous media on the mandrel. In some applications, a filter core is placed over the vacuum mandrel and the accretion process creates a formed media covering the filter core. After the accretion step is complete, the formed media is dried and bonded by heating the formed media to a temperature above the melting or curing temperature of the binding material. This dries the formed media and bonds the primary media and wet strength agent by melting or curing the binding material. As the formed media is cooled, the binding material solidifies and binds the formed media.
While several variations of this process have been described previously, in each case the drying and bonding of the formed media is performed by heating the accreted formed media to a temperature above the melting point of the binding agent in a single step. For example, in U.S. Patent No. 4,032,457 to Matchett, a multiple phase filter is described which is made by combining fibers with resin binders and active particles to form slurries of varying compositions. The filter described by Matchett is formed by dipping a perforated mandrel is a slurry, drawing a vacuum on the mandrel to accrete material from the slurry on the mandrel, and repeating these steps in successive slurries of varying compositions to form a media with multiple phases. After formation, the multiple phase media is dried and bonded in a single step by heating the formed media to a temperature above the melting temperature of the binder.
In U.S. Patent No. 4,620,932 to Howery, et al, a one piece filter constructed by saturation of a base matrix material with a hydrophilic terpolymeric material is described. Saturation of the base material is accomplished by spraying, depth coating, or dipping the base matrix in the hydrophilic terpolymer material. The saturated material is then initially dried at a temperature of 160-250 degrees Fahrenheit to remove 40-60 percent of the moisture from the material, with second stage drying performed at a lower temperature of 100-160 degrees Fahrenheit, and final drying occurring in a third stage at 65-90 degrees Fahrenheit. Thus, Howery describes a process in which the material is initially heated to a high temperature, with drying being completed in steps with successively lower temperatures.
Combinations of base fiber materials and binding materials have also been used to produce non-woven fabrics and other materials. For example, U.S. Patent No. 5,393,601 to Heinrich, et al., describes a non-woven material formed by combining aramid fibers with a melt binder made of thermoplastic aramids The melt binder has a melting point below the melting point of the aramid fibers. The aramid fibers and the melt binder are mixed in water, the aqueous suspension is placed on a sieve tray, the water is separated off, and the remaining fibers are heated to a temperature above the melting temperature of the melt binder to dry and bind the fibers.
In all of these prior methods, the formed media are initially heated to a temperature above the melting temperature of the binder in a single step. Combining drying and bonding in a single step process can sometimes lead to uneven bonding of the fibers in the formed media. Uneven bonding is particularly disadvantageous where the formed media is used as a filtering media, because uneven bonding can reduce filter performance and quality.
Accordingly, the present invention overcomes the drawbacks and disadvantages of the prior art through a novel process for producing wet felted and thermally bonded porous media that results in improved filter quality and performance. SUMMARY OF THE INVENTION
The present invention provides, in one aspect, an improved process for producing wet-felted and thermally bonded porous media, and, in a second aspect, provides an improved wet-felted and thermally bonded porous media made by the process. The invention comprises a process in which a primary media, a wet strength agent, and a binding agent are combined in a liquid, typically water, to form a slurry.
Other materials may be added to the slurry to impart desired characteristics to the porous media. A vacuum forming process is used to accrete the materials in the slurry into a formed media. The formed media is then dried and bonded in a two-step process.
The formed media is first dried a temperature below the melting or curing temperature of the binding agent. The drying may be performed under vacuum to facilitate rapid drying. The drying step is continued for a sufficient time to remove substantially all of the water from the formed media. After the formed media has been dried, it is bonded by heating the formed media to a temperature above the melting or curing temperature of the binding agent. This second stage of heating may be performed under a vacuum to draw heated gas through the porous media. If a vacuum is used, the vacuum pressure during the bonding step may be different from the vacuum pressure during the drying step. During the second stage of heating, the binding agent melts or cures to bind the formed media. When the bonding step is completed, the formed media is cooled, and the binding agent resolidifies. After cooling, the formed media may be cut into any desired shape or size.
One advantage of the present invention is better control over the bonding step. This results in more even bonding of the formed media, which improves the quality and filtration performance of the formed media over that of media manufactured by the previously known processes.
