AU2002236941B2 - Suspension system having reduced stress axle connection - Google Patents

Suspension system having reduced stress axle connection Download PDF

Info

Publication number
AU2002236941B2
AU2002236941B2 AU2002236941A AU2002236941A AU2002236941B2 AU 2002236941 B2 AU2002236941 B2 AU 2002236941B2 AU 2002236941 A AU2002236941 A AU 2002236941A AU 2002236941 A AU2002236941 A AU 2002236941A AU 2002236941 B2 AU2002236941 B2 AU 2002236941B2
Authority
AU
Australia
Prior art keywords
sleeve
axle
welded
arm
side walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2002236941A
Other versions
AU2002236941A1 (en
AU2002236941C1 (en
Inventor
Thomas N. Chalin
Donald R. Watson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watson and Chalin Manufacturing Inc
Original Assignee
Watson and Chalin Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Watson and Chalin Manufacturing Inc filed Critical Watson and Chalin Manufacturing Inc
Publication of AU2002236941A1 publication Critical patent/AU2002236941A1/en
Publication of AU2002236941B2 publication Critical patent/AU2002236941B2/en
Application granted granted Critical
Publication of AU2002236941C1 publication Critical patent/AU2002236941C1/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/003Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle being rigidly connected to a trailing guiding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • B60G2200/31Rigid axle suspensions with two trailing arms rigidly connected to the axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/43Fittings, brackets or knuckles
    • B60G2204/4306Bracket or knuckle for rigid axles, e.g. for clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8207Joining by screwing