It will be readily appreciated by those skilled in the art that the characteristics of the formed media can be varied as desired by using different primary media or wet strength agents, or by supplying additional components in the slurry to provide desired characteristics. Other advantages of the present invention will become more readily apparent from the following description of the drawings taken in conjunction with the detailed description of the preferred embodiments. BRIEF DESCRIPTION OF THE DRAWINGS So that those having ordinary skill in the art to which the subject invention appertains will more readily understand how to perform the process of the subject invention, reference may be had to the drawings wherein:
Fig. 1 is a flow diagram depicting the method of formation of wet felted and thermally bonded porous structures in accordance with the present invention.
Fig. 2 is a perspective view of a wet felted and thermally bonded porous structure formed on a wrapped polypropylene core, with a portion partially broken away.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to a novel process for manufacturing fibrous felted porous structures which can be used for filters. The invention is also directed to the fibrous felted porous structures made using the process.
Referring now to the flow diagram in Fig. 1 wherein like reference numerals identify similar steps of the process for manufacturing the fibrous felted porous structure, in Step 20 of the process a slurry is formed consisting of at least a primary media, a wet strength agent and a binding agent, and typically including water as the medium for the slurry. The primary media may include natural or synthetic fibers, such as for example cellulose, wool, polyolefin, polyester, polypropylene, acrylates, nylon, or any other appropriate material known to one skilled in the art. Mixtures of these fibers may also be used for the primary media. The fibers may be in their ordinary form or they may be fibrillated. Combinations of ordinary and fibrillated fibers may also be used in the primary media.
A wet-felted filter matrix requires a wet strength agent to maintain its shape. In the present invention, fibrillated fibers are used as the wet strength agent. The quantity of fibrillated fiber used to provide wet strength to the filter depends upon the length, diameter, and degree of refinement of the fibrillated fiber. Typically, between about 10% and 25% by weight of a fibrillated fiber is required to provide adequate wet strength. However, the invention is not limited in this regard, and other amounts of fibrillated fibers may be used. Indeed, fibrillated fibers may be used as the major component of the porous structure and function both as the primary media and as the wet strength agent.
The thermoplastic or thermosetting binding material is selected such that it has a lower melting temperature (for a thermoplastic material) or curing temperature (for a thermosetting material) than the melting temperature of the fibers used in the primary media and the wet strength agent. For example, thermoplastic polymeric fibers or powders with a lower melting point than the fibers used in the primary media and the wet strength agent may be used as a binding material. The melting or curing temperature of the binding material is referred to herein and in the claims as the "binding temperature." A vacuum forming process is used to create a formed media from the materials in the slurry. As shown in Step 25, the vacuum forming process typically used requires immersing a perforated mandrel in the slurry and drawing a vacuum on the mandrel, causing the materials in the slurry to accrete around the mandrel thereby creating a formed media. For manufacturing filters, a filter core consisting of polypropylene, nylon, polycarbonate, polyester, metal or some other appropriate material known to one skilled in the art may be placed over the mandrel prior to placing the mandrel in the slurry. The filter core may be covered by a woven or non- woven liner material, such as polyester, polyolefin, acrylates, cellulosic material, or blends of these materials. The filter core may be covered by wrapping a sheet of liner material on the core, using a pre-cut sleeve, by wet felting a thin layer of fibers over the filter core, or in any other appropriate manner known to one skilled in the art. The materials in the slurry can be accreted over the filter core to create a formed media on the filter core. In Step 30, the mandrel and the formed media are removed from the slurry.
In Step 35, the formed media is dried in a first stage at a temperature below the binding temperature of the binding agent. The media can be dried slowly at room temperature, or the drying can be performed by drawing a heated gas, typically air, through the formed media under a vacuum. Performing this drying step under the highest possible vacuum pressure facilitates rapid drying, thereby allowing increased production. Drying of the formed media continues until substantially all of the water is removed from the formed media.
After drying of the formed media is complete, in Step 40 of the process, second stage heating is performed by heating the formed media to a temperature above the melting temperature for a thermoplastic binding agent or above the curing temperature for a thermosetting binding agent. This temperature is referred to herein and in the claims as the binding temperature. Accordingly, second stage heating of the formed media takes place at a higher temperature than the drying temperature. The second stage heating may be performed by drawing a heated gas, typically air, through the formed media under a vacuum. The vacuum pressure used for second stage heating may be lower than the vacuum pressure used for drying. In the second stage of heating, the binding agent is melted or cured and the binding material bonds the fibrillated fibers in the formed media.