Description

WO 03/066355 PCT/US02/02903 SUSPENSION SYSTEM HAVING REDUCED STRESS AXLE CONNECTION TECHNICAL FIELD The present invention relates generally to vehicle suspension systems and, in an embodiment described herein, more particularly provides a suspension system having a reduced stress axle connection.
BACKGROUND
It is well known in the suspension system art to weld an arm to an axle of the suspension system. Due to the requirements of manufacturing tolerances and economy, typically some clearance is provided between the axle and the arm.
Unfortunately, this clearance between the axle and arm leads to relatively weak WO 03/066355 PCT/US02/02903 -2welds, for example, having reduced fatigue strength. This clearance between the axle and arm also increases the stress in the welds, leading to premature failure of the welds.
It has been proposed to reinforce the axle by means of a sleeve interposed between the axle and arm. In one such proposal, the sleeve is press-fitted on the axle to reduce the clearance therebetween, but this adds steps to the manufacturing process, requires additional special equipment, requires exceptionally close machining tolerances, etc. In another such proposal, the sleeve is made in multiple segments which are assembled about the axle prior to lo being welded to the axle, but this complicates the manufacturing process and also requires additional special equipment and steps to assemble the sleeve segments about the axle, without resolving the problem of clearance between the axle and the member(s) welded thereto.
From the foregoing, it can be seen that it would be quite desirable to provide a suspension system and associated manufacturing process which reduce the stress in an axle connection by removing the clearance between the axle and a sleeve welded to the axle. Such a suspension system and manufacturing process would preferably also provide for welding an arm to an axle without welds being positioned in high stress areas.
00 Object of the Invention It is the object of the present invention to substantially overcome or ameliorate Sone or more of the disadvantages of the prior art.
Summary In a first aspect, the present invention provides a vehicle suspension system, comprising: an axle; (Ni a sleeve clamped on the axle in a clamped position without press-fitting, the 1o sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the openings in the side walls extending less than 360 degrees about the sleeve.
In a second aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the arm including a generally U-shaped portion having opposing side walls, and a plate extending between the side walls and welded to each of the side walls, the plate further being welded to the sleeve.
In a third aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the sleeve being welded in its clamped position by a weld extending between structural members of a generally radially outwardly extending clamp portion of the sleeve.
In a fourth aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and AH2|1370724 I):MLW 00 an arm attached to the axle by welding directly to the sleeve, the sleeve being welded to the axle in at least one opening formed laterally through the sleeve.
SIn a fifth aspect, the present invention provides a vehicle suspension system, comprising: s an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and O an arm attached to the axle by welding directly to the sleeve, the sleeve being ¢€3 welded to the arm at openings formed through opposing side walls of the arm, and the to side walls being welded to the sleeve less than 360 degrees about the sleeve.
I In a sixth aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped to the axle without press-fitting; and Is an arm having opposing side walls, each of the side walls having an opening formed therethrough, the sleeve being received in each of the openings, and the sleeve being welded to the arm less than 360 degrees about a periphery of each of the openings.
In a seventh aspect, the present invention provides a method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting; welding the sleeve, thereby retaining the sleeve in its clamped position; and welding the sleeve to each of opposing side walls of an arm, the sleeve being welded less than 360 degrees about an opening formed through each of the side walls.
In an eighth aspect, the present invention provides a method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; welding the sleeve to the axle; welding opposing side walls of an arm to the sleeve; and welding a plate to the sleeve, the plate extending between the side walls.
In a ninth aspect, the present invention provides a method of fabricating a vehicle suspension system, the method comprising the steps of: AH21(1370724 I):MLW 00 clamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and Saxle; retaining the compressive stress between the sleeve and axle by welding together members of the sleeve, the sleeve members being included in a clamp portion of the sleeve; welding the sleeve to the axle; and NO welding opposing side walls of an arm to the sleeve, ¢€3 wherein the clamping step further comprises tightening a fastener in the members of the clamp portion.
In a tenth aspect, the present invention provides a method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and Is axle; retaining the compressive stress between the sleeve and axle by welding together members of the sleeve, the sleeve members being included in a clamp portion of the sleeve; welding the sleeve to the axle; and welding opposing side walls of an arm to the sleeve, the clamp portion extending in a void formed between a respective opening and a peripheral edge of each side wall.
In an eleventh aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle; and an arm attached to the axle by welding to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the side walls being welded to the sleeve less than 360 degrees about the sleeve.
In a twelfth aspect, the present invention provides a vehicle suspension system, comprising: an axle; AH21(1370724 I):MLW 00 0 0a sleeve clamped in a clamped position on the axle by a clamp portion of the N sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded Sto the axle; and an arm attached to the axle by welding to the sleeve, the arm including a generally U-shaped portion having opposing side walls, and a plate extending between the side walls and welded to each of the side walls, the plate further being welded to the sleeve.
In a thirteenth aspect, the present invention provides a vehicle suspension (Ni system, comprising: an axle; N, a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle, and the sleeve being welded to the axle in at least one opening formed laterally through the sleeve; and is an arm attached to the axle by welding to the sleeve.
In a fourteenth aspect, the present invention provides a vehicle suspension system, comprising: an axle; a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle; and an arm attached to the axle by welding to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the openings in the side walls extending less than 360 degrees about the sleeve.
In a fifteenth aspect, the present invention provides a method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; then welding the sleeve to the axle; and then welding opposing side walls of an arm to the sleeve.
AH21(1370724 I):MLW 4c 00 Brief Description of the Drawings FIG. is a side view of a suspension system embodying principles of the present Sinvention; SFIG. 2 is a front elevational view of an axle/clamp subassembly of the suspension system of FIG. 1; FIG. 3 is a side view of an arm subassembly of the suspension system of FIG. 1; FIG. 4 is a front elevational view of an alternate axle/clamp subassembly of the NO suspension system of FIG. 1; C FIG. 5 is a top view of the alternate axle/clamp subassembly of FIG. 4; to FIG. 6 is a side view of the suspension system of FIG.1 incorporating the C alternate axle/clamp subassembly of FIG. 4; FIG. 7 is a side view of a second suspension system embodying principles of the present invention; AH21(1370724 I):MLW WO 03/066355 PCT/US02/02903 FIG. 8 is a side view of a third suspension system embodying principles of the present invention; FIG. 9 is a side view of a fourth suspension system embodying principles of the present invention; FIG. 1o is a side view of a fifth suspension system embodying principles of the present invention; FIG. 11 is a cross-sectional view of the fifth suspension system, taken along line 11-11 of FIG. FIG. 12 is a cross-sectional view of the fifth suspension system, showing an lo alternate configuration thereof; and FIG. 13 is a cross-sectional view of the fifth suspension system, showing another alternate configuration thereof.
DETAILED DESCRIPTION Representatively illustrated in FIG. 1 is a portion of a vehicle suspension system O10 which embodies principles of the present invention. In the following description of the suspension system lo and other apparatus and methods described herein, directional terms, such as "above", "below", "upper", "lower", "top", "bottom", etc., are used only for convenience in referring to the accompanying drawings. Additionally, it is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention.
WO 03/066355 PCT/US02/02903 -6- The suspension system 10 includes an axle 12 attached to two trailing arms 14. Only one of the arms 14 is visible in FIG. 1. The suspension system lO is of the type which has two trailing arms 14 pivotably attached at their forward ends to opposite lateral sides of a vehicle frame 16 (see FIG. and attached at or near their rearward ends to the axle 12. It is to be clearly understood, however, that principles of the invention may be incorporated into other types of suspension systems having any number of arms.
The arm 14 includes a bushing sleeve 18 at its forward end for receiving a pivot bushing of the type well known to those skilled in the art. Extending lO rearwardly from the bushing sleeve 18 are four outer sides of the arm 14, the four sides including a top plate 20, two opposing side walls 22 (only one of which is visible in FIG. and a bottom plate 24. The top plate 20 and side walls 22 are preferably formed from a single metal sheet which is bent so that it has a generally U-shaped cross-section.
The bottom plate 24 extends laterally between the side walls 22 and is welded to the side walls along a lower peripheral edge 26 of each side wall. The bottom plate 24, top plate 20 and side walls 22 are also welded at their forward ends to the bushing sleeve 18. Of course, the arm 14 could be otherwise constructed without departing from the principles of the invention.
The axle 12 extends through a circular opening 28 formed through each side wall 22. Note that the opening 28 does not completely encircle the axle 12, however, since there is a void 30 extending between the opening 28 and the edge 26. These features of the arm 14 may be more clearly seen in FIG. 3, wherein the WO 03/066355 PCT/US02/02903 -7arm is illustrated prior to its attachment to the axle 12, bushing sleeve 18 and bottom plate 24.
In a unique aspect of the invention, the arm 14 is attached to the axle 12 using a sleeve 32 which is clamped to the axle. This clamping of the sleeve 32 to the axle 12 applies a compressive stress between the sleeve and axle, and removes clearance between the axle and sleeve. As a result, when the sleeve 32 is later welded to the axle 12, the welds are much stronger and have an increased fatigue strength.