In Step 45, the dried, bonded formed media is cooled, typically by drawing a cool gas, such as ambient air, through the formed media. The formed media can be cooled at room temperature without a vacuum if desired. During the cooling step, the binding agent resolidifies to bind the fibrillated fibers together. The cooled media can then be cut or trimmed to the desired shape as shown in Step 50.
In one embodiment of the invention, about 60% powdered carbon, about 20% polyethylene fiber and about 20% polypropylene fiber are combined and dispersed in about 1% water to form a slurry. In this embodiment of the invention, the powdered carbon may be Calgon Carbon, WPH1000 grade, or a similar material, the polyethylene fiber may be Fybrel E9990 or a similar material, and the polypropylene fiber may be Fybrel Y600 or a similar material. The polyethylene fiber serves as the binder material, and has a melting point of approximately 135 degrees Celsius. The slurry is maintained at a temperature of approximately 40 degrees Celsius. Warm water is used in this embodiment because lowering the viscosity of the water results in a more closely packed formed media. Cooler water can be used to obtain more open porous structures.
Referring now to Fig. 2 wherein like reference numerals identify similar structural elements of a filter assembly made by the method of the present invention, a filter assembly (14) is comprised of a layer of a non-woven liner (10) made of polyester or polypropylene wrapped over a perforated polypropylene core (1 1). The wrapped polypropylene core is placed over a vacuum mandrel and submerged in the slurry. A vacuum of approximately 20 inches of Hg is drawn, accreting a formed media (12) of carbon and fiber over the non- woven liner (10) wrapped over the polypropylene core (11).
The formed media (12) is dried at a temperature of about 100-120 degrees Celsius, which is below the melting temperature of the polyethylene binder material. Drying is performed at the highest possible vacuum, between about 30-34 inches of water, to facilitate drying without melting the binder material. The process will typically take about 2 hours to dry a formed media of 3 inch outside diameter by 1 inch inside diameter. The bonding step is performed at 138 degrees Celsius, and under a vacuum of about 6-10 inches of water. The bonding temperature is maintained for between about 5 minutes to about 20 minutes depending upon heating efficiency and the specific heat of the materials used. The formed media (12) should not be heated to too high a temperature and should not be allowed to remain above the melting temperature for too long a time. Excess time or temperature can result in blocking of the pores of the formed media by the melt flow of the polyethylene binder.
After the bonding step is complete, the formed media must be cooled before it can be handled for trimming and cutting. Cooling can be accomplished by drawing ambient air through the formed media for about 15-20 minutes. When the formed media is sufficiently cooled, it may be cut and trimmed as desired.
If desired, the formed media may be densified prior to cooling using a rubber bladder compressed using pressurized air, or by any other densification method known to one skilled in the art.
In other embodiments of the invention, the materials used to form the porous media can be changed to obtain a filter with the desired characteristics. The fibrillated fibers used to manufacture the felted porous structure may be cellulose, wool, polyolefin, polyester, acrylate, aramids, cellulose acetate, or any other material that can be provided in the form of a fibrillated fiber. The binding agent used to manufacture the felted porous structure may be a thermoplastic fiber, a thermoplastic powder, a thermosetting resin or any other material that may be used to thermally bond fibers to form a felted porous structure.
Additional materials may be added to the slurry to impart desirable characteristics to the filter. When added to the slurry, these materials will be incorporated into the accreted porous structure. For example, activated carbon, charcoal, diatomaceous earth, perlite, activated alumina, zeolites, ion-exchange resins, sand, clay, silica, metallic particles or metallic fibers may be added to the slurry to improve filter performance or to impart a desired characteristic to the filter. These examples are not meant to limit in anyway the materials that may be added to the slurry and incorporated into the accreted porous media to impart desirable characteristics to the final product. As will be apparent to those of ordinary skill in the art based on the teachings herein, numerous changes and modifications may be made to the above- described and other embodiments of this invention without departing from the scope or spirit of the invention as defined by the appended claims. For example, the drying and bonding temperatures, times or pressures may be varied from that described depending upon the materials used. Also, the process can be performed by continuously varying the drying and bonding temperature and pressure, provided that the initial drying of the formed media is first accomplished at a temperature below the melt temperature of the binding material, and the bonding step is then performed at a temperature above the melting point of the binding agent. Accordingly, this detailed description of preferred embodiments is to be taken in an illustrative, as opposed to a limiting, sense.