Note that this result is obtained without the added expense of precise io machining tolerances and specialized equipment required for press-fitting a sleeve onto an axle. The heating and/or cooling equipment and processes required for shrink-fitting are also not required.
Instead, the sleeve 32 of the suspension system lO is clamped onto the axle 12 using fasteners 34, such as bolts, hucks, or any other type of fasteners, in a clamp portion 36 of the sleeve. The fasteners 34 may be seen in FIG. 2, wherein a front view of the sleeve 32 and axle 12 is illustrated prior to the arm 14 being attached thereto. The fasteners 34 pass through holes 38 formed through the clamp portion 36.
In a preferred method of fabricating the suspension system 1O, the sleeve 32 is positioned on the axle 12 and the fasteners 34 are tightened in the clamp portion 36 to remove clearance between the sleeve and axle. The sleeve 32 is then welded to the axle 12. Preferably, the sleeve 32 is first welded to the axle 12 about openings 40 formed through the sleeve.
WO 03/066355 PCT/US02/02903 -8- The openings 40 are centered on opposite vertical sides of the sleeve 32.
In this manner, the sleeve 32 is welded to the axle 12 in a low stress area of the axle and reduces the effects of stress concentrations in the axle due to the welding. This combination of higher strength welds (due to removal of clearance between the sleeve 32 and the axle 12) and positioning of welds in low stress areas of the axle provides increased strength in the axle and in the sleeve-to-axle connection.
Note, however, that the sleeve 32 may also be welded to the axle 12 at opposite lateral ends 42 of the sleeve, for example, either partially or completely lo encircling the axle. Alternatively, if the clamping of the sleeve 32 onto the axle 12 produces a sufficient bearing load therebetween, no welding of the sleeve to the axle may be required.
After the sleeve 32 is welded to the axle 12, the sleeve is inserted into the openings 28 in the arm 14, and the arm is welded to the sleeve about the openings. Note that the clamp portion 36 is received in the voids 30 when the sleeve 32 is inserted into the openings 28. To permit the clamp portion 36 to be received in the voids 30, the fasteners 34 may be removed from the clamp portion prior to inserting the sleeve 32. Other embodiments are described below in which it is not necessary to remove the fasteners 34 prior to inserting the sleeve 32 into the openings 28. Thus, it may be seen that the fabrication method of the present invention is not dependent upon any particular order of steps.
For increased strength in the axle 12 to arm 14 connection, the clamp portion 36 may be welded together, thereby retaining the compressive stress between the sleeve 32 and axle. In FIG. 1, a weld 44 is shown between two WO 03/066355 PCT/US02/02903 -9members of the clamp portion 36 extending outwardly from the void 30. It is not necessary, however, for the clamp portion 36 to be welded together in keeping with the principles of the invention.
The bottom plate 24 of the arm 14 is also preferably welded to the clamp portion 36 of the sleeve 32. Another bottom plate 46 extending between and attached to the side walls 22 may also be welded to the clamp portion 36. Note that the bottom plates 24, 46 may be welded to the side walls 22 along the edges 26 prior to inserting the sleeve 32 into the openings 28, or the bottom plates may be welded to the side walls and to the sleeve 32 after the sleeve is inserted into the lo openings.
For increased strength, the sleeve 32 substantially encircles the axle 12, extending substantially greater than 18o degrees about the axle. The openings 28 extend less than 360 degrees about the sleeve 32, and so the side walls 22 are welded less than 360 degrees about the sleeve. The edges of the void 30 may be welded to the clamp portion 36 to further strengthen the attachment between the sleeve 32 and arm 14.
Referring additionally now to FIGS. 4 5, an alternate sleeve 48 is representatively illustrated attached to the axle 12. The alternate sleeve 48 differs from the sleeve 32 described above in that it includes a laterally extending portion 50. Thus, the alternate sleeve 48 is substantially wider than the sleeve 32.
The portion 50 supplies a convenient location for mounting additional equipment, such as a shock absorber, to the sleeve 48. In this manner, the equipment may be rigidly attached to the axle 12 via the sleeve 48, without the necessity of also, or alternatively, attaching the equipment to the arm 14. This WO 03/066355 PCT/US02/02903 saves weight, enhances the efficiency of the manufacturing process and reduces stress in the arm 14 (as opposed to attaching such equipment to the arm, which typically requires substantial reinforcement of the arm).
Referring additionally now to FIG. 6, the suspension system o10 is representatively illustrated with the alternate sleeve 48 incorporated therein. The arm 14 is pivotably attached to a hanger bracket 52 extending downwardly from the vehicle frame 16. A bushing 54 is received in the bushing sleeve 18, thereby permitting the arm 14 to rotate and articulate somewhat relative to the hanger bracket 52. An air spring 56 is positioned between the frame 16 and a rear 1o portion of the arm 14.
A shock absorber 58 is interconnected between the hanger bracket 52 and the sleeve 48. For this purpose, a mounting bracket 60 is welded to the portion of the sleeve 48. Thus, it may be seen that the invention provides a convenient attachment of the shock absorber 58 to the axle 12, without requiring the shock absorber to be mounted to the arm 14.
Referring additionally now to FIG. 7, the suspension system 1o is representatively illustrated with an alternate arm 62 incorporated therein in place of the arm 14 described above. The arm 62 is very similar to the arm 14, but differs in at least one respect in that it includes a void 64 in at least one of its side walls 66 which is configured to permit the fasteners 34 to pass therethrough.
In this manner, it is not necessary for the fasteners 34 to be removed from the clamp portion 36 prior to inserting the sleeve 32 into the openings 28. Of course, other means of permitting the fasteners 34 to pass through the side walls WO 03/066355 PCT/US02/02903 11- 66 may be used without departing from the principles of the invention. For example, the fasteners 34 could be recessed into the clamp portion 36, etc.
The clamp portion 36 may still be welded together, for example, by the weld 44, even though the fasteners 34 are not removed from the clamp portion.
In addition, the bottom plates 24, 46 may still be welded to the clamp portion 36.
Referring additionally now to FIG. 8, the suspension system lo is representatively illustrated with another alternately constructed arm 68. The arm 68 is very similar to the arm 14, but differs in one respect in that it has openings 70 in each of its side walls 72 which intersect, or are open at, lower lo peripheral edges 74 of the side walls. Thus, there are no separate voids extending between the openings 70 and the peripheral edges 74, but the voids may instead be considered part of the openings.
The openings 70 are closer to the lower edges 74, so that when the sleeve 32 is inserted into the openings, the fasteners 34 are below the side walls 72. This is another means by which it is not necessary for the fasteners 34 to be removed from the clamp portion 36 prior to inserting the sleeve 32 into the openings This may also permit the bottom plates 24, 46 to be welded to the sleeve 32 above the clamp portion 36. The clamp portion 36 may also be welded together as described above, whether or not the fasteners 34 are removed.
Referring additionally now to FIG. 9, another alternate construction for the suspension system O10 is representatively illustrated. The shock absorber 58 is interconnected between the hanger bracket 52 and the axle 12 similar to the embodiment depicted in FIG. 6. However, instead of welding the shock WO 03/066355 PCT/US02/02903 -12mounting bracket 60 directly to a portion 50 of the sleeve 48, the mounting bracket is attached to the sleeve 32 by means of another bracket 76.
The bracket 76 may be welded to the clamp portion 36 of the sleeve 32. If desired, the bracket 76 may also be welded to the arm 68, for example, by welding to the bottom plate 24. In that case, the bracket 76 may also serve to strengthen the attachment between the sleeve 32 and the arm 68.
Referring additionally now to FIG. lo, another alternate construction of the suspension system lo is representatively illustrated. In this embodiment, a sleeve 78 is used which includes a specially adapted clamp portion 80. The clamp portion 80 permits the sleeve 78 to rotate within the openings 70 after being inserted therein.
The clamp portion 80 may be more clearly seen in the cross-sectional view depicted in FIG. 11. In this view, it may be seen that the clamp portion includes two recesses 82 aligned with the side walls 72 of the arm 68. The recesses 82 permit the sleeve 78 to rotate within the openings 70 in the side walls 72.
When the sleeve 78 is inserted into the openings 70, the clamp portion is positioned so that it extends downwardly as viewed in FIG. lo, so that the clamp portion passes through the voids between the openings and the lower edges 74 of the side walls 72. The recesses 82 are then aligned with the side walls 72 and the sleeve 78 is rotated until the clamp portion 80 extends upwardly. The sleeve 78 is welded to the arm 68 with the clamp portion 80 in its upward position. This upward positioning of the clamp portion 80 increases the ground clearance of the suspension system WO 03/066355 PCT/US02/02903 -13- Note that the bottom plates 24, 46 may be welded to the side walls 72 after the sleeve 78 and side walls 72 are welded together, in order to provide access to the sleeve between the side walls. The bottom plates 24, 46 may also be welded to the sleeve 78. The fasteners 34 may be removed, or they may remain in the clamp portion 80. The clamp portion 80 may be welded together as described above, whether or not the fasteners 34 are removed.
The side walls 72 of the arm 68 are parallel to each other as depicted in FIG. 11. However, it is not necessary for the side walls 72 to be parallel to each other. In FIG. 12, the arm 68 is depicted with an alternate construction in which 1o the side walls 72 are each inclined inwardly toward the top plate 20, and inclined outwardly toward the bottom plate 46.
Note that the recesses 82 of the clamp portion 80 as depicted in FIG. 12 have been widened (as compared to the clamp portion 80 as depicted in FIG. 11) to accommodate the inclined side walls 72.
In FIG. 13 is depicted another alternate construction of the arm 68 in which the side walls 72 are parallel to each other. This alternate construction differs from that shown in FIG. 11 in that the side walls 72 are sufficiently close to, or in contact with, the recesses 82 so that the clamp portion 80 may be welded to the side walls at the recesses, thereby further strengthening the connection between the sleeve 78 and the arm 68.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are WO 03/066355 PCT/US02/02903 -14contemplated by the principles of the present invention. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.