Claims (30)

What is claimed is:
1. A process for making fibrous felted porous structures, comprising the steps of:
(a) preparing a slurry containing a primary media, a wet strength agent and a binding agent; (b) vacuum forming the slurry to produce a formed media;
(c) drying the formed media at a temperature below the binding temperature of the binding agent, until substantially all water is removed from the formed media;
(d) bonding the formed media by heating the formed media to a temperature above the binding temperature of the binding agent; and
(e) cooling said formed media at ambient temperature.
2. The process according to claim 1 , further comprising the steps of :
(f) drying the formed media by drawing a first gas through the formed media, said first gas being at a temperature below the binding temperature of the binding agent, until substantially all water is removed from the formed media; (g) bonding the formed media by drawing a second gas through the formed media, said second gas being at a temperature above the binding temperature of the binding agent; and
(h) cooling said formed media by drawing a third gas through the formed media until cooled, said third gas being at ambient temperature
3. The process according to claim 2, wherein said first gas, said second gas and said third gas are air.
4. The process according to claim 1, further comprising the step of densifying the formed media by applying pressure to the formed media.
5. The process according to claim 1, wherein the step of preparing a slurry further comprises the steps of:
(f) supplying in the slurry fibers of at least one of cellulose, wood, polyolefin, polyester, acrylate, arimids, or cellulose acetate; and
(g) supplying in the slurry at least one of activated carbon, charcoal, diatomaceous earth, perlite, activated alumina, zeolites, ion-exchange resins, sand, clay, silica, metallic particles or metallic fibers.
6. The process according to claim 5, further comprising the step of supplying in the slurry a wet strength agent consisting of fibrillated fibers of at least one of cellulose, wood, polyolefin, polyester, acrylate, arimids or cellulose acetate.
7. The process according to claim 6, further comprising the step of supplying in the slurry a binding agent comprised of thermoplastic fibers.
8. The process according to claim 6, further comprising the step of supplying in the slurry a binding agent comprised of thermoplastic powder.
9. The process according to claim 6, further comprising the step of supplying in the slurry a binding agent comprised of thermosetting resin.
10. The process according to claim 1, wherein the step of vacuum forming further comprises the steps of:
(f) covering a perforated core with at least one layer of liner material; (g) positioning the covered perforated core adjacent to a vacuum mandrel; and
(h) vacuum forming the slurry onto the covered perforated core to create a formed media.
1 1. The process according to claim 10, further comprising the step of supplying a non- woven liner material consisting of at least one of polyester, polyolefin, acrylates or cellulose.
12. The process according to claim 10, further comprising the step of supplying a woven liner material consisting of at least one of polyester, polyolefin, acrylates or cellulose.
13. A process for making fibrous felted porous structures, comprising the steps of:
(a) providing about 60% by weight powdered carbon, about 20% by weight polyethylene fiber, and about 20% by weight polypropylene fiber; (b) dispersing the powdered carbon, polyethylene fiber and polypropylene fiber in water at about 40 degrees Celsius to make a slurry of about 1 % by weight water;
(c) wrapping a layer of liner material over a perforated core; (d) positioning the wrapped perforated core adjacent to a vacuum mandrel;
(e) applying the said slurry onto the wrapped perforated core under a vacuum of about 20 inches Hg to create a formed media;
(f) drying the formed media by drawing air at a temperature of about 100-120 degrees Celsius through the formed media under a vacuum of about 30-34 inches of water until substantially all water is removed from the formed media;
(g) bonding the formed media by drawing air at a temperature of about 138 degrees Celsius through the formed media under a vacuum of about 6-10 inches of water for about 20 minutes; and
(h) cooling the formed media by drawing air at ambient temperature through the formed media by vacuum until cooled.
14. The process according to claim 13, further comprising the step of densifying the formed media by applying pressure to the formed media.
15. The process according to claim 13, further comprising the steps of:
(i) supplying a non-woven liner material comprised of polyester; and
(j) supplying a perforated core comprised of polypropylene.
16. A fibrous felted porous structure produced according to the process of claim 1.
17. A fibrous felted porous structure produced according to the process of claim 2.
18. A fibrous felted porous structure produced according to the process of claim 3.
19. A fibrous felted porous structure produced according to the process of claim 4.
20. A fibrous felted porous structure produced according to the process of claim 5.
21. A fibrous felted porous structure produced according to the process of claim 6.
22. A fibrous felted porous structure produced according to the process of claim 7.
23. A fibrous felted porous structure produced according to the process of claim 8.
24. A fibrous felted porous structure produced according to the process of claim 9.
25. A fibrous felted porous structure produced according to the process of claim 10.
26. A fibrous felted porous structure produced according to the process of claim 11.
27. A fibrous felted porous structure produced according to the process of claim 12.
28. A fibrous felted porous structure produced according to the process of claim 13.
29. A fibrous felted porous structure produced according to the process of claim 14.
30. A fibrous felted porous structure produced according to the process of claim 15.
AU2002244174A 2001-02-26 2002-02-26 Wet-felted and thermally bonded porous structures Ceased AU2002244174B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/793,174 US6712939B2 (en) 2001-02-26 2001-02-26 Process for manufacturing wet-felted and thermally bonded porous structures and porous structures formed by the process
US09/793,174 2001-02-26
PCT/US2002/005906 WO2002068180A1 (en) 2001-02-26 2002-02-26 Wet-felted and thermally bonded porous structures

Publications (2)

Publication Number Publication Date
AU2002244174A1 true AU2002244174A1 (en) 2003-03-06
AU2002244174B2 AU2002244174B2 (en) 2005-01-06

Family

ID=25159272

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002244174A Ceased AU2002244174B2 (en) 2001-02-26 2002-02-26 Wet-felted and thermally bonded porous structures

Country Status (7)

Country Link
US (1) US6712939B2 (en)
EP (1) EP1383642A4 (en)
JP (1) JP2004519562A (en)
CN (1) CN1261295C (en)
AU (1) AU2002244174B2 (en)
BR (1) BR0207561A (en)
WO (1) WO2002068180A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117435B4 (en) * 2001-04-03 2006-01-12 Msa Auer Gmbh Method for producing a filter body
US6835311B2 (en) 2002-01-31 2004-12-28 Koslow Technologies Corporation Microporous filter media, filtration systems containing same, and methods of making and using
US20060213162A1 (en) * 2003-04-04 2006-09-28 Wijadi Jodi Filter media prepared in aqueous system including resin binder
WO2004089509A2 (en) * 2003-04-04 2004-10-21 Donaldson Company, Inc. Filter media prepared in aqueous system including resin binder
EP1638811A2 (en) 2003-07-01 2006-03-29 Collins & Aikman Products Co. Sound absorptive multilayer articles and methods of producing same
BRPI0511802A (en) * 2004-06-04 2008-01-15 Donaldson Co Inc process for creating media for use in air / oil separators
US7537333B2 (en) * 2005-06-09 2009-05-26 Xerox Corporation Low friction reduced fiber shed drum maintenance filter and reclamation method
US8331448B2 (en) * 2006-12-22 2012-12-11 Qualcomm Incorporated Systems and methods for efficient spatial intra predictabilty determination (or assessment)
GB0912880D0 (en) 2009-07-24 2009-08-26 Psi Global Ltd Process and apparatus for molding a filter
KR101216992B1 (en) * 2010-09-14 2012-12-31 황중국 Method and apparatus of manufacturing agricultural cover sheet including nonwoven cloth made of natural material by air floating
WO2012039127A1 (en) * 2010-09-21 2012-03-29 パナソニック株式会社 Porous ion exchanger, water treatment device, hot-water supply device, and process for producing porous ion exchanger
JP5733858B2 (en) * 2011-07-28 2015-06-10 株式会社Shoei Visor mounting mechanism in helmet
KR101323024B1 (en) * 2011-12-22 2013-10-29 군산대학교산학협력단 A diatomite filter and the manufacturing method thereof
EP2833984A4 (en) 2012-04-05 2016-01-06 3M Innovative Properties Co Composite ion exchange media for liquid filtration sytems
CN103936170B (en) * 2014-03-03 2016-07-06 丽中环境工程科技(上海)有限公司 The felted nylon bio-carrier of a kind of supported active carbon, preparation method and application
MX2018009926A (en) * 2016-02-19 2018-11-29 Carbon Conv Inc Thermoplastic bonded preforms and thermoset matrices formed therewith.
CN107700077A (en) * 2017-10-16 2018-02-16 宝鸡嘉鑫滤材科技有限公司 A kind of formula for producing wet method antibacterial and mouldproof skeleton non-woven fabrics
JP7199988B2 (en) * 2019-02-08 2023-01-06 日本碍子株式会社 Honeycomb structure manufacturing method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032457A (en) 1975-06-04 1977-06-28 Fibredyne, Inc. Plural stage filter cartridge wherein at least one stage comprises pulverized particulate material
US4243480A (en) 1977-10-17 1981-01-06 National Starch And Chemical Corporation Process for the production of paper containing starch fibers and the paper produced thereby
GB2045828B (en) * 1979-04-06 1983-08-24 Amf Inc Filter and method of making same
CA1148872A (en) 1979-04-06 1983-06-28 Eugene A. Ostreicher Filter with inorganic cationic colloidal silica
US4376675A (en) * 1979-05-24 1983-03-15 Whatman Reeve Angel Limited Method of manufacturing an inorganic fiber filter tube and product
US4389224A (en) 1981-07-15 1983-06-21 Clarence Sicard Method and apparatus for accreting fibrous filter cartridges or other tubular articles
US4620932A (en) 1983-06-06 1986-11-04 Howery Kenneth A Submicronic hydrophilic filter media
US4859386A (en) 1986-04-07 1989-08-22 Amway Corporation Method of making a water filter
US5180630A (en) 1986-10-14 1993-01-19 American Cyanamid Company Fibrillated fibers and articles made therefrom
US5019311A (en) 1989-02-23 1991-05-28 Koslow Technologies Corporation Process for the production of materials characterized by a continuous web matrix or force point bonding
US5024764A (en) 1989-03-17 1991-06-18 Ametek, Inc. Method of making a composite filter
US5167765A (en) * 1990-07-02 1992-12-01 Hoechst Celanese Corporation Wet laid bonded fibrous web containing bicomponent fibers including lldpe
ES2091954T3 (en) 1991-01-22 1996-11-16 Hoechst Ag VEIL MATERIAL CONSOLIDATED BY A HEAT-FUSING BINDER.
US5728298A (en) 1992-10-29 1998-03-17 Cuno, Incorporated Filter element and method for the manufacture thereof
EP0825286A3 (en) 1992-11-18 2000-11-02 AQF Technologies LLC Fibrous structure containing immobilized particulate matter and process therefor
EP0622101B1 (en) 1993-04-30 1998-07-29 Chisso Corporation Cylindrical filter and process for producing the same
JPH08127993A (en) * 1994-10-26 1996-05-21 Unitika Ltd Wet nonwoven fabric and its production
US5665235A (en) 1995-05-09 1997-09-09 Pall Corporation Supported fibrous web assembly
JP3677836B2 (en) 1995-11-02 2005-08-03 チッソ株式会社 Cylindrical filter
JPH09276626A (en) * 1995-12-13 1997-10-28 Korin Industry Dev Co Ltd Manufacture of air cleaner constituent member
US5882517A (en) 1996-09-10 1999-03-16 Cuno Incorporated Porous structures
JP3714453B2 (en) * 1998-05-08 2005-11-09 東洋紡績株式会社 Adsorbent sheet, method for producing the same, and filter for air purification
JP2000117025A (en) * 1998-10-12 2000-04-25 Toray Ind Inc Filter base material and production thereof and mask

Similar Documents

Publication Publication Date Title
US6712939B2 (en) Process for manufacturing wet-felted and thermally bonded porous structures and porous structures formed by the process
AU2002244174A1 (en) Wet-felted and thermally bonded porous structures
JP4731642B2 (en) Porous structure and manufacturing method thereof
US4539252A (en) Variable density board having improved thermal and acoustical properties and method and apparatus for producing same
US5399422A (en) Laminate
EP0515045B1 (en) Process for manufacturing a self-supporting filter unit and self-supporting filter unit
US4430286A (en) Variable density board having improved thermal and acoustical properties and method and apparatus for producing same
US20080305705A1 (en) Reinforcing material with bulked fibres
DE10033322A1 (en) composite element
GB2134845A (en) Process for producing composite form body
JP4738579B2 (en) Filter medium for liquid filtration and method for producing the same
JP4589003B2 (en) Fiber structure for composite material production
EP0249261B1 (en) Shaped article made of carrier fibres and thermoplastic binder fibres, and method of manufacturing it
US5425907A (en) Method of making a cylindrical filter cartridge
CN108859325B (en) Production method of ultra-light PP glass fiber board
CN108602287A (en) The composite part for manufacturing the method for composite part from water soluble resin and being manufactured using the method
CN115010512B (en) Foam ceramic filter and preparation method thereof
JP3671802B2 (en) Resin gear
JP2961201B2 (en) Dust cap for speaker
JP3153895B2 (en) Method of producing fiber tube for roll coating
JPH06192466A (en) Production of porous synthetic resin
TW202146099A (en) Manufacturing method for filter cartridge
JPH0816304B2 (en) Stampable sheet material
JPH0449455B2 (en)
JPH06155598A (en) Synthetic resin porous material