Claims (13)

1. A vehicle suspension system, comprising: _an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the sleeve being O welded to the arm at openings formed through opposing side walls of the arm, and the ¢€3 c, openings in the side walls extending less than 360 degrees about the sleeve.
2. A vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the arm including a Is generally U-shaped portion having opposing side walls, and a plate extending between the side walls and welded to each of the side walls, the plate further being welded to the sleeve.
3. A vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the sleeve being welded in its clamped position by a weld extending between structural members of a generally radially outwardly extending clamp portion of the sleeve.
4. A vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and an arm attached to the axle by welding directly to the sleeve, the sleeve being welded to the axle in at least one opening formed laterally through the sleeve. A vehicle suspension system, comprising: an axle; a sleeve clamped on the axle in a clamped position without press-fitting, the sleeve being welded in the clamped position; and AH21(1370724 I):MLW 00 an arm attached to the axle by welding directly to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the Sside walls being welded to the sleeve less than 360 degrees about the sleeve.
6. A vehicle suspension system, comprising: an axle; a sleeve clamped to the axle without press-fitting; and an arm having opposing side walls, each of the side walls having an opening ,O formed therethrough, the sleeve being received in each of the openings, and the sleeve being welded to the arm less than 360 degrees about a periphery of each of the openings. io 7. A method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting; welding the sleeve, thereby retaining the sleeve in its clamped position; and welding the sleeve to each of opposing side walls of an arm, the sleeve being is welded less than 360 degrees about an opening formed through each of the side walls.
8. A method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; welding the sleeve to the axle; welding opposing side walls of an arm to the sleeve; and welding a plate to the sleeve, the plate extending between the side walls.
9. A method of fabricating a vehicle suspension system, the method comprising the steps of: clamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; retaining the compressive stress between the sleeve and axle by welding together members of the sleeve, the sleeve members being included in a clamp portion of the sleeve; welding the sleeve to the axle; and welding opposing side walls of an arm to the sleeve, wherein the clamping step further comprises tightening a fastener in the members of the clamp portion. AH21(1370724 I):MLW 00 A method of fabricating a vehicle suspension system, the method comprising the steps of: Sclamping a sleeve to an axle without press-fitting, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; retaining the compressive stress between the sleeve and axle by welding together members of the sleeve, the sleeve members being included in a clamp portion of the NO sleeve; welding the sleeve to the axle; and welding opposing side walls of an arm to the sleeve, the clamp portion extending in a void formed between a respective opening and a peripheral edge of each side wall.
11. A vehicle suspension system, comprising: an axle; a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle; and an arm attached to the axle by welding to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the side walls being welded to the sleeve less than 360 degrees about the sleeve.
12. A vehicle suspension system, comprising: an axle; a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle; and an arm attached to the axle by welding to the sleeve, the arm including a generally U-shaped portion having opposing side walls, and a plate extending between the side walls and welded to each of the side walls, the plate further being welded to the sleeve.
13. A vehicle suspension system, comprising: an axle; a sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle, and the sleeve being welded to the axle in at least one opening formed laterally through the sleeve; and an arm attached to the axle by welding to the sleeve. AH2I(137024 I):MLW 00
14. A vehicle suspension system, comprising: an axle; Sa sleeve clamped in a clamped position on the axle by a clamp portion of the sleeve, the sleeve being welded in the clamped position prior to the sleeve being welded to the axle; and an arm attached to the axle by welding to the sleeve, the sleeve being welded to the arm at openings formed through opposing side walls of the arm, and the openings in NO the side walls extending less than 360 degrees about the sleeve. (Ni A method of fabricating a vehicle suspension system, the method to comprising the steps of: clamping a sleeve to an axle, thereby removing clearance between the sleeve and axle, and applying a compressive stress between the sleeve and axle; then welding the sleeve to the axle; and then welding opposing side walls of an arm to the sleeve.
16. A vehicle suspension system substantially as hereinbefore described with reference to any one of the embodiments as that embodiment is shown in the accompanying drawings.
17. A method of fabricating a vehicle suspension system substantially as described herein with reference to the accompanying drawings. Dated 29 August 2008 Watson Chalin Manufacturing, Inc. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON A1121(370724 I):MLW
AU2002236941A 2002-02-01 2002-02-01 Suspension system having reduced stress axle connection Expired AU2002236941C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2002/002903 WO2003066355A1 (en) 2002-02-01 2002-02-01 Suspension system having reduced stress axle connection

Publications (3)

Publication Number Publication Date
AU2002236941A1 AU2002236941A1 (en) 2003-09-02
AU2002236941B2 true AU2002236941B2 (en) 2008-10-09
AU2002236941C1 AU2002236941C1 (en) 2009-04-02

Family

ID=27732064

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002236941A Expired AU2002236941C1 (en) 2002-02-01 2002-02-01 Suspension system having reduced stress axle connection

Country Status (4)

Country Link
AU (1) AU2002236941C1 (en)
CA (1) CA2474746C (en)
MX (1) MXPA04007280A (en)
WO (1) WO2003066355A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038274C5 (en) 2005-08-12 2018-01-11 Saf-Holland Gmbh wheel suspension arm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020775A1 (en) * 1998-07-02 2001-09-13 Pierce Phillippi R. Trailing arm axle/suspension system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693486A (en) * 1986-04-09 1987-09-15 Lear Siegler, Inc. Trailing arm suspension with wrapper compression axle mounting
AU666572B2 (en) * 1992-10-19 1996-02-15 Hendrickson International Corporation Axle suspension systems
US5375871A (en) * 1993-07-02 1994-12-27 Ridewell Corporation Vehicle suspension system comprising a wide base beam and axle shell
US6241266B1 (en) * 1995-08-03 2001-06-05 Holland Neway International, Inc. Trailing arm suspension with wrapper compression axle mounting and articulated axle mounting
US6039336A (en) * 1997-09-19 2000-03-21 Otto Sauer Achsenfabrik Keilberg Vehicle axle suspension assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020775A1 (en) * 1998-07-02 2001-09-13 Pierce Phillippi R. Trailing arm axle/suspension system

Also Published As

Publication number Publication date
CA2474746A1 (en) 2003-08-14
CA2474746C (en) 2009-09-08
AU2002236941A1 (en) 2003-09-02
WO2003066355A1 (en) 2003-08-14
AU2002236941C1 (en) 2009-04-02
MXPA04007280A (en) 2004-10-29

Similar Documents

Publication Publication Date Title
US7007960B2 (en) Suspension system having reduced stress axle connection
US5639110A (en) Trailing arm suspension
EP0240649B1 (en) Trailing arm suspension with wrapper compression axle mounting
EP1671821B1 (en) Trailing arm suspension
US5480001A (en) Frame structure for a motorcycle
EP1625955B1 (en) A trailing arm suspension assembly
US6508393B2 (en) Suspension system including arm having zero clearance axle connection
CN111433057B (en) Arm support structure
US5634655A (en) Suspension system including an integrally formed axle seat
US6648351B1 (en) Cast aluminum rear subframe control arm articulations
EP0566759B1 (en) Trailing arm suspension with wrapper compression axle mounting
US20060181047A1 (en) Trailing arm for a vehicle suspension
US20050146109A1 (en) Golf car suspension
US6733020B2 (en) Suspension trailing arm
CA2348605C (en) Bracket assembly
EP1250237B1 (en) Trailing arm suspension
EP0752933B1 (en) Trailing arm suspension
AU2002236941B2 (en) Suspension system having reduced stress axle connection
US20040021288A1 (en) Suspension beam and bush attachment assembly
US7377530B2 (en) Tapered sleeve suspension arm joint
NZ534506A (en) Suspension system having reduced stress axle connection
CN219007523U (en) Stabilizer bar connection structure and car
US20020185326A1 (en) Swing arm for all terrain vehicle
KR102606437B1 (en) Mounting bracked to prevent members from separation
WO1996036502A1 (en) Trailing arm suspension with wrapper compression axle mounting

Legal Events

Date Code Title Description
DA2 Applications for amendment section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 03 NOV 2008.

DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 03 NOV 2008

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired